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Preface

This thesis is based on research done in the period 1997–2001 while I was working as
a teaching assistant at the Department of Chemistry, University of Oslo. Parts of the
research have also been done at the San Diego Supercomputer Center (SDSC) and
the University of California, San Diego (UCSD) where I worked with Peter Taylor
and his research group the spring of 1997 and the autumn of 1998. My position
as a teaching assistant ended December 2001, and in January 2002 I entered a new
position as a research scientist at the Norwegian Computing Center (NR). Since I
started to write the thesis late 2001 I was not able to complete it before I entered
my new position, and the writing of this thesis has therefore been a major part time
project ever since.

The results that are presented herein are based on research made in collaboration
with Peter Taylor, Trygve Helgaker, Dan Jonsson, B. Joakim Persson, and Robert
Polly, and their contributions will be summarised below.

The original idea of expanding pair functions using both the conventional virtual
orbitals expansion and a set of Gaussian-type geminals with preselected and fixed
exponents and centres, belongs to Peter Taylor. In collaboration with B. Joakim
Persson he showed [59] that a linear combination of Gaussian-type correlation factors
may be used to represent the linear r12 term, and while they originally intended to
keep this linear combination fixed during the calculation, they ended up treating
the coefficients as variational parameters in the proof of concept calculations that
were made with the GEMINAL91 [64] program.

In early 1997, we started to develop a new integral program for the evaluation of
integrals over combinations of orbitals and Gaussian-type geminals at the San Diego
Supercomputer Center. This integral code was developed as a branch of Trygve
Helgaker’s ERI [82] (electron repulsion integrals) code, and the conventional two-
electron repulsion integrals are, essentially, still calculated using his original code.
The code for calculating geminal integrals, however, is today completely separated
from the ERI program and is developed under the name GREMLIN [51].

The first equation solver was implemented by B. Joakim Persson in 1997, but
this solver never got around to be used. Instead, it became a starting point for
the equation solver later implemented by Dan Jonsson. In this implementation one
of the challenges was to solve for the expansion coefficients of virtual orbitals and



the expansion coefficients of geminals separately. The final strategy to use a Schur
decomposition was suggested by Trygve Helgaker.

The first pair energies were obtained in late 1998 after considerable effort had
been made to identify and remove bugs from the integral code. Dan Jonsson played
an important role in this work. Later, Robert Polly joined our efforts to keep the
integral code as bug free as possible.

During 1999, we gradually realized that the original ansatz of Persson and Taylor
to construct geminals as a linear combination of Gaussian-type correlation factors
multiplied with a pair of occupied orbitals was deficient. This made us develop a
set of new ansätze in which the pair of occupied orbitals is supplemented by more
general orbital products, and by mid 2000, these had been implemented and tested.
For the most flexible of them we sometimes get problems with linear dependencies
and numerical stability. Knut Fægri has suggested a way to treat such singularities,
but we have not been able to test it yet.

By the end of 2000, a lot of test calculations had been made and we were ready
to make a systematic study of both one-electron and two-electron basis set effects.
To be able to use a larger range of one-electron basis sets, general contraction had
to be implemented in the integral code. This was done in the beginning of 2001 in
close collaboration with Trygve Helgaker.

In chapter 6, we present formulas for prescreening of two- and three-electron
integrals containing Gaussian-type geminals. These formulas have been developed
in collaboration with Trygve Helgaker and Robert Polly. Robert Polly has also
taken part in the development of expressions for reducing three-electron integrals to
two-electron integrals by the use of the resolution of the identity.

The integral code has also been adapted for use in CASPT2 wave functions and
with LMP2 methods. This work has been done in close collaboration with Robert
Polly. No results from these projects are presented in this work however.
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Chapter 1

Introduction

1.1 One-electron and N-electron expansions of the
wave function

For nearly all systems of chemical interest, the Schrödinger equation can only be
solved if approximations are introduced. Computational quantum chemistry has
developed a set of models for the construction of approximate wave functions, which
provide solutions of different accuracy to the Schrödinger equation. Common to
these models is that they consist of linear combinations of Slater determinants, and
the main difference between the methods is the computational procedure used to
evaluate the expansion coefficients.

A Slater determinant is a linear combination of anti-symmetrised products of
one-electron functions (orbitals), and the space in which the Slater determinant
is expanded is referred to as the one-electron space or orbital space. The space
distinguishing the different models, is spanned by all determinants that can be
generated from the available orbitals, and is referred to as the N-electron space, or
Fock space.

At the simplest level of approximation, the wave function is represented by a
single Slater determinant. When the orbitals in this determinant are optimised with
respect to the electronic energy, the Hartree–Fock (HF) determinant is obtained,
and the optimised orbitals are referred to as the Hartree–Fock orbitals.

Beyond Hartree–Fock, there are methods like MP2, CCSD, CCSD(T), and FCI
in which several (MP2) or all (CCSD, CCSD(T), FCI) Slater determinants are in-
cluded in the expansion of the wave function. The expansion coefficients of these
determinants are computed with gradually larger flexibility, and for the full CI
method, which is the best wave function that can be constructed as a linear combi-
nation of Slater determinant in a given one-electron basis, all expansion coefficients
are optimised variationally. In the following we will refer to methods using lin-
ear combinations of Slater determinants in the expansion of the wave function, as
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Figure 1.1: Approaching the exact solution by improving both the one-electron and
the N -electron description [1].

configuration interaction (CI) methods.
An important point about the CI methods given above, is that they allow us to

treat the errors in the Fock space systematically by using gradually better methods,
that is, methods of higher levels of theory. This allows us to control the error in the
computed molecular energies and molecular properties, and when better estimates
are needed, higher levels of theory may be used.

If the orbitals in terms of which the determinants are expanded form a complete
set in the orbital space and all determinants that can be generated from these
orbitals are included in the expansion of the N -electron wave function, the exact
wave function is obtained. If the orbital space is incomplete or determinants are left
out, however, there will be an error in the wave function. Moreover, an improvement
in the orbital space cannot compensate for errors in the Fock space and vice versa. It
is therefore important to investigate both the one-electron space and the N -electron
space independently, in order to understand what accuracy can be expected for a
given calculation. The way a finite expansion of these spaces affect the quality of
the wave function is illustrated in Figure 1.1.

In this work we present a new method which aims at reaching the one-electron
basis set limit for the MP2 method. The MP2 method may be regarded as an
approximation to the CCSD method, however, and conclusions made for the MP2
method will also be valid for the higher level methods.
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Figure 1.2: (a) The Hartree–Fock ground-state wave function and (b) the exact
ground-state wave function of the helium atom with one electron fixed at a position
0.5a0 away from the nucleus. The wave functions are plotted in a plane containing
the nucleus and the fixed electron, the positions of which are indicated by the vertical
bars. (c) The Coulomb hole of the ground-state helium atom, calculated as the
difference between the exact wave function and the Hartree–Fock wave function.
Note that, the scale of Figure (c) differs from that of Figures (a) and (b). The
illustration is taken from Ref. [1].

1.2 The Coulomb hole of the helium atom

In the Hartree–Fock approximation, the electrons move independently of each other
in the average field of the other electrons, and the instantaneous position of the
electrons does not affect the motion. This is illustrated in Figure 1.2 (a), where we
have plotted the Hartree–Fock wave function of a helium atom in which one of the
electrons have been fixed at a position 0.5a0 away from the nucleus. The concentric
circles show that the wave function amplitude for the free electron only depends on
the distance from the nucleus and not on the position of the fixed electron.

In Figure 1.2 (b), we have plotted the exact wave function for the same helium
system. The contours in this plot are not perfect circles anymore, as small distortions



are seen close to the fixed electron. By comparing the plots for the exact wave
function and the Hartree–Fock wave function, we see that the Hartree–Fock method
overestimates the probability of finding two electrons near each other. This is seen
more clearly in Figure 1.2 (c), where we have plotted the difference between the exact
wave function and the Hartree–Fock wave function. The probability of finding the
free electron is now shifted away from the fixed electron, leaving a hole called the
Coulomb hole at the position of the fixed electron. The Coulomb hole is shallow but
wide, and the amplitude removed from the hole is moved to the opposite side of the
nucleus, creating a local maximum approximately 1.3a0 away from the fixed electron.
Since the instantaneous position of one electron this way affects the movement of
the other, the two electrons are said to be correlated.

Wave function models that go beyond Hartree–Fock, that is, include more than
one Slater determinant in the expansion of the Fock space, gradually describes the
Coulomb hole better as higher levels of theory are used. Within each of these
models it is rather easy to obtain a crude approximation of the Coulomb hole using
a superposition of antisymmetric orbital products, but it is very difficult to represent
the hole accurately. And the shorter the electron-electron distance, the more difficult
it is to describe the correlated movements of the electrons.

1.3 The Coulomb cusp of the helium atom

In the current section we investigate the analytical behaviour of the exact wave
function for the helium atom when the two electrons coincide.

As the ground-state wave function of helium is totally symmetric we may express
the Schrödinger equation in terms of radial coordinates as

HΨ(r1, r2, r12) = EΨ(r1, r2, r12) (1.1)

where r1 and r2 are the distances between the electrons and the nucleus, and r12 is
the inter-electronic distance. In terms of these coordinates the Hamiltonian is [2]

H = −1
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(1.2)

where Z is the charge of the helium nucleus. The exact solution to (1.1) should
contain terms that balance the Coulomb singularities in the Hamiltonian. For elec-
tron one, for instance, the singularity at the nucleus is balanced if we impose the



condition
∂Ψ

∂r1

∣∣∣∣
r1=0

= −ZΨ(0, r2, r12) (1.3)

on the wave function, and for electron two there is a similar relationship. Likewise,
there is a singularity in the Hamiltonian for r12 = 0, and this singularity can only
be balanced, if we impose the additional condition

∂Ψ

∂r12

∣∣∣∣
r12=0

=
1

2
Ψ(rc, rc, 0) (1.4)

on the wave function, for any point rc.
Equation (1.3) determines the behaviour of the exact wave function when the

electrons are close to the nucleus, and is known as nuclear cusp condition. Similarly,
Equation (1.4) determines the behaviour of the wave function when the two electrons
are close in space, and is known as the electronic cusp condition [3, 4]. The latter
condition implies, that for small electron-electron distances the wave function must
scale linearly with r12

Ψ(r1, r2, r12) ∝ 1 +
1

2
r12 + O(r2

12) (1.5)

A CI expansion in pure orbital products cannot reproduce the electronic cusp
condition. This was first realized by Hylleraas [2], who noted that the CI wave
function, when expressed in terms of r1, r2, and r12 contains arbitrary powers of r1

and r2, but only even powers of r12. This seemed unreasonable to Hylleraas as these
coordinates are treated symmetrically in the Hamiltonian (1.2), and he decided to
add terms of odd powers of r12 to the CI expansion. When doing this, Hylleraas
managed to reduced the error in the calculated ionisation potential of helium from
0.12 eV to 0.01 eV relative to the value obtained from experiments. His final estimate
of the ionisation potential was 24.58 eV.

1.4 Basis set truncation errors

The failure of the CI wave function to reproduce (1.5) is illustrated in Figure 1.3,
where we have plotted partial-wave expansions of the inter-electronic distance, in
which r12 is expressed in terms of r1, r2, and cos θ12.

For the partial-wave expansion of the CI ground-state helium wave function, it
has been shown [5, 6] that for high values of the angular momentum L, the energy
increment εL = EL − EL−1 goes as

εL = e4

(
L +

1

2

)−4

+ e5

(
L +

1

2

)−5

+ · · · (1.6)
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Figure 1.3: Partial-wave expansion of r12 in r1, r2 and θ12 for r2 = 1 and θ12 = 0.
The orders of the expansions are L = 0, 1, 2, 3, 5, 10, and 50. The exact function r12

is represented by a thick grey line. The figure are taken from Ref. [1].

If the partial-wave expansion is truncated by including only terms less than or equal
to L, the error in the ground-state energy becomes [1]

∆EL ≈ a (L + 1)−3 (1.7)

where the coefficient a is independent of L.
If we switch to the principal expansion, first studied by Helgaker et al. [1], a

similar relationship is obtained. Letting N denote the maximum principal quantum
number included in the expansion, the error in the energy is

∆EN ≈ cN−3 (1.8)

This principal wave expansion and (1.8) has the advantage over the partial-wave
expansion and (1.7), in that it allows us to predict the complete basis set limit of
CI energies, by extrapolating energies obtained for small values of N .

1.5 First-order methods for many-electron systems

In the early 1960s, Sinanoğlu [7, 8] showed that the first-order many-body problem
(e.g. MP2) may be reduced to a collection of uncoupled two-body equations for
the first-order pair function. The MP2 many-electron wave function for atoms and



molecules could thereby be obtained from equations only slightly more complicated
than those needed for two-electron systems like the helium atom.

Sinanoğlu [9] also showed how the second-order energy may be obtained varia-
tionally as a sum of pair contributions obtained by minimising a two-electron func-
tional denoted the strong orthogonality (SO) functional. In contrast to solving first-
order perturbation equations, this approach has the important consequence that it
allows a large range of functions to be used in the expansion of pair functions, not
just the product of virtual orbitals used in the orbital approximation. When the
orbital approximation is used with Sinanoğlu’s variational approach, however, the
usual MP2 energy expression is obtained.

In search for the MP2 energy limit of atoms and molecules, Klopper and Kutzel-
nigg [6, 10, 11] have combined the SO functional of Sinanoğlu with basis functions
linearly dependent of the inter-electronic distance r12. This gives rise to expensive
three- and four-electron integrals but these are avoided by the introduction of the
resolution of the identity. The use of pair functions linearly dependent of r12, allows
for an accurate description of the inner part of the Coulomb hole.

An alternative approach for reaching the MP2 limit has been made by Szalewicz
et al. [12–15]. Using the WO functional, which is a modification of the SO functional,
these authors expand pair functions in Gaussian-type geminals, and optimise all non-
linear parameters. The use of the WO functional removes the need for four-electron
integrals, but three-electron integrals still have to be computed. The method of Sza-
lewicz and co-workers is therefore computational more intensive than the method of
Klopper and Kutzelnigg. An advantage, however, is that the computed pair energies
are upper bounds to the true pair energies. Whereas Gaussian-type geminals do not
describe the inner part of the Coulomb hole depicted in Figure 1.3 as well as basis
functions linearly dependent of r12, they are better suited for describing the overall
shape depicted in Figure 1.2.

In this work, we shall investigate a new method for obtaining accurate second-
order correlation energies using the WO functional and pair functions expanded in
both the traditional pairs of virtual orbitals and a set of Gaussian-type geminals
with preselected and fixed non-linear parameters.





Chapter 2

Time-independent perturbation
theory

2.1 Rayleigh–Schrödinger perturbation theory

In bound-state, time-independent perturbation theory [16–19], we assume that the
Hamiltonian may be partitioned as

H = H0 + gH1 (2.1)

where gH1 is a small correction to the zeroth-order Hamiltonian H0. The pertur-
bation parameter g is a real parameter, used for book keeping. Unless it may be
identified with a physical quantity like an electric or magnetic field, the parameter
is typically chosen as g = 1.

The eigenvalue problem we wish to solve is

H |Ψn⟩ = En |Ψn⟩ (2.2)

and we assume that the unperturbed eigenvalue problem,

H0

∣∣Ψ(0)
n

〉
= E(0)

n

∣∣Ψ(0)
n

〉
(2.3)

has already been solved and that no degeneracies are present. The fundamental idea
of perturbation theory is to assume that both the exact wave functions Ψn and their
corresponding eigenvalues En can be expanded in hopefully convergent power series
of the perturbation parameter g

En = E(0)
n + gE(1)

n + g2E(2)
n + · · · (2.4)

Ψn = Ψ(0)
n + gΨ(1)

n + g2Ψ(2)
n + · · · (2.5)



Substituting these expansions into (2.2) and comparing terms that are of the same
order in g, we obtain the successive approximation equations

H0

∣∣Ψ(0)
n

〉
= E(0)

n

∣∣Ψ(0)
n

〉
(2.6)

H0

∣∣Ψ(1)
n

〉
+ H1

∣∣Ψ(0)
n

〉
= E(0)

n

∣∣Ψ(1)
n

〉
+ E(1)

n

∣∣Ψ(0)
n

〉
(2.7)

H0

∣∣Ψ(2)
n

〉
+ H1

∣∣Ψ(1)
n

〉
= E(0)

n

∣∣Ψ(2)
n

〉
+ E(1)

n

∣∣Ψ(1)
n

〉
+ E(2)

n

∣∣Ψ(0)
n

〉
(2.8)

H0

∣∣Ψ(k)
n

〉
+ H1

∣∣Ψ(k−1)
n

〉
=

k∑

l=0

E(l)
n

∣∣Ψ(k−l)
n

〉
(2.9)

The first of these, (2.6), is identical to (2.3) and gives nothing new. Equations (2.7)
and (2.8) may be rewritten as

(H0 − E(0)
n )
∣∣Ψ(1)

n

〉
= (E(1)

n − H1)
∣∣Ψ(0)

n

〉
(2.10)

(H0 − E(0)
n )
∣∣Ψ(2)

n

〉
= (E(1)

n − H1)
∣∣Ψ(1)

n

〉
+ E(2)

n

∣∣Ψ(0)
n

〉
(2.11)

which are linear inhomogeneous equations for
∣∣Ψ(1)

n

〉
and

∣∣Ψ(2)
n

〉
, respectively. Since

these equations determine the wave function corrections only to within an arbitrary
multiple of

∣∣Ψ(0)
n

〉
, this multiple is chosen so that the relation

〈
Ψn|Ψ(0)

n

〉
= 1 (2.12)

is fulfilled. This implies that the total wave function correction must be chosen
orthogonal to the corresponding unperturbed state. Equations (2.10) and (2.11) are
both associated with the homogeneous equation

(H0 − E(0)
n ) |Ψn⟩ = 0 (2.13)

Since this equation has a nontrivial solution, namely the zeroth-order wave function,
we cannot find the wave function corrections by direct inversion. However from linear
algebra (see for instance [17]) we recall that a necessary and sufficient condition
for inhomogeneous equations to have a solution is that the inhomogeneity has no
components in the solution space of its associated homogeneous equation. In our
case this translates to stating that the right hand sides of (2.10) and (2.11) must

have no components in the null-space of the operator H0 − E(0)
n . That is, we must

have

P (0)
n (E(1)

n − H1)
∣∣Ψ(0)

n

〉
= 0 (2.14)

P (0)
n

{
(E(1)

n − H1)
∣∣Ψ(1)

n

〉
+ E(2)

n

∣∣Ψ(0)
n

〉}
= 0 (2.15)

where P (0)
n is a projection operator that projects onto the n’th component of the

zeroth-order wave function
P (0)

n =
∣∣Ψ(0)

n

〉 〈
Ψ(0)

n

∣∣ (2.16)



Since
∣∣Ψ(0)

n

〉
cannot be a zero vector, the coefficients preceding this vector in equa-

tions (2.14) and (2.15) must add up to zero. Assuming that all zeroth-order wave
functions have been normalised to unity, we get the expressions for the first- and
second-order energy corrections

E(1)
n =

〈
Ψ(0)

n

∣∣H1

∣∣Ψ(0)
n

〉
(2.17)

E(2)
n =

〈
Ψ(0)

n

∣∣H1

∣∣Ψ(1)
n

〉
(2.18)

To find the energy correction to third order, a more subtle approach is required.
We multiply (2.6) by −

〈
Ψ(3)

n

∣∣, (2.7) by −
〈
Ψ(2)

n

∣∣, (2.8) by
〈
Ψ(1)

n

∣∣, and the next suc-

cessive approximation equation by
〈
Ψ(0)

n

∣∣, and add up. Using the Hermitticity of
the operators H0 and H1, the resulting equation may be rearranged to

E(3)
n =

〈
Ψ(1)

n

∣∣H1 − E(1)
n

∣∣Ψ(1)
n

〉
(2.19)

Thus, if the wave function is known to first order, we may calculate the energy to
third order. More generally it may be shown [18] that, if we know the wave function
to order n, we may calculate the energy to order 2n + 1, a result often referred
to as Wigner’s 2n+1 rule. Accordingly, it would seem natural always to calculate
perturbation energies to odd orders. This is supported by the fact that odd-order
energies E(0) + E(1) + · · · + E(odd) may be obtained directly from the variational
principle and therefore must represent an upper bound to the exact energy (see
section 2.3 of this text or Ref.[20]). The same is not true for even-order energies.
However, as second-order energy corrections are known to give better estimates
of molecular properties like bond angles and bond lengths [1], third-order energy
corrections shall not be considered in this work.

In passing, we note that the first-order energy can be calculated with knowledge
of the unperturbed wave function only. In fact, the first-order energy, which is the
sum of the zeroth-order energy and the first-order energy correction, is equal to the
expectation value of the exact Hamiltonian in the zeroth-order wave function. The
first-order energy is therefore trivially an upper bound to the exact energy.

To get the second-order energy, we must first find
∣∣Ψ(1)

n

〉
. In the conventional

Rayleigh–Schrödinger perturbation theory, this is done by expanding the first-order
wave function correction in the eigenfunctions of H0

∣∣Ψ(1)
n

〉
=
∑

k ̸=n

Ckn

∣∣∣Ψ(0)
k

〉
(2.20)

Inserting this expression in (2.10), multiplying from the left with
〈
Ψ(0)

n

∣∣ and solving
for the expansion coefficients, we get

∣∣Ψ(1)
n

〉
=
∑

k ̸=n

∣∣∣Ψ(0)
k

〉
〈
Ψ(0)

k

∣∣∣H1

∣∣∣Ψ(0)
n

〉

E(0)
n − E(0)

k

(2.21)



which is an infinite summation. If we use this expression for
∣∣Ψ(1)

n

〉
in (2.10), we get

an infinite sum in E(2)
n which is very difficult to evaluate. It may be shown (see for

instance [21]) that the largest contributions to this summation often come from the
continuum part of the orbital basis sets used.

2.2 Variational perturbation theory

To solve (2.10) for
∣∣Ψ(1)

n

〉
we are not restricted to use the Schrödinger method. Let

us multiply (2.8) by
〈
Ψ(0)

n

∣∣, (2.7) by
〈
Ψ(1)

n

∣∣ and (2.6) by −
〈
Ψ(2)

n

∣∣ and add up. This
gives an alternative expression for the second-order energy correction

E(2)
n = 2

〈
Ψ(1)

n

∣∣H1 − E(1)
∣∣Ψ(0)

n

〉
+
〈
Ψ(1)

n

∣∣H0 − E(0)
∣∣Ψ(1)

n

〉
(2.22)

If we regard (2.22) as a variational integral, that is

Ẽ(2)
n [Ψ(1)

trial] ≡ 2
〈
Ψ(1)

trial

∣∣∣H1 − E(1)
n

∣∣∣Ψ(0)
n

〉
+
〈
Ψ(1)

trial

∣∣∣H0 − E(0)
n

∣∣∣Ψ(1)
trial

〉
(2.23)

then the trial function that makes this expression stationary

δẼ(2)
n [Ψ(1)

trial] = 2
{〈

δΨ(1)
trial

∣∣∣H1 − E(1)
n

∣∣∣Ψ(0)
n

〉
+
〈
δΨ(1)

trial

∣∣∣H0 − E(0)
n

∣∣∣Ψ(1)
trial

〉}
= 0

(2.24)

is precisely the exact Ψ(1)
n for the nth state. This may be realized by identifying

(2.10) as the Euler-Lagrange equation [22] for our variational integral (2.23). The
first to use such a variational approach was Hylleraas [23], who used it to study
two-electron systems. Because of this, functionals like (2.23) are often referred to as
Hylleraas functionals. Even though (2.23) looks even more complicated than (2.10),
it is much more practical as it allows us to use any acceptable wave function as
an approximation to Ψ(1)

n , as long as this trial wave function has some parameters
left arbitrary. If the extremum Ẽ(2)

n [Ψ(1)
n ] is also a minimum then the trial function,

Ψ(1)
trial, may be varied until the lowest Ẽ(2)

n [Ψ(1)
trial] is obtained. To find the states

that correspond to such a minimum, we make the substitution Ψ(1)
trial = Ψ(1)

n + δΨ(1)
n

directly in the Hylleraas functional. This gives

δẼ(2)
n [Ψ(1)

trial] = E(2)
n [Ψ(1)

n ] +
〈
δΨ(1)

n

∣∣H0 − E(0)
∣∣δΨ(1)

n

〉
(2.25)

where we have applied the stationary condition (2.24). Obviously, if a certain state
n is to correspond to a minimum, the second term of (2.25) must be non-negative.

Expanding (H0 − E(0))δΨ(1)
n in the eigenfunctions of H0, we get

δẼ(2)
n [Ψ(1)

trial] = E(2)
n [Ψ(1)

n ] +
∞∑

m=0

(
E(0)

m − E(0)
n

) 〈
δΨ(1)

n |Ψ(0)
m

〉
(2.26)



For the ground state, the last term is trivially non-negative since E(0)
m > E(0)

0 .
Furthermore, the lowest state within each symmetry is also a minimum, since the
variations δΨ(1)

n must be kept within the irreducible representation of H and thus
by symmetry be orthogonal to all states Ψ(0)

k lower than Ψ(0)
n . Thus, as pointed

out by Sinanoğlu [24], the (1s2s) 3S, (1s2p) 1P, and so on, states of helium can be

treated like the ground state by minimising the functional Ẽ[Ψ(1)
trial] with suitable

trial functions. If we try to find the second-order energy of the corresponding (1s2s)
1S state by the same procedure we are going to fail, however, as the second term
of (2.25) is not positive definite for this state and the minimum principle does
therefore not apply. If we anyway manage to find a minimum, this can not be given
a physical interpretation. Sinanoğlu however, showed that this problem is easily
circumvented. He suggested that when varying the trial function for the nth state,
the variations should be kept orthogonal to all states k for which k < n. Whenever
this requirement is fulfilled the second term of (2.25) is positive definite and the
variational approach discussed above applies. Note that this positive definiteness
also implies that the trial function gives a second-order energy that is a true upper
bound to the exact, that is

Ẽ(2)
n [Ψ(1)

trial] ≥ E(2)
n (2.27)

The equality applies when the trial function equals the exact first-order wave func-
tion of the nth state. This is a very useful relationship since it means that the
second-order energy converges to the exact energy in a well-behaved manner as the
trial function is improved.

From (2.25) we see that the error in the second-order energy calculated us-
ing (2.23) is only quadratic in the error in the trial function. By contrast, when the
second-order energy is calculated from (2.18), the error in the energy is linear in the
error in the trial function.

2.3 First-order normalisation effects

So far we have established two different ways of obtaining the first-order wave func-
tions. Before moving on, we show that a normalisation of the total first-order wave
function, only affects energy corrections to fourth order or higher. To do this, we
evaluate the expectation value of the Hamiltonian, H , in the first-order wave func-
tion for a given state n

En =
⟨Ψn|H |Ψn⟩
⟨Ψn|Ψn⟩

= E(0)
n + E(1)

n +
E(2)

n + E(3)
n

1 +
〈
Ψ(1)

n

∣∣∣Ψ(1)
n

〉 (2.28)

where we have applied (2.22) and (2.28) together with some algebraic manipulations.
Equation (2.28) shows that normalising the first-order wave function only affects



energy corrections of fourth-order or higher. Also note that since the expectation
value of the Hamiltonian always yields a higher energy than the exact, we have
through (2.28) also shown that the third-order energy is an upper bound to the
exact energy

Eexact
n ≤ ⟨Ψn|H |Ψn⟩

⟨Ψn|Ψn⟩
≤ E(0)

n + E(1)
n + E(2)

n + E(3)
n (2.29)

A similar but much more elaborate approach may be used to show that fifth-order
energies also are upper bounds to the exact energy.



Chapter 3

Møller–Plesset perturbation theory

3.1 The Fock operator

Up to this point we have treated perturbation theory in general only, and have
said nothing about the nature of either the zeroth-order Hamiltonian or the per-
turbation. Depending on the nature of the perturbation, the Rayleigh–Schrödinger
approach presented in the previous chapter, may be used successfully. Whereas it
often provides good results for isolated systems, for instance, it fails to describe
weak inter-molecular interactions [25].

Consider a quantum chemical system consisting of one or more fixed nuclei
surrounded by 2n electrons. For a field-free system, the non-relativistic, spin-free
Hamiltonian is given by

H =
2n∑

i=1

h(i) +
∑

i<j

g(i, j) +
∑

A<B

ZAZB

RAB
(3.1)

where the summations i and j are over electrons and the summations A and B
are over nuclei. The first term of this Hamiltonian is known as the bare-nuclei
Hamiltonian and consists of one-particle operators h(i), defined as

h(i) = −1

2
∇2

i −
∑

A

ZA

riA
, (3.2)

where the first term gives the kinetic energy of an electron and the last term gives the
attraction energy between the electron and all the nuclei. The second term of (3.1),
represents the Coulomb repulsion between the electrons and consists of two-particle
operators g(i, j) defined as

g(i, j) =
1

rij
. (3.3)



The last term of the Hamiltonian gives the repulsion energy between the nuclei in
the system. This term shall not be encountered any further in this work, but it is
always implicitly assumed to be a part of the total Hamiltonian.

The two-particle operators in the Hamiltonian (3.1) make the corresponding
Schrödinger equation impossible to solve exactly. In the quest for an approximate
solution, we ask ourselves whether perturbation theory may offer an adequate so-
lution. The first step is to partition the Hamiltonian so that the zeroth-order part
recovers most of the energy of the system and at the same time leads to a simpler
Schrödinger equation. One fairly obvious approach is to exclude all electron-electron
interactions from the zeroth-order Hamiltonian and instead treat these entirely as
perturbations. This leads us to a simple zeroth-order Schrödinger equation that for
a few special systems may be solved analytically. As a bonus, the perturbation series
for the energy converges rapidly. This was demonstrated by Sanders and Scherr [26]
who used perturbation theory based on the bare-nuclei Hamiltonian to calculate
the energy of the helium atom. Their perturbation series for the energy converges
oscillatory, but rapidly, towards the limit of −2.9037 Eh. Indeed, after adding up
all energy correction terms to third order, the error in the energy is less than 1 mEh

and thus correct to within chemical precision.
Matcha and Byers Brown [27] reproduced these results for the hydrogen mol-

ecule. Their perturbation series for the energy oscillates just like the helium series
of Sanders and Scherr, and their third-order energy is only 1.1 mEh above the correct
value of −1.1745 Eh.

Even though the bare-nuclei Hamiltonian leads to perturbation series for the
energy that converges rapidly, it is not widely used in quantum chemistry. One
reason for this is that the corresponding zeroth-order wave function is very different
from the exact wave function. Although it is fairly well suited as a starting point for
energy calculations, this zeroth-order wave function is a rather poor starting point
for the calculation of molecular properties.

A more important reason for the limited use of the bare-nuclei Hamiltonian
is the existence of another one-electron Hamiltonian that has better convergence
properties for both energy calculations and the calculation of molecular properties.
This is the Fock operator, which is the one-electron Hamiltonian that, to first order,
gives the lowest energy for a quantum chemical system. For a closed shell system,
which has an even number of electrons, the Fock operator is given by

H0 = F =
2n∑

i=1

f(i), f = h +
n∑

k=1

(2Jk − Kk) (3.4)

where spin has been integrated out. The one-particle operators Jk and Kk represents
the average repulsion between the electrons and are described in detail below. In
the meantime, we adopt the Fock operator as the new zeroth-order Hamiltonian and



summarise the solution to the zeroth-order problem (2.3) as

fϕk = εkϕk (3.5)

Ψ(0) = ΦHF = AΠ2n
k=1ψk(k) (3.6)

E(0) = 2
n∑

k=1

εk (3.7)

where the operator A generates a normalised and antisymmetrised product of the
spin orbitals ψk. The relation between these spin orbitals and the space orbitals,
ϕk, is given below.

The Hartree–Fock energy, EHF, which is the expectation value of the Hamiltonian
in the Hartree–Fock wave function, ΦHF, is

EHF =
〈
ΦHF

∣∣H
∣∣ΦHF

〉
= E(0) + E(1) (3.8)

The one-particle character of the Fock operator allows us to write its eigenfunc-
tions as a product of orbitals. According to the Pauli principle, the wave function
must be antisymmetric with respect to the interchanging of any two electrons. We
comply with this demand by writing the Hartree–Fock (HF) wave function (3.6)
as an antisymmetric product of spin orbitals ψk. The operator A takes care of
anti-symmetrisation and normalisation. The antisymmetric product may also be
written as a determinant and is often referred to as a Slater determinant. A wave
function that may be written as a single determinant, or a linear combination of
determinants, is symbolised by a Φ.

The spin orbitals needed to construct the HF wave function are obtained from
the Hartree-Fock equation (3.5). Since spin has been integrated out from the Fock
operator its eigenfunctions are spin-free space orbitals ϕk, and to obtain a spin
orbital we must multiply a space orbital by a function giving either α or β spin.

ϕi ⇒
{

ϕiα = ψ2i−1

ϕiβ = ψ2i

(3.9)

We now turn to the operators Jk and Kk which make the Fock operator different
from the bare-nuclei Hamiltonian. These operators are integral operators, and their
definitions are best understood by letting them act on an orbital

Jkϕi(1) = ⟨ϕk(2)| r−1
12 |ϕk(2)⟩2 ϕi(1) (3.10)

Kkϕi(1) = ⟨ϕk(2)| r−1
12 |ϕi(2)⟩2 ϕk(1) (3.11)

where ⟨⟩2 denotes an integration with respect to electron 2. Inspecting the operator
Jk we see that it represents the Coulomb potential set up by an electron present
in orbital ϕk, and the operator is therefore called the Coulomb operator. The op-
erator Kk, on the other hand, has no classical counterpart, but as it exchanges the



orbital it is acting on by one of the orbitals present in the integral, it is called the
exchange operator. Through the Coulomb and exchange operators in the Hamilto-
nian (3.4), the electron-electron interaction is accounted for in some average sense,
that is, rather than letting two electrons interact at their instantaneous positions,
they interact through their probability amplitudes, the orbitals. Equations (3.10)
and (3.11) show that the one-electron Hamiltonian, or Fock operator, is constructed
from its own eigenfunctions, and the Hartree–Fock equations must therefore be
solved iteratively.

Having established the Fock operator as our zeroth-order Hamiltonian, we make
a new partitioning of the Hamiltonian.

H = F + (H − F ) =
2n∑

i=1

f(i) +
∑

i<j

g(i, j) −
2n∑

i=1

V HF(i) (3.12)

where we have introduced the Fock potential V HF

V HF =
n∑

k=1

(2Jk − Kk) (3.13)

to simplify expressions. The difference between the true potential g(i, j), and the
Fock potential V HF, is known as the fluctuation potential. Experience shows that the
fluctuation potential is small, and the Hartree–Fock energy (3.8) typically recovers
more than 99% of the total energy. Unfortunately, although small, the fluctuation
potential is not negligible, and often the chemically most significant part of the
energy is hidden in the last unrecovered percentage. This is especially evident for
the helium dimer which is investigated in section 7.2.2. Nevertheless, the Hartree–
Fock wave function represents a good starting point for more elaborate methods like,
for instance, perturbation theory. This was first realized by Møller and Plesset [28]
who in 1934 published a paper on what today is known as Møller–Plesset (MP)
perturbation theory.

3.2 The MP2 energy expression

The energy not recovered by the Hartree–Fock wave function is referred to as the
correlation energy. We shall in the following assume that most of the correlation
energy is recovered by the second-order energy correction

Eexact = EHF + Ecorrelation ≈ EHF + E(2) (3.14)

While the second-order energy correction accounts for some 90% of the correlation
energy, an improvement is usually obtained if third-order energy corrections are



included. Several authors have shown (see for instance Ref. [29]), however, that
for a wide range of small molecules, properties such as bond distances and bond
angles are better described at the second-order level than at the third-order level,
and third-order corrections shall therefore not be considered.

To obtain the second-order energy, from now on also referred to as the MP2
energy, it is sufficient to find the first-order wave function correction. Sinanoğlu [7, 8]
showed that this correction, Φ(1) = ΦMP1, only contains two-electron clusters, which
in the language of second quantisation may be expressed as

∣∣Φ(1)
〉

= T (1)
2

∣∣ΦHF
〉

=
1

2

∑

abij

tab(1)
ij EaiEbj

∣∣ΦHF
〉

(3.15)

where the operator T (1)
2 is known as the first-order cluster operator. Through the

excitation operators Eai and Ebj

Eai = a†
aαaiα + a†

aβaiβ Ebj = a†
bαajα + a†

bβajβ (3.16)

the cluster operator moves a pair of electrons from the initially occupied orbitals i
and j to the virtual orbitals a and b. The summations are over all occupied and all
virtual orbitals so that any pair ij can be excited into any pair ab. The probability
for one particular excitation to happen is given by the first-order cluster amplitudes
tab(1)
ij . As the name suggests, the first-order cluster amplitudes are found by solving

the first-order equation (2.10). Cluster amplitudes of the kind tab
ij may also be found

by solving some other equation system, leading for instance, to the coupled cluster
doubles (CCD) wave function.

∣∣ΦCCD
〉

= exp(T2)
∣∣ΦHF

〉
(3.17)

That being said, we drop from now on any further reference to the term first-order
both for the cluster operator and its amplitudes.

Even though our Hartree–Fock problem is solved in basis of orbitals, the two-
electron clusters referred to by Sinanoğlu are not restricted to products of virtual
orbitals. Second quantisation, however, has not been designed to handle excitations
between two-electron clusters, and to take advantage of both the framework offered
by second quantisation and the flexibility offered by general two-electron clusters,
we shall expand these clusters in an auxiliary basis assumed to be complete. To be
able to distinguish orbitals belonging to this basis from orbitals belonging to the
given basis we denote auxiliary orbitals by capital letters, leading to the following
orbital notation

i, j, k, . . . occupied orbitals

a, b, c, . . . virtual orbitals contained in the given basis



P, Q, . . .

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A, B, . . .

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

i, j, . . .

a, b, . . .

i, j, . . .

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

p, q, . . .

not contained
in the basis

virtual

occupied

Figure 3.1: The spaces spanned by the given basis and the auxiliary basis assumed
to be complete. See text for further details. The illustration is taken from Ref. [30]

p, q, r, . . . arbitrary orbitals contained in the given basis

A, B, C, . . . virtual orbitals contained in the complete basis

P, Q, R, . . . arbitrary orbitals contained in the complete basis

As illustrated in Figure 3.1, the occupied orbitals will be identical in the two basis
sets. Furthermore, the virtual orbitals in the given set define a true subset of the
virtual orbitals in the complete set.

The use of an auxiliary basis as a way of handling general two-electron functions
in second quantisation has already been discussed by Kutzelnigg and Klopper [11],
and we follow their approach in much the same spirit. In the complete basis, the
generalised cluster operator may be written as

T2 =
1

2

∑

ABij

uij
ABEAiEBj (3.18)

where the matrix element uij
AB is defined as

uij
AB = ⟨uij(1, 2)|ϕAϕB⟩ (3.19)

The cluster operator (3.18) excites a pair of occupied orbitals ij into the virtual
orbitals AB of the complete basis set. The overlap matrix uij

AB gives the amount of
“AB” needed to produce the two-electron cluster uij(1, 2). The net effect, therefore,
is that the pair of occupied orbitals is excited to this cluster. To avoid violating the
Pauli principle, the two-electron function, or pair function, uij(1, 2), must exhibit
the same symmetry with respect to interchanging of electrons 1 and 2 as the orbitals
it replaces.



If we let the pair function be given as a sum of products of virtual orbitals

uij(1, 2) =
∑

ab

tab
ij ϕa(1)ϕb(2) (3.20)

and insert this expression in (3.18), we obtain

T2 =
1

2

∑

ABij

∑

ab

tab
ij ⟨ϕaϕb|ϕAϕB⟩EAiEBj

=
1

2

∑

ABij

∑

ab

tab
ij δaAδbBEAiEBj

=
1

2

∑

abij

tab
ij EaiEbj

(3.21)

which is the standard form of the cluster operator.
Since we have turned the cluster operator into a form that can handle all two-

electron clusters, we shall now find an expression for the second-order energy in basis
sets containing such clusters. Inserting the generalised cluster operator, as given in
the first part of (3.15), into the expression for the second-order energy (2.18), we
get

E(2) =
〈
ΦHF

∣∣H1

∣∣Φ(1)
〉

=
〈
ΦHF

∣∣H1T2

∣∣ΦHF
〉

(3.22)

where the zeroth order wave function is the Hartree–Fock wave function, and the
perturbation operator H1 is the fluctuation potential given in (3.12). Since the
cluster operator creates double excitations, the expectation value (3.22) can only
survive if there is another two-electron operator present. The one-electron part of
the fluctuation potential, the Fock potential, does therefore not contribute to the
expectation value in (3.22), and the effect of the perturbation operator H1 reduces
to that of the two-electron operator g(i, j). In spin-free second quantisation, this
operator is given as

g =
1

2

∑

PQRS

gPQRS(EPREQS − δQREPS) (3.23)

where the transition probabilities gPQRS are two-electron integrals,

gPQRS = ⟨ϕP ϕQ|
1

r12
|ϕRϕS⟩ (3.24)

and where we have allowed the two-electron operator g to make excitations through-
out the complete basis and not only in the given basis. In (3.23), we see that g also
contains a single-excitation part that, as discussed above, cannot contribute to the
expectation value (3.22).



On evaluating this expectation value, we take advantage of the fact that the
cluster operator cannot make excitations to the left. This allows us to rewrite the
operator gT2 as a commutator [g, T2] which is readily evaluated by commutator
techniques [1],

E(2) =
〈
ΦHF

∣∣ [g, T2]
∣∣ΦHF

〉

=
1

4

∑

PQRS

∑

ABij

gPQRSuij
AB

〈
ΦHF

∣∣ [EPREQS, EAiEBj ]
∣∣ΦHF

〉

=
∑

ABij

(2gijAB − gjiAB)uij
AB

(3.25)

This expression involves the infinite auxiliary basis, and to obtain an expression for
the energy that only involves orbitals from the given basis or two-electron clusters,
we introduce the resolution of the identity

1 =
∑

P

|ϕP ⟩ ⟨ϕP | =
∑

i

|ϕi⟩ ⟨ϕi| +
∑

A

|ϕA⟩ ⟨ϕA| (3.26)

Each of the terms given in (3.26) act as a projection operator, and as the term
involving a summation over all occupied orbitals shall be encountered frequently in
this text, we represent it by the operator Pocc

Pocc =
∑

i

|ϕi⟩ ⟨ϕi| (3.27)

To remove all auxiliary orbitals present in (3.25), we have to use the resolution of
the identity twice

∑

AB

|ϕAϕB⟩ ⟨ϕAϕB| = [1 − Pocc(1)] [1 − Pocc(2)] ≡ Qocc(1, 2) (3.28)

Inserting (3.28) into the last equality of (3.25), and using the definition of uij
AB given

in (3.19), we get the final expression for the second-order energy

E(2) =
∑

ij

(
2 ⟨Qoccuij| r−1

12 |ϕiϕj⟩ − ⟨Qoccuij| r−1
12 |ϕjϕi⟩

)
(3.29)

In this expression there is no limitation to which part of the two-electron space
the pair function uij can belong. Any components lying in the space spanned by
occupied orbitals are projected out by Qocc.

Equation (3.29) could very well have been used throughout the rest of this text,
but we shall develop it a bit further. As shown in (3.9), a single space orbital ϕi

may be combined with a function for either α or β spin to produce two different



electron states. Likewise, the product of two space orbitals ϕi and ϕj, gives rise to
four different electron states since each electron may have either α or β spin

{ϕiϕjαα, ϕiϕjαβ, ϕiϕjβα, ϕiϕjββ} (3.30)

In (3.30), we have implicitly assumed that the first space orbital and first spin
function belong to electron one, that is, ϕiϕjαα ≡ ϕi(1)ϕj(2)α(1)α(2).

Each spin function is an eigenfunction of both the operator for total spin, Ŝ,
and spin projection Ŝz. Through a simple unitary transformation, the four states
in (3.30) may also be turned into eigenfunctions ϕiϕjϑ[S, Ms] of Ŝ and Ŝz charac-
terised by quantum numbers S and Ms. As we see shortly, these four eigenfunctions
consist of one singlet which has a spin part that is antisymmetric with respect to
the interchanging of electrons 1 and 2, and three triplets which have symmetric spin
parts. The orbital part, ϕiϕj , may also be written in terms of a symmetric (S) and
an antisymmetric (A) component

ϕiϕj = 1/2[ϕiϕj + ϕjϕi] + 1/2[ϕiϕj − ϕjϕi] = 1/
√

2φS
ij + 1/

√
2φA

ij (3.31)

According to the Pauli principle, a proper two-electron state must be overall anti-
symmetric. For this principle to be fulfilled only the spatial part component having
a symmetry opposite to the spin part can contribute. This gives us the follow-
ing normalised two-electron states which both fulfil the Pauli principle and have
well-defined spin quantum numbers

φS
ijϑ(0, 0) =

1√
2
(ϕiϕj + ϕjϕi)

1√
2
(αβ − βα) (3.32)

φA
ijϑ(1, Ms) =

1√
2
(ϕiϕj − ϕjϕi)

⎧
⎨

⎩

αα Ms = 1
1√
2
(αβ + βα) Ms = 0

ββ Ms = −1
(3.33)

Since two interacting electrons form spectroscopically distinguishable singlet and
triplet states [31], we shall from now on assume that all two-electron states are spin
adapted according to either (3.32) or (3.33). We have chosen to work in a formalism
where spin has been integrated out, however, and shall therefore only refer to the
symmetric and antisymmetric spatial parts. We keep in mind though, that the
symmetric spatial part comes with the singlet and that the antisymmetric spatial
part comes with each of the three triplets. Using this new terminology, we give the
second-order energy in parity-adapted (spin-adapted) form

E(2) =
n∑

i=1

ϵSii +
∑

i<j

(ϵSij + ϵAij) (3.34)

where the pair energy ϵPij for electron i and j having orbital parity P is

ϵPij = ΛP
ij

〈
Qoccu

P
ij

∣∣ r−1
12

∣∣φP
ij

〉
, ΛP

ij =
2δAP + 1

1 + δij
(3.35)



Equation (3.34) is easily verified to be equivalent to (3.29) by inserting (3.35)
in (3.34) and replacing the parity-adapted functions φP

ij and uP
ij by non-adapted

functions. Note that the pair function must have exactly the same parity as the
pair of orbitals it replaces. For antisymmetric pairs for which P = A, the factor ΛP

ij

is identical to 3, thus accounting for the three triplet states. For a singlet state for
which i ̸= j the factor reduces to 1, and when i = j the factor is 1/2. In the latter
case, there is also a factor 2 coming from the integral as the combined space orbital,
φS

ii, is given as
√

2ϕiϕi rather than ϕiϕi. This convention is adopted from Shibuya
and Sinanoğlu [32, 33].

We opened this section with Sinanoğlu’s observation that the first-order wave
function correction Φ(1) contains only two-electron clusters. These two-electron clus-
ters are pairs of interacting electrons, the interaction in one pair being completely
independent of the interaction in all other pairs. The first-order wave function cor-
rection may therefore be written as a linear combination of all Slater determinants
that can be constructed by replacing one pair of orbitals at the time by a pair func-
tion. This is most easily expressed using second quantisation formalism and a cluster
operator of the form (3.18). As is evident from (3.34) and (3.35), the decoupling of
the wave function correction into pair contributions has the important consequence
that the second-order energy may be written as a sum of pair energies. In the case
of the beryllium atom for instance, there are four symmetry-adapted pairs

1(1s1s), 1(1s2s), 3(1s2s) and 1(2s2s). (3.36)

The electron-electron interaction in each of these pairs may be represented by a pair
function. When we have obtained one pair function for each pair, the second-order
energy is given by

E(2)
Beryllium = ϵ1

1s1s + ϵ1
1s2s + ϵ3

1s2s + ϵ1
2s2s (3.37)

where we have used 1 instead of S and 3 instead of A to symbolise singlet and
triplet energies, respectively. When we later look at applications in chapter 7, this
convention is fully adopted.

Sinanoğly [7] showed that for the simple additivity displayed in (3.34) and (3.37)
to be true, we must require that the pair functions are orthogonal to all occupied or-
bitals. In (3.35) this is taken care of by the strong orthogonality operator Qocc which,
apparent from its definition (3.28), projects out all components of occupied orbitals
from the function it operates on. Using the definition, the strong orthogonality (SO)
operator may be shown to be both idempotent and Hermitian

Q2
occ = Qocc, Q†

occ = Qocc. (3.38)

Since our second quantisation approach is based on orthogonal Hartree–Fock
orbitals, all excited states are orthogonal to the reference (HF) state. As we have
seen in (3.35) and shall see more of in the following, this implies that pair functions
are always accompanied by the strong orthogonality operator.



3.3 Variational formulation of the MP2 energy

In the previous section we showed that the second-order energy may be expressed
in terms of independent pair energies, expressed in terms of independent pair func-
tions. The first to realize this was Sinanoğlu [9, 34] who showed that the first-order
equation (2.10) may be decoupled into n2 independent first-order equations, one for
each parity-adapted pair. Even though this decoupling represents a major simplifi-
cation, the decoupled pair-equations are still to complex to be solved analytically.
Sinanoğlu solved this problem by showing that pair functions may also be obtained
by minimising a certain pair functional. Using second quantisation, we find the form
of this functional below.

In section 2.2, we found an alternative expression for the second-order energy.
In terms of Hartree–Fock ground-state corrections, this alternative expression is

E(2) = 2
〈
Φ(1)

∣∣H1 − E(1)
∣∣ΦHF

〉
+
〈
Φ(1)

∣∣H0 − E(0)
∣∣Φ(1)

〉
(3.39)

The functional form of (3.39) makes it suitable for a variational treatment, as the
corresponding stationary condition is exactly the first-order equation. Since the
normalisation condition for the exact wave function (2.12) requires the first-order
wave function correction to be orthogonal to the Hartree–Fock state

〈
Φ(1)|ΦHF

〉
= 0 (3.40)

we may remove E(1) from (3.39) and identify the first term of this equation as twice
the second-order energy. The second term of (3.39) must therefore also be related
to the second order energy, namely by

〈
Φ(1)

∣∣H0 − E(0)
∣∣Φ(1)

〉
= −E(2) (3.41)

The first term of (3.39) was decoupled into pair-function form in the previous sec-
tion. For the second term, the decoupling is somewhat more elaborate. We start
by replacing the first-order corrections Φ(1) by cluster operators operating on the
Hartree–Fock state

〈
Φ(1)

∣∣H0 − E(0)
∣∣Φ(1)

〉

=
〈
ΦHF

∣∣T †
2H0T2

∣∣ΦHF
〉
−
〈
ΦHF

∣∣T †
2T2

∣∣ΦHF
〉 〈

ΦHF
∣∣H0

∣∣ΦHF
〉 (3.42)

Next, invoking the resolution of the identity, we find that
〈
ΦHF

∣∣T †
2T2H0

∣∣ΦHF
〉

=
〈
ΦHF

∣∣T †
2T2

∣∣ΦHF
〉 〈

ΦHF
∣∣H0

∣∣ΦHF
〉

(3.43)

since only the Hartree–Fock state has a nonzero overlap with
〈
ΦHF

∣∣T †
2T2. The

expectation value of (3.42) may therefore be written in the form
〈
Φ(1)

∣∣H0 − E(0)
∣∣Φ(1)

〉
=
〈
ΦHF

∣∣T †
2H0T2 − T †

2T2H0

∣∣ΦHF
〉

(3.44)



which may be expressed in terms of commutators
〈
Φ(1)

∣∣H0 − E(0)
∣∣Φ(1)

〉
=
〈
ΦHF

∣∣ [ T †
2 , [H0, T2] ]

∣∣ΦHF
〉

(3.45)

The introduction of the outer commutator is justified by the fact that T †
2 annihilates∣∣ΦHF

〉
. The zeroth order Hamiltonian in (3.45), is the Fock operator. Assuming that

the Fock operator is given in the canonical representation (diagonal Fock matrix),
its second quantisation form is

H0 =
∑

PQ

fPQEPQ =
∑

PQ

εP δPQEPQ =
∑

P

εP EPP (3.46)

where the εP is the orbital energy of the canonical orbital ϕP . In this canonical
representation, the commutator between H0 and T2 is easily evaluated

[H0, T2] =
1

2

∑

ijAB

uij
AB

∑

P

εP [EPP , EAiEBj ]

=
1

2

∑

ijAB

uij
AB (εA + εB − εi − εj) EAiEBj

(3.47)

Inserting this commutator in (3.45) along with an explicit form for T †
2 we get

〈
Φ(1)

∣∣H0 − E(0)
∣∣Φ(1)

〉

=
1

4

∑

klCD

∑

ijAB

uij
AB (εA + εB − εi − εj) uCD

kl

〈
ΦHF

∣∣ [ElDEkC , EAiEBj ]
∣∣ΦHF

〉

=
∑

ijAB

(
2uij

AB − uji
AB

)
(εA + εB − εi − εj) uAB

ij

(3.48)

where we once again have used commutator techniques to evaluate the expectation
value. Note that the final form of (3.48) is expressed in terms of auxiliary basis
functions ϕA and ϕB. Just as for (3.25), an infinite summation over two such
functions may be replaced by the strong orthogonality operator
∑

AB

uij
AB (εA + εB − εi − εj) uAB

ij

=
∑

AB

⟨uij|ϕAϕB⟩ (⟨ϕAϕB| f(1) + f(2) |ϕAϕB⟩ − εi − εj) ⟨ϕAϕB|uij⟩

= ⟨uij|Qocc [f(1) + f(2)]Qocc |uij⟩ − (εi + εj) ⟨uij|Qocc |uij⟩

(3.49)

Using the idempotency and Hermitticity of the strong orthogonality operator, we
may gather the two terms in (3.49) into one. This allows us to write the expectation
value (3.48) as
〈
Φ(1)

∣∣H0 − E(0)
∣∣Φ(1)

〉
=
∑

ij

(2 ⟨Qoccuij| f(1) + f(2) − εi − εj |Qoccuij⟩

− ⟨Qoccuji| f(1) + f(2) − εi − εj |Qoccuij⟩)
(3.50)



Finally, comparing (3.50) with (3.29), we conclude that the second-order energy as
given by (3.39), may be written in the separated form

E(2) =
n∑

i=1

ϵSii +
∑

i<j

(ϵSij + ϵAij) (3.51)

which is identical to the original expression (3.34) but with pair energies ϵPij given
by the alternative expression

ϵPij = ΛP
ij

(
2
〈
ûP

ij

∣∣ r−1
12

∣∣φP
ij

〉
+
〈
ûP

ij

∣∣ f(1) + f(2) − εi − εj

∣∣ûP
ij

〉)
(3.52)

where the “hat” denote a pair function with all occupied components projected out

ûP
ij = Qoccu

P
ij (3.53)

To summarise, we have managed to write the second-order energy correction E(2)

in a variational form and as a function of n2 independent pair functions

E(2) = E(2)
[
uS

11, u
S
12, u

A
12, . . . , u

S
nn

]
(3.54)

The independence of these pair functions implies that the differentiation of E(2) with
respect uP

ij reduces to the differentiation of ϵPij with respect uP
ij

∂E(2)

∂uP
ij

=
∂ϵPij
∂uP

ij

(3.55)

thus leading us to n2 independent equations, exactly as shown by Sinanoğlu.

3.4 Optimisation of pair functions

3.4.1 The strong orthogonality functional

Setting the derivative (3.55) equal to zero and solving for uP
ij, we find the pair func-

tion that within our variational space minimises ϵPij . The minimum value however,
is only an approximation to the exact pair energy. To distinguish this approximate
value from the exact given in (3.52), we denote the functional to be minimised with
the letter F . We also add a tilde to our approximate trial functions to distinguish
them from the exact pair functions. Thus we write

FP
ij [ũP

ij] = ΛP
ij

(
2
〈
ũP

ij

∣∣Qoccr
−1
12

∣∣φP
ij

〉

+
〈
ũP

ij

∣∣Qocc (f(1) + f(2) − εi − εj) Qocc

∣∣ũP
ij

〉) (3.56)

Sinanoğlu [24] showed that the minimum value of FP
ij is equal to the exact pair

energy ϵPij if the pair function ũP
ij is expanded in a complete basis. Moreover, he



pointed out that, for the minimum principle to apply to (3.56), the pair function
must be kept orthogonal to all two-electron states φP ′

kl equal to or lower than φP
ij

in energy. Since a two-electron state is just a special case of an N -electron state,
this also follows directly from the discussion of first-order wave functions made in
section 2.2. Acknowledging Sinanoğlu’s contribution to the description of many
electron systems, we refer to (3.56) as Sinanoğlu’s strong orthogonality functional,
or just the SO functional.

When the MP2 energy expressions (3.35) and (3.52) are deduced using second
quantisation, the orthogonality requirements put on pair functions are automatically
provided by the operator Qocc, and this makes it easy to miss the fundamental
importance of such orthogonality. Obtaining (3.56) by other means than second
quantisation, orthogonality may not be automatically provided, and the SO operator
have to be introduced “by hand”.

Assuming that the Hartree–Fock equations have been solved exactly, the operator
Qocc(f(1) + f(2) − εi − εj)Qocc becomes positive definite. From the discussion in
section 2.2, we know that this makes the SO functional (3.56) a true upper bound
to the exact pair energy

FP
ij [ũP

ij ] ≥ ϵPij (3.57)

In practice however, Fock operators are never exact but expanded in some finite
basis. This makes the orbital energies εi and εj also approximate, and by the vari-
ational principle, higher than the exact. The positive definiteness needed for (3.57)
to be valid is then no longer ensured since the expectation value of f(1)+ f(2) may
be lower than εi + εj. In some cases, this may produce pair energies that are lower
than the exact ones. However, all but a very few calculations done in this work
obey (3.57) and pair energies converge nicely against the exact limit as trials func-
tions are improved. For the hydrogen molecule (see Table 7.14) the boundedness is
broken in two calculations, but only when the Fock operator is poorly approximated
using s-orbitals only.

Far more worrying is the existence of three- and especially four-electron integrals
in the SO functional. Let us, for simplicity, assume that the Fock operator is known
exactly. Since the SO operator Qocc then is constructed from eigenfunctions of the
Fock operator, these two operators commute, allowing us to write

Qocc [f(1) + f(2)]Qocc = Qocc [f(1) + f(2)] (3.58)

where we have also exploited the idempotency of Qocc. Writing this operator in
terms of the projection operators Pocc we obtain

Qocc(1, 2) = 1 − Pocc(1) − Pocc(2) + Pocc(1)Pocc(2) (3.59)

The combination of Qocc and Fock operators turns the last term of (3.56), that is the
expectation value, into several three- and four-electron integrals. The latter arises



when a projection operator Pocc is combined with either a Coulomb or an exchange
operator. Using the Coulomb part of the f(1) operator, we shall write the three
kinds of integrals coming out of the Qocc(1, 2)J(1) operator in explicit form.

Without the company of a projection operator Pocc, the Coulomb operator from
(3.10) turns the expectation value into a sum over three-electron integrals.

⟨uij(1, 2)|J(1) |uij(1, 2)⟩

=
∑

k

⟨uij(1, 2)| ⟨ϕk(3)| r−1
13 |ϕk(3)⟩ |uij(1, 2)⟩

=
∑

k

⟨uij(1, 2)ϕk(3)| r−1
13 |ϕk(3)uij(1, 2)⟩

(3.60)

Since this integral has the same form for any pair function, also the exact, we have
omitted the tilde. To further simplify expressions, pair functions are given in non-
parity-adopted form.

With one projection operator present, the expectation value is turned into a
double sum of four-electron integrals

⟨uij(1, 2)|Pocc(1)J(1) |uij(1, 2)⟩

=
∑

mk

⟨uij(1, 2)|ϕm(1)⟩ ⟨ϕm(1)| ⟨ϕk(3)| r−1
13 |ϕk(3)⟩ |uij(1, 2)⟩

=
∑

mk

⟨uij(1, 2)ϕk(3)ϕm(4)| r−1
34 |ϕm(1)ϕk(3)uij(4, 2)⟩

(3.61)

Naively, one might expect the combination Pocc(1)Pocc(2)J(1) to produce a triple
sum over five-electron integrals, but this is only partly true. Since we project against
occupied orbitals for both electron 1 and electron 2, each five-electron integral de-
couples into a product of a two-electron and a three-electron integral.

⟨uij(1, 2)|Pocc(1)Pocc(2)J(1) |uij(1, 2)⟩

=
∑

mnk

⟨uij(1, 2)|ϕm(1)⟩ ⟨ϕm(1)| |ϕn(2)⟩ ⟨ϕn(2)| ⟨ϕk(3)| r−1
13 |ϕk(3)⟩ |uij(1, 2)⟩

=
∑

mnk

⟨uij(1, 2)|ϕm(1)ϕn(2)⟩ ⟨ϕm(1)ϕn(2)ϕk(3)| r−1
13 |ϕk(3)uij(1, 2)⟩

(3.62)

If the Fock operator is only approximate, the simplification used in (3.58) cannot
be justified. This complicates things further, and integrals coming from operators
like Pocc(1)f(1)Pocc(2), for instance, turn out to be true five-electron integrals. As
such many-electron integrals are very time consuming to compute, they are highly
undesirable.

From discussion made above we see that four-electron integrals and higher may
be avoided if we do either of the following



• Use trial functions that are in nature orthogonal to the occupied orbitals

• Approximate the Qocc operator

• Approximate the entire Qocc [f(1) + f(2)]Qocc operator

As we shall see below, the first of these approximations also removes the need for
three-electron integrals. For the other two approximations, the only way to avoid
calculating three-electron integrals, is to approximate them using the resolution of
the identity (RI). This is covered in section 3.5.

3.4.2 The orbital approximation

If we require our trial functions ũij to be constructed from a basis orthogonal to the
occupied orbitals, the effect of the strong orthogonality operator reduces to that of
the identity operation. This may be obtained, for instance, by expanding the pair
functions in pairs of virtual orbitals.

ũP
ij(1, 2) =

∑

a≥b

cab,P
ij,P φP

ab(1, 2) (3.63)

This is referred to as the orbital approximation and is the traditional way to approx-
imate pair-functions within MP2 theory. The orbital approximation reduces the
SO functional (3.56) to a function of the parameters cab,P

ij,P . These parameters may
be arranged in a matrix where pairs (ab,P) specify a certain row and pairs (ij,P)
specify a certain column. Denoting this matrix Co, the column denoted [Co]Pij is
the solution vector for pair (ij,P) once the elements of Co have been optimised.
Keeping in mind that Qoccφab = φab, we may now write the SO functional as

FP
ij [Co] = ΛP

ij

(
∑

a≥b

∑

c≥d

cab,P
ij,P

〈
φP

ab

∣∣ f(1) + f(2) − εi − εj

∣∣φP
cd

〉
ccd,P
ij,P

+2
∑

a≥b

cab,P
ij,P

〈
φP

ab

∣∣ r−1
12

∣∣φP
ij

〉
)

= ΛP
ij

(
[Co]

P†
ij Hoo[Co]

P
ij + 2[Co]

P†
ij [Ro]

P
ij

)

(3.64)

where we have introduced the matrices Hoo and Ro with elements

Hoo =
〈
φP

ab

∣∣ f(1) + f(2) − εi − εj

∣∣φP
cd

〉
= (εa + εb − εi − εj) δacδbd (3.65)

Ro =
〈
φP

ab

∣∣Qoccr
−1
12

∣∣φP
ij

〉
=
〈
φP

ab

∣∣ r−1
12

∣∣φP
ij

〉
(3.66)

As usual, the indices in the bra give the row number of the matrix while the indices
in the ket give the column number. The one or two o’s indexed on matrices or matrix



elements refers to the orbital approximation only and should not be confused with
matrix dimensions. Neither is their number used to distinguish between matrices
and vectors. Since the notation becomes apparent in the next section, it is not
discussed any further here.

To optimise the parameters [Co]Pij we differentiate the SO functional with respect
to these parameters and put the derivative equal to zero

∂FP
ij

∂Co
= 2ΛP

ij

(
Hoo[Co]

P
ij + [Ro]

P
ij

)
= 0 (3.67)

Solving this equation for the expansion coefficients, we get

[Co]
P
ij = −H−1

oo [Ro]
P
ij (3.68)

Equation (3.68) gives the solution vector for one parity adapted pair of electrons.
Clearly, the solution vector for the other pairs is given in an identical form. There-
fore, removing the square brackets in equation (3.68), we get an equation for the
total solution matrix Co

Co = −H−1
oo Ro (3.69)

Finally, using the definitions of Hoo and Ro given in (3.65) and (3.66) we obtain the
well-known expression for cab,P

ij,P

cab,P
ij,P = −

〈
φP

ab

∣∣ r−1
12

∣∣φP
ij

〉

εa + εb − εi − εj
(3.70)

If we insert this expression for the expansion coefficients into (3.63), the pair en-
ergy (3.35) may be written

ϵPij = ΛP
ij

∑

a≥b

cab,P
ij,P

〈
φP

ab

∣∣ r−1
12

∣∣φP
ij

〉
= −ΛP

ij

∑

a≥b

∣∣〈φP
ab

∣∣ r−1
12

∣∣φP
ij

〉∣∣2

εa + εb − εi − εj
(3.71)

Alternatively, we may choose to express the pair energy in term of matrices Hoo and
Ro giving

ϵPij =
∑

a≥b

cab,P
ij,P

〈
φP

ab

∣∣ r−1
12

∣∣φP
ij

〉
ΛP

ij = [Co]
P†
ij [Ro]

P
ij (3.72)

where we have introduced a parity-weighed version of the right hand side matrix Ro

defined as
[Ro]

P
ij = ΛP

ij[Ro]
P
ij (3.73)

The total second-order energy E(2) is the sum over all pair energies. Using matrices,
this sum may conveniently be written as a trace

E(2) = tr(C†
oRo) = −tr(R†

oH
−1
oo Ro) (3.74)



The orbital approximation removes the need for many-electron integrals completely
and leaves us with the usual two-electron AO integrals. These integrals are also used
to obtain the Hartree–Fock energy for some system. In this case they are combined
with the AO density matrix to form a Fock matrix. Using some iterative approach
in which the Fock matrix in each iteration is transformed to MO basis, the Hartree–
Fock energy may be obtained. Even though we do the MO transformation several
times it is not considered a time-critical step.

At the MP2 level, the two-electron integrals must undergo a full MO transfor-
mation of type T : gµνστ → gabij . For calculations employing large basis sets this
four-index transformation turns out to be the major bottle-neck. Dynamic electron
correlation in nonmetallic systems is a short-range effect, however, with an asymp-
totic distance dependency of ∝ r−6 (dispersion energy). Using MOs from all parts
of a molecule to describe the dynamic correlation in one particular part, therefore,
is not physically justified. Pulay [35] realized this and developed a local method for
dynamic electron correlation, which he later implemented for MP2 together with
Sæbø [36, 37]. This method and other local methods (see Ref. [38] for a review) ef-
ficiently removes the MO transformation bottle-neck. And combined with schemes
for prescreening or approximating two-electron AO integrals, MP2 methods that
scale linear with the system size have been obtained [39, 40].

However, no matter how efficient such methods become, they can do nothing
to improve the orbital approximation itself. As discussed in the introduction, the
error in the energy is of order N−3 when we include virtual orbitals having N as the
largest principal quantum number in our expansions. To get second-order energies
converged to within the “thermo-chemical accuracy” of approximately 1 mEh we are
therefore required to use principal expansions with N = 9 or even N = 10. While
this may be achieved for small molecular systems, it is clearly an impossible task
for large molecules. When employing the orbital approximation to obtain bonding
energies, for instance, we therefore always have to rely on cancellation of errors.

3.4.3 The weak orthogonality functional

The orbital approximation has an inherent deficiency in its ability to describe pair
functions correctly. To remove, or at least reduce this deficiency, we have to include
basis functions that are explicitly dependent of the inter-electronic distance r12 in
the expansion of the pair function. Such explicitly r12-dependent functions are often
referred to as geminals. For geminals to be useful they must be able to describe the
Coulomb hole properly, and equally important, there must be methods available for
evaluating integrals containing these two-electron functions. These two requirements
put restrictions on how geminals may be constructed. In section 6.1, we shall see
that if we construct geminals from a product of orbitals multiplied by a correlation
factor fv(r12)

gP
pq,v(r1, r2, r12) = fv(r12)φ

P
pq(r1, r2) (3.75)



both requirements may be fulfilled, provided that the right functional form is chosen
for the correlation factor. Note that, we allow the geminals to be constructed from
any pair of orbitals and not only, for instance, occupied orbitals.

Even though geminals are better suited for describing the Coulomb hole than
the virtual orbitals expansion, there is no reason to exclude the latter. After all, it
represents an efficient way to retrieve a large proportion of the correlation energy.
We propose, therefore, to expand pair functions in a basis consisting of both geminals
and products of virtual orbitals

ũP
ij(1, 2) =

∑

a≥b

cab,P
ij,P φP

ab(1, 2) +
∑

p≥q,v

cpq,v,P
ij,P gP

pq,v(1, 2) (3.76)

In (3.76) we have omitted explicit reference to the electronic position vectors r1 and
r2 and the inter-electronic distance r12, and we have introduced the indices 1 and 2
merely to emphasise that these functions are two-electron functions.

Having introduced geminals in our pair functions, they are no longer automati-
cally orthogonal to the occupied orbitals. When pair functions are to be optimised by
means of the SO functional (3.56), we therefore have to face the strong orthogonality
operator. From the discussion above, we know that this implies the appearance of
four-electron integrals and even five-electron integrals if the Fock operator and Qocc

do not commute. These many-electron integrals are especially unfortunate since
we only need three-electron integrals to calculate the pair-energy from (3.35). This
makes it natural to search for an approximate way to optimise pair functions.

Integrals over many electrons arise from expectation values of operators like
Pocc(1)f(1), while apparently more complicated operators like Pocc(1)Pocc(2)f(1)
gives rise to three-electron integrals only. We may therefore suggest to approximate
or modify the SO operator in a way that maintains the strong orthogonality prop-
erty but removes the operators producing many-electron integrals. This is indeed
possible, but first, we discuss an approach proposed by Szalewicz et al. [12, 13], in
which the the entire SO functional is modified rather than just the Qocc operator. As
an alternative to the complicated SO functional, Szalewicz an co-workers suggested
the following functional

JP
ij [ũ

P
ij ] = ΛP

ij

(〈
ũP

ij

∣∣ f(1) + f(2) − εi − εj

∣∣ũP
ij

〉

+∆ij

〈
ũP

ij

∣∣Pocc(1) + Pocc(2)
∣∣ũP

ij

〉
+ 2

〈
ũP

ij

∣∣Qoccr
−1
12

∣∣φP
ij

〉) (3.77)

where ∆ij is a level-shift defined as

∆ij =
1

2
(εi + εj − 2ε1) + η (3.78)

where ε1 is the orbital energy of the lowest occupied energy and η is some arbitrary,
nonnegative parameter with the dimension of energy. The functional (3.77), which



is called the weak orthogonality functional or just the WO functional, may be written
in the alternative form

JP
ij [ũ

P
ij] = ΛP

ij

(〈
ũP

ij

∣∣ f̃(1) + f̃(2) − εi − εj

∣∣ũP
ij

〉
+ 2

〈
ũP

ij

∣∣Qoccr
−1
12

∣∣φP
ij

〉)
(3.79)

where f̃ is a modified Fock operator given as

f̃ = f + ∆ijPocc (3.80)

The presence of ∆ijPocc in the f̃ -operators makes the f̃(1) + f̃(2) expectation value
smaller than the corresponding −(εi +εj) expectation value, for all ũP

ij. The second-
order term in (3.79) is therefore positive definite, and we may apply the minimum
principle to the WO functional. In appendix A we discuss different aspects of this
functional and we also justify its usefulness. In particular, we show that the mini-
mum value of the WO functional is an upper bound to the minimum value of the
SO functional, that is

JP
ij [ũ

P
ij] ≥ FP

ij [ũP
ij] ≥ ϵPij (3.81)

provided that the Hartree–Fock equations have been solved exactly. To justify the
WO functional is a rather comprehensive task, however, and having it here will only
makes us lose focus. Therefore, we apply the results of appendix A directly and
assume that the WO functional may be used to optimised pair functions.

Expanding pair functions in pairs of virtual orbitals and geminals as in (3.76),
the WO functional may be written as

JP
ij [ũ

P
ij] = JP

ij [Co,Cg] (3.82)

where Co is the matrix holding orbital expansion coefficients cab,P
ij,P and Cg is the

matrix holding geminal expansion coefficients cpq,v,P
ij,P . Note that the WO functional

for the pair of electrons (ij,P) do not depend on all matrix elements, but only those
belonging to the proper column. Writing JP

ij as a function of the full matrices is
therefore just a matter of convenience. Applying the minimum principle to the WO
functional for each pair of electrons, and collecting the resulting equations into one
extended matrix equation we get

(
Hoo Hog

Hgo H̃gg

)(
Co

Cg

)
= −

(
Ro

Rg

)
(3.83)

where the four blocks of the left-hand-side matrix, H, have elements given by

Hoo = (εa + εb − εi − εj) δacδbd (3.84)

Hgo =
〈
gP

pq,v

∣∣ f(1) + f(2) − εi − εj

∣∣φP
cd

〉
(3.85)

H̃gg =
〈
gP

pq,v

∣∣ f̃(1) + f̃(2) − εi − εj

∣∣gP
rs,w

〉
(3.86)



and the two blocks of the right-hand-side matrix, R, have elements given by

Ro =
〈
φP

ab

∣∣ r−1
12

∣∣φP
ij

〉
(3.87)

Rg =
〈
gP

pq,v

∣∣Qoccr
−1
12

∣∣φP
ij

〉
(3.88)

Since H is Hermitian Hog = H†
go, and it is sufficient to give the matrix elements

for one of these blocks. Note also that the modified Fock operator, f̃ , only appears
in the geminal-geminal block. Since virtual orbitals are projected away by Pocc, f̃
reduces to the normal Fock operator if we have an expansion of virtual orbitals in
either the bra or the ket. For the orbital approximation, the diagonal nature of Hoo

makes it easy to compute the amplitudes Co by direct inversion. This is not possible
here, however, as the matrix H is not diagonal. The equation system (3.83) must
therefore be solved by some iterative process.

Having converged the amplitudes Co and Cg, the second-order energy may be
obtained from the expression

E(2) = tr(C†
oRo) + tr(C†

gRg) (3.89)

where the amplitudes for the virtual orbital expansion are different from those ob-
tained in equation (3.69), due to the coupling to geminals through Hog.

The fact that H is both Hermitian and positive definite, allows us to reformulate
the extended matrix problem using a Schur-like decomposition1

(
Hoo Hog

Hgo H̃gg

)
=

(
1 0
Z 1

)(
Hoo 0
0 G̃gg

)(
1 Z†

0 1

)
(3.90)

where the matrices Z and G̃gg are defined as

Z = HgoH
−1
oo (3.91)

G̃gg = H̃gg −HgoH
−1
oo Hog (3.92)

Since Hoo is diagonal, the inverse is easily formed by replacing all diagonal elements
Hoo by 1/Hoo. The decomposition (3.90) is therefore not only feasible but straight
forward. Inserting the decomposed H in (3.83) and rearranging we obtain

(
Hoo Hog

0 G̃gg

)(
Co

Cg

)
= −

(
Ro

Sg

)
(3.93)

where the transformed right-hand-side matrix Sg is defined as

Sg = Rg − ZRo (3.94)

1A true Schur decomposition requires the decomposed matrix to be strictly upper triangular.
This is not the case with G̃gg.



The blocked form of the transformed equation system (3.93), allows us to first solve
for Cg and then next use this solution to obtain Co. Cg may be found by solving
the equation

G̃ggCg = −Sg (3.95)

by some iterative method. Next, solving (3.93) for Co we get

Co = −H−1
oo Ro − ZCg (3.96)

which means that these amplitudes can be retrieved with a few matrix operations
only and without having to solve any more equations.

Using the decomposition method, we have reduced the size of the equation system
from Nvoe + Ngem in (3.83) to Ngem in (3.95), where Nvoe is the number of functions
in the virtual orbital expansion and Ngem is the number of geminals. Another
interesting feature about the decomposition, is that it allows us to rewrite the energy
as

E(2) = −tr(R†
oH

−1
oo Ro) + tr(C†

gSg) (3.97)

Comparing this expression with (3.74), we identify the first term as the second-
order energy correction due to the virtual orbitals alone. The second term therefore,
represents the portion of the second-order energy recovered by geminals and which
is not already recovered by the virtual orbital expansion. This picture is justified
by the fact that

Sg → 0 when
∑

|ϕp⟩ ⟨ϕp| → 1 (3.98)

since Ro in a complete one-particle basis is transformed into Rg by Z. By symmetry
it is also possible to view the virtual orbital expansion as a correction to the geminal
basis. Depending on how geminals are constructed, they may recover a much larger
proportion of the second-order energy alone, than do the virtual orbitals alone. This
supports viewing the virtual orbital expansion as a correction to the geminals. On
the other hand, the virtual orbitals are the ones used in conventional MP2 calcula-
tions, and it is not unreasonable, therefore, to consider the geminals as representing
a correction to such calculations. In the bottom line, this is a matter of personal
preference only.

3.4.4 Approximating the strong orthogonality operator

Modifying the whole SO functional in order to avoid many-electron integrals may
seem unnecessarily comprehensive, and it is tempting to search for modest approx-
imations to the strong orthogonality operator that allows us to maintain the SO
functional in its original form. Since the many-electron integrals are generated by
the single-projection operators Pocc(1) and Pocc(2), these are the ones we need to
modify. One possible modification, is to transform them into relatively “harmless”



double-projection operators, using the resolution of the identity (RI)

∑

p

|ϕp⟩ ⟨ϕp| = 1 (3.99)

In principle, the resolution of the identity is valid only when the one-particle basis
is complete. It has been argued [41], however, that the resolution of the identity in
some contexts hold, even when the expansion (3.99) is truncated after angular mo-
mentum l = 3locc, where locc is the highest angular momentum used in the occupied
orbitals. This is, of course, of no importance for the theoretical discussion made
here, but may be crucial from an implementational point of view. We should also
keep in mind, that a one-particle basis that is nearly complete, gives a two-particle
basis encumbered with linear dependencies. When using the resolution of the iden-
tity one should therefore consider introducing a second, near complete, basis set
reserved for the RI. Projection operators expressed in near complete basis sets, are
in the rest of this section assigned with a tilde. Note that the use of a second basis
set also separates the effect of the RI approximation from all other approximations
done. This in turn, allows us to keep track of the error introduced by using a specific
RI expansion.

Inserting the resolution of the identity in the strong orthogonality operator given
in (3.59), we get

Qocc(1, 2) = 1 − O(1) − O(2) + O(1)O(2)

≈ 1 − O(1)P̃ (2) − P̃ (1)O(2) + O(1)O(2)
(3.100)

where we have introduced the operator O(i) and P (i) to make equations more
readable. These operators are defined as

O(i) = Pocc(i) = projection onto occupied orbitals, (3.101)

P̃ (i) = P̃all(i) = projection on all orbitals (3.102)

where i refers to electron 1 or 2 and the tilde denotes a projection onto a near
complete basis set.

Since all single-projection operator have disappeared in the final expression of
(3.100), there is no longer need for integrals higher than three-electron ones. Re-
member, however, that terms containing constructions like O(1)P̃ (2), give rise to
three-electron integrals (cf. equation (3.62)). The use of the resolution of the iden-
tity, therefore requires us to calculate three-electron integrals over basis functions
with high angular momentum. For the approximation (3.100) to be useful, we will
most likely have to introduce the RI in these three-electron integrals as well. As we
shall see in the next section, this reduces each three-electron integral to a sum over
two-electron integrals.



The need for two different basis sets is a complicating factor from an implemen-
tational point of view, and Klopper and Samson [42] were recently the first to report
an implementation of the Qocc approximation given in (3.100). If only one basis set
is available, the approximation (3.100) may still be used, but all operators have to
be given in a basis set that is nearly complete. In this case, it turns out that a
slightly different approximation is more useful.

Instead of restricting the strong orthogonality operator to project out occupied
orbitals only, it may be extended to also project out virtual orbitals. This new SO
operator, which we denote Qall(1, 2), is given by

Qall(1, 2) = 1 − P̃ (1) − P̃ (2) + P̃ (1)P̃ (2) (3.103)

Once again, we introduce the resolution of the identity to transform single-projection
operators, and get

Qall(1, 2) ≈ 1 − P̃ (1)P̃ (2) − P̃ (1)P̃ (2) + P̃ (1)P̃ (2)

= 1 − P̃ (1)P̃ (2)
(3.104)

which in form is simpler than the SO operator given in (3.100). To optimise pair
functions using the SO functional with this new SO operator, we proceed exactly
as with the WO functional. This leads us to an equation system similar to that of
(3.83) but with some of the matrix blocks redefined

(
Hoo H̄og

H̄go H̄gg

)(
Co

Cg

)
= −

(
Ro

Rg

)
(3.105)

The redefined matrix blocks are assigned with a “bar” and are

H̄go = Hgo − SgoHoo (3.106)

H̄gg = Hgg − SgcHcg −HgcScg + SgcHccScg (3.107)

where Sgc is the overlap matrix between the geminal basis and the orbital basis

Sgc =
〈
gP

pq,v|φ̃P
rs

〉
. (3.108)

This matrix should not be confused with Sg defined in (3.94). Note also, that the
Fock operators used in H̄gg are the normal Fock operators and not the modified
operators given in (3.80).

For a basis set that is near complete, H̄go ≈ 0, and the orbital part and geminal
part of the equation system become decoupled. A basis set can never be mathe-
matical complete, however, and whenever a decoupling is enforced, the pair energies
become too low. This implies that the boundedness given in (3.57), which is a valu-
able property when energy limits are pursued, can no longer be assumed. Since a



decoupling has no major cost saving effects from a computational point of view, the
H̄go block should therefore be kept in the equation system.

If we use the RI-approximated Qocc operator given in (3.100) in the SO functional,
the corresponding equation system is analogues to (3.105), but the matrix elements
needed to construct the H̄go and H̄gg blocks are different.

3.5 Avoiding three-electron integrals

As we have seen in the previous section, three-electron integrals are required when
pair functions are optimised with the WO functional. These integrals are time-
consuming to compute and their number grows as N6, where N is the number of
basis functions in the one-electron basis. Due to this scaling, it may turn out to
be important to approximate three-electron integrals. Kutzelnigg and Klopper [11]
have shown how this may be done by introducing the resolution of the identity
into the integrals. In this section we shall use their approach to approximate the
three-electron integrals that arise when the WO functional is used.

Three-electron integrals are encountered in the Hog, Hgg, and Rg matrix blocks,
where they are generated by the Coulomb, the exchange, and the projection op-
erators. If we drop parity-adaption, the matrix elements containing three-electron
integrals, may be written

hog = ⟨φab(1, 2)| f(1) + f(2) |gpq,v(1, 2)⟩ (3.109)

hgg = ⟨gpq,v(1, 2)| f(1) + f(2) |grs,w(1, 2)⟩ (3.110)

pgg = ⟨gpq,v(1, 2)|Pocc(1) + Pocc(2) |grs,w(1, 2)⟩ (3.111)

rg = ⟨gpq,v(1, 2)|Qoccr
−1
12 |φij(1, 2)⟩ (3.112)

Since these matrix elements are symmetric in electrons 1 and 2, it is sufficient to
treat integrals with only half the operator. Choosing operators with respect to
electron 1, the RI modified hog integral becomes

⟨φab(1, 2)| f(1) |gpq,v(1, 2)⟩

≈
∑

t̃

⟨φab(1, 2)| f(1) |ϕ̃t(1)⟩1 ⟨ϕ̃t(1)|gpq,v(1, 2)⟩1

=
∑

t̃

⟨ϕa(1)| f(1) |ϕ̃t(1)⟩ ⟨φt̃b(1, 2)|gpq,v(1, 2)⟩

=
∑

t̃

fat̃ ⟨φt̃b|gpq,v⟩

(3.113)

and we see that the three-electron integral reduces to a summation over one-electron
Fock matrix elements multiplied by two-electron overlap matrix elements. In general,
the Fock matrix element fat̃ represents a transition between different basis sets and



cannot be replaced by, say, εa. As in the previous section, a summation index given
a tilde, as in t̃, indicates a basis set that is near complete.

It is essential that the RI expansion is inserted between the Fock operator and
the two-electron function (geminal). As a consequence, we have to insert four RI
expansions (two for each electrons) into hgg to be able to decompose it

⟨gpq,v(1, 2)| f(1) |grs,w(1, 2)⟩

≈
∑

t̃,ũ

∑

t̃′,ũ′

⟨gpq,v(1, 2)|ϕ̃t(1)ϕ̃u(2)⟩

× ⟨ϕ̃t(1)ϕ̃u(2)| f(1) |ϕ̃t′(1)ϕ̃u′(2)⟩ ⟨ϕ̃t′(1)ϕ̃u′(2)|grs,w(1, 2)⟩

=
∑

t̃,ũ,t̃′

⟨gpq,v|φt̃ũ⟩ ft̃t̃′ ⟨φt̃′ũ|grs,w⟩

(3.114)

Again, the three-electron integrals are decomposed into products of one-electron and
two-electron matrix elements. Note that, we arrive at a simpler expression, if the
Fock operator is diagonal in the complete basis.

For the matrix elements pgg, it is sufficient to use one RI expansion. This gives

⟨gpq,v(1, 2)|Pocc(1) |grs,w(1, 2)⟩

≈
∑

k,t̃

⟨gpq,v(1, 2)|ϕk(1)ϕ̃t(2)⟩ ⟨ϕk(1)ϕ̃t(2)|grs,w(1, 2)⟩

=
∑

k,t̃

⟨gpq,v|φkt̃⟩ ⟨φkt̃|grs,w⟩

(3.115)

The RHS matrix element rg consists of four different terms. The only of these
terms that are three-electron integrals, are the terms containing single-projection
operators. Inserting an RI expansion in one of these gives

⟨gpq,v(1, 2)|Pocc(1)r−1
12 |φij(1, 2)⟩

≈
∑

k,t̃

⟨gpq,v(1, 2)|ϕk(1)ϕ̃t(2)⟩ ⟨ϕk(1)ϕ̃t(2)| r−1
12 |φij(1, 2)⟩

=
∑

k,t̃

⟨gpq,v|φkt̃⟩ ⟨φkt̃| r−1
12 |φij⟩

(3.116)

Strictly speaking, we do not have to approximate matrix elements of the entire Fock
operator as we have done in (3.113) and (3.114). Both the kinetic energy part and
the nuclear attraction part may be calculated as two-electron integrals without any
use of the resolution of the identity. The effect of introducing the RI expansion in
such integrals is in fact to reduce them to summations over one-electron integrals
multiplied by two-electron overlap integrals, an approach which is less accurate and
probably less effective as well. For the Coulomb and exchange parts things are



different, however, and the approach taken in (3.113) and (3.114) may turn out to
be both fast and sufficiently accurate ways to approximate such integrals.

In the case of the Coulomb operator, the final expression of (3.114) is more
complicated than necessary. If we use the Coulomb operator from the start, we get

⟨gpq,v(1, 2)| J(1) |grs,w(1, 2)⟩
= ⟨gpq,v(1, 2)|J(1) |fw(r12)φrs(1, 2)⟩

≈
∑

t̃

⟨gpq,v(1, 2)| fw(r12) |ϕ̃t(1)⟩1 ⟨ϕ̃t(1)| J(1) |φrs(1, 2)⟩1

=
∑

t̃

〈
gpq,v(1, 2)|gt̃s,v(1, 2)

〉
⟨ϕ̃t(1)| J(1) |ϕr(1)⟩

=
∑

t̃

〈
gpq,v|gt̃s,v

〉
Jt̃r

(3.117)

and the integral may be evaluated with the use of only one RI expansion. For the
exchange part this is not possible, and the integral must be evaluated as in (3.114)
with the summation running over three general indices in the complete basis set.

3.6 A hierarchy of approximations

In the previous sections we have discussed different ways to obtain MP2 energies.
First we have to determine what kind of basis set the pair functions are to be
expanded in. Next, we must decide what functional to use in optimising these func-
tions, and finally, we must calculate the pair energies. In both the optimisation and
the energy calculation, we may introduce various approximations. These approx-
imations affect the accuracy of the calculated energy to different degrees and the
approximations should therefore be arranged in a hierarchy. At the first level of this
hierarchy, we introduce approximations that affect the energy only to a small extent.
Then, as we go to higher levels, the approximations have larger and larger impact
on the accuracy. Consequently, there is no reason to introduce an approximation
at a certain level if all earlier levels have been treated exactly. This is illustrated
in Figure 3.2, where each complete path outlines a possible method. The boxes
show whether or not an approximation is introduced at a certain level. There are
altogether five different paths we may take to obtain MP2 energies and this gives us
a total of six different methods. The sixth method corresponds to introducing no
approximations at all and is not represented with path in the figure.

3.6.1 No approximations

In the current context, no approximations, means that the SO functional is used
to optimise pair functions, and that all integrals are calculated exactly. As already



SO functional

WO functional

Exact H

Exact R

Approx. H

Exact R Approx. R

Approx. Qocc

Approx. H

Exact R Approx. R

Figure 3.2: Approximations derived from the SO functional. Each path outlines a
possible method for optimising pair functions and calculating energies. H and R are
taken from (3.83) or (3.105). Both may be simplified using the RI to approximate
three-electron integrals.

discussed, this approach is only possible if the pair functions are expanded in prod-
ucts of virtual orbitals (VOE). This is often referred to as the orbital approximation
and represents the conventional way to do MP2. It has not always been recognised
though [43, 44], that this is just a special case of the variational approach outlined
by Sinanoğlu.

3.6.2 First level of approximation

If pair functions are constructed from true two-electron functions, the SO functional
becomes prohibitively expensive to use. Depending on the quality of the Fock oper-
ator, up to four-electron or even five-electron integrals, are encountered. At the first
level of approximation, these many-electron integrals should be avoided. As already
discussed, this can be accomplished in two different ways. Either by approximating
the Qocc operator using the resolution of the identity, or by approximating the entire
functional. The first of these approaches goes along the main right branch of the
decision tree of Figure 3.2. The second goes along the main left branch. Note that
the WO functional does not represent the only “left branch alternative” (see for
instance Ref.[45]), but it is the only one treated in this work. Also, when we later
turn to applications in chapter 7, we shall see that this functional is a good one.



3.6.3 Second level of approximation

No longer in need for four-electron integrals or higher, we are left with three-electron
integrals as the most time consuming step of a calculation. As discussed in section
3.5, such integrals may be approximated using the resolution of the identity. This
is the second level of approximation. However, we do not approximate all three-
electron integrals at the same level. Comparing (3.79) with (3.83)–(3.88), we see
that while matrix elements of R affect the WO functional to first order in ũP

ij, the
matrix elements of H affect the functional only to second order. Therefore, only
the three-electron integrals present in H are approximated at this level. This has
the important implication that only the optimisation of pair functions is affected,
while the energy evaluation still employs exact expressions. The computational
cost, however, may decrease considerably. All calculations presented in this work
have employed exact three-electron integrals, and the cost of evaluating these in-
tegrals is Tcpu ∼ NGCF(3NGCF + 7)/2, where NGCF is the number of Gaussian-type
correlation factors2 (GCFs) used in the expansion of a geminal. Assuming that an
RI-approximated three-electron integral may be calculated at no cost compared to
the exact integral, the computational cost decreases to Tcpu ∼ NGCF at the current
level of approximation. For the calculations presented later, for which NGCF is 9,
this would imply a decrease in calculation time by a factor of 17.

3.6.4 Third level of approximation

At the third level of approximation we also use the RI to approximate three-electron
integrals in the matrix elements of R. By doing this, the energy expression also
becomes approximate.

2Gaussian correlation factors are discussion in section 6.1.





Chapter 4

Many-electron integrals over
Gaussian-type geminals

4.1 MO transformations

As we shall see in chapter 6, the two orbitals present in a Gaussian-type geminal of
kind (3.75) may either both be chosen from all MOs, both from occupied MOs, or
one from each of these groups. Moreover, if one of the orbitals are chosen general, we
may use the AO basis as well as the MO basis. Independent of this choice, however,
all integrals are calculated in the AO basis and then, possibly, the integral indices
are transformed to the full MO basis or the occupied orbitals.

The different matrix blocks of the equation system (3.83) have all different MO
structures. This, combined with the flexibility we have allowed in the orbital part
of a GTG, gives us a large number of different MO transformations that have to be
handled. It is not tractable to give a detailed discussion of each of these transfor-
mations here. However, since the different MO transformations are closely related,
it is sufficient to study the transformation of one particular integral. Any candidate
will in principle do, and we choose the integral

IP
abpq =

〈
φP

ab(1, 2)
∣∣ f(1) + f(2)

∣∣gP
pq,v(1, 2)

〉
(4.1)

which was also listed in (3.109) but then in non parity-adapted form. Note that,
the index v is unaffected by an MO transformation and is therefore left out of IP

abpq.
Also note, that there is no overlap integral in this matrix element. Since overlap
integrals are to be multiplied with MO energies, they cannot be transformed along
with integrals over the Fock operator.

Using the definitions of symmetric and antisymmetric pairs given in (3.32) and
(3.33), we write the integral (4.1) as

IP
abpq = Babpq ± Babqp (4.2)



where the positive sign is used for symmetric pairs (P = S) and the negative sign
is used for antisymmetric pairs (P = A). The integral Babpq is given by

Babpq = ⟨φab| f(1) + f(2) |gpq,v⟩ (4.3)

While the parity-adapted integral IP
abpq is triangular in both index pairs, that is a ≤ b

and p ≤ q, the integrals (4.3) are triangular in ab but not in pq.
The Babpq integrals may in principle be MO transformed straightforwardly as

Babpq =
∑

µνσ̃τ̃

Bµνσ̃τ̃CµaCνbCσ̃pCτ̃q (4.4)

where
Bµνσ̃τ̃ = ⟨χµν | f(1) + f(2) |gστ,v⟩ . (4.5)

The operator f(1)+f(2) is symmetric in electrons 1 and 2 and this symmetry is also
exhibited in the AO integrals (4.5). We may therefore limit the integral evaluation to
those integrals for which µσ̃ ≤ ντ̃ . Although there are certain advantages by using
a symmetric operator, we are not restricted to use one. Instead, we may decompose
the Babpq integrals as

Babpq = Aabpq + Abaqp (4.6)

where Aabpq is
Aabpq = ⟨φab| f(2) |gpq,v⟩ (4.7)

In this integral, there is no triangularity left in the indices. Assuming that the
implementation has loops for electron 1 outermost, we use the operator f(2) in
(4.7) rather than f(1). This prevents the exchange operator from mixing indices
for electron 1 with indices for electron 3, implying that we may transform a large
number of AO integrals simultaneously to MO basis rather than just a few at a time.
This is achieved by calculating all integrals corresponding to indices ντ̃ (electron 2)
for a particular choice of indices µσ̃ (electron 1). Storing these integrals in an AO
matrix Tντ̃ , we may MO transform indices ντ̃ using efficient library routines for
matrix multiplication. The MO transformation for Aabpq thus becomes

Aabpq =
∑

µσ̃

T µσ̃
bq CµaCσ̃p =

∑

µσ̃

{
∑

ντ̃

T µσ̃
ντ̃ CνbCτ̃q

}

CµaCσ̃p (4.8)

where the matrix Tντ̃ is labelled with indices µσ̃ for electron 1. In Table 4.1 we have
outlined a pseudo-code for this MO transformation and we have also included the
transformations needed to obtain parity-adapted integrals.

When we transform T µσ̃
ντ̃ integrals into Apqrs integrals we cannot use the symmetry

relation µσ̃ ≤ ντ̃ as the AO integrals are not symmetric in electrons 1 and 2.
This, in turn, means that we must calculate twice as many integrals (roughly),



Table 4.1: Pseudo code for a sample integral calculation

Allocate IP
abpq, Babpq and Aabpq

do v
do µσ̃

Calculate all integrals for indices ντ̃
————————————————

Allocate T µσ̃
ντ̃

for O in {kinetic energy, nuclear attraction, Coulomb, exchange}
do ντ̃

T µσ̃
ντ̃ = T µσ̃

ντ̃ + ⟨µν| O |σ̃τ̃ ⟩
end do

end for

Transform electron 2 using matrix multiplications
——————————————————————

Allocate T µσ̃
bq

do bq, ντ̃
T µσ̃

bq = T µσ̃
bq + T µσ̃

ντ̃ CνbCτ̃q

end do

Transform electron 1
—————————

do ap
Aabpq = Aabpq + T µσ̃

bq CµaCσ̃p

end do
end do

Symmetries operator
—————————

do a ≤ b, pq
Babpq = Aabpq + Abaqp

end do

Parity-adapt integrals
——————————

do a ≤ b, p ≤ q
IS
abpq = Babpq + Babqp

IA
abpq = Babpq − Bqbqp

end do
end do



as needed with the Bpqrs approach. Integrals over the f(1) + f(2) operator are
more time consuming to calculate than integrals over the f(2) operator, however,
and even though the difference lies only in the calculation of an additional Hermite
integral (see section 4.2), for three-electron integrals, such Hermite integrals typically
consume 70–80% of the total calculation time (see section 6.5). Since the Apqrs and
Bpqrs approaches have almost the same computational performance, we shall choose
the former as it is simpler to implement.

4.2 One-electron basis sets of GTOs

In section 6.1, we shall discuss different forms for the GTGs constituting the two-
electron basis. In the current section, we briefly review some properties of the
Gaussian-type orbitals (GTOs) used for the one-electron basis1. When we later
develop formulas for many-electron integrals over Gaussian-type orbitals, the con-
ventions adopted here are used.

In quantum chemical calculations, a class of orbitals known as solid-harmonic
Gaussian-type orbitals are frequently used. A primitive solid-harmonic GTO may
be written

χlm (r, ϕ, ϑ, a,A) = NlmYlm (ϑ, ϕ) rl exp
(
−ar2

A

)
(4.9)

where Nlm is a normalisation constant, Ylm (ϑ, ϕ) is the spherical harmonic for quan-
tum numbers l and m, and A is the centre of the orbital. For technical reasons,
integrals are usually not calculated directly in the spherical basis. Rather, they
are calculated in a Cartesian basis and then transformed to the spherical basis. A
Cartesian GTO may be written

Gijk (r, a,A) = xi
Ayj

Azk
A exp (−ar2

A) (4.10)

where ra = (x − Ax, y − Ay, z − Az). A solid-harmonic, χlm, is obtained by taking
some linear combination of Cartesian Gaussians satisfying i + j + k = l + 1.

An important property of the Cartesian Gaussians is that they may be factorised
in the three Cartesian directions

Gijk(r, a,A) = Gi(x, a, Ax)Gj(y, a, Ay)Gk(z, a, Az) (4.11)

where, for instance, Gi(x, a, Ax) = xi
A exp (−ax2

A), xA = x − Ax.
Another important property of the Cartesian Gaussians, is that GTOs belonging

to the same electron may be combined into an overlap distribution. This is obtained
by applying the Gaussian product rule

exp (−ar2
A) exp (−br2

B) = exp (−qQ2) exp (−pr2
P ) (4.12)

1Confer Ref. [1], for instance, for a review of Gaussian basis sets



where

p = a + b, pP = aA + bB (4.13)

q =
ab

a + b
, Q = A −B (4.14)

Here P is the centre of the overlap distribution and corresponds to the “centre of
mass” of the two Gaussians. The factor KAB = exp (−qQ2

x), also known as the
“prefactor”, is the overlap amplitude. For two Gaussians that share a common
centre, the overlap amplitude is one, and for Gaussians that are infinitely far apart,
it is zero.

Applying the product rule on the x-component of Gijk(r, a,A)Gi′j′k′(r, b,B), for
instance, we get

Ωii′(x, a, b, Ax, Bx) = Gi(x, a, Ax)Gi′(x, b, Bx)

= xi
Axi′

B exp (−qQ2
x) exp (−px2

P )
(4.15)

where Ωii′ is the overlap distribution (OD) of Gaussians Gi and Gi′ .
The overlap distribution given in (4.15) cannot be integrated directly because

of the product xi
Axi′

B. We could rewrite this product as a polynomial in xP using
the binomial theorem, but this is not the most efficient way to proceed. Instead, we
introduce the Hermite Gaussian functions Λt defined by

Λt(x, p, Px) =

(
∂

∂Px

)t

exp (−px2
P ) (4.16)

The Hermite Gaussians differ from the overlap distribution given in (4.15) only in
the polynomial factors which for Hermite Gaussians are generated by differentiation.
Moreover, since the overlap distribution may be written as a polynomial of degree
i + i′ in xP , it may be expanded exactly in Hermite Gaussians of degree t ≤ i + i′.
We may therefore write

Ωii′ =
i+i′∑

t=0

Ei,i′

t Λt (4.17)

The expansion coefficients Ei,i′

t may be from the basic E00
0 = KAB using the recur-

rence relations

Ei+1,i′

t =
1

2p
Ei,i′

t−1 −
qQx

a
Ei,i′

t + (t + 1)Ei,i′

t+1 (4.18)

and

Ei,i′+1
t =

1

2p
Ei,i′

t−1 −
qQx

b
Ei,i′

t + (t + 1)Ei,i′

t+1 (4.19)

While the Λt in (4.18) is a function of Px but not Qx, we see from (4.18) and (4.19)
that the opposite is true for the expansion coefficients.



The reason the Hermite Gaussians are so useful is the fact that they are defined
by differentiation, and when we calculate molecular integrals, this leads to many
simplifications. In three dimensions a Hermite Gaussian may be written

Λtuv(r, p,P) =

(
∂

∂Px

)t( ∂

∂Py

)u( ∂

∂Pz

)v

exp (−pr2
P ) (4.20)

The operators for differentiation are used extensively below, and in order to get a
more compact notation we shall write them as

∂t
P =

(
∂

∂Px

)t

(4.21)

and, in the three dimensional case,

∂tuv
P =

(
∂

∂Px

)t( ∂

∂Py

)u( ∂

∂Pz

)v

(4.22)

In terms of the Hermite Gaussian given in (4.20), we may write an overlap distri-
bution of two GTOs as

Ωµν = Ωii′Ωjj′Ωkk′

=
i+i′∑

t=0

j+j′∑

u=0

k+k′∑

v=0

Ei,i′

t Ej,j′

u Ek,k′

v ΛtΛuΛv

=
∑

tuv

Eµν
tuvΛtuv

(4.23)

a relationship that is frequently encountered below.

4.3 Exploiting translational invariance

Since a molecular integral is a scalar, it cannot depend on the orientation of the
molecule or where it is centred. Thus, rotating the molecule or displacing it in space
cannot change the magnitude of the corresponding integral. The integral is therefore
said to be rotational and translational invariant.

Consider a molecular three-electron integral I = Iabcdef having six orbitals cen-
tred at A,B,C,D,E, and F. Moving the molecule by a small amount δx in the
x-direction cannot change the integral, so that

δxI =

(
∂I

∂Ax
+

∂I

∂Bx
+

∂I

∂Cx
+

∂I

∂Dx
+

∂I

∂Ex
+

∂I

∂Fx

)
δx = 0 (4.24)



due to the translational invariance requirement. Of course, this requirement is in-
dependent of the size of the displacement, giving

∂I

∂Ax
+

∂I

∂Bx
+

∂I

∂Cx
+

∂I

∂Dx
+

∂I

∂Ex
+

∂I

∂Fx
= 0 (4.25)

Similar relationships holds for the other Cartesian directions.
As discussed in the previous section, an overlap distributions Ωab is expanded

in Hermite Gaussians. An molecular integral over Cartesian GTOs is therefore ex-
pressed as a linear combination of integrals over Hermite Gaussians. These Hermite
integrals are functions of the three centres P, P′, and P′′, rather than the six orbital
centres. Using the definition of P given in (4.13), we define P′ and P′′ to be constel-
lations of centres (C,D) and (E,F), respectively. From the translational invariance
of integrals over Cartesian GTOs, we deduce that integrals over Hermite Gaussians
must also be translational invariant. If we denote a Hermite integral V , this gives

∂V

∂Px
+

∂V

∂P ′
x

+
∂V

∂P ′′
x

= 0 (4.26)

which has the important consequence that partial derivatives with respect to, say,
P ′′

x may be replaced by partial derivatives with respect to Px and P ′
x

∂

∂P ′′
x

= −
(

∂

∂Px
+

∂

∂P ′
x

)
(4.27)

If more than one partial derivative with respect to P ′′
x is present, we invoke the

binomial theorem and get
(

∂

∂P ′′
x

)t′′

= (−1)t′′
∑

x′′

(
t′′

x′′

)(
∂

∂Px

)x′′ (
∂

∂P ′
x

)t′′−x′′

(4.28)

where
(

t′′

x′′

)
is a binomial coefficient. Similar relationships hold for the y- and z-

directions.
Using the definition (4.20) of a Hermite Gaussian, we write a general three-

electron Hermite integral as

Vtuv;t′u′v′;t′′u′′v′′

=

∫∫∫
O(r1, r2, r3)Λtuv(r1, p,P)Λt′u′v′(r2, p

′,P′)Λt′′u′′v′′(r3, p
′′,P′′)dr1dr2dr3

= ∂tuv
P ∂t′u′v′

P ′ ∂t′′u′′v′′

P ′′ V000;000;000

(4.29)

where V000;000;000 is the basic spherical integral

V000;000;000

=

∫∫∫
O(r1, r2, r3) exp(−pr2

P ) exp(−p′r2
P ′) exp(−p′′r2

P ′′)dr1dr2dr3

(4.30)



and O(r1, r2, r3) is some one-, two-, or three-electron operator, or the unit operator.
Using relationships like (4.28), we may express the Hermite integral in (4.29) as

Vtuv;t′u′v′;t′′u′′v′′

=
t′′∑

x′′=0

u′′∑

y′′=0

v′′∑

z′′=0

(
t′′

x′′

)(
u′′

y′′

)(
v′′

z′′

)
Vt+x′′,u+y′′,v+z′′;t′+t′′−x′′,u′+u′′−y′′,v′+v′′−z′′;000

(4.31)

Although it is possible to calculate Hermite integrals using (4.31), it is much more
efficient to gradually build them up using the simpler relations

Vtuv;t′u′v′;(t′′+1)u′′v′′ = −(V(t+1)uv;t′u′v′;t′′u′′v′′ + Vtuv;(t′+1)u′v′;t′′u′′v′′)

Vtuv;t′u′v′;t′′(u′′+1)v′′ = −(Vt(u+1)v;t′u′v′;t′′u′′v′′ + Vtuv;t′(u′+1)v′;t′′u′′v′′)

Vtuv;t′u′v′;t′′u′′(v′′+1) = −(Vtu(v+1);t′u′v′;t′′u′′v′′ + Vtuv;t′u′(v′+1);t′′u′′v′′)

(4.32)

which is based directly on (4.27). Before the recurrence relations (4.32) may be
applied, however, all Hermite integrals Vx y z;x′y′z′;000 satisfying

x ≤ t + t′′, x′ ≤ t′ + t′′, x + x′ ≤ t + t′ + t′′

y ≤ u + u′′, y′ ≤ u′ + u′′, y + y′ ≤ u + u′ + u′′ (4.33)

z ≤ v + v′′, z′ ≤ v′ + v′′, z + z′ ≤ v + v′ + v′′

must be calculated. A favourable aspect with recurrence relations like that in (4.32)
is that as we recur forward to get some Hermite integral Vtuv;t′u′v′;t′′u′′v′′ , we usually
generate other Hermite integrals that are also needed.

From the above equation, one might get the impression that it is always the
Hermite Gaussian corresponding to electron 3 that is generated by recurrence, but
this is not the case. Rather we generate by recurrence the Hermite Gaussian having
the lowest angular momentum.

4.4 The integrals: An overview

Having discussed basis sets and MO transformations, we now work out explicit
formulas for the AO integrals needed in GTG-MP2 theory. The formulas developed
in the sections below are similar to those developed by Persson and Taylor [46], but
are discussed in some more detail.

In order to calculate the second-order energy using the GTG-MP2 theory, we
have to calculate a total of 15 different integrals, If we collect these integrals in
groups of exchange integrals, Coulomb integrals, nuclear attraction integrals, kinetic



energy integrals, and overlap integrals, we may write

Exchange :

⎧
⎪⎨

⎪⎩

INT3E2 : ⟨gµν,v|K2 |gστ,w⟩
INT3E1 : ⟨gµν,v|K2 |χστ ⟩
INT3P1 : ⟨gµν,v|P2r

−1
12 |χστ ⟩

Coulomb :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

INT3C1 : ⟨gµν,v| J2 |χστ ⟩
INT3C2 : ⟨gµν,v| J2 |gστ,w⟩
INT2C0 : ⟨χµν | r−1

12 |χστ ⟩
INT2C1 : ⟨gµν,v| r−1

12 |χστ ⟩
INT4C1 : ⟨gµν,v|P1P2r

−1
12 |χστ ⟩

Nuclear attraction :

{
INT2V1 : ⟨gµν,v|V2C |χστ ⟩
INT2V2 : ⟨gµν,v|V2C |gστ,w⟩

Kinetic energy :

{
INT2K1 : ⟨gµν,v|∇2

1 |χστ ⟩ and − ⟨∇1gµν,v|∇1χστ ⟩
INT2K2 : ⟨gµν,v|∇2

1 |gστ,w⟩ and − ⟨∇1gµν,v|∇1gστ,w⟩

Overlap :

⎧
⎪⎨

⎪⎩

INT21 : ⟨gµν,v|χστ ⟩
INT22 : ⟨gµν,v|gστ,w⟩
INT32 : ⟨gµν,v|P2 |gστ,w⟩

where we have associated a unique keyword with each AO integral. These keywords,
which have the general form INTXYZ, are very useful whenever we shall refer to one
of the integrals. Each keyword has the following logical structure: INT is short for
integral, X specifies whether it is a two- or three-electron integral (there are no one-
electron integrals involved), Y is a letter specifying the operator involved (if any),
and Z gives the number of geminal involved. The number of geminals may be 2
(geminals in both the bra and the ket), 1 or 0. Note that, the integral INT4C1 is
not a true four-electron integral, but a sum of products of two-electron integrals.

4.5 Exchange integrals

We start studying the exchange integrals which are all of three-electron type. More-
over, we shall study the most complicated three-electron integral first, the cyclic
three-electron integral. Even though the formulas for this integral are the most com-



prehensive, they provide a convenient starting point, as many of the them are needed
in the construction of other integrals.

4.5.1 INT3E2: ⟨gµν,v|K2 |gστ,w⟩
The cyclic three-electron integrals is an exchange integral between two geminals. It
may be expressed in terms of Hermite integrals as

〈
exp(−γvr

2
12)χ̃µν

∣∣K2

∣∣exp(−γwr2
12)χ̃στ

〉

=

∫∫∫
exp(−γvr

2
12)χ̃µν

(
∑

k

φk(3)r−1
23 P23φk(3)

)
exp(−γwr2

12)χ̃στdr1dr2dr3

=
∑

ηξ

Dηξ

∫∫∫
Ωµ̃σ̃ (1)Ων̃ξ (2)Ωτ̃ η (3) r−1

23 exp(−γvr
2
12) exp(−γwr2

13)dr1dr2dr3

=
∑

tuv

Eµ̃σ̃
tuv

∑

ηξ

Dηξ

(
∑

t′u′v′

E ν̃ξ
t′u′v′

∑

t′′u′′v′′

E τ̃ η
t′′u′′v′′Vtuv;t′u′v′;t′′u′′v′′

)

(4.34)

In the last equality of (4.34), density matrix elements are multiplied with integrals
that have only been half-transformed from Hermite Gaussians to spherical (or Carte-
sian) GTOs. In practice, however, we transform the integrals completely to GTO
basis before we multiply them with density matrix elements. This generates simpler
code and the loss of performance is marginal.

Hermite integrals

To work out formulas for the Hermite integrals in (4.34), we first express them in
terms of an undifferentiated Hermite integral

Vtuv;t′u′v′;t′′u′′v′′

=

∫∫∫
Λtuv(r1, p,P)Λt′u′v′(r2, p

′,P′)Λt′′u′′v′′(r3, p
′′,P′′)

× r−1
23 exp(−γvr

2
12) exp(−γwr2

13)dr1dr2dr3

= ∂tuv
P ∂t′u′v′

P ′ ∂t′′u′′v′′

P ′′

∫∫∫
exp(−pr2

1P ) exp(−p′r2
2P ′) exp(−p′′r2

3P ′′)

× r−1
23 exp(−γvr

2
12) exp(−γwr2

13)dr1dr2dr3

= ∂tuv
P ∂t′u′v′

P ′ ∂t′′u′′v′′

P ′′ V000;000;000

(4.35)

where we have used the compact notation ∂tuv
P for partial derivatives. Undifferenti-

ated Hermite integrals are often referred to as spherical Hermite integrals. In (4.35),



V000;000;000 is a spherical Hermite integral. It may be evaluated as

V000;000;000

=

(
π

p + γv + γw

) 3
2
∫∫

exp(−q′r2
2P ) exp(−p′r2

2P ′) exp(−q′′r2
3P )

× exp(−p′′r2
3P ′′) exp(−qr2

23)r
−1
23 dr2dr3

=

(
π

p + γv + γw

) 3
2

KPP ′KPP ′′

∫∫
exp(−sr2

2S) exp(−s′r2
3S′)

× exp(−qr2
23)r

−1
23 dr2dr3

=

(
π

p + γv + γw

) 3
2

KPP ′KPP ′′
2π

5
2

(u + q)(s + s′)
3
2

KSS′F0

(4.36)

where we have used the relations

q = γvγw (p + γv + γw)−1

q′ = pγv (p + γv + γw)−1

q′′ = pγw (p + γv + γw)−1

s = q′ + p′

s′ = q′′ + p′′

sS = q′P + p′P′

s′S′ = q′′P + p′′P′′

u = ss′ (s + s′)−1

(4.37)

and

KPP ′ = exp(−β1R
2
PP ′) = exp

(
− q′p′

q′ + p′
R2

PP ′

)

KPP ′′ = exp(−β2R
2
PP ′′) = exp

(
− q′′p′′

q′′ + p′′
R2

PP ′′

)

KSS′ = exp(−β3R
2
SS′) = exp

(
− uq

u + q
R2

SS′

)

F0 = F0

(
αR2

SS′
)

= F0

(
u2

u + q
R2

SS′

)

(4.38)

The function F0 is in the literature both referred to as a zeroth order incomplete
gamma function and as the zeroth order Boys function. It is defined as

Fn(x) =

∫ 1

0

exp(−xt2)t2ndt (4.39)



The properties of the Boys functions have been exhaustively discussed elsewhere [1]
and shall not be pursued here. We note, however, that through (4.36) we have man-
aged to reduce an originally nine dimensional integral to a one dimensional integral
that may be evaluated by a functional approximation or a numerical integration.

Using the results of (4.36), we may express the Hermite integral in (4.35) as

Vtuv;t′u′v′;t′′u′′v′′ =
2π4

(p + γv + γw)
3
2 (u + q)(s + s′)

3
2

× ∂tuv
P ∂t′u′v′

P ′ ∂t′′u′′v′′

P ′′ (KPP ′KPP ′′KSS′F0)

(4.40)

Let f = KPP ′KPP ′′KSS′ and g = F0. By invoking the binomial formula

Dn (f · g) =
n∑

k=0

(
n

k

)
f (n−k)g(k) (4.41)

for each of the differential operators in (4.40), we arrive at the following expression

∂tuv
P ∂t′u′v′

P ′ ∂t′′u′′v′′

P ′′ (KPP ′KPP ′′KSS′)F0

=
t∑

x=0

u∑

y=0

v∑

z=0

t′∑

x′=0

u′∑

y′=0

v′∑

z′=0

t′′∑

x′′=0

u′′∑

y′′=0

v′′∑

z′′=0(
t

x

)(
u

y

)(
v

z

)(
t′

x′

)(
u′

y′

)(
v′

z′

)(
t′′

x′′

)(
u′′

y′′

)(
v′′

z′′

)

×
(
∂t−x,u−y,v−z

P ∂t′−x′,u′−y′,v′−z′

P ′ ∂t′′−x′′,u′′−y′′,v′′−z′′

P ′′ KPP ′KPP ′′KSS′

)

×
(
∂xyz

P ∂x′y′z′

P ′ ∂x′′y′′z′′

P ′′ F0

)

(4.42)

Note that, these loops are connected in triples and the sum t + u + v, for instance,
must be equal to or less than the total angular momentum of the overlap distribution
Ωµ̃σ̃ present in (4.34). Similar relationships applies for the primed and doubly primed
summation indices.

The differentiated Boys functions may be obtained from a set of recurrence re-
lations similar to the usual McMurchie–Davidson ones. For the derivatives of the
product KPP ′KPP ′′KSS′, which we shall refer to as KKK functions, a recurrence
scheme that exploits separability into Cartesian directions has been developed by
Persson and Taylor [46].

In both the McMurchie–Davidson and the Persson–Taylor recurrence schemes,
the derivatives of RSS′ = (XSS′, YSS′, ZSS′) with respect to unprimed, primed and
doubly primed centres are frequently encountered. For the XSS′ component, these



derivatives are

r1 =
∂XSS′

∂Px
=

q′s′ − q′′s

ss′

r2 =
∂XSS′

∂P ′
x

=
p′

s
(4.43)

r3 =
∂XSS′

∂P ′′
x

= −p′′

s′

and the derivatives of the YSS′ and ZSS′ components are identical.

KKK functions

To find recurrence relations for derivatives of the product KPP ′KPP ′′KSS′, it is
convenient to introduce a new set of functions. For the x-component, these are

Ki
PP ′ = X i

PP ′ exp(−β1X
2
PP ′)

Kj
PP ′′ = Xj

PP ′′ exp(−β2X
2
PP ′′) (4.44)

Kk
SS′ = Xk

SS′ exp(−β3X
2
SS′)

where the exponents β1, β2 and β3 are defined in (4.38). The functions defined in
(4.44) have counterparts for the y- and z-directions that are similarly defined.

Differentiating the product Ki
PP ′K

j
PP ′′Kk

SS′ with respect to each of the centres
Px, P ′

x and P ′′
x , we get

∂q+1
Px

Ki
PP ′K

j
PP ′′Kk

SS′ = ∂q
Px

(
iKi−1

PP ′ − 2β1K
i+1
PP ′

)
Kj

PP ′′Kk
SS′

+ ∂q
Px

(
jKj−1

PP ′′ − 2β2K
j+1
PP ′′

)
Ki

PP ′Kk
SS′

+ ∂q
Px

(
r1kKk−1

SS′ − 2β3r1K
k+1
SS′

)
Ki

PP ′K
j
PP ′′

∂r+1
P ′

x
Ki

PP ′K
j
PP ′′Kk

SS′ = ∂r
P ′

x

(
−iKi−1

PP ′ + 2β1K
i+1
PP ′

)
Kj

PP ′′Kk
SS′

+ ∂r
P ′

x

(
r2kKk−1

SS′ − 2β3r2K
k+1
SS′

)
Ki

PP ′K
j
PP ′′

∂s+1
P ′′

x
Ki

PP ′K
j
PP ′′Kk

SS′ = ∂s
P ′′

x

(
−jKj−1

PP ′′ + 2β2K
j+1
PP ′

)

+ ∂s
P ′′

x

(
r3kKk−1

SS′ − 2β3r3K
k+1
SS′

)
Ki

PP ′K
j
PP ′′

(4.45)

Generally, the differentiation operators in (4.45) appear in combination. Consider,
therefore, some functions Sqrs

ijk given by Sqrs
ijk = ∂q

Px
∂r

P ′
x
∂s

P ′′
x
Ki

PP ′K
j
PP ′′Kk

SS′. To be able
to construct the Hermite integrals of (4.42) we only need the subset Sqrs ≡ Sqrs

000 of
these functions. According to (4.45), this subset may be obtained by taking a linear
combination of another subset Sijk ≡ S000

ijk . To see this more clearly, let θ1 = −2β1,



θ2 = −2β2 and θ3 = −2β3. Using these definitions, we may turn (4.45) into the
following recurrence relations

S(q+1)rs
ijk = iSqrs

(i−1)jk + θ1Sqrs
(i+1)jk + jSqrs

i(j−1)k + θ2Sqrs
i(j+1)k + r1kSqrs

ij(k−1) + r1θ3Sqrs
ij(k+1)

Sq(r+1)s
ijk =− iSqrs

(i−1)jk − θ1Sqrs
(i+1)jk + r2kSqrs

ij(k−1) + r2θ3Sqrs
ij(k+1)

Sqr(s+1)
ijk = − jSqrs

i(j−1)k − θ2Sqrs
i(j+1)k + r3kSqrs

ij(k−1) + r3θ3Sqrs
ij(k+1)

(4.46)
These relations may be used to evaluate Sqrs, once all functions Sijk for which

i ≤ q + r, j ≤ q + s, k ≤ q + r + s, i + j + k ≤ q + r + s (4.47)

have been evaluated. The recurrence relations (4.46) are then used to build up all
singly differentiated functions, that is, S100

ijk , S010
ijk and S001

ijk , which in turn are used
to construct the doubly differentiated functions and so on.

Boys functions

The recurrence relations for the Boys functions may be simplified by establishing
relationships between the different derivatives of Fn. Differentiating the nth order
Boys function with respect to Px, P ′

x and P ′′
x , we get

∂Fn

∂Px
= −2αXSS′r1Fn+1

∂Fn

∂P ′
x

= −2αXSS′r2Fn+1

∂Fn

∂P ′′
x

= −2αXSS′r3Fn+1

(4.48)

where we have used the results from (4.43). The derivatives for the y- and z-
directions are similar and are not given.

The relations (4.48) imply that we only have to differentiate the Boys function
with respect to one of the centres, for instance the unprimed, as the derivatives for
the other directions may be expressed in terms of this

∂t′u′v′

P ′ Fn =

(
r2

r1

)t′+u′+v′

∂t′u′v′

P Fn

∂t′′u′′v′′

P ′′ Fn =

(
r3

r1

)t′′+u′′+v′′

∂t′′u′′v′′

P Fn

(4.49)

By means of the functions Rn
tuv defined as

Rn
tuv = (−2αr1)

n ∂tuv
P Fn (4.50)



we may generate by recurrence the differentiated Boys functions Rtuv ≡ R0
tuv needed

for (4.42). These functions may be constructed from a subset Rn ≡ Rn
000 using the

McMurchie–Davidson-type recurrence relations

Rn
(t+1)uv = r1tRn+1

(t−1)uv + XSS′Rn+1
tuv

Rn
t(u+1)v = r1uRn+1

t(u−1)v + YSS′Rn+1
tuv

Rn
tu(v+1) = r1vRn+1

tu(v−1) + ZSS′Rn+1
tuv

(4.51)

allowing us, finally, to write the Hermite integral in (4.40) as

Vtuv;t′u′v′;t′′u′′v′′ =
2π4

(p + γv + γw)
3
2 (u + q)(s + s′)

3
2

×
t∑

x=0

t′∑

x′=0

t′′∑

x′′=0

(
t

x

)(
t′

x′

)(
t′′

x′′

)(
r2

r1

)x′ (
r3

r1

)x′′

St−x,t′−x′,t′′−x′′

u∑

y=0

u′∑

y′=0

u′′∑

y′′=0

(
u

y

)(
u′

y′

)(
u′′

y′′

)(
r2

r1

)y′ (
r3

r1

)y′′

T u−y,u′−y′,u′′−y′′

v∑

z=0

v′∑

z′=0

v′′∑

z′′=0

(
v

z

)(
v′

z′

)(
v′′

z′′

)(
r2

r1

)z′ (r3

r1

)z′′

Uv−z,v′−z′,v′′−z′′

×Rx+x′+x′′,y+y′+y′′,z+z′+z′′

(4.52)

where T qrs and U qrs are equivalents of Sqrs for the y- and z-directions, respectively.
Equation (4.52) may be reduced further if we make use of the translational

invariance discussed in section 4.3, but this is not pursued here.

4.5.2 INT3E1: ⟨gµν,v|K2 |χστ ⟩
The second exchange integral we need is the one between a geminal and an orbital
product. This integral is given by

〈
exp(−γvr

2
12)χ̃µν

∣∣K2 |χστ ⟩

=

∫∫∫
exp(−γvr

2
12)χ̃µν

(
∑

k

φk(3)r−1
23 P23φk(3)

)

χστdr1dr2dr3

=
∑

ηξ

Dηξ

∫∫∫
Ωµ̃σ (1) Ων̃ξ (2) Ωτη (3) r−1

23 exp(−γvr
2
12)dr1dr2dr3

=
∑

tuv

Eµ̃σ
tuv

∑

ηξ

Dηξ

(
∑

t′u′v′

E ν̃ξ
t′u′v′

∑

t′′u′′v′′

Eτη
t′′u′′v′′Vtuv;t′u′v′;t′′u′′v′′

)

(4.53)

If geminals and virtual orbitals are expanded in the same AO basis, we may use
the expression for the cyclic three-electron integral (4.34) to evaluate it by setting
γw = 0. This gives us an invaluable opportunity to check both integrals.



Hermite integrals

As with the cyclic three-electron integrals, the Hermite integral of (4.53) may be
expressed in terms of a spherical Hermite integral

Vtuv;t′u′v′;t′′u′′v′′

=

∫∫∫
Λtuv(r1, p,P)Λt′u′v′(r2, p

′,P′)Λt′′u′′v′′(r3, p
′′,P′′)

× r−1
23 exp(−γvr

2
12)dr1dr2dr3

= ∂tuv
P ∂t′u′v′

P ′ ∂t′′u′′v′′

P ′′

∫∫∫
exp(−pr2

1P ) exp(−p′r2
2P ′) exp(−p′′r2

3P ′′)

× r−1
23 exp(−γvr

2
12)dr1dr2dr3

= ∂tuv
P ∂t′u′v′

P ′ ∂t′′u′′v′′

P ′′ V000;000;000

(4.54)

The spherical Hermite integral is evaluated as

V000;000;000

=

(
π

p + γv

) 3
2
∫∫

exp(−qr2
2P ) exp(−p′r2

2P ′) exp(−p′′r2
3P ′′)r−1

23 dr2dr3

=

(
π

p + γv

) 3
2

KPP ′

∫∫
exp(−sr2

2S) exp(−p′′r2
3P ′′)r−1

23 dr2dr3

=

(
π

p + γv

) 3
2

KPP ′
2π

5
2

sp′′
√

s + p′′
F0

(4.55)

where we have used the relations

q =
pγv

p + γv

s = q + p′

sS = qP + p′P′

(4.56)

and

KPP ′ = exp(−βR2
PP ′) = exp

(
− qp′

q + p′
R2

PP ′

)

F0 = F0(αR2
SP ′′) = F0

(
sp′′

s + p′′
R2

SP ′′

) (4.57)

The Hermite integral (4.54) may now be written

Vtuv;t′u′v′;t′′u′′v′′ =

(
π

p + γv

) 3
2 2π

5
2

sp′′
√

s + p′′
∂tuv

P ∂t′u′v′

P ′

(
KPP ′

(
∂t′′u′′v′′

P ′′ F0

))
(4.58)



As with the cyclic three-electron integrals, the multiple derivatives are resolved by
invoking the binomial formula (4.41). This gives

∂tuv
P ∂t′u′v′

P ′

(
KPP ′

(
∂t′′u′′v′′

P ′′ F0

))

=
t∑

x=0

u∑

y=0

v∑

z=0

t′∑

x′=0

u′∑

y′=0

v′∑

z′=0(
t

x

)(
u

y

)(
v

z

)(
t′

x′

)(
u′

y′

)(
v′

z′

)

×
(
∂t−x,u−y,v−z

P ∂t′−x′,u′−y′,v′−z′

P ′ KPP ′

)

×
(
∂xyz

P ∂x′y′z′

P ′ ∂t′′u′′v′′

P ′′ F0

)

(4.59)

which may be compared to (4.42). Each of the two derivatives of (4.59) is evaluated
by recurrence.

K functions

The differentiated KPP ′ functions (K functions) may be evaluated in much the same
way as the more complicated KKK functions. However, due to the simple form of
the K functions we may use the relationship

∂KPP ′

∂P ′
x

= −∂KPP ′

∂Px
(4.60)

to replace all derivatives with respect to primed centres by derivatives with respect
to unprimed centres

∂t′

P ′
x
KPP ′ = (−1)t′∂t′

Px
KPP ′ (4.61)

Derivatives with respect to unprimed centres may be recurred from functions

Ki
PP ′ = X i

PP ′ exp(−βX2
PP ′) (4.62)

through the recurrence relation

Sq+1
i = iSq

i−1 − 2βSq
i+1 (4.63)

where Sq
i = ∂q

Px
Ki

PP ′. Using this relation, we may generate the K functions Sq ≡ Sq
0

from the functions Si ≡ S0
i which are easily evaluated.

Keeping this in mind, we switch to the notation Sq,r
i = (−1)rSq+r

i in all formulas
below, as this makes most of them appear in a simpler form.



Boys functions

For the recurrence relations of the Boys functions, we need the derivatives of RSP ′′ =
(XSP ′′, YSP ′′, ZSP ′′) with respect to the unprimed, primed and doubly primed centres.
Again, the derivative is independent of the Cartesian direction, and if we choose the
x-direction, out of habit, we get

r1 =
∂XSP ′′

∂Px
=

q

s

r2 =
∂XSP ′′

∂P ′
x

=
p′

s

r3 =
∂XSP ′′

∂P ′′
x

= −1

(4.64)

The Boys functions needed in (4.59) may be generated using the relations (4.49)–
(4.51) developed for the cyclic three-electron integrals. We definitions of r1, r2 and
r3 must be altered, however, and we must also replace XSS′ in (4.51) by XSP ′′, and
so forth. If we make these changes, we may write the Hermite integrals (4.58) in
the final form

Vtuv;t′u′v′;t′′u′′v′′ =

(
π

p + γv

) 3
2 2π

5
2

sp′′
√

s + p′′

(
r3

r1

)t′′+u′′+v′′

×
t∑

x=0

t′∑

x′=0

(
t

x

)(
t′

x′

)(
r2

r1

)x′

St−x,t′−x′

u∑

y=0

u′∑

y′=0

(
u

y

)(
u′

y′

)(
r2

r1

)y′

T u−y,u′−y′

v∑

z=0

v′∑

z′=0

(
v

z

)(
v′

z′

)(
r2

r1

)z′

Uv−z,v′−z′Rx+x′+t′′,y+y′+u′′,z+z′+v′′

(4.65)

which may be compared with (4.52).

4.5.3 INT3P1: ⟨gµν,v|P2r
−1
12 |χστ ⟩

Even though this projection integral does not correspond to an exchange operator
matrix element like the INT3E2 and INT3E1 integrals, it is best characterised as an



exchange-type integral. It may be expanded in Hermite integrals as

〈
exp(−γvr

2
12)χ̃µν

∣∣P2r
−1
12 |χστ ⟩

=
∑

k

∫∫∫
exp(−γvr

2
12)χ̃µν (1, 2)φk (2)φk (3) r−1

13 χστ (1, 3) dr1dr2dr3

=
∑

ηξ

Dηξ

∫∫∫
Ωµ̃σ (1)Ων̃ξ (2)Ωτη (3) r−1

13 exp(−γvr
2
12)dr1dr2dr3

=
∑

tuv

Eµ̃σ
tuv

∑

ηξ

Dηξ

(
∑

t′u′v′

E ν̃ξ
t′u′v′

∑

t′′u′′v′′

Eτη
t′′u′′v′′Vtuv;t′u′v′;t′′u′′v′′

)

(4.66)

The expansion (4.66) is seen to exhibit the characteristic of an exchange-type integral
which is a coupling of two overlap distributions through a density matrix element.

Hermite integrals

The Hermite integrals in (4.66) are calculated as

Vtuv;t′u′v′;t′′u′′v′′

=

∫∫∫
Λtuv(r1, p,P)Λt′u′v′(r2, p

′,P′)Λt′′u′′v′′(r3, p
′′,P′′)

× r−1
13 exp(−γvr

2
12)dr1dr2dr3

= ∂tuv
P ∂t′u′v′

P ′ ∂t′′u′′v′′

P ′′

∫∫∫
exp(−pr2

1P ) exp(−p′r2
2P ′) exp(−p′′r2

3P ′′)

× r−1
13 exp(−γvr

2
12)dr1dr2dr3

= ∂tuv
P ∂t′u′v′

P ′ ∂t′′u′′v′′

P ′′ V000;000;000

(4.67)

and up to this point, the expressions look exactly like those of the INT3E1 integral.
The spherical Hermite integrals are different, however, and are given by

V000;000;000

=

(
π

p′ + γv

) 3
2
∫∫

exp(−pr2
1P ) exp(−q′r2

1P ′) exp(−p′′r2
3P ′′)r−1

13 dr2dr3

=

(
π

p′ + γv

) 3
2

KPP ′

∫∫
exp(−s′r2

1S′) exp(−p′′r2
3P ′′)r−1

13 dr2dr3

=

(
π

p′ + γv

) 3
2

KPP ′
2π

5
2

s′p′′
√

s′ + p′′
F0

(4.68)



where we have used the relations

q′ =
p′γv

p′ + γv

s′ = p + q′

s′S′ = pP + q′P′

(4.69)

and

KPP ′ = exp(−βR2
PP ′) = exp(− pq′

p + q′
R2

PP ′)

F0 = F0

(
αR2

S′P ′′
)

= F0

(
s′p′′

s′ + p′′
R2

S′P ′′

) (4.70)

The Hermite integral (4.67), may now be written as

Vtuv;t′u′v′;t′′u′′v′′ =

(
π

p′ + γv

) 3
2 2π

5
2

s′p′′
√

s′ + p′′
∂tuv

P ∂t′u′v′

P ′

(
KPP ′

(
∂t′′u′′v′′

P ′′ F0

))
(4.71)

Since the difference between the INT3P1 and the INT3E1 integrals lies only in the
spherical Hermite integrals, they may use the same implementation, and in practice,
only a few tens of lines of code differ for the two integrals.

4.6 Coulomb integrals

While the exchange integrals were all three-electron integrals, the Coulomb integrals
appear in two-electron, three-electron and even a (quasi) four-electron form. We
start, however, by considering the three-electron integrals.

4.6.1 INT3C1: ⟨gµν,v| J2 |χστ ⟩
The matrix element of the Coulomb operator between a geminal and an orbital
product may be expressed as

〈
exp(−γvr

2
12)χ̃µν

∣∣ J2 |χστ ⟩

=

∫∫∫
exp(−γvr

2
12)χ̃µν

(
∑

k

φk (3) r−1
23 φk (3)

)
χστdr1dr2dr3

=
∑

ηξ

Dηξ

∫∫∫
Ωµ̃σ (1)Ων̃τ (2) Ωηξ (3) r−1

23 exp(−γvr
2
12)dr1dr2dr3

=
∑

tuv

Eµ̃σ
tuv

∑

t′u′v′

E ν̃τ
t′u′v′

∑

ηξ

Dηξ

(
∑

t′′u′′v′′

Eηξ
t′′u′′v′′Vtuv;t′u′v′;t′′u′′v′′

)

(4.72)



Note that, the density matrix in this case does not couple different overlap distri-
butions. This is characteristic of the Coulomb integrals arising from the Coulomb
operator given in (3.10).

We shall not discuss the Hermite integrals in (4.72) here, as they are identical
to those for the INT3E1 integral.

4.6.2 INT3C2: ⟨gµν,v| J2 |gστ,w⟩
The matrix elements of the Coulomb operator between two geminals are given by

〈
exp(−γvr

2
12)χ̃µν

∣∣ J2

∣∣exp(−γvr
2
12)χ̃στ

〉

=

∫∫∫
exp(−γvr

2
12)χ̃µν

(
∑

k

φk (3) r−1
23 φk (3)

)
exp(−γwr2

12)χ̃στdr1dr2dr3

=
∑

ηξ

Dηξ

∫∫∫
Ωµ̃σ̃ (1) Ων̃τ̃ (2)Ωηξ (3) r−1

23 exp
(
−(γv + γw)r2

12

)
dr1dr2dr3

=
∑

tuv

Eµ̃σ̃
tuv

∑

t′u′v′

E ν̃τ̃
t′u′v′

∑

ηξ

Dηξ

(
∑

t′′u′′v′′

Eηξ
t′′u′′v′′Vtuv;t′u′v′;t′′u′′v′′

)

(4.73)

If geminals and virtual orbitals are expanded in the same basis set, (4.73) becomes
identical in form to (4.72). The only difference is the GCF exponent which has to
be updated from γv to γv + γw. This implies that these integrals share a common
implementation.

4.6.3 INT2C0: ⟨χµν| r−1
12 |χστ ⟩

The simplest two-electron Coulomb integral, is the electrostatic repulsion integral
between two spherical charge distributions. It is given by

⟨χµν | r−1
12 |χστ ⟩ =

∫∫
χµνr

−1
12 χστdr1dr2

=

∫∫
Ωµσ (1)Ωντ (2) r−1

12 dr1dr2

=
∑

tuv

Eµσ
tuv

∑

t′u′v′

Eντ
t′u′v′Vtuv;t′u′v′

(4.74)

This integral is needed for the conventional MP2 part but also for the quasi four-
electron integral discussed in section 4.6.5.



Hermite integrals

The Hermite integral in (4.74) is well-known and reads

Vtuv;t′u′v′ =

∫∫
Λtuv(r1, p,P)Λt′u′v′(r2, p

′,P′)r−1
12 dr1dr2

= ∂tuv
P ∂t′u′v′

P ′

∫∫
exp(−pr2

1P ) exp(−p′r2
2P ′)r−1

12 dr1dr2

=
2π

5
2

pp′
√

(p + p′)
∂tuv

P ∂t′u′v′

P ′ F0

(4.75)

where

F0 = F0

(
αR2

PP ′

)
= F0

(
pp′

p + p′
R2

PP ′

)
(4.76)

Again, differentiation of the Boys function with respect to primed centres may be
replaced by differentiation with respect to unprimed centres

∂t′u′v′

P ′ Fn = (−1)t′+u′+v′∂t′u′v′

P Fn (4.77)

The Boys function differentiated with respect to unprimed centres may be recurred
from functions Rn

tuv defined as

Rn
tuv = (−2α)n ∂tuv

P Fn (4.78)

which differ slightly from those of (4.50). The corresponding recurrence relations
become

Rn
(t+1)uv = tRn+1

(t−1)uv + XPP ′Rn+1
tuv

Rn
t(u+1)v = uRn+1

t(u−1)v + YPP ′Rn+1
tuv

Rn
tu(v+1) = vRn+1

tu(v−1) + ZPP ′Rn+1
tuv

(4.79)

In terms of the functions Rtuv, we may write the Hermite integrals (4.75) as

Vtuv;t′u′v′ =
2π

5
2

pp′
√

(p + p′)
(−1)t′+u′+v′Rt+t′,u+u′,v+v′ (4.80)

a fairly simple expression compared to the other Hermite integrals we have discussed.



4.6.4 INT2C1: ⟨gµν,v| r−1
12 |χστ⟩

We also need Coulomb operator matrix elements between geminals and orbitals.
These are given by

〈
exp(−γvr

2
12)χ̃µν

∣∣ r−1
12 |χστ ⟩

=

∫∫
exp(−γvr

2
12)χ̃µνr

−1
12 χστdr1dr2

=

∫∫
Ωµ̃σ (1)Ων̃τ (2) r−1

12 exp(−γvr
2
12)dr1dr2

=
∑

tuv

Eµ̃σ
tuv

∑

t′u′v′

E ν̃τ
t′u′v′Vtuv;t′u′v′

(4.81)

Setting γv = 0 reduces (4.81) to the repulsion integral INT2C0 and this is a simple
way to check a part of our implementation.

Hermite integrals

The Hermite integrals in (4.81) may be expressed as

Vtuv;t′u′v′

=

∫∫
Λtuv(r1, p,P)Λt′u′v′(r2, p

′,P′)r−1
12 exp(−γvr

2
12)dr1dr2

= ∂tuv
P ∂t′u′v′

P ′

∫∫
exp(−pr2

1P ) exp(−p′r2
2P ′)r−1

12 exp(−γvr
2
12)dr1dr2

=
2π

5
2

(q + γv)(p + p′)
3
2

∂tuv
P ∂t′u′v′

P ′ (KPP ′F0)

(4.82)

where we have applied the relation

q =
pp′

p + p′
(4.83)

and relations

KPP ′ = exp(−βR2
PP ′) = exp

(
− qγv

q + γv
R2

PP ′

)

F0 = F0

(
αR2

PP ′

)
= F0

(
q2

q + γv
R2

PP ′

) (4.84)

By invoking the binomial formula (4.41), the differentiation part of (4.82) may be



written

∂tuv
P ∂t′u′v′

P ′ (KPP ′F0)

=
t∑

x=0

u∑

y=0

v∑

z=0

t′∑

x′=0

u′∑

y′=0

v′∑

z′=0

(
t

x

)(
u

y

)(
v

z

)(
t′

x′

)(
u′

y′

)(
v′

z′

)

×
(
∂t−x,u−y,v−z

P ∂t′−x′,u′−y′,v′−z′

P ′ KPP ′

)(
∂xyz

P ∂x′y′z′

P ′ F0

)
(4.85)

For both differentiations in (4.85) we have already developed recurrence relations.
The K functions may be obtained from (4.63) while the Boys functions may be
obtained from (4.79). Using these expressions we may write the Hermite integral
(4.82) as

Vtuv;t′u′v′ =
2π

5
2

(q + γv)(p + p′)
3
2

×
t∑

x=0

t′∑

x′=0

(
t

x

)(
t′

x′

)
(−1)x′

St−x,t′−x′

u∑

y=0

u′∑

y′=0

(
u

y

)(
u′

y′

)
(−1)y′

T u−y,u′−y′

v∑

z=0

v′∑

z′=0

(
v

z

)(
v′

z′

)
(−1)z′ Uv−z,v′−z′Rx+x′,y+y′,z+z′

(4.86)

which may be compared to the Hermite integral (4.65).

4.6.5 INT4C1: ⟨gµν,v|P1P2r
−1
12 |χστ ⟩

The quasi four-electron integrals are, as the name reveals, not a true four-electron
integral; it may be decomposed into a product of two-electron integrals

〈
exp(−γvr

2
12)χ̃µν

∣∣P1P2r
−1
12 |χστ ⟩

=
∑

k,l

〈
exp(−γvr

2
12)χ̃µν |ϕkϕl

〉
⟨ϕkϕl| r−1

12 |χστ ⟩ (4.87)

The overlap integral in (4.87) is discussed in section 4.8.1 and the repulsion integral
has already been discussed in 4.6.3. We therefore proceed to the next type of
integrals, the nuclear attraction integrals.



4.7 Nuclear attraction integrals

4.7.1 INT2V1: ⟨gµν,v|V2C |χστ ⟩
To obtain GTG-MP2 energies we need two types of nuclear attraction integrals,
both of which are two-electron integrals. For the coupling between geminals and
virtual orbitals we need matrix elements

〈
exp(−γvr

2
12)χ̃µν

∣∣
∑

ZCr−1
2C |χστ ⟩

=

∫∫
exp(−γvr

2
12)χ̃µν

(
∑

C

ZCr−1
2C

)

χστdr1dr2

=
∑

C

ZC

∫∫
Ωµ̃σ (1)Ων̃τ (2) r−1

2C exp(−γvr
2
12)dr1dr2

=
∑

tuv

Eµ̃σ
tuv

∑

t′u′v′

E ν̃τ
t′u′v′

∑

C

ZCV C
tuv;t′u′v′

(4.88)

where the Hermite integrals V C
tuv;t′u′v′ are dependent of the position of some nucleus

C. The Hermite integrals in (4.88) may be evaluated as

V C
tuv;t′u′v′

= ∂tuv
P ∂t′u′v′

P ′

∫∫
exp(−pr2

1P ) exp(−p′r2
2P ′)r−1

2C exp(−γvr
2
12)dr1dr2

=

(
π

p + γv

) 3
2
(

2π

s

)
∂tuv

P ∂t′u′v′

P ′ (KPP ′F0)

(4.89)

where we have used relations

q = pγv(p + γv)
−1

α = qp′(q + p′)−1

s = q + p′

sS = qP + p′P′

(4.90)

and

KPP ′ = exp(−αR2
PP ′)

F0 = F0(sR
2
SC)

(4.91)

The partial derivatives in (4.89) is given by (4.85), but the Boys function in this
expression must be recurred using relations (4.51) rather than relations (4.79). The
r1 and r2 are for the nuclear attraction integrals given by

r1 =
∂XSC

∂Px
=

q

s

r2 =
∂XSC

∂P ′
x

=
p′

s

(4.92)



where XSC is the x-component of RSC = S − RC and RC is the position of some
nucleus C.

If we insert the results obtained in (4.85) and (4.51) into (4.89), the nuclear
attraction Hermite integral may be written in the final form

V C
tuv;t′u′v′ =

(
π

p + γv

) 3
2
(

2π

s

)

×
t∑

x=0

t′∑

x′=0

(
t

x

)(
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x′

)(
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)x
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u∑

y=0

u′∑

y′=0

(
u

y

)(
u′

y′

)(
r2

r1

)y

T u−y,u′−y′

v∑

z=0

v′∑

z′=0

(
v

z

)(
v′

z′

)(
r2

r1

)z

Uv−z,v′−z′Rx+x′,y+y′,z+z′

(4.93)

which closely resembles both (4.65) and (4.86).

4.7.2 INT2V2: ⟨gµν,v|V2C |gστ,w⟩
The nuclear attraction integral needed for the coupling between two geminals is

〈
exp(−γvr

2
12)χ̃µν

∣∣
∑

ZCr−1
2C

∣∣exp(−γwr2
12)χ̃στ

〉

=

∫∫
exp(−γvr

2
12)χ̃µν

(
∑

C

ZCr−1
2C

)

exp(−γwr2
12)χ̃στdr1dr2

=
∑

C

ZC

∫∫
Ωµ̃σ̃ (1)Ων̃τ̃ (2) r−1

2C exp
(
−(γv + γw)r2

12

)
dr1dr2

=
∑

tuv

Eµ̃σ̃
tuv

∑

t′u′v′

E ν̃τ̃
t′u′v′

∑

C

ZCV C
tuv;t′u′v′

(4.94)

where the Hermite integrals may be obtained using (4.93) if we replace all occur-
rences of γv with γv + γw.

4.8 Overlap integrals

The overlap integrals come both as two-electron and three-electron integrals. These
integrals are separable in the Cartesian directions and may be evaluated without
any numerical integrations or functional approximations.



4.8.1 INT21: ⟨gµν,v|χστ ⟩
The overlap between a geminal and an orbital product is

〈
exp(−γvr

2
12)χ̃µν |χστ

〉

=

∫∫
exp(−γvr

2
12)χ̃µνχστdr1dr2

=

∫∫
Ωµ̃σ (1)Ων̃τ (2) exp

(
−(γv + γw)r2

12

)
dr1dr2

=
∑

tuv

Eµ̃σ
tuv

∑

t′u′v′

E ν̃τ
t′u′v′Vtuv;t′u′v′

(4.95)

where the Hermite integral Vtuv;t′u′v′ may be evaluated as

Vtuv;t′u′v′

= ∂tuv
P ∂t′u′v′

P ′

∫∫
exp(−pr2

1P ) exp(−p′r2
2P ′) exp(−γvr

2
12)dr1dr2

=
π3

(pp′ + γv(p + p′))
3
2

∂tuv
P ∂t′u′v′

P ′ KPP ′

(4.96)

where we have used relations

q =
pp′

p + p′
(4.97)

and

KPP ′ = exp
(
−αR2

PP ′
)

= exp

(
− qγv

q + γv
R2

PP ′

)
(4.98)

It is not optimal to calculate overlap integrals by first calculating Hermite integrals
using (4.96) and then inserting these into (4.95), as this does not allow us to exploit
the separability into Cartesian directions. However, it provides us with a simple
means to double-check the overlap integrals, and furthermore, it gives us a very
important opportunity to check the Hermite to Cartesian transformation for the
other two-electron integrals.

To take advantage of the separability we notice that the Hermite integral (4.96)
may be decomposed into Cartesian directions

Vtuv;t′u′v′ = V x
t;t′ × V y

u;u′ × V z
v;v′ (4.99)

where V x
t;t′ is the x-component of the Hermite integral. It is given by

V x
t;t′ =

π√
pp′ + γv(p + p′)

(−1)t′∂t+t′

P exp
(
−αX2

PP ′
)

(4.100)

The overlap integral (4.95) may be expressed directly in terms of decomposed Her-
mite integrals as 〈

exp(−γvr
2
12)χ̃µν |χστ

〉
= Ix × Iy × Iz (4.101)



where, for instance, Ix is given by

Ix =
∑

t

Eµ̃σ
t

∑

t′

E ν̃τ
t′ V x

t;t′ (4.102)

4.8.2 INT22: ⟨gµν,v|gστ,w⟩
The overlap integral between two geminal may be calculated as

〈
exp(−γvr

2
12)χ̃µν | exp(−γwr2

12)χ̃στ

〉
= Ix × Iy × Iz (4.103)

where Ix, Iy, and Iz may be calculated using the expressions developed for the INT21
integrals by substituting γv by γv + γw.

4.8.3 INT32: ⟨gµν,v|P2 |gστ,w⟩
The three-electron overlap integrals are matrix elements of a projection operator
between two geminals. They are given by
〈
χ̃µν exp(−γvr

2
12)
∣∣P2

∣∣χ̃στ exp(−γwr2
12)
〉

=
∑

k

∫∫∫
exp(−γvr

2
12)χ̃µν (1, 2)φk (2) φk (3) χ̃στ (1, 3) dr1dr2dr3

=
∑

ηξ

Dηξ

∫∫∫
Ωµ̃σ̃ (1) Ων̃ξ (2) Ωτ̃ η (3) exp(−γvr

2
12)dr1dr2dr3

=
∑

tuv

Eµ̃σ̃
tuv

∑

ηξ

Dηξ

(
∑

t′u′v′

E ν̃ξ
t′u′v′

∑

t′′u′′v′′

E τ̃ η
t′′u′′v′′Vtuv;t′u′v′;t′′u′′v′′

)

(4.104)

We note that the Hermite to Cartesian transformation of (4.104) is identical to that
of the cyclic three-electron integral discussed in section 4.5.1. The Hermite integral
may be calculated as

Vtuv;t′u′v′;t′′u′′v′′

= ∂tuv
P ∂t′u′v′

P ′ ∂t′′u′′v′′

P ′′

∫∫∫
exp(−pr2

1P ) exp(−p′r2
2P ′) exp(−p′′r2

3P ′′)

× exp(−γvr
2
12) exp(−γwr2

13)dr1dr2dr3

= ∂tuv
P ∂t′u′v′

P ′ ∂t′′u′′v′′

P ′′ V000;000;000

(4.105)

where the spherical Hermite integral is

V000;000;000 =

(
π

p + γv + γw

) 3
2

KPP ′KPP ′′

×
∫∫

exp(−sr2
2S) exp(−s′r2

3S′) exp(−qr2
23)dr2dr3

=

(
π

p + γv + γw

) 3
2
(

π2

ss′ + sq + s′q

)
KPP ′KPP ′′KSS′

(4.106)



The s, s′, q, KPP ′, KPP ′′ and KSS′ of (4.106) are defined exactly as for the cyclic
three-electron integral, that is, by (4.37) and (4.38). This implies, for instance,
that we may use relations (4.44)–(4.46) to recur the KKK functions for the INT32
integrals.

In principle, we should get a performance enhancement if we calculate (4.104)
separately for each Cartesian direction as in (4.101) and (4.102). However, this
requires a substantial amount of additional code to be implemented and our experi-
ence with the two-electron overlap integrals discourages this as not worth the effort.
Note, however, that the two-electron overlap integrals should still be calculated by
means of Ix, Iy, and Iz as these integrals are needed for the kinetic energy integrals.

4.9 Kinetic energy integrals

The kinetic energy integrals are given a special treatment as there are two different
ways to calculate each integral. The second formula may be deduced from the
following relation

∇2 ⟨gµν,v|∇2χστ ⟩ = ⟨∇2gµν,v|∇2χστ ⟩ +
〈
gµν,v|∇2

2χστ

〉
(4.107)

Since an integral is just a number, it yields zero upon differentiation. We may
therefore conclude that

⟨gµν,v|∇2
2 |χστ ⟩ = −⟨∇2gµν,v|∇2χστ ⟩ (4.108)

While the latter of these forms are often used to calculate the conventional one-
electron kinetic energy integrals, this is not necessarily the best way to calculate in-
tegrals containing two-electron functions. We shall therefore study both approaches.

Moreover, as kinetic energy integrals symmetric in electron one and two exhibit
certain symmetries, we work out formulas for symmetric operators like ∇2

1 + ∇2
2 as

well as non-symmetric operators like ∇2
2. Also, we start by using the ∇1 operator

rather than the ∇2 operator, even though this is somewhat out of the line of the
treatment given to other integrals so far.

4.9.1 INT2K1: ⟨gµν,v|∇2
1 |χστ ⟩

The operator for kinetic energy is −1
2∇

2. To keep formulas as simple as possible,
we disregard the factor −1

2 in the discussion below.
For the kinetic energy integral between a geminal and an orbital product, we

have

⟨gµν,v|∇2
1 |χστ ⟩

=
〈
χA(1)χC(2) exp(−γvr

2
12)
∣∣∇2

1 |χB(1)χD(2)⟩
= T 1

x IyIz + IxT
1
y Iz + IxIyT

1
z

(4.109)



where Ix, Iy, and Iz are overlap integrals decomposed into Cartesian directions, as
discussed in section 4.8.1. The integrals represented by a T hold the differential
operator. T 1

x , for instance, is given by

T 1
x =

∫∫
Gk(x1, a, A)Gm(x2, c, C) exp(−γvx

2
12)

× ∂2

∂x2
1

Gl(x1, b, B)Gn(x2, d, D)dx1dx2

(4.110)

The super-index in T 1
x denotes differentiation with respect to electron 1. The dif-

ferential operator in (4.109) works only on Gl(x1, b, B) and leaves Gn(x2, d, D) un-
changed. Setting Gl ≡ Gl(x1, b, B), we obtain

∂2

∂x2
1

Gl =
∂

∂x1
(lGl−1 − 2bGl+1)

= l(l − 1)Gl−2 − 2b(l + 1)Gl + 4b2Gl+2

(4.111)

allowing us to write the T 1 ≡ T 1
x integral as

T 1 = l(l − 1)Ik(l−2)mn − 2b(l + 1)Iklmn + 4b2Ik(l+2)mn (4.112)

that is, as a linear combination of overlap integrals with angular momentum in-
creased (Ik(l+2)mn), identical (Iklmn) and decreased (Ik(l−2)mn) relative to the kinetic
energy integrals to be calculated. Calculating kinetic energy integrals up to d-
orbitals thus requires the calculation of overlap integrals up to g-orbitals. Note
that, we have set Iklmn ≡ Iklmn

x to avoid overloading formulas unnecessarily.
The corresponding T 2 integral may be found by inspection. Adding integrals T 1

and T 2 to form a symmetric integral T 12, gives

T 12 = l(l − 1)Ik(l−2)mn − 2b(l + 1)Iklmn + 4b2Ik(l+2)mn

+ n(n − 1)Iklm(n−2) − 2d(n + 1)Iklmn + 4d2Iklm(n+2)
(4.113)

By comparing (4.112) with (4.113), we see that there is no major advantage by using
kinetic energy operators symmetric in the electron coordinates.

4.9.2 INT2K1: −⟨∇1gµν,v|∇1χστ⟩
Calculating the kinetic energy integrals using the right-hand-side of (4.108) leads to
a different T 1 integrals, but the rest is equal.

T 1 = −
∫∫

∂

∂x1
{Gk(x1, a, A)Gm(x2, c, C) exp(−γvx

2
12)}

× ∂

∂x1
Gl(x1, b, B)Gn(x2, d, D)dx1dx2

(4.114)



The two derivatives of (4.114) are

∂

∂x1
Gk exp(−γvx

2
12) = (kGk−1 − 2γvx12Gk − 2aGk+1) exp(−γvx

2
12) (4.115)

and
∂

∂x1
Gl = lGl−1 − 2bGl+1 (4.116)

Using these expressions, we may rewrite (4.114) as

T 1 = −
∫∫

(kGk−1 − 2γvx12Gk − 2aGk+1)Gm exp(−γvx
2
12)

× (lGl−1 − 2bGl+1)Gndx1dx2

(4.117)

To be able to express (4.117) as a linear combination of overlap integrals, we must
rewrite the factor x12 in terms of x1A and x2C or x1B and x2D using either

x12 = x1A − x2C + XAC (4.118)

or

x12 = x1B − x2D + XBD (4.119)

If we resolve the two parentheses of (4.117), we get

(kGk−1 − 2γvx12Gk − 2aGk+1)(lGl−1 − 2bGl+1)

= klGk−1Gl−1 − 2bkGk−1Gl+1 − 2alGk+1Gl−1

+ 4abGk+1Gl+1 − 2γvlx12GkGl−1 + 4bγvx12GkGl+1

(4.120)

The strategy for substituting x12 is to avoid increasing individual angular momenta
with more than one. Therefore we substitute the first x12 in (4.117) using (4.119)
and the second using (4.118). This allows us to write T 1 as

T 1 = − klI(k−1)(l−1)mn

+ 2γvlXBDIk(l−1)mn − 2γvlI
k(l−1)m(n+1)

+ 2bkI(k−1)(l+1)mn + 2alI(k+1)(l−1)mn

+ 2γvlI
klmn

− 4bγvXACIk(l+1)mn

− 4b(a + γv)I
(k+1)(l+1)mn

+ 4bγvI
k(l+1)m(n+1)

(4.121)



The expression for T 2 may be deduced from (4.121) by inspection. Adding T 1

and T 2 we get

T 12 = − klI(k−1)(l−1)mn − mnIkl(m−1)(n−1)

+ 2γvXBD[lIk(l−1)mn − nIklm(n−1)]

− 2γv[lI
k(l−1)m(n+1) + nIk(l+1)m(n−1)]

+ 2bkI(k−1)(l+1)mn + 2alI(k+1)(l−1)mn

+ 2dmIkl(m−1)(n+1) + 2cnIkl(m+1)(n−1)

+ 2γv(l + n)Iklmn

− 4γvXAC [bIk(l+1)mn − dIklm(n+1)]

− 4b(a + γv)I
(k+1)(l+1)mn + 4bγvI

k(l+1)(m+1)n

− 4d(c + γv)I
kl(m+1)(n+1) + 4dγvI

(k+1)lm(n+1)

(4.122)

If we compare (4.113) with (4.122), we see that the latter includes far more terms.
This, however, is compensated for by a faster calculation of overlap integrals.

4.9.3 INT2K2: ⟨gµν,v|∇2
1 |gστ,w⟩

The kinetic energy integrals having geminals both in bra and ket may be expressed
in the same way as the INT2K1 integrals of the previous sections

⟨gµν,v|∇2
1 |gστ,w⟩

=
〈
χA(1)χC(2) exp(−γvr

2
12)
∣∣∇2

1

∣∣χB(1)χD(2) exp(−γwr2
12)
〉

= T 1
x IyIz + IxT

1
y Iz + IxIyT

1
z

(4.123)

For the INT2K2 integrals, however, the T 1
x factors become more complicated

T 1
x =

∫∫
Gk(x1, a, A)Gm(x2, c, C) exp(−γvx

2
12)

× ∂2

∂x2
1

Gl(x1, b, B)Gn(x2, d, D) exp(−γwx2
12)dx1dx2

(4.124)

By carrying out the differentiation in (4.124), we get

∂2

∂x2
1

Gl exp(−γwx2
12)

=
∂

∂x1
(lGl−1 − 2γwx12Gl − 2bGl+1) exp(−γwx2

12)

=
{
l(l − 1)Gl−2 − [2b(2l + 1) + 2γw]Gl + 4b2Gl+2

−4γwlx12Gl−1 + 4γ2
wx2

12Gl + 8bγwx12Gl+1

}
exp (−γwx2

12)

(4.125)



which also includes a term that is second-order in the inter-electronic distance x12

as well as two terms that are of first-order. For all these terms, we replace x12 by

x12 = x1B − x2D + XBD (4.126)

Substituting the resulting expression back into (4.124) and collecting GTOs of equal
angular momentum, we find that the T 1 ≡ T 1

x integral is given by the following linear
combination of overlap integrals

T 1 =l(l − 1)Ik(l−2)mn − 4γwlXBDIk(l−1)mn

+ 4γwlIk(l−1)m(n+1)

− [2b(2l + 1) + 2γw(2l + 1) − 4γ2
wX2

BD]Iklmn

+ 8γwXBD[(b + γw)Ik(l+1)mn − γwIklm(n+1)]

− 8γw(b + γw)Ik(l+1)m(n+1)

+ 4(b + γw)2Ik(l+2)mn + 4γ2
wIklm(n+2)

(4.127)

The corresponding T 2 integral may be deduced from (4.127) by swapping l and n
and b and d, and replacing XBD by −XBD. Adding T 1 and T 2, we get

T 12 =l(l − 1)Ik(l−2)mn + m(m − 1)Iklm(n−2)

+ 4γwXBD

(
nIklm(n−1) − lIk(l−1)mn

)

+ 4γw

(
nIk(l+1)m(n−1) + lIk(l−1)m(n+1)

)

− [2b(2l + 1) + 2d(2m + 1) + 4γw(l + m + 1) − 8γ2
wX2

BD]Iklmn

+ 8γwXBD

[
(2γw + b)Ik(l+1)mn − (2γw + d)Iklm(n+1)

]

− 8γw (b + d + 2γw) Ik(l+1)m(n+1)

+ 4
[
(b + γw)2 + γ2

w

]
Ik(l+2)mn

+ 4
[
(d + γw)2 + γ2

w

]
Iklm(n+2)

(4.128)

Note that, setting γw = 0 in (4.128), the expression reduces to that of (4.113) thus
providing us with a valuable means to check parts of the expressions.

4.9.4 INT2K2: −⟨∇1gµν,v|∇1gστ,w⟩
If we calculate the kinetic energy integral using the expression on the right hand
side of (4.108), we get a different T 1 integral, but the rest is equal.

T 1 = −
∫∫

∂

∂x1
{Gk(x1, a, A)Gm(x2, c, C) exp(−γvx

2
12)}

× ∂

∂x1
{Gl(x1, b, B)Gn(x2, d, D) exp(−γwx2

12)}dx1dx2

(4.129)



The two terms to be differentiated in this integral are given by

∂

∂x1
Gk exp(−γvx

2
12) = (kGk−1 − 2γvx12Gk − 2aGk+1) exp(−γvx

2
12)

∂

∂x1
Gl exp(−γwx2

12) = (lGl−1 − 2γwx12Gl − 2bGl+1) exp(−γwx2
12)

(4.130)

If we multiply the two equations of (4.130)but leave the correlation factors out, we
get

(kGk−1 − 2γvx12Gk − 2aGk+1)(lGl−1 − 2γwx12Gl − 2bGl+1)

= klGk−1Gl−1 − 2bkGk−1Gl+1 − 2alGk+1Gl−1 + 4abGk+1Gl+1

− 2γwkx12Gk−1Gl − 2γvlx12GkGl−1

+ 4aγwx12Gk+1Gl + 4bγvx12GkGl+1

+ 4γvγwx2
12GkGl

(4.131)

To be able to express the T 1 integral as a linear combination of overlap integrals,
we must rewrite x12 using either (4.118) or (4.119). In each case, we choose the
formulation leading to least increase in individual angular momenta. When the
resulting expressions are substituted back into (4.129), we get

T 1 = − klI(k−1)(l−1)mn

+ 2γwkXACI(k−1)lmn + 2γvlXBDIk(l−1)mn

− 2γwkI(k−1)l(m+1)n − 2γvlI
k(l−1)m(n+1)

+ 2bkI(k−1)(l+1)mn + 2alI(k+1)(l−1)mn

+ 2(γwk + γvl − 2γvγwXACXBD)Iklmn

+ 4γwXBD[γvI
kl(m+1)n − (a + γv)I

(k+1)lmn]

+ 4γvXAC [γwIklm(n+1) − (b + γw)Ik(l+1)mn]

− 4(ab + aγw + bγv + γvγw)I(k+1)(l+1)mn

− 4γvγwIkl(m+1)(n+1)

+ 4(a + γv)γwI(k+1)lm(n+1)

+ 4(b + γw)γvI
k(l+1)(m+1)n

(4.132)

The linear combination of overlap integrals that give the T 2 integrals may be deduced
directly from (4.132) saving us from doing tedious algebra all over again. To obtain
T 2, we simply swap all occurrences of 1A by 2C, 2B by 2D, k by m and l by n. We
also replace XAC by −XAC and XBD by −XBD as well as a by c and b by d.

Adding the resulting T 2 with the T 1 of (4.132), we get the T 12 integrals that are



symmetric in the electron coordinates

T 12 = − klI(k−1)(l−1)mn − mnIkl(m−1)(n−1)

+ 2γwXAC [kI(k−1)lmn − mIkl(m−1)n]

+ 2γvXBD[lIk(l−1)mn − nIklm(n−1)]

− 2γwmI(k+1)l(m−1)n − 2γvnIk(l+1)m(n−1)

− 2γwkI(k−1)l(m+1)n − 2γvlI
k(l−1)m(n+1)

+ 2bkI(k−1)(l+1)mn + 2alI(k+1)(l−1)mn

+ 2dmIkl(m−1)(n+1) + 2cnIkl(m+1)(n−1)

+ 2[(k + m)γw + (l + n)γv − 4γvγwXACXBD]Iklmn

+ 4γwXBD[(c + 2γv)I
kl(m+1)n − (a + 2γv)I

(k+1)lmn]

+ 4γvXAC [(d + 2γw)Iklm(n+1) − (b + 2γw)Ik(l+1)mn]

− 4[(a + γv)(b + γw) + γvγw]I(k+1)(l+1)mn

− 4[(c + γv)(d + γw) + γvγw]Ikl(m+1)(n+1)

+ 4[(a + γv)γw + (d + γw)γv]I
(k+1)lm(n+1)

+ 4[(b + γw)γv + (c + γv)γw]Ik(l+1)(m+1)n

(4.133)

Note that, the number of overlap integrals in this linear combination only increases
from 16 to 23 when the integral is made symmetric, that is, when we calculate it
using (4.133) rather than (4.132). We also note that, setting γw = 0 reduces (4.133)
to (4.122).





Chapter 5

Symmetry-adapted integrals over
many-electron basis functions

This chapter is based on a paper published by Dahle and Taylor in 2001 [47]. The
two texts are identical in content, but the paper has been modified somewhat with
respect notation and so forth, in order to fit in with the rest of the thesis.

5.1 Introduction

One of the strategies that can be used to reduce the computational effort in quantum-
chemical calculations is to exploit molecular symmetry. Symmetry serves to reduce
the number of non-vanishing terms that must be processed, as well as to relate
quantities that are equal and thus need be calculated only once, reducing redundant
work. The first stage of most calculations is the computation of integrals involving
various operators over some form of one-electron basis. The molecular Hamiltonian
comprises one- and two-electron operators, and for a one-electron basis this leads to
one- and two-electron integrals. The greatest economy from symmetry in later stages
of the calculation is obtained if the one-electron basis is symmetry-adapted, that is,
the elements of this basis transform as basis functions for irreducible representations
of the molecular point group. Integrals over such symmetry-adapted basis functions
will be referred to as symmetry-adapted integrals in this work. Typically, the basis
functions used in molecular calculations are centred on individual atoms, and thus
symmetry-adapted basis functions must be formed as appropriate linear combina-
tions of the original basis. We shall refer to the original basis functions as atomic
orbitals (AOs) and the symmetry-adapted combinations as symmetry orbitals (SOs)
in what follows.

Probably the most elegant and powerful technique for obtaining symmetry-adap-
ted integrals is the method of double coset decompositions introduced by David-
son [48]. This approach unifies the enumeration of symmetry-distinct integrals —



the list of distinct integrals over AOs — with the construction of symmetry-adapted
integrals by combining these distinct integrals with appropriate weights. In his origi-
nal paper Davidson considered one- and two-electron integrals over totally symmetric
operators O, that is operators for which

G−1OG = O ∀ G ∈ G , (5.1)

where G is the molecular point group, of order g. Integrals over operators that are
not totally symmetric have been discussed by Taylor [49], as have integrals over
basis functions that are differentiated with respect to certain parameters, such as
the coordinates of their centres [50].

In the current work we use basis functions that depend on the coordinates of more
than one electron (see section 6.1). In AO basis these functions may be written in
the general product form

gAO
µν,w(r1, r2, r12) = fw(r12)χµ(r1)χν(r2) (5.2)

where the correlation factor fw(r12) may be a Gaussian-type function having the
form exp(−γwr2

12) or simply the linear function r12. For either form the correlation
factor will be totally symmetric

Gfw(r12) = fw(r12) ∀ G ∈ G . (5.3)

Even for a Hamiltonian comprising only one- and two-electron operators, a much
richer set of integrals arises once two-electron basis functions are admitted. For
the simplest treatment of electron correlation, second-order perturbation theory, at
least three-electron integrals are needed, and as the correlation treatment becomes
more elaborate four-electron integrals and even five-electron and higher integrals can
appear. The scaling of the computational effort for these many-electron integrals
is very great, and indeed it is difficult to see that a method that requires, say,
four-electron integrals can find wide applicability. Nevertheless, for any desired
order of integrals there are the same opportunities to use molecular symmetry to
reduce the work needed to calculate the integrals and the work performed using
them in later stages of the calculation. We have therefore generalised the double
coset decomposition (DCD) procedure to integrals of any order. In this work we
first review DCDs and their application to one- and two-electron integrals, in part
to establish notation. We then develop a general formula, proved by induction.
Finally, we use this general formula to discuss computational considerations and
the example of three-electron integrals, which are programmed in the GREMLIN [51]
integral package.



5.2 Symmetry-adapted integrals over one-electron ba-
sis functions

At the outset of this work we found ourselves in a notational quandary. There
is a rather well-established notation for all of the various quantities that comprise
the formulas for symmetry-adapted integrals, and all of the previous work has con-
sistently used these conventions. Unfortunately, this notation makes heavy use of
different alphabetical sequences for different quantities, and there are simply not
enough letters in the (Roman) alphabet to do the job for higher-order integrals.
After many attempts to use different fonts for different quantities and endless dif-
ficulties with multiple levels of subscripts, we have reluctantly concluded that a
change in notation is unavoidable. In this section, therefore, we will briefly review
one- and two-electron integrals over one-electron basis functions in the usual nota-
tion, and then make a transition to the more general notation we shall use later, in
order to make clear the connections to earlier work.

In most computational implementations of DCDs, the molecular symmetry treat-
ed has been restricted to D2h and its subgroups. These are Abelian groups in which
each element is its own inverse. Further, any function on a given centre is taken into
a single “image” function on another centre under any group operation, rather than
a linear combination of functions. Let an AO on centre A be denoted faA, where all
other properties of the AO (angular type, s, px, etc., Gaussian or Slater exponent
or exponents and contraction coefficients) are subsumed into the index a. Then

GfaA = pa(G)faG(A), (5.4)

where G(A) is the transformed centre obtained by applying G to centre A, and pa(G)
is a parity factor (for D2h and its subgroups) that depends on the angular behaviour
of faA. An SO F α

aA for irreducible representation (irrep) α can be constructed from
this AO and its images by projection:

F α
aA = g−1

∑

G

χα(G)GfaA, (5.5)

where g is the order of the group and χα the group character for the desired irrep.
We note that there is some subgroup U ⊂ G for which U(A) = A. U is known

as the stabiliser of A. If the order of U is denoted u. Under the stabiliser AOs on
A transform as

UfaA = pa(U)faA. (5.6)

In fact, each faA transforms as a basis function for some irrep υ of the subgroup U ,
giving ∑

U

χυ(U)pa(U) = u. (5.7)



Consider now another AO, fbB, with stabiliser V . From two subgroups U and V
we can form double cosets

U GV ∀ G ∈ G . (5.8)

Two double cosets are either distinct (no elements in common) or identical. Unlike
cosets, GU or U G, a given element of G may occur multiple times in a given double
coset. For D2h and its subgroups this degeneracy is independent of G in (5.8) and
is given by the expression λ = |U ∩ V |. A group can thus be decomposed into
distinct double cosets in this way: a double coset decomposition. By selecting a set
of operators chosen one from each distinct double coset, a sum over group elements
can be replaced with a sum over elements of U , V , and , with a weighting factor
of λ . The elements of are termed double coset representatives. For example

F α
aA = g−1λ−1

∑

U

∑

R

∑

V

χα(URV )URV faA. (5.9)

Using DCDs, it is possible to write a symmetry-adapted integral as a sum of
symmetry-distinct integrals with appropriate weight factors. The most important
cases are totally symmetric one- and two-electron operators, whose integrals over
SOs take the form

(F α
aA|O|F α

bB) = uvg−1λ−1Iαβ

∑

R

χβ(R)pb(R)
(
faA|O|fbR(B)

)
(5.10)

and
(
F α

aAF β
bB|F

γ
cCF δ

dD

)
= g−3uvwxIαβγδλ

−1
∑

R

∑

S

∑

T

χβ(R)χγ(T )χδ(TS)

× pb(R)pc(T )pd(TS)
(
faAfbR(B)|fcT (C)fdTS(D)

)
.

(5.11)

Here the selection rule factor Iαβ... is given by

Iαβ... = g−1
∑

G

χα(G)χβ(G) . . . , (5.12)

which vanishes unless the direct product α⊗ β ⊗ . . . contains the totally symmetric
irrep, and the DCR , , and are obtained from DCDs involving respectively U
and V , W and X , and U ∩ V and W ∩ X . U , V , W and X are the respective
stabilisers of centres A, B, C, and D. U ∩V is the stabiliser of the pair of centres A
and B, and thus of the charge distribution faAfbB, and similarly W ∩X for fcCfdD.
Finally, we may note that if the charge distribution fcCfdD is the same as faAfbB

the DCD defining can be expanded, see Refs. [48] and [49].
We will later make use of a particular property of the selection rule (5.12) for

D2h and its subgroups. We note first that since all irreps are 1-dimensional, it
follows that any direct product of irreps is 1-dimensional. Further, for the totally



symmetric irrep all characters are unity, of course, whereas for all other irreps half
of the g characters are +1 and half are −1. The result is that when (5.12) is satisfied
we have the stronger condition

χα(G)χβ(G) . . . = 1 ∀ G ∈ G . (5.13)

We may term this stronger condition a super-selection rule.

The formulas of (5.10) and 5.11 are relatively straightforward. Each comprises a
set of summations over group operators that generate distinct AO integrals, and a
product of selection rule and parity factor terms that give the weight with which each
distinct integral contributes to the non-vanishing symmetry-adapted integrals. Com-
putational implementation is also relatively straightforward: Almlöf’ MOLECULE
program [52] computed symmetry-adapted integrals in this way almost thirty years
ago, although the author arrived at the necessary formulas via a quite different
route. Several current integral programs use an implementation very close to that
described here, including the program SEWARD [53] as well as the integral routines
in the package DALTON [54].

As noted above the notation used in this brief review is exactly that introduced
by Davidson [48], and in retrospect it can be seen to be profligate in its use of
alphabetical symbols even though it is economical of subscripts and superscripts.
In order to generalise these formulas to higher-order integrals we will have to revise
the notation. Going forward, then, we will denote different AOs by f [ai, Ai], with
different choice of subscripts i, and similarly the possible SOs derived from f [ai, Ai]
and its images as F [ai, Ai, αp], where irreps are now labelled as αp. Group operators
in G will be denoted Gj; the stabiliser of centre Ai becomes U i with elements U i and
order ui. Here i, j and p are integers, counting from one up. The selection rule Iαβ...

becomes I(α1α2 . . .); the parity factors become pai(Gk). Each set of DCR will be
denoted k, with k again an integer counting index. It is essential to understand
that the superscript notation denotes a specific set of DCR or a subgroup of G , and
not an element of a set. That is, the elements of the set 1 are labelled T 1, and
similarly for an element U i ∈ U i. The factor λ associated with each set of DCR is
written as λ i .

In this notation the one- and two-electron symmetry-adapted integrals intro-
duced above would become

(
F [a1, A1, α1]

∣∣∣O
∣∣∣ F [a2, A2, α2]

)
=

u1u2g
−1λ−1

1 I(α1α2)
∑

T 1

χα2(T 1)pa2(T
1)
(
f [a1, A1]

∣∣∣O
∣∣∣ f [a2, T 1(A2)]

) (5.14)

and



(
F [a1, A1, α1]F [a2, A2, α2]

∣∣∣ F [a3, A3, α3]F [a4, A4, α4]
)

=

g−3u1u2u3u4I(α1α2α3α4)λ
−1

3

×
∑

T 1

∑

T 2

∑

T 3

χα2(T 1)χα3(T 3)χα4(T 3T 2)pa2(T
1)pa3(T

3)pa4(T
3T 2)

×
(
f [a1, A1]f [a2, T 1(A2)]

∣∣∣ f [a3, T 3(A3)]f [a4, T 3T 2(A4)]
)
.

(5.15)

Comparison with (5.10) and 5.11 should make all of the notational changes clear.
With this notation we can now establish a general formula for symmetry-adapted
integrals.

5.3 General formula for symmetry-adapted integrals

We begin by reminding the reader that we are using two-electron basis functions
of the general form of (5.2). We then redefine the operator in a general many-
electron integral so that the two-electron factors are absorbed into the operator.
For example, if we have a two-electron operator O12 and the cyclic three-electron
integral discussed in section 4.5.1 we get
∫∫∫

χµ(r1)χν(r2)χη(r3)fv(r13)O12fw(r23)χσ(r1)χτ (r2)χξ(r3)dr1dr2dr3, (5.16)

we define a new operator

Ovw
123 = fv(r13)O12fw(r23) (5.17)

and rewrite the integral as
∫∫∫

χµ(r1)χν(r2)χη(r3)Oab
123χσ(r1)χτ (r2)χξ(r3)dr1dr2dr3, (5.18)

Assuming for the moment that O12 is a totally symmetric operator, and that the
correlation factors are also totally symmetric, it follows that the new operator Ovw

123

is also totally symmetric. (We will relax these restrictions subsequently.) This is of
course also true for any operator we construct in this way, irrespective of how many
correlation factors appear. We can therefore write a general symmetry-adapted
integral over such a many-electron operator (say n-electron) as
∫

. . .

∫
F [a1, A1, α1](r1) F [a3, A3, α3](r2) . . . F [a2n−1, A2n−1, α2n−1](rn)

×Ovw...
12...nF [a2, A2, α2](r1) F [a4, A4, α4](r2) . . . F [a2n, A2n, α2n](rn)dr1 . . . drn,

(5.19)



where we have specifically indicated the electron coordinates associated with each
symmetry orbital, or in a more convenient charge distribution notation as

(
F [a1, A1, α1]F [a2, A2, α2]

∣∣∣ F [a3, A3, α3]F [a4, A4, α4]
∣∣∣

. . .
∣∣∣ F [a2n−1, A2n−1, α2n−1]F [a2n, A2n, α2n]

)
,

(5.20)

by analogy with the LHS of (5.15). Here each pair of symmetry orbitals between
vertical bars involves a single electron coordinate: a charge distribution.

We now assert that the integral of (5.20) can be written in terms of distinct
integrals over AO charge distributions as
(
F [a1, A1, α1]F [a2, A2, α2]

∣∣∣ F [a3, A3, α3]F [a4, A4, α4]
∣∣∣

· · ·
∣∣∣ F [a2n−1, A2n−1, α2n−1]F [a2n, A2n, α2n]

)
=

g−(2n−1)u1 . . . u2nI(α1 . . .α2n)λ−1
2n−1

×
∑

T 1

. . .
∑

T 2n−1

χα2(T 1)χα3(T 2n−1)χα4(T 2n−1T 2) . . .χα2n(T 2n−1T 2n−2 . . . T n)

× pa2(T
1)pa3(T

2n−1)pa4(T
2n−1T 2) . . . pa2n(T 2n−1T 2n−2 . . . T n)

×
(
f [a1, A1]f [a2, T 1(A2)]

∣∣∣ f [a3, T 2n−1(A3)]f [a4, T 2n−1T 2(A4)]
∣∣∣

· · · f [a2n−1, T 2n−1 . . . T n+1(A2n−1)]f [a2n, T 2n−1 . . . T n(A2n)]
)
.

(5.21)

In this expression we have adopted the following numbering convention for DCRs.
DCR 1 generates distinct charge distributions from orbital pair f [a1, A1]f [a2, A2],
DCR 2 generates distinct charge distributions from f [a3, A3]f [a4, A4], and so on
through n for f [a2n−1, A2n−1]f [a2n, A2n]. The DCR n+1 arises from a DCD in-
volving the respective stabilisers of products f [a2n−3, A2n−3]f [a2n−2, T n−1(A2n−2)]
and f [a2n−1, A2n−1]f [a2n, T n(A2n)], then DCR n+2 arises from the stabilisers of
f [a2n−5, A2n−5]f [a2n−4, T n−2(A2n−4)] and the quadruplet

f [a2n−3, A2n−3]f [a2n−2, T n−1(A2n−2)]f [a2n−1, T n+1(A2n−1)]f [a2n, T n+1T n(A2n)],
(5.22)

and so on recursively back to T 2n−1. We shall prove (5.21) by induction, by con-
structing from this n-electron integral and an additional pair of symmetry orbitals
an n + 1-electron symmetry-adapted integral.

For further manipulation we make some indexing changes in the integral, num-
bering orbitals from 3 to 2n + 2 instead of 1 to 2n, with a corresponding shift in
DCR numbering from 2 to 2n instead of 1 to 2n − 1. We also expand the selection
rule (after re-sequencing) as

I(α3 . . .α2n+2) = g−1
∑

i

χα3(Gi) . . .χα2n+2(Gi) (5.23)



and multiply the AO integral by Gi for each term in this sum. The integral is a
scalar and unaffected by this operation, of course. We thus rewrite (5.21) as

(
F [a3, A3, α3]F [a4, A4, α4]

∣∣∣ F [a5, A5, α5]F [a6, A6, α6]
∣∣∣

· · ·
∣∣∣ F [a2n+1, A2n+1, α2n+1]F [a2n+2, A2n+2, α2n+2]

)
=

g−(2n)u3 . . . u2n+2

∑

i

χα3(Gi) . . .χα2n+2(Gi)λ
−1

2n

×
∑

T 2

. . .
∑

T 2n

χα4(T 2)χα5(T 2n)χα6(T 2nT 3) . . .χα2n+2(T 2nT 2n−1 . . . T n+1)

× pa4(T
2)pa5(T

2n)pa6(T
2nT 3) . . . pa2n+2(T

2nT 2n−1 . . . T n+1)

×
(

Gif [a3, A3] Gif [a4, T 2(A4)]
∣∣∣Gif [a5, T 2n(A5)] Gif [a6, T 2nT 3(A6)]

∣∣∣

· · ·Gif [a2n+1, T 2n . . . T n+2(A2n+1)]Gif [a2n+2, T 2n . . . T n+1(A2n+2)]
)
.

(5.24)

We now wish to develop an n+1-electron integral by extending the existing inte-
gral with an additional charge distribution. In SOs we take this charge distribution
to be F [a1, A1, α1]F [a2, A2, α2], giving

(
F [a1, A1, α1]F [a2, A2, α2]

∣∣∣ F [a3, A3, α3]F [a4, A4, α4]
∣∣∣

· · ·
∣∣∣ F [a2n+1, A2n+1, α2n+1]F [a2n+2, A2n+2, α2n+2]

)
=

g−(2n)u3 . . . u2n+2

∑

i

χα3(Gi) . . .χα2n+2(Gi)λ
−1

2n

×
∑

T 2

. . .
∑

T 2n

χα4(T 2)χα5(T 2n)χα6(T 2nT 3) . . .χα2n+2(T 2nT 2n−1 . . . T n+1)

× pa4(T
2)pa5(T

2n)pa6(T
2nT 3) . . . pa2n+2(T

2nT 2n−1 . . . T n+1)

×
(
F [a1, A1, α1]F [a2, A2, α2]

∣∣∣Gif [a3, A3] Gif [a4, T 2(A4)]
∣∣∣

· · ·Gif [a5, T 2n(A5)] Gif [a6, T 2nT 3(A6)]
∣∣∣

· · ·Gif [a2n+1, T 2n . . . T n+2(A2n+1)]Gif [a2n+2, T 2n . . . T n+1(A2n+2)]
)
.

(5.25)

We expand the charge distribution F [a1, A1, α1]F [a2, A2, α2] using a DCD as

F [a1, A1, α1]F [a2, A2, α2] =

g−2u1u2λ
−1

1

∑

j

∑

T 1

χα1(Gj)χα2(Gj)χα2(T 1)pa2(T
1)Gjf [a1, A1]Gjf [a2, T 1(A2)]

(5.26)



and substitute this into the RHS of (5.25) to give

(
F [a1, A1, α1]F [a2, A2, α2]

∣∣∣ F [a3, A3, α3]F [a4, A4, α4]
∣∣∣

· · ·F [a2n+1, A2n+1, α2n+1]F [a2n+2, A2n+2, α2n+2]
)

=

g−(2n+2)u1 . . . u2n+2

∑

i

∑

j

χα1(Gj)χα2(Gj)χα3(Gi) . . .χα2n+2(Gi)λ
−1

1 λ−1
2n

×
∑

T 1

∑

T 2

. . .
∑

T 2n

χα2(T 1)χα4(T 2)χα5(T 2n)

× χα6(T 2nT 3) . . .χα2n+2(T 2nT 2n−1 . . . T n+1)

× pa2(T
1)pa4(T

2)pa5(T
2n)pa6(T

2nT 3) . . . pa2n+2(T
2nT 2n−1 . . . T n+1)

×
(
Gjf [a1, A1] Gjf [a2, T 1(A2)]

∣∣∣Gif [a3, A3] Gif [a4, T 2(A4)]
∣∣∣

· · ·Gif [a5, T 2n(A5)]Gif [a6, T 2nT 3(A6)]
∣∣∣

· · · Gif [a2n+1, T 2n . . . T n+2(A2n+1)] Gif [a2n+2, T 2n . . . T n+1(A2n+2)]
)
.

(5.27)

We replace Gi with GjGi using the Rearrangement Theorem and then rotate the
AO integral by Gj , giving

(
F [a1, A1, α1]F [a2, A2, α2]

∣∣∣ F [a3, A3, α3]F [a4, A4, α4]
∣∣∣

· · ·
∣∣∣ F [a2n+1, A2n+1, α2n+1]F [a2n+2, A2n+2, α2n+2]

)
=

g−(2n+2)u1 . . . u2n+2

∑

i

∑

j

χα1(Gj) . . .χα2n+2(Gj)χα3(Gi) . . . χα2n+2(Gi)λ
−1

1 λ−1
2n

×
∑

T 1

∑

T 2

. . .
∑

T 2n

χα2(T 1)χα4(T 2)χα5(T 2n)

× χα6(T 2nT 3) . . .χα2n+2(T 2nT 2n−1 . . . T n+1)

× pa2(T
1)pa4(T

2)pa5(T
2n)pa6(T

2nT 3) . . . pa2n+2(T
2nT 2n−1 . . . T n+1)

×
(
f [a1, A1]f [a2, T 1(A2)]

∣∣∣Gif [a3, A3] Gif [a4, T 2(A4)]
∣∣∣

· · ·Gif [a5, T 2n(A5)]Gif [a6, T 2nT 3(A6)]
∣∣∣

· · ·Gif [a2n+1, T 2n . . . T n+2(A2n+1)] Gif [a2n+2, T 2n . . . T n+1(A2n+2)]
)
.

(5.28)

We now use a DCD derived from the stabiliser (denoted U I) of f [a1, A1]f [a2, A2] and
the stabiliser (denoted U II) of the set of canters {A3 . . . A2n+2}, with DCR T 2n+1.



(We note that this notation for the stabilisers can be arbitrary since they do not
appear in any final expressions.) From the properties of the stabilisers we have

U IIf [ak, Ak] = pak
(U II)f [ak, Ak] ∀ k ≥ 3 and U II ∈ U II . (5.29)

We replace the sum over Gi using this DCD, and note that we can collapse the sum
over Gj into the usual selection rule to give

(
F [a1, A1, α1]F [a2, A2, α2]

∣∣∣ F [a3, A3, α3]F [a4, A4, α4]
∣∣∣

· · ·
∣∣∣ F [a2n+1, A2n+1, α2n+1]F [a2n+2, A2n+2, α2n+2]

)
=

g−(2n+1)u1 . . . u2n+2I(α1 . . .α2n+2)λ
−1

1 λ−1
2nλ−1

2n+1

×
∑

UI

∑

UII

∑

T 2n+1

∑

T 1

∑

T 2

. . .
∑

T 2n

χα3(U I) · · ·χα2n+2(U I)

× χα3(U II) · · ·χα2n+2(U II)χα3(T 2n+1) · · ·χα2n+2(T 2n+1)

× χα2(T 1)χα4(T 2)χα5(T 2n)χα6(T 2nT 3) . . .χα2n+2(T 2nT 2n−1 . . . T n+1)

× pa2(T
1)pa4(T

2)pa5(T
2n)pa6(T

2nT 3) . . . pa2n+2(T
2nT 2n−1 . . . T n+1)

×
(
f [a1, A1]f [a2, T 1(A2)]

∣∣∣ U IT 2n+1U IIf [a3, A3]U
IT 2n+1U IIf [a4, T 2(A4)]

∣∣∣

· · ·U IT 2n+1U IIf [a5, T 2n(A5)] U
IT 2n+1U IIf [a6, T 2nT 3(A6)]

∣∣∣

· · ·U IT 2n+1U IIf [a2n+1, T 2n . . . T n+2(A2n+1)]

× U IT 2n+1U IIf [a2n+2, T 2n . . . T n+1(A2n+2)]
)
.

(5.30)



If we carry out the transformations by T 2n+1 and U II we obtain

(
F [a1, A1, α1]F [a2, A2, α2]

∣∣∣ F [a3, A3, α3]F [a4, A4, α4]
∣∣∣

· · ·
∣∣∣ F [a2n+1, A2n+1, α2n+1]F [a2n+2, A2n+2, α2n+2]

)
=

g−(2n+1)u1 . . . u2n+2I(α1 . . .α2n+2)λ
−1

1 λ−1
2nλ−1

2n+1

×
∑

UI

∑

UII

∑

T 2n+1

∑

T 1

∑

T 2

. . .
∑

T 2n

χα3(U I) · · ·χα2n+2(U I)

× χα3(U II) · · ·χα2n+2(U II)χα3(T 2n+1) · · ·χα2n+2(T 2n+1)

× χα2(T 1)χα4(T 2)χα5(T 2n)χα6(T 2nT 3) . . .χα2n+2(T 2nT 2n−1 . . . T n+1)

× pa2(T
1)pa4(T

2)pa5(T
2n)pa6(T

2nT 3) . . . pa2n+2(T
2nT 2n−1 . . . T n+1)

× pa3(T
2n+1) . . . pa2n+2(T

2n+1)pa3(U
II) . . . pa2n+2(U

II)

×
(
f [a1, A1]f [a2, T 1(A2)]

∣∣∣ U If [a3, T 2n+1(A3)]U
If [a4, T 2n+1T 2(A4)]

∣∣∣

· · ·U If [a5, T 2n+1T 2n(A5)] U
If [a6, T 2n+1T 2nT 3(A6)]

∣∣∣

· · ·U If [a2n+1, T 2n+1T 2n . . . T n+2(A2n+1)]

× U If [a2n+2, T 2n+1T 2n . . . T n+1(A2n+2)]
)
,

(5.31)

and by rotating the AO integral by U I we obtain

(
F [a1, A1, α1]F [a2, A2, α2]

∣∣∣ F [a3, A3, α3]F [a4, A4, α4]
∣∣∣

· · ·
∣∣∣ F [a2n+1, A2n+1, α2n+1]F [a2n+2, A2n+2, α2n+2]

)
=

g−(2n+1)u1 . . . u2n+2I(α1 . . .α2n+2)λ
−1

1 λ−1
2nλ−1

2n+1

×
∑

UI

∑

UII

∑

T 2n+1

∑

T 1

∑

T 2

. . .
∑

T 2n

χα3(U I) · · ·χα2n+2(U I)

× χα3(U II) · · ·χα2n+2(U II)χα3(T 2n+1) · · ·χα2n+2(T 2n+1)

× χα2(T 1)χα4(T 2)χα5(T 2n)χα6(T 2nT 3) . . .χα2n+2(T 2nT 2n−1 . . . T n+1)

× pa2(T
1)pa4(T

2)pa5(T
2n)pa6(T

2nT 3) . . . pa2n+2(T
2nT 2n−1 . . . T n+1)

× pa3(T
2n+1) . . . pa2n+2(T

2n+1)pa3(U
II) . . . pa2n+2(U

II)pa1(U
I)pa2(U

I)

×
(
f [a1, A1]f [a2, T 1(A2)]

∣∣∣ f [a3, T 2n+1(A3)]

× f [a4, T 2n+1T 2(A4)]
∣∣∣ f [a5, T 2n+1T 2n(A5)]f [a6, T 2n+1T 2nT 3(A6)]

∣∣∣

· · · f [a2n+1, T 2n+1T 2n . . . T n+2(A2n+1)]f [a2n+2, T 2n+1T 2n . . . T n+1(A2n+2)]
)
.

(5.32)



Now, from the super-selection rule (5.13)

χα1(Gi) · · ·χα2n+2(Gi) = 1 ∀ Gi ∈ G , (5.33)

or the integral would anyway vanish under (5.12). Hence

χα1(Gi)χα2(Gi) = χα3(Gi) · · ·χα2n+2(Gi). (5.34)

In turn, then,
∑

UI

χα3(U I) · · ·χα2n+2(U I)pa1(U
I)pa2(U

I)

=
∑

UI

χα1(U I)χα2(U I)pa1(U
I)pa2(U

I) = λ 1 ,
(5.35)

(cf. (5.7) and Refs. [48, 49]), and also

∑

UII

χα3(U II) · · ·χα2n+2(U II)pa3(U
II) · · ·pa2n+2(U

II) = λ 2n , (5.36)

yielding finally
(
F [a1, A1, α1]F [a2, A2, α2]

∣∣∣ F [a3, A3, α3]F [a4, A4, α4]
∣∣∣

· · ·
∣∣∣ F [a2n+1, A2n+1, α2n+1]F [a2n+2, A2n+2, α2n+2]

)
=

g−(2n+1)u1 . . . u2n+2I(α1 . . .α2n+2)λ
−1

2n+1

×
∑

T 1

. . .
∑

T 2n+1

χα2(T 1)χα3(T 2n+1)χα4(T 2n+1T 2) . . .χα2n+2(T 2n+1T 2n . . . T n+1)

× pa2(T
1)pa3(T

2n+1)pa4(T
2n+1T 2) . . . pa2n+2(T

2n+1T 2n . . . T n+1)

×
(
f [a1, A1]f [a2, T 1(A2)]

∣∣∣ f [a3, T 2n+1(A3)]f [a4, T 2n+1T 2(A4)]
∣∣∣

· · · f [a2n+1, T 2n+1 . . . T n+2(A2n+1)]f [a2n+2, T 2n+1 . . . T n+1(A2n+2)]
)
.

(5.37)

This is exactly the same as the formula of (5.21) except that the index ranges
are larger. Hence coupling a new charge distribution into the n-electron integral
formula has produced the same formula as extending the indices in the original
formula. This, together with the observation that we obtain the correct result for
the two-electron case from the one-electron case, is sufficient to establish (5.21) as
correct by induction.

The above derivation assumed a totally symmetric many-electron operator in
the integral, which allowed us to ignore the operator itself in our derivation. If the
many-electron operator is of symmetry species α0, say, not necessarily the totally



symmetric irrep, then provided the operator does not depend on any centre coordi-
nates the only change to the symmetry-adapted integral formula is that the selection
rule I becomes I(α0α1 . . .α2n), that is, includes an extra factor for α0. This allows
us to generalise the two-electron function fv(r12) in (5.2) to include angular terms
like x12. If fv(r12) depends on any centre coordinates, then in order to obtain an
expression that involves no redundant terms in the summation it is necessary to in-
troduce another double coset decomposition, based on the stabiliser of the centre(s)
appearing in the operator and the stabiliser of all the charge distributions [48, 49].

5.4 Discussion

It is edifying to look at a specific case to illustrate the formulas. The most obvious
new case would be a three-electron integral. We see from above that a cyclic three-
electron integral over the electron repulsion operator would be given by

∫∫∫
F [a1, A1, α1](r1) F [a3, A3, α3](r2) F [a5, A5, α5](r3)

× fv(r13)r
−1
12 fw(r23)

× F [a2, A2, α2](r1) F [a4, A4, α4](r2) F [a6, A6, α6](r3)dr1dr2drn

≡
(
F [a1, A1, α1]F [a2, A2, α2]

∣∣∣ F [a3, A3, α3]F [a4, A4, α4]
∣∣∣

· · ·F [a5, A5, α5]F [a6, A6, α6]
)

= g−5u1u2u3u4u5u6I(α1α2α3α4α5α6)λ
−1

5

×
∑

T 1

∑

T 2

∑

T 3

∑

T 4

∑

T 5

χα2(T 1)χα3(T 5)χα4(T 5T 2)χα5(T 5T 4)χα6(T 5T 4T 3)

× pa2(T
1)pa3(T

5)pa4(T
5T 2)pa5(T

5T 4)pa5(T
5T 4T 3)

×
(
f [a1, A1]f [a2, T 1(A2)]

∣∣∣ f [a3, T 5(A3)]f [a4, T 5T 2(A4)]
∣∣∣

· · ·f [a5, T 5T 4(A5)]f [a6, T 5T 4T 3(A6)]
)

(5.38)

This expression is long but not complicated. It comprises a selection rule, some
numerical factors which weight each integral according to the irreps it contributes
to, with what phase, and how many equivalent integrals are accounted for. The
various DCR ensure first that only distinct charge distributions appear, and then
that only distinct combinations of those charge distributions appear. The five
sets of DCR arise as follows. 1, 2 and 3 generate distinct charge distributions
from the original pairs f [a1, A1]f [a2, A2], f [a3, A3]f [a4, A4] and f [a5, A5]f [a6, A6],
respectively. Then 4 generates distinct quadruplets from f [a3, A3]f [a4, T 2(A4)]



and f [a5, A5]f [a6, T 3(A6)], and finally 5 generates distinct hextuplets from pairs
f [a1, A1]f [a2, T 1(A2)] and f [a3, A3]f [a4, T 2(A4)]f [a5, T 4(A5)]f [a6, T 4T 3(A6)]. There
is no structural difference between the three-electron formula and the two-electron
formula. For example, DALTON [54] includes a matrix multiplication formulation
of the two-electron integral formula, developed by Helgaker (unpublished), and we
have had little trouble implementing the appropriate loop structure and formulas to
extend this to the case of three-electron integrals over Gaussian-type geminal basis
functions.

In applications such as MP2 calculations with correlation factors of Gaussian
or linear r12 type, three- and perhaps four-electron integrals appear in partial trace
expressions where they are contracted with the SCF density matrix. It is possible to
simplify symmetry processing in such trace calculations somewhat by defining new
density matrices that include some of the phase and weighting factors [49].

5.5 Conclusions

A general formula has been developed for computing integrals over symmetry-adap-
ted basis functions to any order, extending existing work for one- and two-electron
integrals. The formula expresses integrals over symmetry-adapted two-electron basis
functions of the general form of (5.2) in terms of symmetry-distinct integrals. The
formula has been proved by induction and holds for arbitrarily many electrons.



Chapter 6

Computational aspects

Up to this point we have only discussed theoretical aspects of GTG theory. In this
chapter, we shall consider the implementation of this theory made in the GREMLIN
and DALTON programs [51, 54]. We do not consider real applications, however,
but discuss computational aspects like integral timings, parallelisation, and integral
prescreening. We shall also investigate the quality of the Gaussian-type correlation
factors (GCFs) we have used for applications, and see how energies and strong
orthogonality measures change with different values of the level-shift parameter η.
We start by describing the different two-electron basis sets and one-electron basis
sets we have used, and develop notation that will be used throughout this work.

6.1 Two-electron basis sets of GTGs

We started section 3.4.3 by stating that pair functions must be expanded in r12-
dependent functions if pair energies close to the limit are to be obtained. A set of
such functions, referred to as geminals, were introduced in (3.75) and defined as

gP
pq,v(r1, r2, r12) = fv(r12)φ

P
pq(r1, r2) (6.1)

where r1 and r2 are the positions of electron 1 and 2, respectively, and r12 is the
relative distance between the two electrons. The function φP

pq, is a symmetry-adapted
pair of orbitals, and fv(r12) is a correlation factor “tieing” the orbitals together into
a geminal.

For practical reasons we have used the general MO indices p and q in the orbital
product (6.1), but this is not necessarily an optimal choice. In this section, we
suggest different forms for both the orbital product and the correlation factor. For
the orbital product, this includes replacing p and q by less general indices, but
may also include replacing the MOs by other one-electron functions like AOs or
approximated MOs. We therefore reformulate (6.1) as

gxy,v(r1, r2, r12) = fv(r12)φ̃xy(r1, r2) (6.2)



where we for simplicity have left out the parity-adaption. In this equation xy are
non-specified indices, and the tilde indicates that the product of one-electron func-
tions no longer have to be the Hartree-Fock (HF) orbitals. Note that, while a tilde
in the previous chapter denoted a near complete basis set, this is not the case here.
Rather, the one-electron functions used to construct φ̃xy are expanded in a basis set
that is smaller than the basis set used to describe Hartree–Fock orbitals.

Before we discuss (6.2) in more detail, recall from chapter 1 that according to
the electron-electron cusp condition [4], the wave function of a two-electron system
behaves as

Ψ(r1, r2, r12) = Ψ(rc, rc, 0)

{
1 +

1

2
r12 + O(r2

12)

}
(6.3)

when the two electrons are close in space. The mathematical form of (6.3), gives
rise to the well-known Coulomb hole shape of the wave function (see Figure 1.2).
We assume that the Hartree–Fock wave function gives a reasonable description of
Ψ(rc, rc, 0). In order to be able to describe the Coulomb hole, therefore, we need
the first-order wave function correction to behave as

uij(rc, rc, r12) ∼ r12Ψ(rc, rc, 0) (6.4)

Leaving the virtual orbital approximation out of the current discussion, the pair
function in (6.4) may be written as a linear combination of geminals

uij(rc, rc, r12) =
∑

v

cvfv(r12)
∑

xy

cxy
ij φ̃xy(r1, r2) (6.5)

If we compare (6.4) with (6.5) we see that the sum of correlation factors have to
scale linearly with r12 for small inter-electronic distances and not necessarily the
individual terms. At first sight, the obvious expansion for the correlation factor is
the one-term expansion

f(r12) = r12 (6.6)

Although a correlation factor of the form (6.6) looks mathematically simple, there
are certain problems connected with it. First of all, it leads to three-electron integrals
that cannot be expressed in closed form, and this is very inconvenient if, for instance,
energy derivatives are to be obtained. Next, the linear term does not level off as
the inter-electronic distance increases, but goes to infinity as the two electrons are
moved infinitely far apart. This deficiency may be reduced or removed completely,
however, if a damping factor is introduced. Samson and Klopper [55], for instance,
have proposed a Gaussian-type damping factor, and using this, their correlation
factor takes the form

f(r12) = r12 exp(−γr2
12) (6.7)

Rather than using the Gaussian-type function as a damping factor only, it may also
be used directly as a correlation factor, that is, we may write

fv(r12) = exp(−γvr
2
12) (6.8)



Such Gaussian-type correlation factors (GCFs), originally introduced by Boys [56]
and Singer [57], go to zero as the electrons are moved infinitely far apart and not
to infinity. Moreover, all many-electron integrals can be expressed in either closed
form, or in a form that involves a one-dimensional numerical integration or func-
tional approximation [46, 56, 58]. A drawback, however, is that the Gaussian-type
correlation factor does not have the correct linear behaviour for small values of r12.
Although, this behaviour cannot be obtained with a single GCF, a linear combina-
tion of GCFs can be made arbitrarily close to r12, by including sufficiently many
terms in the expansion

r12 = 1 + lim
v→∞

∑

v

cv exp(−γvr
2
12) (6.9)

This relationship, which is similar to the expansion of a single STO using several
GTOs, has been studied by Persson and Taylor [59] and is investigated further in
section 6.9. A drawback of using a linear combination of GCFs, is that the number
of many-electron integrals grows as the square of the number of GCFs. For this
approach to be successful, therefore, a short expansion must be sufficient.

Comparing (6.4) with (6.5) again, we see that the sum of functions φ̃xy should
be equal to the wave function when r1 = r2 = rc.

Ψ(rc, rc, 0) =
∑

xy

cxy
ij φ̃xy(rc, rc) ≡ Gxy

ij (rc) (6.10)

where we have introduced the function Gxy to simplify equations.
Since our basic knowledge about Ψ(rc, rc, 0) is that provided by the Hartree–Fock

orbitals, a first approximation to Gxy may be

Gij
ij = φij (6.11)

and this is, essentially, the ansatz used in the MP2-R12 implementations [60–62]
which are based on the linear correlation factor. A deficiency with the functional
form of (6.11), is that it is not invariant to rotations among the occupied orbitals.
The energy obtained using the canonical Hartree–Fock orbitals may therefore be
different from the energy obtained with some non-canonical orbitals. The simplest
way to remedy this is to include all occupied orbitals in Gxy

ij , that is

Gkl
ij =

∑

k≤l

φ̃klc
kl
ij (6.12)

and this was first suggested by Klopper [63]. Note that the tilde is back in the
expression again to emphasise that the orbital product φkl does not have to be
constructed from the exact Hartree–Fock orbitals.

Since the Hartree–Fock wave function is not equal to the exact wave function,
it may be far to restrictive to limit the sum in (6.12) to occupied orbitals only. As



an alternative, we may include the complete basis set in the expansion of Gxy. This
gives

Gpq
ij =

⎧
⎪⎨

⎪⎩

∑
p≤q

φ̃pqc
pq
ij , MO formulation

∑
p≤q

χ̃pqc
pq
ij , AO formulation

(6.13)

where χpq is the product of the atomic orbitals χp and χq. Note that, as all basis
function are used, the space spanned by a pair of MOs is also spanned by some linear
combination of pairs of AOs. And by using the AO formulation, we may avoid the
CPU intensive MO transformations.

Bukowski et al. [64] have combined the AO formulation of (6.13) with Gaussian-
type correlation factors to a Gaussian-type geminals (GTG) formulation of MP2
theory. In contrast to the linear r12 implementations mentioned above, these authors
have expanded the pair functions in geminals only and do not use the virtual orbital
expansion at all. Furthermore, they only use s-, p-, and d-orbitals in their basis
sets, but compensate for this by optimising all nonlinear parameters (also orbital
centres) present in the geminals. The GTG-MP2 implementation of Bukowski also
differs from the MP2-R12 implementations in the way pair functions are optimised.
While the GTGs are optimised using the WO functional, that is, following the far
left path of Figure 3.2, the MP2-R12 implementations use the SO functional with a
modified Qocc operator, that is, they follow the far right path of Figure 3.2.

While (6.13) allows for a very flexible description of pair functions, it is also
hampered with severe deficiencies. First, if we multiply an entire basis set by itself,
linear dependencies may be encountered even for relatively small basis sets, and if we
add flexible correlation factors fv(r12), the problem will increase. Another problem
with the Gpq ansatz, is that the number of elements in the matrix Hgg in (3.83),
grows as the forth power of the basis set size. Even though we are able to hold large
equation systems in memory, we are likely to get convergence problems when we
try to solve them. The form proposed for Gxy in (6.13), will therefore in our case
probably be of limited use only.

To alleviate the size problems and at the same time maintain some flexibility in
the description of the pair function, we may restrict one of the general indices in φ̃pq

to run over occupied orbitals only,

Gkq
ij =

⎧
⎪⎨

⎪⎩

∑
k≤q

φ̃kqc
kq
ij , MO formulation

∑
kq

ϕ̃kχ̃qc
kq
ij , AO formulation

(6.14)

where we once again have both an MO and an AO formulation available. Note,
however, that the AO formulation includes more functions than the MO formulation
since the summation is not restricted. The AO formulation, therefore, includes
redundant functions.



Both formulations of Gkq are invariant to rotations among the occupied orbitals,
and this is also true for the Gpq ansätze. Moreover, the AO approaches are less
CPU demanding than the MO approaches and may also be used relatively straight-
forwardly with local methods (LMP2). The MO approaches, on the other hand,
have the advantage that when we do a Gpq calculation, for instance, the integrals
needed for both Gkq and Gkl calculatons are directly available. We may therefore
do calculations for three models at the cost of one.

The integral program GREMLIN [51] which has been used for all MP2 calcula-
tions presented in this work, can handle geminals constructed from Gaussian-type
correlation factors and all the above Gxy ansätze. GREMLIN is a module of the
DALTON [54] program.

6.2 AO basis sets and notation

If we do a MP2-GTG calculation using the Gij option, this calculation is in the
following referred to as using the ij-ansatz. Likewise, if we use the Gkl option, the
calculation is referred to as using the kl-ansatz, and so forth. As noted in section 6.1,
the kq- and pq-ansätze have both an MO and an AO formulation. Unless otherwise
stated, we assume that the MO formulation has been chosen for the former, and
that the AO formulation has been chosen for the latter. Note that, whenever we
refer to one of the ansätze above, it is implicitly understood that the virtual orbital
expansion is also included in the expansion of the pair function.

Whether or not we choose the MO formulation, the different ansätze need to
be expanded in some AO basis. Dunning and coworkers [65–69] have developed a
number of correlation-consistent basis sets which give a systematic improvement in
the description of the electronic structure towards the limit of an infinite basis set,
at least for the correlation energy. These basis sets are widely used throughout the
quantum chemistry community, and shall be our number one choice. It should be
pointed out, however, that the Dunning basis set have been optimised for orbital
expansions and not geminal expansions.

Most of the Dunning basis sets are conveniently retrieved from the Extensible
Computational Chemistry Environment Basis Set Database [70], also known as the
EMSL Gaussian Basis Set Library. Wherever possible, basis sets used in the current
work have been obtained from this library.

The original correlation-consistent basis sets of Dunning are denoted cc-pVXZ,
where X ∈{D, T, Q, 5, 6} specifies the zeta level ranging from double through
sextuple zeta. X is usually referred to as the cardinal number of the basis set. For
some molecular properties, the original set of functions does not perform sufficiently
well, and diffuse or contracted functions must be included. Correlation-consistent
basis sets that have been augmented with diffuse functions are called aug-cc-pVXZ,
while basis sets given additional core functions are denoted cc-pCVXZ. A basis set



may also be augmented with both diffuse and contracted functions, in which case
the basis sets are called aug-cc-pCVXZ.

The cc-pVXZ basis sets are composed as principal expansions [1], meaning that
they belong to either of the following orbital spaces (2s1p), (3s2p1f), (4s3p2f1g),
and so forth. In order to explore convergence for partial-wave type expansions as
well as principal expansions, we often truncate the correlation-consistent basis sets
at some angular momentum level. The orbital types still present in the basis set,
are given in parentheses after the basis set name. Thus, for hydrogen and helium,
cc-pVTZ(sp) denotes a basis set where the d-orbital is excluded, while for the second
period elements it denotes a basis set where the 2d1f part is excluded. In case a
system consists of atoms having different expansions, as with hydrogen and oxygen,
both expansions must be given in parentheses. We do this by writing the expansion
for the heavier atom first. Thus, cc-pVTZ(spd,sp) denotes a basis set where we have
excluded the f -orbital for oxygen and the d-orbital for hydrogen.

Unfortunately, Dunning and co-workers did not include lithium and beryllium in
their original work. Although there are cc-pVXZ basis sets available for both lithium
and beryllium [65, 71], and cc-pCVXZ basis sets for lithium [65], it is not clear how
to augment these sets with diffuse functions. This has encouraged us to look for
other basis sets when describing systems containing these elements. Because of the
large number of basis functions available, we have chosen to use the Roos augmented
triple zeta ANO basis set [72] as well as a smaller basis set also presented by Roos
and co-workers [73]. These basis sets, which are extensions to basis sets originally
made by van Duijneveldt [74], are given in appendix C.

6.3 GCF expansions

Even though the range of useful correlation factors fv(r12) are more limited than
the range of of useful AO basis sets, we may still vary both the number of terms
in the expansion as well as the exponent in each term. It is of particular interest
to investigate whether a given GCF expansion may be used to recover high-quality
correlation energies for all systems. If this turns out to be the case, GTG-MP2
calculations become “black box” calculations which is important if the method is
to become widely used. In this section we shall try and find such an expansion and
shall use this expansion in all subsequent calculations.

In their original work, Persson and Taylor [59] used 6, 9, and 15 terms expansions
of GCFs which all fitted the linear r12 nicely within the fitting region. In these
expansions the exponents γv were simply chosen as an even-tempered sequence a/3v,
where a was a power of three. We assimilate this sequence in the current work
and make the ad hoc assumption that a ratio of 3 gives GCF expansions that are
sufficiently saturated within the fitting region. In section 6.9 we show cusp fit plots
indicating that this is indeed the case.



A question left, however, is how many terms we should include in the GCF
expansion and what the largest and smallest exponents should be. Clearly, the ex-
ponents should not be chosen very small, as this makes the corresponding correlation
factors close to one. Geminals constructed from such GCFs are essentially products
of orbitals and cannot, by the Brillouin theorem, contribute much to the correlation
energy unless both orbitals are virtual. Moreover, the part of the GCF expansion
containing small exponents describes the outer part of the Coulomb hole, a region
that is already described by the simpler virtual orbital expansion (VOE). This leads
us to making another ad hoc assumption, namely that γmin = 1/9 is an appropriate
choice for the most diffuse exponent.

Although, the VOE part of the pair function describes the outer part of the
Coulomb hole properly, it cannot describe the innermost parts. This is also the
reason for introducing explicitly correlated basis functions in the first place. It is
therefore important to ensure that the GCF expansion includes sufficiently high
exponents.

In Tables 6.1 and 6.2 we have presented energies obtained for the neon atom
and the water molecule using different GCF expansions, all having 1/9 as the most
diffuse exponent.1 Both systems were described with two different basis sets in order
to check whether the energy response to different GCF expansions are independent
or not of the chosen AO basis set. Within each basis set we start by giving the
correlation energy for a GCF expansion of zero length. For such expansions the pair
function reduces to an expansion of virtual orbitals, and the energy for each ansatz
become identical to the conventional MP2 energy for the basis set in question. This
is observed in both tables.

Investigating the neon energies presented in Table 6.1, we see that the energy
hardly changes for the kl- and kq-ansätze as the most diffuse GCF is included in
the expansion, whereas the the energy makes a significant jump for the pq-ansatz.
As commented above, GTGs made from diffuse GCFs will essentially be orbital
products, and from conventional MP2 and the Brillouin theorem we know that
only products of virtual orbitals may contribute to the energy. Only the pq-ansatz
contains such products thus explaining the difference.

As more contracted GCFs are included in the expansion, the energies for the kl-
and kq-ansätze are also improved. For the former, however, we note that whereas
the energy increases somewhat when going from one to two GCFs for basis set cc-
pVDZ, there is hardly any improvement for the basis set aug-cc-pCVTZ(spd). This
is indicated in Table 6.1 using numbers written in bold face. For the larger basis
set, therefore, the energy recovered by the two most diffuse GCFs has already been
recovered by the virtual orbital expansion.

The third and fourth terms in the GCF expansion have exponents 1.0 and 3.0

1The level-shift parameter was set to η = 0.1 for all calculation. This choice is discussed in
more detail in section 6.4.



Table 6.1: All electron second-order correlation ener-
gies (−E/mEh) for the neon atom using basis sets A:cc-
pVDZ and B:aug-cc-pCVTZ(spd) and different lengths
of the GCF expansion. GCF exponents are taken from
the sequence {1

9 ,
1
3 , 1, . . . , 729}.

Basis #GCFs KL KQ PQ

A 0 187.567 187.567 187.567
A 1 187.655 187.758 206.325
A 2 196.870 240.497 280.170
A 3 229.085 294.675 307.021
A 4 274.410 320.640 331.566
A 5 290.017 335.968 345.550
A 6 296.844 343.290 352.874
A 7 299.810 345.784 355.252
A 8 300.708 346.621 356.144
A 9 300.976 346.932 356.372

B 0 309.078 309.078 309.078
B 1 309.078 309.126 335.423
B 2 309.368 337.466 364.538
B 3 319.221 362.224 376.800
B 4 337.957 374.004 382.839
B 5 346.125 380.437 385.912
B 6 350.167 383.779 387.156
B 7 352.651 385.416 387.591
B 8 353.695 386.062 387.905
B 9 353.914 386.232 388.008

and make significant energy contributions for all three ansätze. As more GCFs are
included, the energy contribution gradually decreases, and when we have reached
a nine terms expansion, all energies are probably converged to within 0.1 mEh. An
investigation shows that the last three GCFs included in the expansion mainly im-
prove on the 1s1s singlet energy (ϵ1

1s1s).
Proceeding to the water calculations presented in Table 6.2, we see that the

discussion made for neon applies equally well to water.2 We therefore decide to use
the sequence {729, 243, . . . , 1/9} for all applications, and shall in the following refer
to these exponents as the standard set. Calculations with GCF expansions differing
from the standard expansion are left for future studies.

2Due to memory requirements, we had to replace the four d-orbitals given for oxygen in the
aug-cc-pCVTZ(spd) basis set by the single d-orbital taken from cc-pVDZ when using the pq-ansatz.



Table 6.2: All electron second-order correlation ener-
gies (−E/mEh) for the water molecule using basis sets
A:cc-pVDZ and B:aug-cc-pCVTZ(spd,sp) and differ-
ent lengths of the GCF expansion. GCF exponents are
taken from the sequence {1

9 ,
1
3 , 1, . . . , 729}.

Basis #GCFs KL KQ PQ

A 0 203.960 203.960 203.960
A 1 204.108 204.336 229.849
A 2 214.375 258.213 283.429
A 3 256.603 300.181 311.034
A 4 282.174 318.251 328.142
A 5 291.235 328.599 337.294
A 6 295.723 332.119 340.936
A 7 297.408 333.661 342.411
A 8 297.943 334.166 342.837
A 9 298.068 334.279 342.966

B 0 300.215 300.215 300.215
B 1 300.215 300.321 306.818
B 2 300.898 326.684 339.975
B 3 315.805 344.656 350.890
B 4 328.492 352.240 356.551
B 5 332.665 356.029 358.705
B 6 335.495 358.090 359.524
B 7 337.086 359.207 359.917
B 8 337.637 359.563 360.115
B 9 337.753 359.651 360.141

6.4 The level-shift parameter

The GTG-MP2 energy is not only dependent on the AO and GCF basis sets. Equa-
tions (3.77) and (3.78) show that the optimisation of pair functions, and therefore
also the pair energy, depends on the level-shift parameter η as well. This dependency
is discussed in some detail in appendix A and has also been covered by Szalewicz and
co-workers in the context of MP2 energies [13] and MP3 energies [75]. Szalewicz
showed that, as we increase the level-shift parameter, the pair functions become
more strongly orthogonal to the occupied orbitals, but at the expense of higher
MP2 energies. If we decrease the value for the level-shift parameter, on the other
hand, we get better MP2 energies but at the expense of losing orthogonality.

Whereas pair functions have to be strongly orthogonal to the occupied orbitals



Table 6.3: All-electron second-order correlation energies (−E/mEh)
and SO measures for the neon atom for different values of the
level-shift parameter η. Basis A is cc-pVDZ and basis B is aug-
cc-pCVTZ(spd). See text for further details.

Basis log10 η KL SO KQ SO PQ SO

A +3 252.462 1.94 315.307 2.62 336.135 2.64
A +2 282.105 1.45 335.286 2.06 348.959 2.08
A +1 297.655 1.20 344.908 1.79 355.068 1.82
A 0 300.625 1.15 346.721 1.74 356.235 1.77
A −1 300.976 1.15 346.932 1.72 356.372 1.76
A −2 301.014 1.13 346.954 1.66 356.386 1.72
A −3 301.048 0.77 346.960 1.18 356.390 1.26

B +3 334.630 4.05 384.519 4.91 387.811 11.59
B +2 345.706 3.07 385.761 4.19 387.926 10.67
B +1 352.384 2.60 386.162 3.94 387.996 10.28
B 0 353.749 2.51 386.225 3.89 388.008 10.23
B −1 353.914 2.49 386.232 3.89 388.008 10.39
B −2 353.932 2.44 386.232 3.81 388.009 10.22
B −3 353.940 1.48 386.232 2.47 388.009 9.67

if we want to calculate MP3 energies, such orthogonality is not important for MP2,
as the SO operator, Qocc, is present in the energy expression. For MP2, therefore,
the level-shift parameter should be chosen “as small as possible”, which means zero
if the basis set is complete (cf. appendix A). For finite basis sets, however, we
have to be more careful as the operator f̃(1) + f̃(2) − εi − εj of equation (3.79)
is only guaranteed to be positive definite if the level-shift term Λij is sufficiently
large. According to (3.78), we may increase the value of this term by increasing the
parameter η. For some value of η (possibly zero), the computed pair energy Jij[ũij ]
will obey the relation Jij[ũij] ≥ ϵij . The value of η needed to provide this depends
on the electron pair but also on the quality of the one-electron basis set, as we shall
see below. Note, however, that in the WO functional for two electrons in the lowest
occupied orbital we have Λij = η, and if we let η = 0, the optimisation of this pair
will be without “level-shift protection”. Since we shall use the same parameter value
for all pairs, the use of finite basis sets require us to have η > 0.

To illustrate how the MP2 energy and the strong orthogonality varies with the
level-shift parameter, we have repeated the calculations from the previous section.
This time, however, we have used the standard set of 9 GCFs in all calculations and
have only varied the level-shift parameter. The results are given in Table 6.3 for the
neon atom and in Table 6.4 for the water molecule.



Table 6.4: All-electron second-order correlation energies (−E/mEh)
and SO measures for the water molecule for different values of the
level-shift parameter η. Basis A is cc-pVDZ and basis B is aug-cc-
pCVTZ(spd,sp). See text for further details.

Basis log10 η KL SO KQ SO PQ SO

A +3 254.517 2.78 310.842 3.07 332.845 3.36
A +2 279.408 1.75 325.490 2.39 338.875 2.55
A +1 294.245 1.31 332.712 2.05 342.171 2.20
A 0 297.652 1.22 334.116 1.98 342.882 2.12
A −1 298.068 1.21 334.279 1.97 342.966 2.11
A −2 298.112 1.14 334.295 1.92 342.975 2.09
A −3 298.130 0.92 334.299 1.27 342.976 1.44

B +3 319.069 4.33 357.426 4.95 359.490 9.96
B +2 329.197 3.27 358.941 4.15 359.822 8.92
B +1 335.908 2.62 359.524 3.78 360.095 8.74
B 0 337.549 2.47 359.637 3.71 360.165 8.52
B −1 337.753 2.45 359.651 3.70 360.141 8.58
B −2 337.775 2.44 359.652 3.68 360.184 7.29
B −3 337.778 1.98 359.652 3.00 360.176 7.25

The reported strong orthogonality (SO) measures are based on the measure, χSO
ij ,

which is discussed in appendix A

χSO
ij =

⟨ũij|Pocc(1) + Pocc(2) |ũij⟩
⟨ũij|ũij⟩

(6.15)

This measure is calculated for the 25 states (15 singlets and 10 triplets) of the neon
atom and the water molecule. Next, we calculate the arithmetic mean, χ̄SO, of
these measures for each system, and finally we represent this mean by the negative
logarithm − log10 χ̄SO.

Focusing on the neon energies, we see that these hardly changes when the level-
shift parameter is varied in the range 0.001 < η < 1. We also note that the changes
are larger for the smaller of the two basis sets (A). This is in agreement with the
general discussion we make in appendix A where we show that the energy becomes
less dependent of the level-shift parameter as the AO basis improves in quality, and
for a complete basis it is entirely independent.

Within each basis set we also note that energies vary more with η for the kl-
ansatz than they do for the kq- and pq-ansätze. This is also in agreement with our
discussion in appendix A where we state that the optimisation of the pair function
is made so as to fulfil the SO condition uij = Qoccuij. The greater the flexibility



in the basis set for uij, the better this condition is fulfilled. Pair functions based
on the pq-ansatz therefore have smaller components lying in the “SO violating”
spaces than pair functions based on the kq-ansatz, which in turn have smaller “SO
violating” components than the kl-ansatz. Since only energy contributions coming
from these components (called u(2)

ij and u(3)
ij ) are dependent on the value of the level-

shift parameter, the order of sensitivity to η for the different ansätze, kl > kq > pq,
is just as expected.

A brief look at Table 6.4, reveals that the discussion made for neon, also applies to
the water molecule3. Since there is nothing extraordinary about these two systems,
there is reason to think that these results can be extrapolated to all closed shell
atoms and molecules consisting of first and second row elements. We therefore
conclude that for such systems, MP2 energies change insignificantly when the level-
shift parameter is varied in the range 0 < η < 1.

There is, however, one thing that differs the water energies from the neon ener-
gies. For water, the energies obtained for the larger basis using the pq-ansatz, does
not decrease monotonically against some limit as the level-shift parameters become
very small. Instead, the energy starts oscillating at the µEh level. This may be
due to lacking positive definiteness, but since the basis set must be considered a
rather good one, this is not likely. Also, for the smaller basis set this problem is
not observed. Instead, the oscillations may be caused by numerical problems due
to lacking internal machine precision, and as one of the equation systems that have
to be solved is 4.887× 4.887, this is a plausible explanation. It is supported by the
fact that the kq-ansatz performs nearly as well as the pq-ansatz, implying that both
two-electron basis sets are nearly complete. For such basis set, linear dependencies
must be expected to be a problem. Problems related to linear dependencies and
numerical precision are briefly touched in section 6.8.

Turning to the SO measure, we see that the extent to which our optimised
pair functions are strongly orthogonal to the occupied orbitals, is controlled by the
flexibility in the two-electron basis. This flexibility is determined by the ansatz we
choose for pair functions as well as the one-electron basis. Thus, the SO measures
are better for the large AO basis than for the small AO basis, and better for the
pq-ansatz than for the kq- and kl-ansätze. The kq-ansatz, in turn, gives better SO
measures than the kl-ansatz. We also note that for the smaller AO basis set the
SO measure only improves marginally as we go from the kl-ansatz to the pq-ansatz,
whereas the change is significant for the larger AO basis.

For all calculations, energies and SO measures change little as log10 η is increased
from −1 to 0. The SO measures improve significantly, however, for the change −3
to −1, while the energy is practically unchanged. To be able to enjoy a better SO
measure without too much loss in the energy, we shall therefore set η = 0.1 in all

3Due to memory requirements, we had to replace the four d-orbitals given for oxygen in the
aug-cc-pCVTZ(spd) basis set by the single d-orbital taken from cc-pVDZ when using the pq-ansatz.



applications in this work. Note that, the additional orthogonality this provides us,
also makes the WO functional a better approximation to the SO functional.

6.5 Integral timings—where do we spend CPU time?

We do not have to implement GTG-MP2 theory to realize that the integrals needed
for a GTG-MP2 calculation, within a given one-electron basis consume consider-
ably more CPU time than the integrals needed for a conventional MP2 calculation.
Indeed, apart from the two-electron overlap integrals, the two-electron repulsion
integrals (INT2C0) needed for MP2, are among the simplest integrals needed for
GTG-MP2. This was observed in chapter 4.

It is of interest to know how large proportions of the total calculation time
the different parts of a GTG-MP2 calculation consume. This knowledge may be
obtained by running a number of different calculations where we carefully measure
the amount of CPU time consumed by the MO transformation and the different
integral type. If we let these calculations vary sufficiently in both system size and
one-electron basis set, we should also be able to draw some general conclusions about
integral timings.

In Table 6.5 we present timings for six different calculations. As the calculations
have been done on different machines we only give the percentage of CPU time
consumed by each part for a given calculation. Integrals have been labelled according
to the INTXYZ notation introduced in section 4.4. There is one exception, however,
namely the label INT3CE which specifies that the integrals INT3C1 and INT3E1
have been calculated simultaneously. This is possible since the only difference for
these two integrals is the way they are combined with density matrix elements. If the
geminals and the virtual orbitals expansion are described using different one-electron
basis sets, however, the integrals will also differ.

For each calculation we have employed the highest possible Abelian symmetry
which is D2h for the neon atom and C2v, C2h and C2 for the water, the t-H2O2,
and the g-H2O2 molecules, respectively. The geminals have been described using
the kq-ansatz (see section 6.1) with the standard set of 9 even-tempered GCFs
{729, 243, . . . , 1/9} (see section 6.3).

Table 6.5 tells us that the two-electron integrals are unimportant for the total
calculation time (recall that INT4C1 is just a combination of two-electron integrals).
This is just as expected. We also note that the MO transformation is relatively
inexpensive. This situation may change when the basis sets get bigger, of course, but
then we can switch from the MO formulation of the kq-ansatz to the AO formulation,
thus removing the most CPU intensive MO transformations completely.

Turning to the three-electron integrals, we note that except for the INT3E2 in-
tegrals, these integrals are, relatively speaking, equally expensive to compute. The
INT3C2 integrals take about five times as much CPU time to compute as the INT3P1



Table 6.5: The percentage of total CPU time consumed by the MO
transformation and each integral type when the kq-ansatz is used.

aug-cc-pVDZ aug-cc-pVTZ
Ne H2O t-H2O2 g-H2O2 Ne H2O

INT21 .00 .00 .00 .00 .00 .00
INT22 .03 .01 .00 .00 .00 .00
INT2C0 .00 .00 .00 .00 .00 .00
INT2C1 .01 .00 .00 .00 .00 .00
INT4C1 .00 .00 .00 .00 .00 .00
INT2K1 .09 .02 .01 .00 .01 .00
INT2K2 .49 .13 .03 .02 .06 .04
INT2V1 .05 .02 .00 .00 .02 .00
INT2V2 .23 .10 .02 .01 .09 .03
INT3P1 5.26 5.11 4.56 4.71 5.46 5.51
INT3CE 5.30 5.15 4.59 4.61 5.56 5.58
INT3C2 26.06 25.15 23.17 23.35 27.45 27.34
INT3E2 34.17 39.05 43.75 46.86 31.68 36.21
INT32 27.16 24.77 23.41 20.20 28.93 25.05
MOTRANS .59 .45 .45 .23 .46 .18
OTHER .54 .04 .01 .01 .18 .09

TOTAL 100.00 100.00 100.00 100.00 100.00 100.00

integrals, but there are also five times as many of them (NGCF(NGCF + 1)/2 versus
NGCF, where NGCF = 9).

The INT3E2 integrals, however, are more CPU intensive than the other three-
electron integrals. We also note in Table 6.5 that when the ability to exploit local
symmetry is reduced, the proportion of the total calculation time consumed by the
cyclic three-electron integrals is increased. The presence of local symmetry allows
us to take codal short cuts when we evaluate an integral since certain quantities are
known to be zero. As the code for the INT3E2 integrals is the most complex, these
integrals are also the ones that benefit the most from this kind of symmetry.

Figure 6.1 shows the outcome when we profile4 the calculation of INT3E2 inte-
grals for the t-H2O2 molecule given in Table 6.5. The figure lists the most important
subroutines and the proportion of total CPU time used by the subroutines or sub-
routines called from within them. Some of the names represent a set of subroutines
rather than one, and these names are explained below.

GEM3INT is one of the top subroutines in the calculation of three-electron inte-
grals and has four main branches. In the first, GEM3MIX, the three-electron integrals

4The profiling has been done using the gprof tool.



Figure 6.1: The percentage of total CPU time consumed by different subroutines
when calculating the cyclic three-electron integrals for the t-H2O2 molecule with
basis aug-cc-pVDZ. Only the most important subroutines have been included.
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are calculated. In the second, GEM3SYM, these integrals are symmetry-adapted. In
the third, AO3TO2, three-electron integrals are contracted with density matrix el-
ements to form four-index matrix elements. And finally, these matrix elements are
transformed to MO-basis in the subroutine TRSDRV.

When three-electron integrals are calculated in GEM3MIX, a number of vectors
containing orbital exponents, orbital centres and integral prefactors have to be set
up. This is done in the subroutine GEM3VCS. In HER3DRV, the integrals are calcu-
lated in a Hermite basis and in in subroutines CR3XDRV they are transformed to a
spherical Cartesian basis. This transformation is performed one electron at a time,
and the first transformation is the most CPU intensive

21.9% CR3XDRV

⎧
⎪⎨

⎪⎩

14.3% CR33DRV

5.6% CR32DRV

2.0% CR31DRV

(6.16)

The reason is that the number of angular components decrease with each transfor-
mation, and more importantly, that each transformation also converts a number of
primitive integrals into contracted integrals, thus decreasing the vector length.

Note, in Table 6.5, that the proportion of the total calculation time spent cal-
culating cyclic three-electron integrals go down as we include higher angular mo-
mentum in the basis set. This is because the subroutines that are common to all
three-electron integrals, here represented mainly by CR3XDRV, increase more in
computation time than the calculation of Hermite integrals.



Before the Hermite integrals may be calculated in HER3DRV a number of new
vectors are set up in the subroutine VCS3E2 (see equation 4.37). This is followed by
the calculation of KKK functions in KKKDRV (equations (4.46)), the calculation of
Boys functions (incomplete gamma functions) in GAMFUN (equations (4.51)), and
finally, the combination of these into Hermite integrals in the RECXDRV subroutines
(equation (4.52)).

The combining of KKK functions and Boys functions into Hermite functions is a
major bottle-neck in the calculation. To speed this part up, we exploit translational
symmetry (see section 4.3). This means that angular momentum for one of the
electrons is generated from angular momentum for the other two electrons. This is
done in the subroutines RECXTUV by means of efficient recurrence relations. To
be able to recur angular momentum like this, we must first calculate unrecurred
Hermite integrals that has augmented angular momentum for the other electrons.
These unrecurred integrals are calculated in subroutines RECX000.

The electron that has its angular momentum recurred is always the one with the
lowest angular momentum. If two electrons are equal, the one with the lowest label,
that is, 1, 2 or 3, is recurred. This leads to the following distribution of calculation
times

38.2% RECXDRV

⎧
⎪⎨

⎪⎩

18.8% REC1DRV

12.1% REC2DRV

7.2% REC3DRV

(6.17)

where the X in RECXTUV is a label for the electron that is recurred.
The KKK functions are, in a similar manner, recurred in the subroutine KKKQRS,

from a set of start functions generated in the subroutine KKK000. As these start
functions are calculated using very simple expressions, the most time consuming
part of the KKK evaluation is the recurrence. For the Hermite integrals it was
opposite, and the start functions consumed the most calculation time.

Note finally, that even though the profiling has been done for the cyclic three-
electron integrals, the program flow is similar for the other three-electron integrals.
In the case of the overlap integral, INT32, Hermite integrals are constructed from
the KKK functions alone. For the other three-electron integrals, vectors are set up
in subroutines VCS3XX rather than VCS3E2, and in the subroutine KREC the K
functions (equation (4.63)) are made. These functions replace the more complex
KKK functions and this also gives us a faster execution in subroutine REC3000.

6.6 Parallelisation

Since a large amount of time is spent calculating integrals we have to look for ways
to speed up the code. This may be done by tuning the implementation or recoding
it using different algorithms. However, even though this may give some speedup,



more than a factor of 2–3 would seem unrealistic. In addition to tuning, we may
also introduce integral prescreening based on the Cauchy–Schwartz inequality, for
instance. Even though this may be useful for large molecular systems it is of little
importance for the systems treated in this work. This is shown in section 6.7 where
we discuss integral prescreening.

6.6.1 Implementation

A commonly used technique for speeding up calculations is parallelisation [76]. The
potential of this technique was early realized by the quantum chemistry community
who used it to parallelise Hartree–Fock calculations [77–81]. Parallelisation typically
gives an overall increase in consumed CPU time, while the effective calculation time
goes down, often linearly with the number of processors. For computer programs to
achieve such speedups, however, they must contain a large number of independent
tasks. Since each GTG-integral may be calculated independently of all others, GTG-
type calculations are well suited for parallelisation.

In Table 4.1 of section 4.1, we outlined pseudo-code for the construction of Fock
matrix elements, built up by adding together integrals INT2K1, INT2V1, INT3C1 and
INT3E1. If we look closer into the pseudo-code for these matrix elements, we see that
two loops are readily available for parallelisation. These are the outer loop that runs
over correlation factors, v, and second outer loop that runs over overlap distributions
for electron 1, µσ̃. Before we go into discussing whether or not both loops are
parallelised, we recall that in order to get the GTG-MP2 energy we must set up the
equation system (3.83). This requires us to calculate a number of different matrix
elements, whose construction could also be represented by pseudo-code similar to
that in Table 4.1. These matrix elements are made up of integrals (INT21), (INT22),
(INT2K2+INT2V2+INT3C2+INT3E2), (INT32), (INT2C1+INT3P1), (INT4C1), and
(INT2C0), where we have included parentheses to show which integrals occur in the
same matrix element. Adding up, we see that a total of 8 double loops have to be
parallelised. In Table 6.6 we have outlined pseudo-code for such a parallelisation
built around a master/slave paradigm. This pseudo-code is rather crude, however,
and is only intended to roughly show how the parallelisation is implemented.

The major challenge in the parallelisation is to handle the eight matrix elements
simultaneously. While the master process may have advanced to matrix element
number three, for instance, one or more slaves may still be calculating integrals for
matrix element number two, or maybe even one. It is not a good idea to have the
master wait for all slaves before proceeding to the next matrix element, as this will
make slaves idle. The code must therefore be flexible enough to handle a number
special cases that, more or less frequently, arise.

The outer loop that runs over correlation factors is parallelised in all eight ma-
trix elements. The inner loop that runs over overlap distributions (ODs) is also
parallelised, but the implementation allows for more than one pair of µσ indices to



Table 6.6: Simple pseudo code describing the parallelisation

Master
———
for X in 8 parallelisation jobs

do v
do µσ

receive request for tasks from slave N
send (X, v, µσ) to slave N

end do
receive all integrals for index v

end do
end for
do symmetrisations and parity-adaptions

Slaves
———
do 8 parallelisation jobs

while (Xnew = Xold) do
send request for tasks to master
receive (Xnew, vnew, µσ) from master
return integrals for indices (Xold, vold) if (vnew ̸= vold)
calculate MO integrals

end while
end do

be sent to each slave in the same task. This way, we may adjust the granularity of
the tasks executed by the slaves. Some jobs, like INT21 and INT22, are so quickly
executed that it is no point in splitting the inner loop up in small tasks. All indices
µσ are therefore sent to the same slave. For other jobs, however, like the construc-
tion of Fock matrix elements between two geminals, it is advantageous to keep the
task size as small as possible. Here it should be pointed out that µσ is one index
running over classes of ODs, and that it should not, for instance, be interpreted as
a double loop running over the traditional blocks of shells. The class structure used
in the implementation has been taken directly from the ERI program [82] developed
by T. Helgaker. One of the key features with this structure is that the atomic or-
bitals have been made independent of the kind of centre, usually a nucleus, they are
attached to. This means, for instance, that dd-distributions consisting of oxygen
orbitals and dd-distributions consisting of hydrogen orbitals can be present in the
same class. This, in turn, allows these ODs to be present in the same vector dur-
ing an integral calculation. When integrals contain d-orbitals or orbitals of higher
angular momentum, this is very important for the efficiency.



This class structure may also have a negative side-effect for the parallelisation,
however. As more and more ODs are gathered in the same class, integrals made
from this class become increasingly CPU intensive to compute. If one or more tasks
get so big that the slaves receiving them are still busy calculating long after all other
slaves have gone idle, this may have a crucial impact on the efficiency. In fact, for
the calculations presented in the next section, this turns out to be what limits the
performance as the number of processors increase.

6.6.2 Speedups for some neon and water calculations

In Tables 6.7 and 6.8 we have presented the speedups obtained for two different
water and neon calculation. For each system we have used one small and one
(relatively) large basis set. The number of processors ranges from 1 to 256 for all
calculations. In each table we have listed the calculation time given in minutes. Note
that all times refer to “wall” times and not CPU times. For a calculation using N
processors, the speedup has been calculated simply as t1/tN , where t1 and tN are the
calculation times for 1 and N processors, respectively. For both water calculations,
t1 had to be estimated as 3t4 in order to avoid incorrect, super-linear scaling. The
actually computed one-processor times for basis A and B were 137.67 and 2001.17,
respectively. Usually, the speedups are what attract most attention in tables. The
higher the speedup the better. Another performance measure which is devoted less
attention is the efficiency, which gives a measure of how well a calculation utilises
its allocated resources. We define the efficiency as the percentage of processors that
are effectively used, and calculate this percentage by 100 · N · (tN/t1).

In Figure 6.2 we have plotted the speedups for the water and neon calculation.
For the water calculation, given in the upper figure, we see that the larger calcu-
lation scales slightly better than the small one. However, both calculations readily
obtain a speedup of more than one hundred. This leads to a substantial drop in
the calculation time, implying that calculations normally requiring a year, say, to
be calculated, may be completed in just a few days.

From Table 6.7 we see that the calculation time of the smaller basis set (A)
has dropped to just a little more than a minute when a speedup of one hundred
is reached. In most cases, the parallelisation has served its purpose long before
we get down to this time scale, where we start pushing system resources like net-
work latency and bandwidth. The water molecule with basis set A should therefore
be considered a test case only, as it does not give a correct picture of the “true”
parallel performance. For this the calculation is too small. The larger water calcu-
lation, however, gives a more representative picture of the parallelisation. Indeed,
for 96 processors it shows a speedup of 91. Since the best possible speedup in our
master/slave paradigm would be 95, this must be considered excellent.

Turning to the speedups for the neon atom shown in the bottom part of Fig-
ure 6.2, we see that the performance is far less impressive. Using 96 processors,



Table 6.7: Parallelisation results for the water molecule. Times
are given in minutes and refer to wall times. Basis sets A and
B are aug-cc-pVDZ(sp,s) and aug-cc-pVDZ respectively.

Basis Procs Timing Speedup Efficiency Proc loss

A 1 135.39 1.00 100.00 0
A 4 45.13 3.00 75.00 1.00
A 8 19.45 6.96 87.00 1.04
A 16 9.28 14.59 91.19 1.41
A 32 4.70 28.81 90.03 3.19
A 64 2.38 56.89 88.89 7.11
A 96 1.68 80.59 83.94 15.41
A 128 1.30 104.15 81.37 23.85
A 160 1.07 126.53 79.08 33.47
A 192 .95 142.52 74.23 49.48
A 224 .92 147.16 65.70 76.84
A 256 .85 159.28 62.22 96.72

B 1 1955.40 1.00 100.00 0
B 4 651.80 3.00 75.00 1.00
B 8 279.50 7.00 87.50 1.00
B 16 130.78 14.95 93.45 1.05
B 32 63.75 30.67 95.85 1.33
B 64 31.98 61.14 95.54 2.86
B 96 21.53 90.82 94.60 5.18
B 128 17.57 111.31 86.96 16.69
B 160 14.47 135.13 84.46 24.87
B 192 12.22 160.02 83.34 31.98
B 224 11.48 170.33 76.04 53.67
B 256 10.68 183.09 71.52 72.91

even the larger of the two neon calculation only achieves a speedup of 75. We also
note that while the speedup curves for the two water calculations start to level off
around two hundred processors, the neon curves have levelled off already when a
hundred processors are being used. This may be explained by looking at the kind if
tasks available in each calculation. Since the only thing differing the four paralleli-
sations is the loop over OD classes for electron 1, we shall take a closer look at this.
Table 6.9 gives the total number of OD classes that has to be looped over in each
calculation.

Comparing the two basis A numbers, we note that the water calculation has a
few more OD classes we must loop over. The difference, however, is not large enough



Table 6.8: Parallelisation results for the neon atom. Timings
are given in minutes and refer to wall times. Basis sets A
and B are aug-cc-pVDZ and aug-cc-pVTZ respectively.

Basis Procs Timing Speedup Efficiency Proc loss

A 1 94.25 1.00 100.00 0
A 4 31.57 2.98 74.50 3.12
A 8 13.92 6.77 84.63 1.33
A 16 6.45 14.61 91.33 1.39
A 32 3.20 29.45 92.04 2.55
A 64 1.92 49.09 76.70 14.91
A 96 1.50 62.93 65.45 33.07
A 128 1.42 66.37 51.85 61.63
A 160 1.38 68.30 42.68 91.70
A 192 1.33 70.71 36.83 121.29
A 224 1.33 70.71 31.57 153.29
A 256 1.23 76.62 29.93 179.38

B 1 2912.28 1.00 100.00 0
B 4 1123.72 2.59 64.79 1.41
B 8 445.47 6.55 81.90 1.45
B 16 211.02 13.80 86.26 2.20
B 32 103.87 28.04 87.61 3.96
B 64 52.46 55.51 86.74 8.49
B 96 38.80 75.06 78.19 20.94
B 128 35.57 81.88 63.97 46.12
B 160 32.58 89.38 55.86 70.62
B 192 29.72 97.99 51.04 94.01
B 224 28.12 103.58 46.24 120.42
B 256 28.23 103.15 40.29 152.85

to explain why the water calculation scales so much better. The answer, instead,
must be found by looking at the granularity of the tasks to be distributed. Recall
that basis A is not the same basis set for the two systems. While it only includes
basis functions up to p-orbitals for the water molecule, also d-orbitals are included
for the neon atom. A task having integrals containing d-orbitals consumes more
CPU time than a task only having p-orbitals in its integrals. This is exactly what
we observe. When the neon atom calculation approaches a minute and a half of
calculation time, the time required to calculated the largest of its tasks is probably
reached. This efficiently limits any further performance enhancement.

Note that, if we compare the total CPU time consumed with the number of OD
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Figure 6.2: Speedups for the water (top) and neon (bottom) calculations. All cal-
culations were done using a cluster of 512 MIPS R14000 (600 MHZ) processors.
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Figure 6.3: Efficiencies for the water calculations (top) and the neon calculation
(bottom). Denoting the calculation time for N processors, tN , the efficiency is
defined as 100N(tN/t1) and gives the percentage of processors that are effectively
utilised.



Table 6.9: Total number of
OD classes available for par-
allelisation

Basis A Basis B
Water 26 45
Neon 21 32

classes available, we see that on average the neon tasks are actually more fine-grained
than the water tasks (94/21 vs. 135/26). Normally this would make us expect better
scaling for the former. However, when comparing the speedup plots, we find that
this is definitely not so. The granularity among the neon tasks, therefore, must
vary from fine-grained to the coarse-grained, and this is exactly what we find if we
compare their basis sets.

Basis B for the water molecule and basis A for the neon atom are both aug-cc-
pVDZ and may therefore be considered equivalent. Accordingly, we would expect
the granularity of the tasks to be distributed to be similar for both systems. The
reason that the water calculation scales so much better, therefore, must be that the
calculation is larger both with respect to total CPU time and the number of tasks
available. Overall, this gives better scaling.

The same kind of reasoning may be used for the neon calculation with basis
B, but the presence of f -orbitals in this basis set complicates the picture. Since
integrals containing f -orbitals are orders of magnitude more time consuming to
calculate than integrals containing d-orbitals, we get very coarse-grained tasks in
this calculation. From the timings given in Table 6.8, we estimate the largest of
these tasks to require around 28 minutes of computation time, or slightly less.

Even though a high speedup is attractive, we cannot justify the allocation of
hundreds of processors unless these processors are efficiently utilised. In Figure 6.3
we have plotted efficiencies taken from Tables 6.7 and 6.8. These two figures show
for what range of processors we use the resources sensibly and for what range we
are wasting them.

Since the implemented master/slave algorithm, puts aside one of the processors
just to distribute tasks and keep the other processors busy, we cannot expect the
efficiency to be good when only a small number of processors is allocated. This
is also clearly depicted in all four efficiency plots of Figure 6.3. As the number of
processors increase, we start benefiting from the dynamic load balancing, and when
the number of processors is really large, it is impossible to get a good performance
unless one process is reserved for administration only. The two water calculations
exhibit a fairly good efficiency even when the number of processors is large. Notice
also that the fall-off is only moderate throughout the plots. This indicates that the
implemented master/slave paradigm has sufficient flexibility for handling the eight



matrix elements simultaneously for a large range of processors.
For the two neon calculations the efficiency drops quickly when the top has been

reached. This is explained by the same means used to explain the flattening out for
the corresponding speedup plots.

We conclude this section by claiming that the scaling and efficiency that will be
obtained for real applications will be better than what have been presented here.
Typically, the calculations presented in chapter 7 that were run in parallel, were
exceedingly CPU consuming calculations that had to run overnight or for several
days also when parallelisation was used. Since we typically used between 8 and 64
processors, we should expect nearly optimal load balancing to be obtained for such
long calculation times.

6.7 Prescreening of AO integrals

In the previous section, we showed that through parallelisation we may speed up a
calculation significantly. Moreover, calculations that are too time-consuming to be
feasible for a single processor, may sometimes be handled if a sufficient amount of
processors are available for parallelisation. Parallelisation, however, does not relieve
the most fundamental problem with the GTG-MP2 theory presented in this thesis;
when we increase the number of basis functions, N , the number of three-electron
integrals increases as N6.

If we do calculations on atoms or small molecular systems, this integral growth
cannot be escaped. For large molecules, however, it is possible to reduce the scal-
ing by exploiting the local nature of the electron-electron correlation (cf. page 32).
Since the electron-electron correlation is a short-range interaction, only integrals
containing orbitals that are located relatively close in space survive. Integrals in
which two or more atomic orbitals are separated by a large distance are likely to be
redundant, assuming, of course, that orbitals are not too diffuse. Nowadays, state-
of-the-art quantum chemistry programs have implemented different sort of means
to identify redundant two-electron integrals. One of the more powerful of these is
the Cauchy–Schwarz inequality.

6.7.1 Cauchy–Schwarz inequality for two-electron integrals

Consider the two-electron repulsion integral given in section 4.6.3

Aµνστ ≡ ⟨χµν | r−1
12 |χστ ⟩ =

∫∫
Ωµσ (1)Ωντ (2) r−1

12 dr1dr2 (6.18)

In the following, we regard Aµνστ as a matrix where index µν specify the row number
and index στ specify the column number.

To maintain a certain numerical precision in the energy, integrals must be cal-
culated with a somewhat higher precision as some precision is lost when the matrix



equation (3.83) is solved. Additionally, some precision may be lost when integrals
are combined to form the matrix elements of (3.83). The precision held in each
of these matrix elements is determined by the magnitude and the precision of the
integrals constituting it. If numerically large integrals having high precision are
combined with numerically small integrals having low precision the precision of the
resulting matrix element may end up either high or low. If the largest integral has
low precision, however, the matrix element itself also have low precision no matter
the precision of the other integrals. The numerical precision of a matrix element is
thus tightly connected to the precision of its largest integral.

To obtain a certain precision in the energy it is therefore sufficient to ensure
that the matrix elements are good to some decimal place. To identify this decimal
place we have do a certain amount calculations where we compare the precision
maintained in the energy with the precision used for integrals. Once this threshold
value has been established we know that integrals smaller than this do not influence
the energy (within the required precision) and may therefore be discarded. In order
to avoid calculating redundant integrals, i.e. have them prescreened, we must be
able to estimate the size of an integral before doing an exact evaluation. This
estimate should be computationally inexpensive to obtain, and must also represent
an upper bound to the true integral. By comparing the estimate with the threshold
value, we may decide whether or not the integral needs to be evaluated exactly. An
efficient approach for obtaining integral estimates is to approximate the integrals
using the Cauchy–Schwarz inequality. Using this inequality we may approximate
all N4 integrals from a subset of N2 integrals. The equality is only valid for inner
products, though, and before applying it to a new kind of integrals, we must first
check that these integrals satisfy the requirements for inner products.

For the repulsion integral given in (6.18), a mere inspection is enough to verify
that most inner product requirements are fulfilled. To prove that Aµνµν > 0 for
any choice of µν is not as straight forward, however, and a proof is therefore given
below.

Consider a two-electron function χ(1, 2) given as an expansion over all products
of AO basis functions

χ(1, 2) =
∑

µ,ν

χµ(1)χν(2)cµcν ≡
∑

µν

χµν(1, 2)cµν (6.19)

Using this function, we construct the following two-electron integral

I[χ] =

∫∫
χ(1, 2)χ(1, 2)r−1

12 dr1dr2 (6.20)

Since χ2(1, 2) and r−1
12 are both positive functions in their entire domain, the in-

tegrand in (6.20) is always greater than or equal to zero. The integral itself, is
therefore positive definite

I[χ] > 0 (6.21)



Using the expansion for χ(1, 2), we may rewrite the inequality (6.21) in the form
∑

µν

∑

στ

cµνAµνστ cστ > 0 (6.22)

This equation constitutes the definition of a positive definite matrix. As a corollary,
the diagonal elements are positive

Aµνµν > 0 (6.23)

The two-electron integrals given in (6.18) therefore satisfy the condition for inner
products in a metric defined by r−1

12 . Application of the Cauchy–Schwarz inequality
then yields

|Aµνστ | ≤
√

Aµνµν ·
√

Aστστ (6.24)

As the quantities on the right-hand side of (6.24) are two-index quantities, the
process of finding an approximate value for Aµνστ goes as N2 rather than N4.

The expression for prescreening given in (6.24) is slightly different from the one
usually encountered in literature [1, 83], namely

|Aµνστ | ≤
√

Aµµσσ ·
√

Aννττ (6.25)

The integrals appearing on the right-hand side of (6.25) are one-centre integrals,
and since the Boys function need not be evaluated for such integrals, they are con-
siderably faster to calculate than the two-centre integrals needed in (6.24).

Unfortunately, even though the inequality (6.25) is the preferred one for two-
electron integrals, it has no counterpart for three-electron integrals. The alternative
inequality given in (6.24), on the other hand, may rather easily be generalised to
three-electron integrals and more generally also to N-electron integrals. Before con-
sidering such integrals, however, we shall study two-electron integrals in more detail.

Consider a general two-electron integral, Aµνστ , given by the expression

Aµνστ = ⟨χµν | O(1, 2) |χστ ⟩ (6.26)

This integral may be turned into any of the two-electron integrals discussed in
chapter 4 by giving the operator O(1, 2) the appropriate definition.5 For example,
letting

O(1, 2) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

exp(−γvr2
12) (INT21)

r−1
12 (INT2C0)

exp(−γvr2
12)r

−1
12 (INT2C1)

exp(−γvr2
12)r

−1
2C (INT2V1)

exp(−γvr2
12)∇2

2 (INT2K1)

(6.27)

5Note that by defining the two-electron integrals as in (6.26), we have moved the correlation
factors (GCFs) out of the geminals and into the operator, thus leaving pure orbital products in
the bra and the ket.



we may construct all two-electron integrals containing one geminal. The two-electron
integrals with two geminals, INT22, INT2V2, and INT2K2, may be formed by adding
exp(−γwr2

12) to the corresponding one-geminal operators in (6.27).
For the Cauchy–Schwarz inequality to be applicable to a certain integral type,

the integral must be an inner product. We have already proven this for the INT2C0
integral, and noting that this integral only differs from the others in the O(1, 2)
operator, it is sufficient to show that this operator is everywhere positive. For all
two-electron integrals except the kinetic energy integrals, this is a trivial task to do.
For the kinetic energy integrals, however, the differentiation operator makes things
more complicated, and we cannot prove that these integrals are inner products using
the simple technique presented above. For the kinetic energy integrals, therefore,
we have to investigate other techniques, possibly involving the turn-over rule.

6.7.2 Cauchy–Schwarz inequality for three-electron integrals

Following the same approach as for two-electron integrals, it is straight forward to
show that all three-electron integrals given in section 4 are inner products.

First, we note that all three-electron integrals generically may be given as

Aµνηστξ = ⟨χµνη| O(1, 2, 3) |χστξ⟩

≡
∫∫∫

Ωµσ (1)Ωντ (2)Ωηξ (3)O(1, 2, 3)dr1dr2dr3

(6.28)

where the different integrals only differ in the operator O(1, 2, 3). The alternative
forms of this operator are

O(1, 2, 3) =

⎧
⎪⎨

⎪⎩

exp(−γvr2
12)r

−1
23 (INT3E1)

exp(−γvr2
12)r

−1
23 exp(−γwr2

13) (INT3E2)

exp(−γvr2
12) exp(−γwr2

23) (INT32)

(6.29)

where we have left out entries for INT3C1, INT3P1, and INT3C2 as the operator for
these integrals is similar to that of integral INT3E1.

In the following, the integral Aµνηστξ is regarded as a matrix element with µνη
giving the row number and στξ giving the column number.

Consider the three-electron integral

I[χ] =

∫∫∫
|χ(1, 2, 3)|2O(1, 2, 3)dr1dr2dr3 (6.30)

where we have introduced a three-electron function χ(1, 2, 3) that may be expanded
in orbitals as

χ(1, 2, 3) =
∑

µ,ν,η

χµ(1)χν(2)χη(3)cµcνcη ≡
∑

µνη

χµνη(1, 2, 3)cµνη (6.31)



Using the same reasoning as for two-electron integrals, it is not difficult to verify
that I[χ] > 0. Inserting the expansion for χ(1, 2, 3) into (6.30) we obtain

∑

µνη

∑

στξ

cµνηAµνηστσcστξ > 0 (6.32)

which leads us directly to the Cauchy–Schwarz inequality for three-electron integrals

|Aµνηστξ | ≤
√

Aµνηµνη ·
√

Aστξστξ (6.33)

Equation (6.33) is hence the three-electron counterpart of (6.24). Using this expres-
sion to prescreen integrals we may potentially reduce the scaling from N6 to N3.
Keep in mind though, that this kind of reduction is only realistic for large molecular
systems. The kind of scaling that is realistic for medium-sized systems is studied in
more detail in section 6.7.4 where we present some numerical examples.

Some caution must be exercised if prescreening is used together with multiple
basis sets. Consider, as an example, the integral INT3C1 given in section 4.6.1. If we
assign basis functions used in describing geminals with a tilde, the Cauchy–Schwarz
inequality for this integral reads

|Aµ̃ν̃ηστξ | ≤
√

Aµ̃ν̃ηµ̃ν̃η ·
√

Aστξστξ (6.34)

If orbitals and geminals are expanded in the same basis set, the integrals used for
prescreening are also needed in the pair function optimisations and energy calcula-
tions. When multiple basis sets are used as in (6.34), this is no longer necessarily
true.

6.7.3 Further prescreening techniques

The operators O for both two-electron and three-electron integrals vary with the
choice of correlation factors, and are therefore more appropriately denoted Ov or
Ovw, depending on whether the integral is of type orbital-geminal or geminal-
geminal. Accordingly, three-electron integrals, for instance, are more appropriately
expressed as Av

µνηστξ or Av,w
µνηστξ .

Let us assume that we have calculated all INT32 integrals corresponding to the
pair of indices (v, w1), and that we are about to calculate integrals corresponding
to the pair (v, w2). Since we use the Cauchy–Schwarz inequality for prescreening,
the “prescreen-integrals”, Av,w1

µνη ≡ Av,w1
µνηµνη , should currently be available either in

memory or on disk. When we start calculating the (v, w2) integrals, the current
prescreen-integrals must be replaced by integrals Av,w2

µνη . Before we throw away the
former integrals, however, we may use these to prescreen the latter. To show this,
we consider their difference

Av,w1
µνη − Av,w2

µνη

=

∫∫∫
|χµνη(1, 2, 3)|2 exp(−γvr

2
12) exp(−γw1r

2
23)

[
1 − exp(−γw2r

2
23)

exp(−γw1r
2
23)

]
dr1dr2dr3

(6.35)



The first three terms of the integrand in (6.35) are always positive, as discussed
above. The last term is positive if γw1 < γw2, negative if γw1 > γw2, and zero if the
two exponents are equal.

Therefore, when calculating integrals containing GTGs, we should always sort
the GCFs in descending order and calculate the integrals with the most diffuse GCF
first. This enables us to use the prescreen-integrals based on the current GCFs to
prescreen the prescreen-integrals for the GCFs coming up next. The integral with
the most diffuse GCFs, in turn, may be prescreened by the integral for which γw

has been set to zero. In the current example with INT32 this integral reduces to a
two-electron integral

Av,w
µνη[γw = 0] =

∫∫
|χµν(1, 2)|2 exp(−γvr

2
12)dr1dr2 = Av

µν (6.36)

assuming that the atomic orbital have been normalised. Integral (6.36), in turn, may
be prescreened by the integral for which γv has been set to zero. These additional
levels of prescreening open for the possibility to further reduce the scaling from the
N3 potentially offered by the Cauchy–Schwarz inequality.

6.7.4 Size distribution of AO integrals in t -H2O2 and (H2O)2

As the prescreening schemes discussed in the previous sections are currently not
implemented, we cannot present tables or figures showing how the Cauchy–Schwarz
inequality actually performs for each integral type. It is, however, not difficult to
get an idea of the potential the suggested prescreening algorithms have for a given
system. By counting the fraction of AO integrals that, in absolute value, are smaller
than the threshold set for integrals, we may find an upper limit to prescreening
for this particular system, no matter what algorithms we use. Doing a thorough
investigation of prescreening would require us to do this kind of study for a large
variety of molecules. This is, however, outside the scope of this text and we restrict
the discussion to five molecular systems: the C2 molecule, the cyclic C3 molecule,
the tetraedric C4 molecule, the trans -H2O2 molecule, and the water dimer.

The C2, C3, and C4 molecules represent one-, two- and three-dimensional sys-
tems, respectively, that are directly comparable, and through these molecules we
may investigate the effects geometry have on prescreening. The three carbon al-
lotropes are particularly well suited for this purpose, as their regular structures
allow each molecule to be uniquely specified by one carbon–carbon distance only.
Also, by varying this distance in the range 100–800 pm, we may systematically study
how prescreening improves with increasing inter-nuclear distance.

The C2 and C3 molecules have been studied using both the cc-pVDZ and the aug-
cc-pVDZ basis sets, and this allows us to study the effect diffuse functions have on
prescreening. Due to high computational cost, the C4 molecule was only described
using the smaller of the two sets.



Figure 6.4: The trans -H2O2 molecule (left) and the water dimer (right).

While the three carbon molecules may be considered somewhat artificial systems,
the peroxide molecule and the water dimer, provide us with a couple of “real-world”
systems. These systems have been studied using the cc-pVDZ basis set and with
fixed structures. The current section is devoted to these two systems only.

In the context of a Hartree–Fock calculation or a conventional MP2 calculation
the trans -H2O2 molecule and the water dimer, both depicted in Figure 6.4, are
small systems, and using a Cauchy–Schwarz type prescreening (or any other type
of prescreening) do not have much effect. In the context of GTG-MP2 calculations,
however, these systems are considered fairly large, and for prescreening to be really
useful, these systems ought to contain a significant amount of redundant integrals
that may be identified using a Cauchy–Schwarz inequality.

The amount of redundant integrals present in a certain system, depends on the
exponents used in the GCF part of the geminals (see equations (6.1) and (6.8)). If
we increase the size of an exponent, the corresponding geminal becomes more short-
range and fewer of the integrals it contributes to become significant. It is therefore
of fundamental importance to understand how the size of AO integrals depends on
the size of the GCF exponents. Considering the set of 9 GCF exponents discussed in
section 6.3, we note that for each, say, INT3E2 integral, there are 9× (9 +1)/2 = 45
integrals having the same six AO labels but differing in GCF exponents γv and/or γw.
Studying all these variations is merely an exercise in pointlessness and we focus on
diagonal elements for which γv = γw. Since the integrals either increase or decrease
monotonically in size along the diagonal, we expect a few diagonal elements to be
sufficient for obtaining a trend. Having decided to use three diagonal elements, the
GTG space is probably best spanned if we use the exponents 1/3, 9, and 243.

AO integrals typically range in size from zero to one. However, as machine preci-
sion is encountered when integrals get very small, there is no point in distinguishing
between integrals of size 10−21, say, and integrals of size 10−20. For our purpose it



turns out that 10−15 is suitable as the lower limit for distinguishing between integral
sizes. All integrals smaller than this therefore count as if they had the size 10−15.
Similarly, we use 1 as an upper limit.

Integral sizes are most conveniently reported using a logarithmic scale, and once
an integral has been calculated we convert its size using − log10 |Isize|. Also, chopping
off the decimals, the logarithm is reduced to on of the integers {0, 1, 2, . . . , 15}. These
16 integers may now be regarded as labels for 16 stacks of integrals. On stack 10,
for instance, we put integrals that have size in the range 10−10 to 10−11, while stack
15 holds all integrals smaller than 10−15.

Note, that generally we cannot put an integral onto a stack based on its own size
only, as each integral typically is part of a batch in which there are tens, hundreds,
or even thousands of other integrals. These integrals have the same set of orbital
exponents and orbital angular momenta but their orbitals differ in their spatial
orientation (e.g. px, py, pz). From a prescreening point of view it helps us nothing
that 999 out of 1000 integrals are close to zero if the last integral is, say, 10−1. They
all have to be calculated, no matter. Integrals belonging to the same AO batch are
therefore better collectively represented by the largest integral in the batch. Our
999 integrals of size zero shall therefore join the integral going to the 10−1 stack
implying that a total of 1000 integrals are added to this stack.

As integrals are calculated, the different stacks gradually fill up, and on some
stacks large numbers are quickly encountered. We are, however, not interested in
the exact number of integrals that are put onto each stack, but the relative sizes of
the different stacks, i.e. the size distributions. Rather than reporting the number
of integrals on each stack, we therefore report the fraction of the total number
of integrals that have been put onto the different stacks. This fraction is in the
following referred to as the frequency. From the definition of the frequency, we note
that adding up all frequencies within a certain integral type give us 1.

The size distributions for the trans -H2O2 molecule and the water dimer using the
cc-pVDZ basis set and GCFs with exponents 1/3, 9 or 243 are reported in Tables B.1
and B.2. These tables have been put in the appendices as we focus on trends rather
than numbers. Since trends are better seen using graphical visualisation, we have
illustrated Table B.1 graphically in Figure 6.5. The illustration shows that for a
GCF exponent of 1/3 there are almost no integrals smaller than 10−5, implying
that there is nothing to be gained from prescreening. When the GCF exponent is
increased to 9 a shift in the direction of smaller integrals is observed, as expected.
This shift is most pronounced for the three-electron exchange integrals INT32 and
INT3E2 which both have their maximum frequency shifted from stack 3 to stack 6.
Although this is a considerable shift, we note that there is no significant amount of
integrals smaller than 10−9 and we cannot expect prescreening to be useful for these
integrals. When the GCF exponent is increased to 243, however, prescreening may
prove to become important. Now, integrals INT3E2 and INT32 have their largest
frequencies for stack 9 and 10, respectively, and a considerable amount of integrals
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Figure 6.5: The size distribution of AO integrals for the trans -H2O2 molecule with
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is therefore smaller than 10−10. This is an interesting observation as some three-
electron integrals probably have numerical precision of this order. This is explained
shortly.

It is a well-known fact that numerical precision is lost when two almost equal
numbers are subtracted. Due to the large number of additions/subtractions needed
to generate them, three-electron integrals are especially exposed to this. Equa-
tion (4.52) which gives the Hermite integrals needed to produce integrals INT3E2,
is a good example. Note that the summations run over angular momenta, and inte-
grals are therefore more likely to lose numerical precision as their angular momentum
increase. An integral consisting purely of s-orbitals, however, can be constructed
without any subtractions and may consequently be given with machine precision.

By calculating an integral using two different algorithms and comparing the
numbers, we may get an idea of how precisely the integral has been calculated. In a
small test study, the Hermite integrals needed to construct INT3E1 integrals for the
water molecule were calculated with and without the use of translational symmetry.
When an integral batch consisting of f -orbitals were considered, out of the 592 704
integrals, 2 differed in the 9th figure, 28 differed in the 10th figure, and 191 differed
in the 11th figure. Although this was a somewhat artificial test case, it suggests
that we ought to be careful trusting the numerical value of three-electron integrals
as small as 10−10. Integrals belonging to stack 9 or 10 may therefore turn out to be
redundant due to limited machine precision.

Table B.2, which gives the size distribution of AO integrals in the water dimer,
has been visualised in Figure 6.6. Considering the most diffuse GCF first, we note
that integral sizes are more evenly distributed in the dimer than in the peroxide
molecule. This becomes particularly clear if we compare the number of stacks having
a zero frequency i.e. containing no integrals. These stacks may be identified by
their dark blue colour. Interestingly, there also seems to be a small fraction of
integrals that may be prescreened even for this diffuse GCF. Moving on to the size
distribution for the GCF with exponent 9, we see that the amount of integrals that
may be prescreened have increased considerably, especially for INT32 and INT3E2.
Finally, using the most contracted GCF, we see that for the three-electron exchange
integrals only a small fraction of integrals actually need to be calculated.

6.7.5 Size distribution of AO integrals in the C2, C3, and C4
molecules as a function of the carbon–carbon distance

When we turn to applications in chapter 7, we see that augmented basis sets like
aug-cc-pVDZ generally performs a lot better than the corresponding non-augmented
basis sets. Since the augmented functions are diffuse, we expect poorer prescreening
when these are present. In the next couple of sections we have used the molecules
C2 and C3 to study the effect diffuse functions have on prescreening. Using these
molecules, we have also studied how integrals decrease in magnitude as the carbon–
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Figure 6.6: The size distribution of AO integrals for the water dimer with basis set
cc-pVDZ and one GCF. The stack each integral belongs to is obtained from the
expression −int(log10 |Isize|). Frequencies given on stacks 0–15 add up to 1 within
each integral type.



carbon distance increases. This distance dependency have been investigated for the
tetraedric C4 molecule as well, but in this case only the cc-pVDZ basis set were
used.

Since the basis sets for carbon are more diffuse than the corresponding basis sets
for the nitrogen, oxygen and hydrogen atoms, the results presented below ought to
be applicable to a wide range of organic molecules.

The C2 molecule

Guided by the discussion in the previous section we assume that all integrals smaller
than 10−10 are insignificant and may be prescreened. If we add up the fraction of
integrals smaller than this value, therefore, we get the fraction of integrals that may
be prescreened for each integral type. This fraction is obtained directly from the
size distribution table by adding up the frequencies given in stacks 10–15 for the
integral type in question.

In Table 6.10 we present the fraction of integrals that may be prescreened in
the C2 molecule when we use basis sets cc-pVDZ and aug-cc-pVDZ, eight different
inter-nuclear separations, and 3 different GCF exponents. All calculations have been
done using symmetric overlap distributions, making diagonal elements Ωµµ slightly
over-represented. The fractions in Table 6.10 are therefore somewhat too small.

For accountability we have also included a few of the size distribution tables that
Table 6.10 is based on. These tables are located in appendix B as Tables B.3 and
B.4.

We begin studying the uppermost part of Table 6.10 which gives the fraction
of prescreenable integrals when using basis set cc-pVDZ and a GCF exponent of
1/3. Looking through the numbers we see that these naturally may be divided into
three categories. Those belonging to two-electron integrals, those belonging to the
three-electron integrals of type INT3C1, INT3E1, and INT3C2 and those belonging
to the three-electron integrals INT3E2 and INT32. The three categories are in the
following referred to as category 1, 2 and 3, respectively. Within each category
the different integral types behave similarly. Note, however, that the two-electron
Coulomb integral does not really fit into category 1. Since it is not a geminal integral
this is to be expected, and it is included for reference only.

As the inter-nuclear distance increases the fraction of integrals that has to be
calculated drops. It drops slowest for the two-electron integrals in category 1, some-
what faster for the three-electron integrals in category 2 and fastest for the three-
electron integrals in category 3. When the carbon–carbon distance has increased to
approximately 800 pm, however, all fractions have reached or nearly reached their
maximum value. This maximum value gives the largest fraction of integrals that
may be prescreened. Since there is nothing more to be gained from prescreening
when the carbon atoms are moved further apart, the integrals still surviving must
all be one-centre integrals.



Table 6.10: The fraction of integrals that may be prescreened (size < 10−10) in
the C2 molecule using basis sets cc-pVDZ (upper part of table) and aug-cc-pVDZ
(lower part of table). The inter-nuclear distance r(C–C) is given in picometer.

r(C–C) I21 I22 I2K1 I2K2 I2V1 I2V2 I2C0 I2C1 I3C1 I3E1 I3C2 I3E2 I32

100 .0999 .0949 .0916 .0836 .1023 .0977 .0961 .0947 .0217 .0217 .0215 .0214 .0217
200 .0908 .0908 .0972 .0907 .0931 .0931 .0908 .0908 .0213 .0213 .0213 .0212 .0213
300 .0908 .0919 .1137 .1057 .0931 .0948 .0908 .0908 .0226 .0226 .0236 .0238 .0234
400 .1546 .1605 .1508 .1641 .1386 .1448 .1440 .1496 .2853 .2853 .3438 .3743 .3403
500 .4863 .5891 .4796 .5902 .4600 .5404 .4128 .5177 .6787 .6787 .7565 .7835 .7586

γ
=

1 3

600 .6861 .7680 .7184 .7831 .6535 .7403 .5629 .7267 .8266 .8266 .8488 .9159 .9018
700 .8237 .8579 .8261 .8538 .7649 .7867 .6498 .8344 .9120 .9120 .9281 .9693 .9634
800 .9178 .9237 .9261 .9362 .8705 .8879 .7661 .9215 .9440 .9440 .9444 .9826 .9827

100 .0933 .0928 .0852 .0933 .0901 .0910 .0961 .0931 .0212 .0212 .0211 .0208 .0210
200 .0921 .0927 .0972 .0924 .0937 .0926 .0908 .0921 .0216 .0216 .0216 .0218 .0219
300 .0931 .0942 .1163 .0933 .0996 .0994 .0908 .0929 .0502 .0502 .0747 .2836 .3664
400 .4053 .4995 .4197 .3296 .3107 .3985 .1440 .3248 .6539 .6539 .7013 .8956 .9022
500 .7493 .7563 .7679 .7506 .7173 .7312 .4128 .7374 .8334 .8334 .8453 .9341 .9409γ

=
9

600 .8097 .8515 .8313 .7991 .7708 .7811 .5629 .7905 .9034 .9034 .9181 .9813 .9827
700 .9235 .9241 .9273 .9293 .8743 .8914 .6498 .9179 .9437 .9437 .9442 .9828 .9828
800 .9241 .9240 .9372 .9373 .8938 .8932 .7661 .9239 .9473 .9473 .9482 .9827 .9827

100 .0935 .0935 .0849 .0940 .0917 .0917 .0961 .0935 .0211 .0211 .0211 .0206 .1099
200 .0926 .0926 .0966 .0930 .0939 .0939 .0908 .0926 .0216 .0216 .0218 .2307 .7645
300 .1288 .1768 .1576 .0933 .1082 .1203 .0908 .0954 .3122 .3122 .4180 .9276 .9788
400 .7240 .7392 .7247 .4385 .6726 .6953 .1440 .5769 .8133 .8133 .8314 .9795 .9828
500 .8064 .8429 .8276 .7646 .7620 .7767 .4128 .7674 .9033 .9033 .9207 .9827 .9828

γ
=

24
3

600 .9208 .9239 .9241 .8309 .8480 .8864 .5629 .8873 .9442 .9442 .9456 .9827 .9827
700 .9240 .9241 .9371 .9366 .8943 .8943 .6498 .9240 .9481 .9481 .9487 .9827 .9827
800 .9240 .9240 .9372 .9372 .8943 .8943 .7661 .9240 .9481 .9481 .9497 .9827 .9827

100 .0927 .0905 .0908 .0827 .0914 .0873 .0909 .0903 .0191 .0191 .0190 .0190 .0191
200 .0837 .0836 .0865 .0806 .0678 .0677 .0843 .0837 .0187 .0187 .0187 .0186 .0187
300 .0821 .0822 .0930 .0849 .0668 .0671 .0821 .0821 .0187 .0187 .0189 .0188 .0188
400 .0915 .0933 .1027 .1001 .0733 .0748 .0900 .0912 .0782 .0782 .1013 .1163 .1002
500 .2381 .2818 .2468 .2833 .2091 .2461 .2110 .2497 .3314 .3314 .4046 .4365 .4007

γ
=

1 3

600 .3783 .4638 .4062 .4762 .3393 .4259 .2847 .4135 .5529 .5529 .6009 .7069 .6748
700 .5510 .6004 .5664 .6088 .4998 .5425 .3933 .5661 .7253 .7253 .7666 .8550 .8360
800 .7142 .7615 .7353 .7803 .6633 .7230 .5357 .7355 .8311 .8311 .8488 .9295 .9202

100 .0898 .0897 .0869 .0894 .0847 .0853 .0909 .0898 .0189 .0189 .0189 .0187 .0188
200 .0837 .0837 .0872 .0831 .0665 .0668 .0843 .0835 .0187 .0187 .0187 .0187 .0188
300 .0827 .0827 .0939 .0820 .0681 .0683 .0821 .0825 .0228 .0228 .0276 .0982 .1423
400 .1776 .2219 .1962 .1436 .1263 .1614 .0900 .1432 .3058 .3058 .3580 .6145 .6426
500 .4341 .4471 .4549 .4295 .4019 .4108 .2110 .4254 .5408 .5408 .5751 .8170 .8466γ

=
9

600 .5679 .6057 .5952 .5381 .5202 .5435 .2847 .5379 .7384 .7384 .7680 .9244 .9353
700 .7446 .7825 .7746 .7049 .7067 .7357 .3933 .7051 .8460 .8460 .8571 .9454 .9491
800 .8221 .8296 .8382 .8176 .7820 .7889 .5357 .8128 .8783 .8783 .8855 .9569 .9630

100 .0900 .0900 .0868 .0897 .0860 .0861 .0909 .0900 .0189 .0189 .0189 .2406 .8332
200 .0836 .0836 .0872 .0832 .0672 .0672 .0843 .0836 .0188 .0188 .0190 .4407 .9405
300 .0911 .1078 .1132 .0820 .0703 .0748 .0821 .0828 .1132 .1132 .1719 .8838 .9899
400 .3932 .4204 .4020 .1926 .3516 .3797 .0900 .2769 .5003 .5003 .5503 .9703 .9941
500 .5496 .6013 .5901 .4399 .4881 .5222 .2110 .4643 .7426 .7426 .7870 .9815 .9943

γ
=

24
3

600 .7421 .7801 .7798 .5781 .6878 .7286 .2847 .6489 .8613 .8613 .8798 .9843 .9944
700 .8266 .8354 .8488 .7565 .7895 .7975 .3933 .7992 .8984 .8984 .9147 .9850 .9944
800 .8523 .8681 .8717 .8317 .8080 .8151 .5357 .8323 .9257 .9257 .9388 .9850 .9943



Figure 6.7: Some C–C distances in the n -heptane molecule. This figure is included
to illustrate the range of the different C2 integrals given in Table 6.10.

For comparison, we have in Figure 6.7 depicted the n -heptane molecule and
some of its internal carbon–carbon distances. Since the two terminal carbon atoms
in the chain are separated by nearly 800 pm, we conclude that geminal integrals
constructed from basis set cc-pVDZ and GCFs having exponent 1/3, ranges over 7
carbon atoms in an alkane chain. This is a somewhat disappointing result. Note,
also, that for inter-nuclear distances smaller than 300 pm there is hardly any integrals
at all that can be prescreened. After that, however, the fraction of integrals that
may be discarded increases rapidly within all three categories.

When the GCF exponent is increased to 9, integrals die off more quickly with
orbital separation and the maximum fraction of prescreenable integrals is reached
at a carbon–carbon distance of 700 pm for integrals in category 1 and 2 and at a
distance of 600 pm for integrals in category 3. Again, the fraction of integrals that
may be prescreened makes a jump after 300 pm. For the CPU intensive integrals in
category 3 a noticeable amount of integrals may also be prescreened even at 300 pm.

Increasing the exponent to 243, the integrals in category 1 still reaches maximum
prescreening at a carbon–carbon distance of 700 pm. For the three-electron integrals
in category 2, however, maximum prescreening is now reached at 600 pm, and for
the three-electron integrals INT3E2 and INT32 the maximum is reached at 400 pm
and 300 pm, respectively. For the latter two integral types, this means that only few
integrals range across more than 3 carbon atoms of an alkane chain.

Moving on to basis set aug-cc-pVDZ we expect less prescreening to be possible.
The lower part of Table 6.10 shows that this is also the case. Note, for instance,
that when using a GCF exponent of 1/3 no integral type has reached maximum
possible prescreening even at a carbon–carbon distance of 800 pm. A comparison
with fractions obtained with the GCF exponent 243 shows that. We also note that



while the fraction of integrals that may be prescreened took a jump after 300 pm for
the cc-pVDZ basis, the corresponding jump now comes after 400 pm.

Continuing with the GCF exponent 9, we note that fractions increase slowly,
and at an inter-nuclear distance of 800 pm, they have still not reached maximum for
either of the integral types. Note, however, that there is a small jump after 300 pm
again. We also note that some 60% of integrals in category 3 may be prescreened
when the carbon–carbon distance is 400 pm. This, approximately, corresponds to
the distance between atom number 1 and 4 in the carbon chain of n -heptane.

With the most contracted GCF, having an exponent of 243, the largest fraction
of integrals that may be prescreened is reached at a inter-nuclear distance of 800 pm
for the integrals in category 3. For the other integrals the limit is still not reached
at that distance.

Note, finally, that a larger fraction of integrals may be prescreened for the aug-
cc-pVDZ basis set than for the cc-pVDZ basis set. This, which at first may seem
strange, only states that the relative amount of one-centre integrals is smaller in the
larger basis set.

The cyclic C3 molecule

Before drawing conclusions from Table 6.10 alone, some caution should be exercised.
Since the C2 molecule is a two-centre molecule, only one- and two-centre integrals
are present in a calculation. Three-electron integrals, however, may have up to six
different canters, and the more different centres there are in an integral, the more
likely the integral is prescreenable. Also, for a large molecule, there is more three-
centre integrals than two-centre integrals, more four-centre integrals than three-
centre integrals, and so forth. The numbers given in Table 6.10 may therefore be
far too pessimistic.

To check whether this is indeed the case, we have repeated all calculations, but
this time for the cyclic C3 molecule (regular triangle). Since this molecule contains
three atoms, three-centre integrals appear.

In Table 6.11 we have presented the fraction of prescreenable integrals for the C3

molecule. We shall not describe this table in detail, as it exhibits the same trends
as Table 6.10. Note, especially, that integrals become redundant at about the same
inter-nuclear distances in the C3 molecule as they did in the C2 molecule, and there
is no major shift in the direction of shorter distances. For a given distance, however,
the amount of integrals that may be prescreened is significantly larger in the C3

molecule than in the C2 molecule.

The tetraedric C4 molecule

It may still be argued, however, that a 2D system is also too small to give a repre-
sentable picture of the prescreening potentials. To investigate whether this is true,
we have included the tetraedric C4 molecule in our study. As with the C3 molecule,



Table 6.11: The fraction of integrals that may be prescreened (size < 10−10) in the
cyclic C3 molecule using basis sets cc-pVDZ (upper part of table) and aug-cc-pVDZ
(lower part of table). The inter-nuclear distance r(C–C) is given in picometer.

r(C–C) I21 I22 I2K1 I2K2 I2V1 I2V2 I2C0 I2C1 I3C1 I3E1 I3C2 I3E2 I32

100 .0298 .0295 .0271 .0260 .0168 .0161 .0299 .0295 .0034 .0034 .0034 .0034 .0034
200 .0302 .0299 .0292 .0278 .0153 .0154 .0305 .0301 .0034 .0034 .0034 .0034 .0034
300 .0303 .0307 .0321 .0302 .0154 .0161 .0306 .0303 .0091 .0091 .0165 .0205 .0151
400 .1766 .2551 .1527 .2244 .1243 .1854 .1339 .2026 .5047 .5047 .5827 .6557 .6111
500 .6128 .7043 .5832 .7018 .5509 .6618 .4980 .6466 .8418 .8418 .8889 .9256 .9108

γ
=

1 3

600 .8099 .8732 .8170 .8797 .7778 .8528 .6633 .8373 .9360 .9360 .9465 .9791 .9743
700 .8979 .9158 .9004 .9150 .8716 .8887 .7597 .9037 .9727 .9727 .9791 .9925 .9903
800 .9706 .9763 .9741 .9804 .9473 .9612 .8643 .9755 .9865 .9865 .9867 .9978 .9976

100 .0288 .0285 .0253 .0278 .0145 .0146 .0299 .0286 .0033 .0033 .0032 .0032 .0033
200 .0309 .0309 .0290 .0299 .0147 .0144 .0305 .0309 .0035 .0035 .0035 .0035 .0036
300 .0386 .0508 .0388 .0331 .0183 .0214 .0306 .0343 .1565 .1565 .2272 .6176 .6821
400 .5404 .6344 .5275 .4519 .4211 .5039 .1339 .4525 .8279 .8279 .8559 .9629 .9673
500 .8475 .8613 .8547 .8371 .8187 .8312 .4980 .8313 .9384 .9384 .9441 .9833 .9850γ

=
9

600 .9005 .9130 .9077 .8959 .8782 .8817 .6633 .8911 .9674 .9674 .9755 .9977 .9976
700 .9761 .9765 .9786 .9764 .9556 .9618 .7597 .9732 .9863 .9863 .9866 .9976 .9977
800 .9767 .9767 .9813 .9812 .9631 .9630 .8643 .9766 .9880 .9880 .9881 .9976 .9976

100 .0286 .0286 .0252 .0279 .0145 .0145 .0299 .0286 .0033 .0033 .0033 .0031 .1094
200 .0311 .0313 .0291 .0300 .0145 .0145 .0305 .0308 .0037 .0037 .0042 .4870 .9637
300 .2157 .2776 .1977 .0399 .1177 .1745 .0306 .0806 .5625 .5625 .6620 .9823 .9973
400 .8163 .8301 .8112 .5734 .7705 .7944 .1339 .7217 .9217 .9217 .9378 .9975 .9978
500 .8973 .9121 .9054 .8581 .8744 .8787 .4980 .8775 .9680 .9680 .9770 .9977 .9977

γ
=

24
3

600 .9760 .9766 .9768 .9069 .9370 .9612 .6633 .9218 .9866 .9866 .9873 .9977 .9976
700 .9767 .9767 .9812 .9806 .9630 .9631 .7597 .9767 .9881 .9881 .9883 .9976 .9976
800 .9766 .9766 .9811 .9811 .9630 .9631 .8643 .9766 .9883 .9883 .9884 .9976 .9976

100 .0256 .0254 .0248 .0238 .0109 .0107 .0257 .0254 .0027 .0027 .0027 .0027 .0027
200 .0257 .0256 .0252 .0242 .0093 .0093 .0259 .0257 .0027 .0027 .0027 .0027 .0027
300 .0257 .0258 .0261 .0246 .0090 .0092 .0259 .0257 .0030 .0030 .0036 .0038 .0035
400 .0509 .0777 .0488 .0698 .0256 .0427 .0410 .0599 .1467 .1467 .1919 .2456 .2120
500 .2730 .3384 .2584 .3309 .2287 .2922 .2197 .2931 .4738 .4738 .5531 .6400 .5967

γ
=

1 3

600 .4708 .5637 .4818 .5714 .4228 .5234 .3117 .5095 .7265 .7265 .7681 .8661 .8441
700 .6625 .7113 .6736 .7268 .6264 .6711 .4656 .6767 .8661 .8661 .8923 .9504 .9411
800 .8072 .8541 .8221 .8652 .7777 .8208 .6234 .8250 .9300 .9300 .9388 .9794 .9764

100 .0252 .0251 .0240 .0246 .0101 .0101 .0257 .0251 .0027 .0027 .0027 .0026 .0026
200 .0258 .0257 .0252 .0251 .0089 .0089 .0259 .0257 .0027 .0027 .0027 .0027 .0028
300 .0275 .0295 .0275 .0258 .0096 .0102 .0259 .0265 .0273 .0273 .0464 .2338 .2924
400 .2008 .2663 .2013 .1494 .1234 .1702 .0410 .1503 .4537 .4537 .4983 .7596 .7920
500 .5022 .5264 .5144 .4839 .4681 .4841 .2197 .4836 .7066 .7066 .7431 .9290 .9436γ

=
9

600 .6762 .7090 .6970 .6456 .6340 .6574 .3117 .6475 .8739 .8739 .8942 .9794 .9825
700 .8464 .8642 .8531 .8074 .7980 .8342 .4656 .8120 .9374 .9374 .9445 .9869 .9884
800 .9015 .9067 .9082 .8930 .8791 .8869 .6234 .8912 .9575 .9575 .9623 .9903 .9916

100 .0251 .0251 .0240 .0247 .0101 .0101 .0257 .0251 .0027 .0027 .0027 .2181 .8480
200 .0257 .0257 .0253 .0251 .0089 .0090 .0259 .0256 .0028 .0028 .0030 .6286 .9911
300 .0734 .0929 .0718 .0272 .0309 .0465 .0259 .0351 .2058 .2058 .3006 .9739 .9987
400 .4585 .4832 .4564 .2198 .3992 .4341 .0410 .3342 .6561 .6561 .7193 .9950 .9992
500 .6558 .6962 .6894 .5094 .5945 .6291 .2197 .5582 .8797 .8797 .9105 .9970 .9992

γ
=

24
3

600 .8439 .8695 .8654 .6848 .7804 .8243 .3117 .7422 .9493 .9493 .9596 .9977 .9993
700 .9083 .9170 .9218 .8523 .8845 .8927 .4656 .8761 .9692 .9692 .9753 .9979 .9992
800 .9272 .9356 .9376 .9056 .9072 .9119 .6234 .9131 .9792 .9792 .9839 .9979 .9993



Table 6.12: The fraction of integrals that may be prescreened (size < 10−10) in
the C4-molecule using the basis set cc-pVDZ. The inter-nuclear distance r(C–C) is
given in picometer.

r(C–C) I21 I22 I2K1 I2K2 I2V1 I2V2 I2C0 I2C1 I3C1 I3E1 I3C2 I3E2 I32

100 .0125 .0121 .0114 .0111 .0120 .0118 .0128 .0121 .0008 .0008 .0008 .0007 .0008
200 .0135 .0132 .0154 .0147 .0131 .0129 .0140 .0133 .0010 .0010 .0010 .0010 .0010
300 .0195 .0204 .0241 .0215 .0190 .0198 .0188 .0201 .0177 .0177 .0385 .0541 .0368
400 .2430 .3585 .2117 .3244 .1824 .2744 .1601 .2857 .6434 .6434 .7188 .7919 .7525
500 .6966 .7895 .6772 .7886 .6464 .7520 .5692 .7292 .9122 .9122 .9414 .9696 .9613γ

=
1 3

600 .8788 .9227 .8833 .9269 .8566 .9086 .7335 .8985 .9711 .9711 .9765 .9929 .9911
700 .9412 .9525 .9420 .9512 .9258 .9362 .8286 .9456 .9895 .9895 .9923 .9979 .9971
800 .9864 .9896 .9880 .9917 .9733 .9826 .9112 .9892 .9952 .9952 .9953 .9995 .9994

100 .0120 .0119 .0105 .0114 .0105 .0106 .0128 .0119 .0008 .0008 .0008 .0007 .0007
200 .0136 .0137 .0159 .0132 .0135 .0133 .0140 .0136 .0011 .0011 .0011 .0017 .0019
300 .0478 .0740 .0431 .0348 .0272 .0367 .0188 .0350 .2812 .2812 .3719 .7815 .8290
400 .6719 .7379 .6454 .5929 .5559 .6311 .1601 .5937 .8991 .8991 .9167 .9844 .9865
500 .8998 .9148 .9052 .8860 .8762 .8896 .5692 .8831 .9719 .9719 .9751 .9942 .9949γ

=
9

600 .9408 .9501 .9455 .9392 .9303 .9319 .7335 .9365 .9873 .9873 .9908 .9994 .9995
700 .9894 .9899 .9908 .9893 .9802 .9829 .8286 .9884 .9952 .9952 .9953 .9994 .9994
800 .9900 .9901 .9920 .9920 .9837 .9838 .9112 .9900 .9958 .9958 .9959 .9994 .9994

100 .0119 .0119 .0105 .0115 .0105 .0105 .0128 .0119 .0008 .0008 .0008 .0007 .1391
200 .0144 .0147 .0163 .0132 .0132 .0134 .0140 .0137 .0016 .0016 .0025 .7027 .9880
300 .3258 .3943 .3008 .0537 .1859 .2600 .0188 .1285 .7127 .7127 .7932 .9941 .9993
400 .8684 .8839 .8662 .6972 .8299 .8476 .1601 .7956 .9623 .9623 .9720 .9993 .9996
500 .9390 .9492 .9440 .9079 .9269 .9301 .5692 .9272 .9874 .9874 .9916 .9995 .9994

γ
=

24
3

600 .9896 .9900 .9899 .9447 .9674 .9827 .7335 .9575 .9953 .9953 .9956 .9995 .9994
700 .9900 .9900 .9920 .9915 .9839 .9839 .8286 .9901 .9961 .9961 .9961 .9994 .9994
800 .9900 .9900 .9920 .9920 .9839 .9840 .9112 .9900 .9961 .9961 .9961 .9994 .9994

the structure of the C4 molecule is fully described by one C–C distance.

The results are presented in Table 6.12. Due to the high CPU requirements,
we did not consider the aug-cc-pVDZ basis set for this molecule. The relationship
between augmented and non-augmented basis sets were covered extensively for the
C2 and C3 molecules, and it is unlikely that a different relationship would be revealed
for the C4 molecule.

The numbers given in Table 6.12 reveal the same trends as found in the two
smaller molecules, and no matter which system we consider integrals start becoming
redundant at about the same distance. For a given inter-nuclear distance, however,
the fraction of prescreenable integrals increases significantly with the system size.

Considering the results presented for the three carbon allotropes in this section,
we conclude that implementing Cauchy–Schwarz prescreening by itself is not suf-
ficient to break barriers for how big systems we can treat with GTG-MP2 theory.
Especially not if decent basis sets like aug-cc-pVDZ are to be used.



6.8 Linear dependencies and numerical stability

In Tables 6.1 and 6.2 presented in section 6.3, we saw that the pq-ansatz performs
better than the kq-ansatz, and that the kq-ansatz, in turn, outperforms the kl-
ansatz. As our energies are obtained variationally and therefore bound to improve
when the basis set is increased, this is to be expected.

Unfortunately, the improved energies does not come without cost. Using LDLT

factorisation to solve the linear equations (3.95), O(N3) arithmetic operations must
be performed when N linear equations are present. Since the kq- and pq-ansätze give
larger basis sets than the kl-ansatz they also give a larger number of linear equations
and thus more calculation time. For the kl-ansatz the number of equations to solve
depends on the number of GCFs and the number of occupied orbitals only, and N
is therefore typically of modest size. For the kq-ansatz, however, N grows linearly
with the one-electron basis set, and for the pq-ansatz the growth is quadratic. For
the kq- and pq-ansätze, therefore, the CPU time spent in the equation solver can
become very large.

The CPU time spent in the integral calculation, on the other hand, is less affected
by the choice of ansatz. The integral code is essentially the same for all ansätze
and the only significant difference lies in the MO transformation. For the current
implementation, however, this transformation consumes only a small part of the
total calculation time, something Table 6.5 clearly indicates. Moreover, since the
AO formulation of the pq-ansatz (6.13) involves no MO transformations at all, this
ansatz may be expected to have the slightly faster integral calculation.

Due to the equation solver, calculations involving the kq- and pq-ansätze gen-
erally require more CPU time than calculations involving the kl-ansatz. More im-
portantly, however, they also require more memory. In the case of the pq-ansatz
this is actually a critical issue. As we experienced in section 6.3, the water molecule
can not be described with the aug-cc-pCVTZ(spd,sp) basis set when using the pq-
ansatz. Containing 71 contracted AOs, this basis set is not particularly big, and the
pq-ansatz can therefore be expected to have limited applicability only. Fortunately,
the kq-ansatz, which performs nearly as good as the pq-ansatz, is less memory in-
tensive, and what currently limits the use of this ansatz is CPU time requirements
rather than memory requirements.

The kq- and pq-ansätze outperforms the kl-ansatz since they use a wider range
of AO combinations in their respective two-electron basis sets. This, however, also
makes the ansätze more exposed to numerical instabilities. Partly, because more
arithmetic operations are needed to solve their equation systems, but also because
their basis sets (cf. (6.2)) are more likely to contain linear dependencies. A linear de-
pendency may arise, for instance, if a two-electron basis functions like gkq,v becomes
to resemblant to another function gkr,v or gkq,w.

For a given ansatz and one-electron basis set we can check for this kind of linear
dependencies by diagonalising the geminal-geminal overlap matrix INT22. A small



eigenvalue indicates that a basis function (or linear combination of basis functions)
are similar to another basis function (or linear combination of basis functions). A
zero eigenvalue implies that there is an exact overlap.

To investigate whether linear dependency indeed may represent a problem for
either of the ansätze, we have calculated some INT22 matrices for the neon atom and
the water molecule and diagonalised these. For comparison with sections 6.3 and 6.4
we have used basis sets cc-pVDZ and aug-cc-pCVTZ(spd)/(spd,sp) once more. For
the latter basis set, the original four d-orbitals for oxygen were replaced by the single
d-orbital taken from the cc-pVDZ basis when the water molecule was described with
the pq-ansatz. Different GCF expansions were also used to investigate how linear
dependency is related to the choice of GCF exponents and the number of GCFs
included in the expansion of a geminal.

After diagonalising the INT22 matrices, their eigenvalues λ were transformed to
the integers 0–15 using the relations

∆(λ) =

⎧
⎪⎨

⎪⎩

0, if λ ≥ 1

−int(log10 λ), if 1 > λ > 10−16

15, if λ ≤ 10−16

(6.37)

Thus, eigenvalues lying in the range 10−4 ≥ λ > 10−5, for instance, were transformed
to ∆ = 4.

In Table 6.13 we have listed transformed eigenvalues for the neon atom. Each
entry in the table gives the total number of eigenvalues transformed to a particular
∆. For each ansatz four different expansions of GCFs were investigated. Three
of the expansions consisted of a single GCF having exponent 1/3, 9, or 243, while
the fourth expansion was the standard set of GCFs discussed in section 6.3. This
expansion is denoted “Full” in the table.

Beginning with the kl-ansatz, we see that the distribution of eigenvalues is quite
sensitive to the choice of GCF exponent. The larger the exponent, the larger the
overlap between different geminals. For the kl-ansatz, however, the distribution of
eigenvalues is insensitive to the choice of one-electron basis.

Moving to the kq-ansatz, we see that the distribution of eigenvalues is even more
sensitive to the choice of GCF exponent than for the kl-ansatz. This is also true for
the pq-ansatz. Furthermore, we note that for the kq- and pq-ansätze the degree of
linear dependency increases, i.e. the number of small eigenvalues increases, when
the one-electron basis set is increased. Note, especially, that there is a considerable
amount of eigenvalues smaller than 10−15 for the pq-ansatz. These eigenvalues cor-
responds to GCFs or linear combinations of GCFs that, within numerical precision,
is identical to linear combinations of other GCFs.

This is not a fortunate situation as the equation solver may fail to converge in
certain situations, as seen in Table 7.10. Exactly when a calculation is going to
fail to converge is difficult to say, however. When using the AO formulation of



Table 6.13: Distribution of eigenvalues (λ) for some INT22 matrices for
the neon atom. Geminals are constructed using basis sets cc-pVDZ (upper
part of table) and aug-cc-pCVTZ(spd) (lower part of table) and using ei-
ther one GCF having exponent 1

3 , 9 or 243 or the full set of 9 GCFs that was
discussed in section 6.3. Eigenvalues are reported as ∆ = −int(log10 λ).

KL KQ PQ

∆ 1/3 9 243 Full 1/3 9 243 Full 1/3 9 243 Full

0 15 1 19 59 1 67 80 2 115
1 13 1 25 1 20 1 70 24 34 1 108
2 22 15 77 1 26 1 124
3 1 9 28 17 20 100 21 31 162
4 4 23 7 9 83 21 19 155
5 13 9 60 1 13 104
6 1 3 10 36 6 71
7 1 20 14 35
8 1 8 12 9 32
9 3 7 11 27

10 5 4
11 3 8
12
13
14
15

0 15 1 19 227 15 309 440 78 4 750
1 13 1 25 42 82 5 266 298 118 22 609
2 22 16 59 10 337 168 109 34 791
3 1 9 28 39 49 415 107 127 57 931
4 4 23 38 41 323 18 131 73 1018
5 13 25 32 220 4 91 63 865
6 1 3 12 29 197 104 87 727
7 2 11 22 130 99 72 671
8 1 27 125 86 66 567
9 36 93 31 86 438

10 3 16 57 28 95 416
11 6 48 27 91 373
12 8 18 3 64 317
13 4 15 3 66 225
14 12 36 171
15 119 446



the kq-ansatz (see Equation (6.14)), for instance, redundant two-electron basis sets
are produced. These redundant basis sets bring several singularities into the linear
equations. A few test calculations on neon and water, however, produced exactly
the same pair energies as those obtained with the non redundant MO formulation.
The LDLT factorisation therefore seems to be rather robust with respect to linear
dependencies.

Even though a calculation converges, the resulting pair energies can only have
limited accuracy. Exactly what accuracy we have obtained for each energy, however,
is hard to tell. When we later turn to applications in section 7, we try and resolve
this problem by using a series of systematically increasing basis sets for each system.
This way, the energy converges in a systematic manner, and as the larger basis sets
reproduce figures obtained in smaller sets, these figures are trusted as reliable.

Before leaving Table 6.13 completely, we note that the distribution of eigenvalues
for the full set of GCFs seems to follow the distribution pattern outlined by the
calculations where one GCF was used. This holds true for all three ansätze regardless
of whether the small or the large one-electron basis set is used. If the overlap between
geminals having different GCF exponents had been high, a shift in the direction of
smaller eigenvalues would have been expected when the full expansion was used.
Since such a shift is not observed, we conclude that the exponents in the standard
set have been chosen sufficiently different.

In Table 6.14 we have presented the distribution of eigenvalues obtained for the
water molecule. We shall not discuss this table in much detail as it reveals exactly
the same trends as found for the neon atom. Note however, that for the water
molecule there has been a shift in the direction of smaller eigenvalues. This is
probably related to the lower point-group symmetry of the water molecule.

The equation solver employed in this work calls subroutines in the LINPACK [84]
library. The LDLT approach implemented in this library, utilises the pivoting strat-
egy of Bunch and Kaufman [85] for general symmetric matrices. Higham [86] has
shown that this gives a stable factorisation, and linear dependencies is not expected
to create severe numerical instabilities in the equation solver. If such instabilities
should be encountered, however, there are a number of possible ways to reduce or
resolve this problem. One way is to replace the LDLT factorisation with a singular
value decomposition (SVD). This method is not as efficient as the LDLT factorisa-
tion in solving equation, but it is designed to treat equation systems with singular
values by explicitly removing the singularities from the equation system.

In the next section we discuss another approach which rather than removing
singularities from the equation system, aims at removing them by fixation of the
GCF expansion coefficients. An additional benefit of this approach is that it also
decreases the memory requirements.



Table 6.14: Distribution of eigenvalues (λ) for some INT22 matrices for
the water molecule. Geminals are constructed using basis sets cc-pVDZ
(upper part of table) and aug-cc-pCVTZ(spd,sp) (lower part of table)
and using either one GCF having exponent 1

3 , 9 or 243 or the full set of
9 GCFs that was discussed in section 6.3. Eigenvalues are reported as
∆ = −int(log10 λ).

KL KQ PQ

∆ 1/3 9 243 Full 1/3 9 243 Full 1/3 9 243 Full

0 15 1 17 58 1 262 119 4 245
1 3 1 21 44 14 1 233 101 38 1 227
2 10 23 8 23 305 51 30 1 298
3 1 2 29 22 12 363 27 49 32 339
4 11 20 21 25 333 2 50 33 335
5 1 17 19 14 309 57 39 301
6 6 7 16 236 48 28 234
7 2 2 15 188 19 39 208
8 1 15 164 4 40 178
9 8 121 1 38 138

10 3 92 31 95
11 55 15 61
12 1 28 2 30
13 10 1 9
14 1 1
15 1

0 15 1 17 160 14 281 334 37 1 709
1 3 1 21 96 40 5 267 288 59 9 681
2 10 23 40 65 9 340 264 97 21 938
3 1 2 29 31 48 27 409 247 96 49 1161
4 11 20 11 38 38 346 192 141 59 1232
5 1 17 4 45 43 323 135 152 68 1200
6 6 3 34 40 251 76 178 85 1131
7 2 24 36 229 45 188 93 1051
8 19 40 187 12 178 108 986
9 3 34 144 3 155 138 932

10 8 32 122 121 144 863
11 5 18 88 67 157 762
12 2 10 53 54 148 668
13 7 35 34 145 536
14 5 19 17 116 461
15 1 11 22 255 1053



6.9 Approximating the Coulomb hole using a linear
combination of GCFs

One of the motivations for using Gaussian-type geminals in MP2 theory, is that a
linear combination of such functions are able to construct a linear r12 to any degree
of accuracy. However, rather than using a fixed linear combination of GCFs, we
have decided to let these expansion coefficients be optimised in each calculation.
This provide us with a better energy, but as we have seen, this does not come for
free.

Alternatively, we may use a fixed linear combination of GCFs in our GTGs.
This ought to reduce the problems with linear dependencies, but at the same time
energies must be expected to be less good.

In this section we discuss different ways to optimise the linear combination of
GCFs, and we also show that such a linear combination indeed is a good represen-
tations of a linear r12.

6.9.1 Fitting by means of least squares

Let us assume that the shape of the Coulomb hole for certain values of r12 is given
exactly by the function f(r12). Denoting the linear combination of GCFs that best
fits this shape g(r12), we may write

f(r12) ≈ g(r12) =
∑

v

hv(r12)cv (6.38)

where {hv} are basis functions expressed in terms of GCFs and {cv} are coefficients
to be optimised. Typically, a fit like this is optimised using least squares, which
minimises the quadratic error between g and the target function f

∂

∂cv
||f − g||2 =

∂

∂cv

∫ b

0

[f(r12) − g(r12)]
2 dr12 = 0 (6.39)

In this expression we have assumed that the function g is to fit f in the region
0 ≤ r12 ≤ b. Taking partial derivatives with respect to each of the coefficients cv we
get a set of equations that may be written

⟨hv|f⟩ −
∑

w

⟨hv|hw⟩ cw = 0 (6.40)

or
tv −

∑

w

Svwcw = 0 (6.41)

where the matrix S gives the overlap between any two basis functions and the vector
t gives the overlap between any basis function and the function to be fitted. The



process of fitting the function g to function f is thus reduced to simple matrix
algebra. The coefficients cv that gives the best fit are

cv =
∑

w

S−1
vw tw (6.42)

To obtain numerical values for these coefficients we must first choose what function
f(r12) to fit and then which basis to fit it in.

6.9.2 GCF basis sets used for the expansion

Two equivalent sets of basis functions may be formed from a set of GCFs

hv(r12) = exp (−γvr
2
12) (basis A) (6.43)

hv(r12) = 1 − exp (−γvr
2
12) (basis B) (6.44)

These basis functions look similar but give, in fact, quite different fits. Note also, in
passing by, that each Gaussian correlation factor contains a nonlinear parameter γv.
Optimising this parameter as well would probably give us less linearly dependent
basis functions, but to avoid complicated optimisation schemes, we only consider
the standard set given in section 6.3.

6.9.3 Fitting GCFs to the linear r12

According to equation (6.3) the shape of the Coulomb hole is given by a function
linear in r12 for small values of r12. We therefore set the target function f(r12) = r12

and use the Gaussian correlation factors to fit this function. Depending on which of
the basis sets (6.43)–(6.44) we choose, the fit (6.38) may be written either as

r12 − 1 ≈
∑

v

cv exp (−γvr
2
12) (6.45)

or as
r12 ≈

∑

v

cv

[
1 − exp (−γvr

2
12)
]

(6.46)

We start exploring the former of these fits and then return to the latter at the end
of this section.

Basis A

To obtain the expansion coefficients given in (6.45), we must solve equation (6.42).
The overlap matrices needed in this equation are

Svw = ⟨hv|hw⟩ =

∫ b

0

exp (−γvr
2
12) exp (−γwr2

12) dr12 (6.47)

tv = ⟨hi|f⟩ =

∫ b

0

exp (−γvr
2
12)(r12 − 1) dr12 (6.48)



The integration limit b is the largest inter-electronic distance that is included in the
fit. It may alternatively be denoted rmax. To evaluate the integrals we start by
making the substitution r12 = rmaxu. This gives

Svw =

∫ 1

0

exp
(
− (γv + γw) r2

maxu
2
)
rmax du (6.49)

tv =

∫ 1

0

exp
(
−γvr

2
maxu

2
)
(rmaxu − 1) rmax du (6.50)

In both expressions we recognise the zeroth order Boys function, recalling that the
nth order Boys function is given by the relation

Fn (x) =

∫ 1

0

exp
(
−xt2

)
t2n dt (6.51)

Expressing both (6.49) and (6.50) in terms of the Boys function and substituting
γvw for γv + γw we arrive at

Svw = rmaxF0

(
γvwr2

max

)
(6.52)

tv =
1

2γv

[
1 − exp

(
−γvr

2
max

)]
− rmaxF0

(
γvr

2
max

)
(6.53)

Giving a value for the rmax is a question of which region we want our approximative
function g to fit the exact function f . Since the Coulomb hole has been represented
by a function linear in r12, terms of higher order have been neglected. The Coulomb
hole is therefore best represented for small values of r12, suggesting a small value
for rmax. The rmax, however, must also reflect the set of Gaussians actually used.
This means that we must avoid fitting in a region where we have no basis functions,
and also we must avoid having basis functions beyond the region we intend to
fit. A choice of rmax that naturally limits the region a set of Gaussian functions
can describe, is the first turning point of the most diffuse Gaussian. Denoting the
exponent of this function γmin the turning point rtp is given by

rtp = (2γmin)−
1
2 (6.54)

Using rmax = rtp ≈ 2.121, we have fitted the standard set of 9 GCFs to the linear
r12 function. To show how sensitive the solution is to the upper integration limit,
we have also fitted the GCFs with this limit set to .5 rtp and 2 rtp. The three fits
are plotted in Figure 6.8 as fits 1, 2, and 3, respectively. The solution coefficients
{cv}, which have been normalised to unity after the plotting, are given in Table 6.15.
These normalised coefficients do not reproduce the plots.

The plots in Figure 6.8 shows the importance of choosing an appropriate inte-
gration limit for the basis set in use. Particularly, we note that when the integration
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Figure 6.8: Fitting basis A to the linear r12 using three different fit regions. Fit 1:
[0, rtp], Fit 2: [0, 0.5rtp], and Fit 3: [0, 2rtp]. Distance rtp ≈ 2.121

0

0.1

0.2

0.3

-0.2 -0.1 0 0.1 0.2
r12/a0

Fit 1
r12

Figure 6.9: Figure 6.8 magnified 10 times. Only Fit 1 are included in the plot.



Table 6.15: Normalised solution coefficients {cv} when fitting basis A to the linear
r12.

Exp. 1/9 1/3 1 3 9 27 81 243 729

Fit 1 .535 −.788 .254 −.148 .052 −.052 .024 −.018 .002
Fit 2 .613 −.786 .047 −.052 −.024 −.013 −.010 −.001 −.007
Fit 3 .262 −.545 .498 −.421 .323 −.249 .175 −.105 .036

limit is chosen too large, like in Fit 3, we end up with a completely useless function.
This is a direct consequence of fitting over a region where there are no appropriate
basis functions. Note, however, that the function does represent a best fit in the
mathematical sense, it just does not have the shape we want.

When the upper integration limit is chosen small, like in Fit 2, we see that the
shape does not change much from that of Fit 1. The expansion coefficients given in
Table 6.15, however, are very different for the two functions. As long as the shape
for small values of r12 are similar, these two Coulomb hole representations ought to
yield similar energies.

In Figure 6.9, we have plotted Fit 1 again, but this time the plot is zoomed
10 times nearby the origin. The magnified plot reveals that the optimised function
meanders nicely about the straight r12 line all the way down to r12 ≈ 0.01 Bohr. The
results presented in section 6.3, suggests that such a Coulomb hole fit is sufficient
to give us energies accurate to a few tenths of a mEh.

Basis B

To obtain Coulomb hole fits for basis B defined in (6.44), we need to work out
formulas for the overlap matrices S and t corresponding to those given for basis A
in (6.52)–(6.53). The formulas for basis B turns out to be slightly more complicated

Svw = rmax

[
1 − F0

(
γvr

2
max

)
− F0

(
γwr2

max

)
+ F0

(
γvwr2

max

))
(6.55)

tv =
1

2
r2
max −

1

2γv

[
1 − exp (−γvr

2
max)

]
(6.56)

Fitting the linear r12 in basis B using the standard set of GCFs and the same values
of rmax as for basis A, we get the functions plotted in Figure 6.10. Their respective
expansion coefficients, which have been normalised, are given in Table 6.16. Note
that these coefficients differ significantly from those presented in Table 6.15.

Again, the function for which rmax = rtp fits the linear r12 nicely. Increasing the
upper integration limit to 2 rtp also generates nice fits, which is not the case when
basis A is used. When the integration limit is reduced to 0.5 rtp ≈ 1.061, however,
the fitted function is given an exponential increase shortly after the integration
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Figure 6.10: Fitting basis B to the linear r12 using three different fit regions. Fit 1:
[0, rtp], Fit 2: [0, 0.5rtp], and Fit 3: [0, 2rtp]. Distance rtp ≈ 2.121.

Table 6.16: Normalised solution coefficients {cv} when fitting basis B to the linear
r12.

Exp. 1/9 1/3 1 3 9 27 81 243 729

Fit 1 −.991 .021 −.114 −.045 −.033 −.013 −.016 .004 −.013
Fit 2 −.892 .442 −.093 .003 −.005 −.001 −.002 .001 −.002
Fit 3 −.879 .331 −.281 .118 −.124 .069 −.062 .032 −.017

limit, and does not level off until the functional value is approximately 16. The
exact asymptotic value may be found by summing the expansion coefficients prior
to normalisation.

6.9.4 Fitting GCFs to the linear r12 with damping

In their 1996 paper, Persson and Taylor [59] used an exponential weight exp(−r12)
in their least-squares procedure. Since this exponential weight favours the inner
part of the Coulomb hole, such a fit is expected to be less sensitive to the choice of
upper integration limit. In particular, choosing the limit too large should give less



oscillation than observed in Figure 6.8
Introducing the exponential weight exp(−2γr12) into equation (6.39), we get

∂

∂cv
||f − g||2 =

∂

∂cv

∫ b

0

exp (−2λr12) [f(r12) − g(r12)]
2 dr12 = 0 (6.57)

In addition to viewing this as a damped fit we may also regard it as a change of
both the function to be fitted and the basis functions

f(r12) −→ f(r12) exp (−λr12) (6.58)

h(r12) −→ h(r12) exp (−λr12) (6.59)

Assuming basis function of type A, the two kinds of overlap matrices now becomes

Svw = exp (γvwr2
vw)
[
(rvw + rmax)F0(γvw(rvw + rmax)

2) − rvwF0(γvwr2
vw)
]

(6.60)

and

tv = exp (γvr
2
v)
[ 1

2γv

(
exp (−γvr

2
v) − exp (−γv(rv + rmax)

2)
)

+ rv(rv + 1)F0(γvr
2
v)

− (rv + rmax)(rv + 1)F0(γv(rv + rmax)
2)
]

(6.61)

where we have introduced the simplifications γvw = γv +γw, rvw = λ/γvw, rv = λ/γv

and rw = λ/γw. For basis B the corresponding formulas become

Svw =
1

2λ
[1 − exp(−2λrmax)]

−
[
(rv + rmax)F0(γv(rv + rmax)

2) − rvF0(γvr
2
v)
]

−
[
(rw + rmax)F0(γw(rw + rmax)

2) − rwF0(γwr2
w)
]

+
[
(rvw + rmax)F0(γvw(rvw + rmax)

2) − rvwF0(γvwr2
vw)
]

(6.62)

and

tv =

(
1

2λ

)2

−
[(

1

2λ

)2

+
rmax

2λ

]
exp (−2λrmax)

− exp (γvr
2
v)
[ 1

2γv

(
exp (−γvr

2
v) − exp (−γv(rv + rmax)

2)
)

+ rv(rv + rmax)F0(γv(rv + rmax)
2) − r2

vF0(γvr
2
v)
]

(6.63)

where the definitions of rv, rw and rvw are identical to those given above for basis
A.
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Figure 6.11: A damped with of basis A to the linear r12 using three different fit
regions. Fit 1: [0, rtp], Fit 2: [0, 0.5rtp], and Fit 3: [0, 2rtp]. Distance rtp ≈ 2.121.

Table 6.17: Solution coefficients {cv} when fitting basis A to linear r12 using damp-
ing.

Exp. 1/9 1/3 1 3 9 27 81 243 729

Fit 1 .556 −.796 .210 −.109 .016 −.025 .003 −.006 −.003
Fit 2 .618 −.783 .031 −.049 −.027 −.012 −.011 −.001 −.008
Fit 3 .471 −.766 .369 −.206 .088 −.061 .030 −.018 .003

In Figure 6.11 we have, once again, plotted the same type of fits as those pre-
sented in Figure 6.8. This time, however, we have used a damped fit with the
damping factor λ set to unity. Normalised expansion coefficients for these fits are
given in Table 6.17.

Note how the oscillation for Fit 3 is less pronounced. Apart from that, there are
only minor changes.



Table 6.18: Second-order correlation energies (−E/mEh) for the
helium atom using a fixed GCF expansion. Expansion coefficients
are taken from Fit 1 of Tables 6.15 and 6.16 which represent GCF
basis sets A and B, respectively. The results for basis A and B are
presented in the upper and lower part of this table, respectively.

Orbital basis VOE IJ KL KQ PQ

cc-pVDZ 25.828 — 27.426 28.459 35.052
cc-pVTZ 33.138 — 33.417 33.542 37.246
aug-cc-pVDZ 26.962 — 28.379 29.870 37.229
aug-cc-pVTZ 33.621 — 33.620 34.099 36.431

cc-pVDZ 25.828 — 26.488 26.665 31.304
cc-pVTZ 33.138 — 33.200 33.244 36.106
aug-cc-pVDZ 26.962 — 27.353 27.398 33.354
aug-cc-pVTZ 33.621 — 33.654 33.658 36.453

6.9.5 Sample calculations

To investigate the performance of fixed GCF expansions, we have done some cal-
culations on the helium and neon atoms using the coefficients for Fit 1 taken from
Tables 6.15 and 6.16. These coefficients have been obtained using GCF basis sets A
and B, respectively. The results are presented in Tables 6.18 and 6.19.

Investigating the results for helium first, we note that these are somewhat odd.
For several of the calculations, the kq-ansatz performs only slightly better than
the kl-ansatz (which equals the ij-ansatz for two-electron systems), whereas for all
other calculation presented in this work, the kq-ansatz performs significantly better.
We also note that for the combination of GCF basis A and the pq-ansatz, the
energy obtained using the aug-cc-pVDZ basis is lower than the energy obtained using
the aug-cc-pVTZ basis. Assuming that the Fock operator expansion is sufficiently
complete for both basis sets, this is a violation of the variational principle. For the
aug-cc-pVTZ basis, we also get that the pure virtual orbital expansion gives a lower
energy than the kl-ansatz. Adding to this the fact that basis sets A and B produce
quite different results, the energies presented in Table 6.18 seem rather unreliable.

When expansion coefficients are fixed, flexibility is lost in the two-electron basis.
As discussed in appendix A, such flexibility is crucial for strong orthogonality to be
obtained. Strong orthogonality, in turn, is our insurance that the WO functional
does a good job in optimising pair functions. Possibly, by fixing the expansion
coefficients, we have reduced the flexibility to an extent where the WO functional
no longer produces truly optimised pair functions. If so, the pair functions obtained
do not correspond to the lowest pairs energies within the given two-electron basis.



Table 6.19: Second-order correlation energies (−E/mEh) for the neon
atom using a fixed GCF expansion. Expansion coefficients are taken
from Fit 1 of Tables 6.15 and 6.16 which represent GCF basis sets A
and B, respectively. The results for basis A and B are presented in
the upper and lower part of this table, respectively.

Orbital basis VOE IJ KL KQ PQ

cc-pCVDZ 228.303 230.898 232.070 247.511 265.889
aug-cc-pCVDZ 249.895 252.082 252.822 269.187 298.257

cc-pCVDZ 228.302 228.652 228.680 228.886 263.458
aug-cc-pCVDZ 249.895 250.226 250.252 250.460 299.632

In Table 7.1 of the next chapter, calculations on helium using optimised expan-
sion coefficients are presented. The optimised coefficients give far better energies
than the fixed expansion coefficients no matter the ansatz. Also, there is no (visible)
violations of the variational principle when expansion coefficients are optimised.

In Table 6.19, we have presented results for the neon atom using fixed expansion
coefficients. Again, the performance of the kl- and kq-ansätze are rather miser-
able, especially when comparing to the results obtained with optimised expansion
coefficients as presented in Table 7.10.

The kq-ansatz performs better with GCF basis A than with GCF basis B. For the
other ansätze, however, there are only minor differences. Pair energies, therefore,
seem to be sensitive to the choice of expansion coefficients in a rather unpredictable
manner.

For the helium atom, the pq-ansatz performs reasonably well, especially when
using GCF basis A. For the neon atom, however, the pq-ansatz performs poor with
both GCF basis sets. Why the pq-ansatz performs better for helium than for neon
is difficult to say, but it is probably related to the larger variety of pair functions
present in the neon atom. For some reason, this degrades the overall performance
of the optimisation.

We conclude this section by stating that using a fixed set of expansion coefficients
for the Gaussian correlation factors (GCFs) does not turn out to be a success, as
the energies obtained are both poor and unreliable. Whether this is due to the use
of the WO functional to optimise pair functions, due to the fitting strategy or due
to something else, cannot currently be stated.

A motivation for investigating the use of a fixed GCF expansion was the quest
for a two-electron basis less hampered with linear dependencies. Due to the poor
performance of the fixed expansions, we have not investigated whether the degree
of linear dependencies really has decreased or not.

Finally, it should be pointed out that even if it is not such a good idea to fix



the entire GCF expansion, it may still be an alternative to fix parts of it. As the
largest amount of linear dependencies is related to the inner part of the Coulomb
hole, fixing only the expansion coefficients for the GCFs with the highest exponents
may therefore still prove to be a good idea. This way we may get rid of the most
severe linear dependency problems and at the same time have sufficient flexibility
left in the two-electron basis.





Chapter 7

Applications

7.1 Introduction

In the preceding chapters we have studied the theoretical foundation of GTG-MP2
theory and have discussed different computational aspects of this method like inte-
gral timings, parallelisation, prescreening, and so forth. One of the more intriguing
parts of method development, however, is finding out how the new method performs
in real applications. The current chapter is devoted to this task.

In conventional MP2, the resulting pair energies depend only on the quality of
the one-electron basis set, and exploring the performance of this method is therefore
a rather straight forward task. For the GTG-MP2 theory presented here, however,
things are unfortunately not that simple as the performance depends on several
different parameters making a full exploration of the method a comprehensive task.
Things that affect MP2-GTG energies include the choice of

• Level-shift parameter

• Two-electron basis (GTG ansatz)

• GCF expansion

• One-electron basis.

As discussed in section 6.4, the level-shift parameter (η) affects the optimisa-
tion of pair functions. A level-shift parameter of zero theoretically gives the lowest
(≈ best) pair energies, but at the expense of pair functions that are not strongly
orthogonal to the occupied orbitals. Since the SO measure may give us valuable
information about the quality of the optimised pair functions (cf. section A), using
η = 0 is not a good idea. In section 6.4, we concluded that a level-shift parameter
of 0.1 represents a compromise between low energies and good SO measures, and
we use this η for all calculations in this chapter and do not investigate whether or
not it is the optimal choice in each case.



Whereas pair energies are fairly insensitive to the choice of level-shift parameter,
they depend strongly of the GTG ansatz. When constructing Gaussian-type gemi-
nals (see section 6.1) we may use several different ansätze for the orbital part, and
each of these have upsides as well as downsides. Since the different ansätze lead to
quite different performance for the GTG-MP2 method, the calculations presented in
this chapter shall to as large an extent as possible employ the three major ansätze;
kl, kq, and pq.

In addition to an orbital part, GTGs are also constructed from a Gaussian-type
correlation factor (GCF) which “ties” the two orbitals into a two-electron function.
The GCF exponent may be varied, and for the GTGs to properly describe the
Coulomb hole, a linear combination of GCFs with different exponents have to be
used. The number of GCFs included in the linear combination and the values of
their exponents may both be varied, and this leaves us with a large “GCF-space”
to explore. Note, also, that a linear combination that is optimal for one system, is
not necessarily optimal for other systems. Fortunately, the GCF study performed
in section 6.3, suggests that the GCF-space is rather well saturated if we use a set
of 9 GCFs consisting of the even-tempered exponents {1/9, 1/3, . . . , 729}, and we
shall not pursue the choice of GCFs any further in this chapter.

Finally, pair energies also depend on the choice of one-electron basis set, just as
with conventional MP2. In fact, the choice of one-electron basis is what influence
the energy the most. Unfortunately, this dependency is rather complicated as the
atomic orbitals enter the GTGs, the virtual orbital expansion, and the expansion of
the Fock operator at the same time. If the orbital basis is improved, it is impossible
to decouple the contributions each of these factors make to the change in energy,
although pair energies are expected to be sensitive to the Fock operator expansion
only if the basis set is small.

Since the choice of one-electron basis is so important, we have chosen to study
each system using a wide range of basis sets, thus allowing us to monitor energy
convergence with respect to both partial-wave expansions as well as principal ex-
pansions. The basis sets that are used for this study were discussed in section 6.2,
along with some notational details.

7.2 Helium

The smallest atomic systems that contain electron-electron correlation are the two-
electron systems H−, He, Li+, and so on. Since these systems are all two-electron,
results obtained for one of them also apply to the others. With this in mind, we
limit our investigation of one-centre two-electron systems to helium.

For helium, however, we shall not only study the atom but also the dimer. The
existence of the helium dimer is entirely due to the electron-electron correlation,
and in a world where this effect did not exist, two helium atoms would merely repel



each other. We shall calculate the depth of the MP2-GTG potential energy surface
of the helium dimer, and show that our results are comparable to result presented
in literature.

7.2.1 The helium atom

In Table 7.1 we present results for the helium atom using the three ansätze and
various flavours of the correlation-consistent basis sets of Dunning and co-workers.
For reference, we have also included the energies obtained using conventional MP2.
These are listed in the VOE (virtual orbital expansion) column.

The number of figures included in the different energies vary, roughly reflecting
the accuracy obtained in each case. For accountability, however, all energies are
listed in Table B.5 using nine figures.

Table 7.1 shows that the kq- and pq-ansätze perform excellently while the per-
formance of the kl-ansatz is only fair. Note, for instance, that while the best energy
using the kl-ansatz is obtained with the aug-cc-pV6Z basis, better energies are ob-
tained for the kq-ansatz in a basis consisting of s- and p-orbitals only.

We furthermore note that for the kq- and pq-ansätze, decent energies are ob-
tained also when only s-orbitals are used; and when p-orbitals are included, the
pair energy is converged to within 1µEh. This is quite remarkable. Another in-
teresting thing to note is that the kq- and pq-ansätze perform better with the
aug-cc-pVXZ(sp) basis sets than the corresponding cc-pVXZ sets, indicating that
saturating the low angular momentum spaces is more important for the pair energy
than adding orbitals with high angular momentum. This property turns out to be
general and is also encountered for the other systems discussed in this work.

The best helium energy is obtained using the pq-ansatz and the basis set aug-cc-
pV6Z(spd). This basis is made from 50 orbitals (7s6p5d ), which is not a large basis
set the performance taken into account. Unfortunately, we could not use the basis
set aug-cc-pV5Z(spdf) with the pq-ansatz, due to a current limit of 2GB internal
memory usage (the 32 bit architecture limit).

In Table 7.2 we have compared our best helium pair energies with a few reference
values found in literature. This table shows that our best value is close to the current
energy limit obtained by Bukowski and co-workers [88]. They also used the weak
orthogonality functional (3.77) in optimising the pair function, and expanded this
in a set of Gaussian-type geminals. These GTGs, however, were defined differently
from ours and read

gi(1, 2) = exp
[
−αi(r1 − Pi)

2 − βi(r2 − Qi)
2 − γir

2
12

]
(7.1)

where the exponents αi, βi and γi were treated as variational parameters. Since
these parameters enter an exponential function, expensive non-linear optimisation
techniques must be used. The centres of the GTGs, Pi and Qi, did not have to be
optimised, however, as their optimal location, due to symmetry, is on the helium



Table 7.1: Second-order correlation energies (−E/mEh) for the
helium atom. The entry marked with a dagger (†) failed to con-
verge in the equation solver. Refer to Table B.5 to have all ener-
gies listed with nine figures.

Orbital basis VOE KL KQ PQ

cc-pVDZ 25.83 33.75 36.713 36.9501
cc-pVTZ 33.14 35.87 37.183 37.2998
cc-pVQZ 35.48 36.77 37.326 37.3628
cc-pV5Z 36.41 37.09 37.363 37.3738

aug-cc-pVDZ(s) 11.50 29.39 36.941 37.0913
aug-cc-pVTZ(s) 12.90 29.48 37.053 37.2166
aug-cc-pVQZ(s) 13.28 29.57 37.208 37.3353
aug-cc-pV5Z(s) 13.44 29.59 37.235 37.3613
aug-cc-pV6Z(s) 13.47 29.59 37.239 37.3689

aug-cc-pVDZ 26.96 35.23 37.169 37.2926
aug-cc-pVTZ(sp) 31.11 35.77 37.251 37.3460
aug-cc-pVQZ(sp) 32.06 35.97 37.350 37.3724
aug-cc-pV5Z(sp) 32.35 36.02 37.369 37.3769
aug-cc-pV6Z(sp) 32.42 36.04 37.372 37.37720

aug-cc-pVTZ 33.62 36.52 37.255 37.3610
aug-cc-pVQZ(spd) 35.03 36.88 37.352 37.3755
aug-cc-pV5Z(spd) 35.46 36.98 37.371 37.37717
aug-cc-pV6Z(spd) 35.58 37.00 37.375 37.37729

aug-cc-pVQZ 35.72 37.06 37.354 37.3758
aug-cc-pV5Z(spdf) 36.29 37.19 37.3720 n/a
aug-cc-pV6Z(spdf) 36.47 37.22 37.3755 n/a

aug-cc-pV5Z 36.53 37.23 37.3725 n/a
aug-cc-pV6Z(spdfg) 36.78 37.26 † n/a

aug-cc-pV6Z 36.88 37.305 n/a n/a

d-aug-cc-pVDZ 27.01 35.29 37.190 37.3079
d-aug-cc-pVTZ(sp) 31.12 35.78 37.258 37.3547
d-aug-cc-pVQZ(sp) 32.06 35.98 37.351 37.3736
d-aug-cc-pV5Z(sp) 32.35 36.02 37.369 37.37697

d-aug-cc-pVTZ 33.63 36.53 37.263 37.3678
d-aug-cc-pVQZ(spd) 35.04 36.89 37.353 37.3762



Table 7.2: Second-order correlation energies (−E/mEh) for the helium atom.
Comparison with literature data. Entries are listed chronologically. For helium
the total correlation energy is −42.044 mEh [88].

Authors E(2)

This work
kl-ansatz (aug-cc-pV6Z) 37.305
kq-ansatz (aug-cc-pV6Z-spdf) 37.375
pq-ansatz (aug-cc-pV6Z-spd) 37.37729

Lee and Park [87]
Extrapolation 37.4052

Bukowski et al. [88]
150 nonlinearly optimised GTGs 37.37744

Flores [89]
FEM-MP2 with l ≤ 12 and angular extrapolation 37.376

Termath et al. [41]
MP2-R12/A with STO basis (12s11p11d9f9g) 37.375
MP2-R12/B with same basis as approximation A 37.362

Petersson et al. [90]
CBS (complete basis set) model 37.59

Malinowski et al. [91]
Partial-wave expansion with radial and angular extrapolation 37.359

Winter et al. [92]
First order equation solved numerically 37.355

nucleus. From the definition (7.1) we see that the GTGs may be regarded as a pair
of s-orbitals tied together with a GCF; p-orbitals or orbitals with higher angular
momentum, are not used. For the helium atom this is not a shortcoming, however,
as King [93] has shown that geminals of type (7.1), constitutes a complete basis for
pair functions of atoms, when these (as for helium) belong to the totally symmetric
representation.

To obtain their helium energy limit, Bukowski and co-workers used 150 GTGs.
This number may be compared to the 2349 GTGs used to obtain our pq-ansatz
limit, 153 GTGs used to obtain the kq-ansatz limit and 9 GTGs used to obtain the
kl-ansatz limit. Note, also, that Bukowski obtained his limit using a pure GTG ex-
pansion for the pair function, while we supplement the GTGs with the conventional
virtual orbitals expansion.

Being variational, the result obtained by Bukowski and co-workers currently
ought to be considered the best value for the second order energy correction of
helium. Interestingly, therefore, this is not always recognised in literature [87, 94, 95].



Although not the lowest correlation energy obtained for helium, it is the lowest
energy obtained variationally, and, together with the pq-ansatz value presented here,
the only correlation energy that is converged to within 1µEh.

When comparing the performance of different methods for larger system later
in this chapter, it is probably worthwhile to keep in mind that the performance of
most of these methods for helium, the simplest of all electron-electron correlated
systems, is only fair.

7.2.2 The interaction energy of the helium dimer

Between all electronic systems there are weak interactions often referred to as Lon-
don forces. These forces are most important in systems that are neutral and non-
polar. Two helium atoms forming a helium dimer are two such systems.

When helium gas eventually condenses to liquid at around 4K, this is entirely
due to the weak London forces. The last 15 years, these interactions have been
studied in several papers. With the objective to obtain the interaction energy as
accurately as possible, most attention has been given to higher order methods like
CCSD(T), MRCI, or other multi-reference methods. Some of this methods have also
been combined with extrapolation.

Anderson [96], for instance, used an exact quantum Monte Carlo calculation to
estimate the interaction energy of the dimer, and obtained, for the correlation part
of this energy, the value (10.98 ± 0.02)K. Jeziorska et al. [97], however, recently
obtained (11.008± 0.008)K by combining the Gaussian geminal value of the CCSD
energy with extrapolated orbital estimates of the CCSD(T) and FCI contributions.
Although both of these values are claimed to be highly accurate, they disagree
slightly.

Interesting, therefore, is the critical note on extrapolated helium pair potentials,
where Klopper [98] argues that it is difficult, or even impossible, to obtain the
interaction energy using extrapolation with significantly higher precision than what
is already available today using directly computed potentials.

Even though good estimates of the total interaction energy are available, study-
ing the helium dimer using GTG-MP2 is not irrelevant. First of all, it contributes
to the exploration of GTG based methods. Second, if highly accurate estimates are
obtained, they may be used when calibrating other methods.

One of the problems encountered when estimating the helium–helium interaction
energy, is the basis set superposition error (BSSE). When calculating the energy of
a dimer, each atom also benefits from the basis set used to describe its partner. If,
therefore, the energy of the monomers are calculated without compensating for this,
an unbalance arises in the description of the monomers and the dimer, leading to
an interaction energy that is too large.

The simplest way to compensate for an unbalance, is to describe the monomers
using a ghost basis. When setting up the input for the monomer calculation, one



removes one of the helium atoms from the dimer calculation, but leaves its basis set
in place.

Interaction energies calculated using a ghost basis are said to be counterpoise-
corrected (CP). When the corrected energy differs from the non corrected energy, as
it usually does, this indicates a deficit in the original basis. As we shall see, within
a Gaussian-type geminal basis, it is not difficult to construct basis sets that make
the counterpoise-correction superfluous at the second-order energy correction level.

In Table B.7 we have recalculated the second-order energy correction of the
helium atom, but this time with a ghost basis at a 5.6a0 distance, which is the
accepted equilibrium bond length of the helium dimer. Due to high computational
cost we were not able to consider all basis sets appearing in Table 7.1, but only a
subset of those. The table is included for reference only, and have therefore been
placed in the appendices. We shall not discuss it in any detail here.

In Table 7.3, however, we give the second-order energy correction of the helium
dimer at its equilibrium distance (refer to Table B.6 to get all energies listed with
nine figures). Again we see that the kq- and the pq-ansätze completely outperform
the kl-ansatz which suffers from the basis set limitation. The best value for the kl-
ansatz is 74.18 mEh obtained with the aug-cc-pVQZ basis set, while the best value
obtained with the kq-ansatz is 74.801mEh obtained with the aug-cc-pV6Z(spd) basis
set. This basis set is highly saturated in the s-, p-, and d-orbital spaces. For the
pq-ansatz, the best value obtained is 74.8042 mEh obtained with the basis set aug-
cc-pV6Z(sp). This value is is converged to within 10µEh of the limit and maybe
even down to 1µEh.

It is possible to evaluate the convergence of this value by using the best available
energy for the helium atom along with some upper limit for the interaction energy
of the dimer. The best available energy for the helium atom is 37.37744 mEh, as
concluded in the previous section. Using 16.0K as an upper limit for the interaction
energy (see Table 7.5), and the conversion factor 1K=3.1577466µEh obtained from
Ref.[99], we arrive at the value 74.8055 mEh as the upper limit for the second-order
energy correction of the helium dimer. We have, therefore, reason to believe that
our best estimate of the second-order correlation energy of the dimer is converged
to within 99.99% of the limit for both the kq- and the pq-ansätze.

Unfortunately, we could not explore the use of d-orbitals with the pq-ansatz
beyond the aug-cc-pVTZ basis set, and a basis set like aug-cc-pV6Z(sp) cannot be
trusted to give a reliable estimating of the interaction energy. A basis consisting of
s- and p-functions only, describe the atom better than the dimer, and this gives a
unbalanced treatment of the two systems, inevitably leading to an underestimated
interaction energy.

In Table 7.4 we give counterpoise-corrected second-order correlation interaction
energies for the helium dimer. The counterpoise-correction energy is given in paren-
theses, except for the pq-ansatz. For this ansatz, energies are given without correc-
tion, as the ghost basis introduced singularities that could not be handled by the



Table 7.3: Second-order correlation energies (−E/mEh) for
the helium dimer. An inter-nuclear distance of 5.6a0 was used.

Orbital basis VOE KL KQ PQ

cc-pVDZ 51.66 67.97 73.56 73.94
cc-pVTZ 66.29 71.85 74.41 74.64
cc-pVQZ 70.98 73.62 74.70 n/a

aug-cc-pVDZ(s) 23.00 59.39 73.93 74.20
aug-cc-pVTZ(s) 25.79 59.41 74.14 74.45
aug-cc-pVQZ(s) 26.56 59.59 74.44 74.69
aug-cc-pV5Z(s) 26.87 59.62 74.50 74.74
aug-cc-pV6Z(s) 26.94 59.64 74.51 74.75

aug-cc-pVDZ 53.97 70.66 74.40 74.64
aug-cc-pVTZ(sp) 62.26 71.67 74.55 74.74
aug-cc-pVQZ(sp) 64.16 72.07 74.75 74.795
aug-cc-pV5Z(sp) 64.73 72.16 74.78 74.802
aug-cc-pV6Z(sp) 64.88 72.20 74.791 74.8042

aug-cc-pVTZ 67.29 73.11 74.57 74.77
aug-cc-pVQZ(spd) 70.11 73.84 74.76 n/a
aug-cc-pV5Z(spd) 70.96 74.03 74.794 n/a
aug-cc-pV6Z(spd) 71.21 74.08 74.801 n/a

aug-cc-pVQZ 71.50 74.18 74.76 n/a

d-aug-cc-pVDZ 54.07 70.76 74.44 74.67
d-aug-cc-pVTZ(sp) 62.28 71.68 74.57 74.76
d-aug-cc-pVQZ(sp) 64.17 72.07 74.75 74.797
d-aug-cc-pV5Z(sp) 64.73 72.16 74.786 74.8038

d-aug-cc-pVTZ 67.32 73.16 74.58 n/a
d-aug-cc-pVQZ(spd) 70.12 73.86 74.76 n/a

implemented equation solver.

Since the basis sets employed are small, we cannot expect the interaction energies
obtained with the virtual orbital expansion to be approaching the limit. The energies
presented, however, give us an idea of how the conventional MP2 method converges
with the size of the basis set.

For the kl-ansatz, all calculations except the one using the aug-cc-pVQZ basis,
yield interaction energies that are far off the limit. Moreover, all interaction energies
are too high, and this somewhat counter-intuitive result, suggests that the basis sets
employed are far too small to be used with the kl-ansatz.



Table 7.4: Second-order correlation interaction energies (E/µEh) for the helium
dimer. An inter-nuclear distance of 5.6a0 ≈ 296 pm was used. All energies except
for those given for the pq-ansatz, are counterpoise (CP) corrected. The number in
parentheses is the decrease in interaction energy caused by the correction. The bond
energy marked with a dagger is erroneous due to a poorly described Fock operator.

Orbital basis VOE KL KQ PQ

cc-pVDZ −5.11 (1.62) −472.26 (.80) −118.21 (16.47) −38.02
cc-pVTZ −16.93 (1.97) −121.05 (1.77) −40.97 (3.42) −42.96
cc-pVQZ −26.95 (1.36) −78.73 (1.22) −42.34 (1.58) n/a

aug-cc-pVDZ(s) +4.32 (4.17) −606.97 (1.42) −45.17 (2.31) −23.35
aug-cc-pVTZ(s) +4.23 (1.36) −443.05 (.41) −36.72 (.77) −20.24
aug-cc-pVQZ(s) +4.10 (.44) −443.69 (.29) −25.76 (.10) −18.19
aug-cc-pV5Z(s) +4.02 (.32) −443.73 (.28) −26.86 (.03) −16.71
aug-cc-pV6Z(s) +3.96 (.36) −451.39 (.35) −26.83 (.02) −17.11

aug-cc-pVDZ −34.66(15.22) −176.80(15.46) −63.30 (1.20) −51.45
aug-cc-pVTZ(sp) −34.90 (3.50) −117.52 (4.21) −51.57 (1.04) −50.92
aug-cc-pVQZ(sp) −34.88 (1.08) −119.62 (1.47) −47.32 (.25) −49.88
aug-cc-pV5Z(sp) −34.87 (.52) −122.75 (1.22) −46.47 (.10) −48.55
aug-cc-pV6Z(sp) −35.19 (.37) −122.50 (.70) −46.47 (.03) −49.76

aug-cc-pVTZ −43.94 (4.13) −73.99 (4.67) −55.65 (1.26) −52.53
aug-cc-pVQZ(spd) −45.39 (1.89) −73.00 (3.07) −51.73 (.35) n/a
aug-cc-pV5Z(spd) −45.93 (1.05) −72.24 (1.49) −51.07 (.15) n/a
aug-cc-pV6Z(spd) −46.30 (.53) −71.33 (.62) −50.48 (.00) n/a

aug-cc-pVQZ −46.72 (1.97) −60.02 (2.98) −51.67 (.36) n/a

d-aug-cc-pVDZ(sp) −35.11(22.24) −167.64(12.59) −60.94(−1.10)† −51.01
d-aug-cc-pVTZ(sp) −35.51 (4.59) −116.50 (4.79) −52.10 (.95) −50.36
d-aug-cc-pVQZ(sp) −35.58 (1.25) −119.49 (1.61) −47.82 (.13) −50.03
d-aug-cc-pV5Z(sp) −35.58 (.59) −122.43 (1.26) −46.97 (.07) −49.91

d-aug-cc-pVTZ −45.37(11.29) −85.25(11.45) −56.21 (3.28) n/a
d-aug-cc-pVQZ(spd) −46.03 (2.98) −72.10 (4.21) −52.13 (.38) n/a



Table 7.5: Second-order correlation interaction energies (−E/K) for the
helium dimer. Comparison with literature data. Entries are listed chrono-
logically.

Authors E(2)

This work
kq-ansatz and basis aug-cc-pV6Z(spd) 15.99
MP2 using 326 basis functions (d-aug-cc-pV6Z) 15.92

Jeziorska et al. [97]
MP2 using 545 basis functions 15.980
MP2 with X−3 extrapolation 16.000
MP2 with X−2 extrapolation 16.013

Bukowski et al. [88]
Nonlinearly optimised GTGs 16.00

Klopper [100]
MP2-R12/A 15.98
MBPT2 using same basis as R12/A calculation 15.92

Gutowski and Cha)lasińsky [101]
Orbital estimate 15.95

The results obtained with the kq- and pq-ansätze, however, are encouraging.
In accordance with the discussion above, interaction energies obtained using a s-
orbital basis, underestimate the interaction energy. The same holds for the basis
sets consisting of both s- and p-orbitals, but the underestimation is smaller. When
d-orbitals are added, the underestimation decreases further, and adding f -orbitals to
the aug-cc-pVQZ(spd) basis set, hardly changes the interaction energy, suggesting
that f -orbitals are less important for a balanced description of monomer and dimer.

We also note how the basis sets are gradually saturated within each angular
momentum level. This is observed as a decrease in the correction energy. For the
kq-ansatz, the singly augmented basis sets become saturated to a degree where
the counterpoise-correction are insignificant. Using the pq-ansatz, these basis sets
should prove to be even better saturated.

In Table 7.5 we compare our best estimate of the second-order correlation in-
teraction energy with values obtained from literature. The best interaction energy
calculated in this work, was obtained using the kq-ansatz and the basis set aug-cc-
pV6Z(spd). Our estimate is in agreement with literature data, but the energy are
not converged, and claiming that there is a certain element of “luck” involved in
this excellent agreement, is probably not unfair.

Note, however, that in order obtain a value like 15.99K without having to rely on
cancellation of errors, both the energy of the atom and the dimer must be converged



to within 0.01µEh. For the helium atom, Bukowski and co-workers [88] are probably
close to this, but for the helium dimer, no-one has up to this point reported a value
that is anywhere near such an accuracy.

For reference, we have also included an estimate obtained using conventional
MP2 and the basis set d-aug-cc-pV6Z. This calculation is used for the construction
of the potential surface of the helium dimer, and is discussed in some more detail in
the next section.

7.2.3 The potential energy surface of the helium dimer

When evaluating the relative performance of different methods, it is important to
compare the interaction energies at some inter-nuclear reference distance. It is
also valuable to calculate interaction energies for different inter-nuclear distances,
however, as this allows us to investigate whether the energy difference between two
methods is constant or a function of the inter-nuclear distance.

To check whether the GTG ansätze scale correctly, we have calculated the poten-
tial energy surface for the helium dimer at inter-nuclear distances in the range 4.8 to
8.5a0. For the Hartree–Fock wave function we used the doubly augmented cc-pV6Z
basis, while the considerably smaller aug-cc-pVQZ(spd) basis was used for the MP2
correction. For consistency, all calculations had to be counterpoise-corrected, and
this excluded the pq-ansatz from the investigation.

As a reference surface, we used a potential energy surface obtained with con-
ventional MP2 and the basis set d-aug-cc-pV6Z. This basis set was also used for
the Hartree–Fock part of the calculation. With such a large basis set, the potential
energy surface is expected to be given with approximately the same accuracy, for
all inter-nuclear distances employed in the investigation.

In Table 7.6 we show total MP2 interaction energies obtained with the GTG
methods and the reference method. The absolute energies used to obtain the in-
teraction energies in Table 7.6 are given in Tables B.8–B.10. As these energies are
enclosed for accountability only, they have been given in the appendices.

In Figure 7.1, we have plotted the potential energy surfaces using the unit Kelvin.
We notice, that the surface obtained with the kl-ansatz undershoot the other two
surfaces by several Kelvin. From the results obtained in the previous section, we
knew this would be the case, and this observation is therefore not particularly in-
teresting. More interesting is the fact that this surface has its minimum value for a
different inter-nuclear distance than the other two. While these have their minima
at around 5.8a0, the surface obtained with the kl-ansatz have its minimum around
5.7a0. This difference may be explained by consulting Table 7.6.

At an inter-nuclear distance of 5.0a0, the kl-surface lies 8.19K under the refer-
ence surface. When the inter-nuclear distance has increased to 5.8a0 this gap has
decreased to 6.85K, and when the two helium atoms are separated by 8.0a0, the
gap is down to 4.64K. In essence, this shows that the kl-ansatz used with the basis



Table 7.6: Total MP2 interaction energies for the helium dimer at various
inter-nuclear distances.

Distance VOE KL KQ
a0 µHartree Kelvin µHartree Kelvin µHartree Kelvin

4.8 −73.0322 −23.13 −46.3169 −14.67 −71.2158 −22.55
5.0 −23.7596 −7.52 2.1112 .67 −22.1793 −7.02
5.1 −8.4106 −2.66 16.9836 5.38 −6.8991 −2.18
5.2 2.6275 .83 27.5179 8.71 4.0949 1.30
5.4 15.6516 4.96 39.4808 12.50 17.0873 5.41
5.6 21.0696 6.67 43.8058 13.87 22.5278 7.13
5.8 22.3173 7.07 43.9706 13.92 23.8326 7.55
6.0 21.4109 6.78 42.0267 13.31 23.0583 7.30
6.5 16.1130 5.10 34.4947 10.92 17.8891 5.67
7.0 11.0220 3.49 27.8054 8.81 12.8907 4.08
7.5 7.3868 2.34 23.0669 7.30 9.3826 2.97
8.0 4.9830 1.58 19.6317 6.22 6.7154 2.13
8.5 3.4180 1.08 16.5757 5.25 4.8839 1.55

set aug-cc-pVQZ(spd) scales incorrectly.
If we consider the kq-ansatz, however, the distances between the kq-surface and

the reference surface are .50K, .48K, and .55K, at the same inter-nuclear separations
as above. This variation is marginal, and suggests that the kq-ansatz scales correctly
with bond lengths. Note, that it may be difficult to realize this only by looking at
Figure 7.1, as the gap visually seems to widen up with the helium–helium distance.

To conclude this section on helium, we have seen that the performance of the
kl-ansatz depends extensively on the basis set in use. The kq- and pq-ansätze are
less sensitive to the basis set, and perform well also when no higher than d-orbitals
are included. For the kl-ansatz to perform satisfactorily, f -orbitals and higher must
also be present in the basis set.

7.3 Beryllium

The beryllium atom is the simplest neutral four-electron system that we can study.
From the periodic table of the elements, we identify the beryllium atom as a closed-
shell system having electron configuration 1s22s2. This implies that the Hartree–
Fock wave function can only contain s-orbitals. There is no such restriction applying
to the wave function corrections, though, and the first-order wave function correction
of beryllium may contain orbitals of any order of angular momentum. This is also
true for the helium atom, but in this case s-orbitals turn out to be sufficient to obtain
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the second-order correlation energy to within 99.99% of the total MP2 correction.
This performance is not surprising, however, as the orbital interacting most with
the 1s2 ground state of helium is also an s-orbital. This orbital, the 2s-orbital,
lies 1.0 Eh above the 1s-orbital in energy, while the closest p- and d-orbitals follows
some 0.2 Eh and 0.7 Eh higher up, respectively. s-orbitals are therefore expected to
be more important in the wave function correction.

For the beryllium atom, things are different, and the lowest unoccupied orbital is
not a s-orbital but the three 2p-orbitals, which lie only 0.3 Eh higher in energy than
the occupied 2s-orbitals. The 2p-orbitals are followed by the 3s- and 3p-orbitals, a
mere 0.01 Eh and 0.04 Eh higher up, respectively. Both s- and p-orbitals are therefore
expected to be important for the wave function correction for beryllium. Our second-
order correlation energies for beryllium, which are presented in Table 7.7, supports
this assumption.

According to Table 7.7, the best correlation energy obtained for beryllium within
a pure s-orbital basis, is only 68.217 Eh. Assuming that the MP2 correction limit is
76.358 Eh (see Table 7.8), s-orbitals manage to recover only 89% of the correlation



Table 7.7: All-electron second-order correlation energies (−E/mEh)
for the beryllium atom. The ANO basis sets are listed in appendix C.
Basis sets marked with an asterisk (∗) are used uncontracted. Refer
to Table B.11 to have all energies listed with nine figures.

Orbital basis VOE KL KQ PQ

ANO–1 (3s) 2.05 51.97 59.59 60.05
ANO–1 (4s) 3.75 52.58 61.10 62.20
ANO–1 (5s) 6.79 53.76 64.91 66.35
ANO–1 (6s) 14.84 55.61 65.94 67.04
ANO–1 (10s)∗ 15.68 55.67 66.04 67.42

ANO–1 (6s1p) 34.86 68.22 75.31 75.98
ANO–1 (6s2p) 36.40 68.44 75.42 76.18
ANO–1 (6s3p) 38.63 69.54 75.70 76.25
ANO–1 (6s4p) 42.00 70.21 75.74 76.26
ANO–1 (10s4p)∗ 42.84 70.28 75.81 76.28

ANO–1 (6s4p1d) 44.89 71.14 76.072 76.299
ANO–1 (6s4p2d) 45.49 71.29 76.097 76.304
ANO–1 (6s4p3d) 45.61 71.35 76.108 76.307
ANO–1 (10s4p3d)∗ 46.45 71.43 76.167 76.317

ANO–2 (14s)∗ 15.91 55.76 66.239 68.217
ANO–2 (14s4p)∗a 43.10 70.33 75.866 76.333
ANO–2 (14s9p)∗ 64.05 74.18 75.939 76.349
ANO–2 (14s9p3d)∗b 67.67 75.27 76.314 76.3555
ANO–2 (14s9p4d)∗ 68.28 75.39 76.318 n/a
ANO–2 (14s9p4d3f)∗ 69.40 75.62 76.345 n/a

a Using the four p-orbitals from the ANO–1 basis set.
b Using the three d-orbitals from the ANO–1 basis set.

energy, even for the pq-ansatz. When p-orbitals are added, however, the energy
increases to 76.349 Eh which is 99.99% of the estimated limit. Both s- and p-orbitals
are therefore essential for the recovery of correlation energy.

By contrast, d-orbitals are not crucial, since the 3d-orbitals lie some 0.5 Eh higher
in energy than the 2s-orbital, which is considerably higher than the 2p-, 3s-, and
3p-orbitals.

Even though the pq-ansatz manages to recover a large fraction of the correlation
energy without the use of d- and f -orbitals, this is not the case for the other two
ansätze. For the kq-ansatz, for instance, the best energy obtained with a basis
consisting of merely s- and p-orbitals is 75.939 Eh. This is “only” 99.5% of the limit,



Table 7.8: All-electron second-order correlation energies (−E/mEh) for the beryl-
lium atom. Comparison with literature data. Entries are listed chronologically. The
total correlation energy is −94.332 mEh [107].

Authors E(2)

This work
kl-ansatz (ANO–2 14s9p4d3f ∗) 75.62
kq-ansatz (ANO–2 14s9p4d3f ∗) 76.345
pq-ansatz (ANO–2 14s9p3d∗) 76.355

Bukowski et al. [102]
350 nonlinearly optimised GTGs for each pair 76.358

Noga et al. [103]
MBPT-R12 (16s10p6d5f4g) 76.248

Termath et al. [41]
MP2-R12/A (STO basis 15s12p11d11f10g) 76.373
MP2-R12/B (STO basis 15s12p11d11f10g) 76.311

Salomonsen and Öster [104]
Extrapolated partial-wave expansion (l ≤ 10) with numerical orbitals 76.358

Petersson et al. [90]
CBS (complete basis set) model 77.27

Alexander et al. [105]
Nonlinearly optimised GTGs 76.350

Janowski et al. [106]
Partial-wave expansion with l ≤ 9 75.98

Malinowski et al. [91]
Partial-wave expansion with radial and angular extrapolation 76.29

and by comparing the energy obtained with the basis set (14s4p)∗ with the energy
obtained with the basis set (14s9p)∗, we conclude that the energy does not improve
substantially if more p-orbitals are added. Rather, we have to add several d- and
f -orbitals if we want a kq-ansatz performance comparable to that obtained with the
pq-ansatz used in a basis of s- and p-orbitals.

For the kl-ansatz, we also have to include g-orbitals, if decent correlation ener-
gies are to be obtained. The kl-ansatz performs far better than the virtual orbital
expansion, however, which are far from the limit even for the largest basis set.

In Table 7.8, we compare our results with some reference values found in lit-
erature. The best correlation energy listed, is the energy obtained by Bukowski
and co-workers [102] and Salomonsen and Öster [104]. These authors independently
obtained the same energy using very different methods. The energy obtained by
Bukowski and co-workers, however, has the advantage that it is obtained variation-



Table 7.9: Second-order pair correlation energies (−E/mEh) for the beryllium
atom.

Pair R12/Aa R12/Ba GTGb KLc KQc PQd

1s2 40.334 40.325 40.340 39.883 40.341 40.343
1s2s, 1S 3.252 3.249 3.251 3.211 3.253 3.253
1s2s, 3S 2.217 2.217 2.219 2.165 2.219 2.219
2s2 30.570 30.520 30.540 30.363 30.532 30.540

E(2) 76.373 76.311 76.350 75.622 76.345 76.355

a MP2-R12/A(STO) and MP2-R12/B(STO) from Ref.[41].
b Nonlinearly optimised GTGs from Ref.[105].
c Using basis set ANO–2 (14s9p4d3f)∗
d Using basis set ANO–2 (14s9p3d)∗

ally. We know, therefore, that the limit value for the pair energy is lower than
−76.358 Eh.

The best estimate of the second-order correlation energy for beryllium obtained
in this work is −76.355 mEh. This value, which was obtained using the pq-ansatz
and a 14s9p3d basis set, is only 3µEh higher than the current best estimate. This
is remarkably good, especially considering the size of the orbital basis and the fact
that GCF exponents were not optimised.

Using the kq-ansatz we obtain a correlation energy that is 13µEh higher than
the best estimate. Even though this performance is inferior to the performance of
the pq-ansatz, it is still 99.98% of the best estimate, which is acceptable.

We also note, that the MP2-R12 energies obtained by Termath et al., are con-
siderably better than the energy we have obtained with the kl-ansatz. This clearly
shows that a good result can only be obtained with the kl-ansatz, if we use a ba-
sis set containing orbitals with high angular momentum. Since the GTGs do not
contribute to the correlation energy beyond s-orbitals, the largest proportion of the
energy must be recovered by the virtual orbital expansion.

When the MP2-R12/B calculation was extrapolated, Termath obtained the value
−76.316 mEh as the basis set limit value for the second-order correlation energy. This
estimate is 42µEh higher than the Bukowski estimate.

In Table 7.9, we compare the pair energies obtained with the different GTG-
ansätze with pair energies found in literature. There are a few interesting things to
note. First, we see that the pq-ansatz performs better than the kq-ansatz mainly
for the 2s2 pair, while the performance is rather similar for the other pairs. Next, we
note that the performance of the MP2-R12/A method is somewhat inconsistent. For
the 1s2s singlet and triplet pairs, the linear r12 method performs well, and is only a



few µEh above the energies obtained with the pq-ansatz. For the 1s2 pair, however,
the method overshoot the pq-ansatz by 9µEh, and for the 2s2 pair it undershoots
the pq-ansatz with 30µEh. Since a large orbital basis set was used, it is hard to
see why the R12/A method should perform this differently for the different electron
pairs. We note finally that the MP2-R12/B method is not hampered with this
inconsistency.

7.4 Neon

The all-electron second-order correlation energies obtained for the neon atom are
presented in Table 7.10. In the first part of this table we list correlation energies
obtained with the cc-pVXZ series of basis sets. We see that the trends observed
for helium using these basis sets are reproduced for neon; the energy convergence is
relatively fast for the kq- and pq- ansätze, but only moderate for the kl-ansatz. The
latter, however, performs far better than the conventional virtual orbital expansion.

The cc-pVXZ basis sets do not contain flexible core orbitals, and are therefore
not suited for describing core-core and core-valence correlation. To remedy this,
Dunning and co-workers generated sets of tight functions that were added to the
original cc-pVXZ basis sets. In the second part of Table 7.10, we have used these
basis sets, generically denoted cc-pCVXZ, to investigate the importance of the extra
core functions. The energy improvements turns out to be significant within all
ansätze. Note, also, that for the virtual orbital expansion and the kl-ansatz, the
improvements are numerically larger for the triple-zeta basis set than for the double-
zeta basis set. This results, which at first may seem surprising, arises because the
number of tight functions added to each of these basis sets are different. For the
double zeta basis, one s- and one p-orbital are added. For the triple zeta basis,
however, two s-orbitals and two p-orbitals are added, as is an extra d-orbital.

While the cc-pCVXZ basis sets contain extra functions for describing the core,
the aug-cc-pVXZ basis sets have been supplemented with diffuse functions to im-
prove the description of the outer valence. Independently of the cardinal number X,
one diffuse function is added for each angular momentum present in the basis.

Depending of the ansatz, additional diffuse functions turn out to be more impor-
tant for the correlation energy than the tight functions provided by the cc-pCVXZ
basis sets. From Table 7.10 we see that the virtual orbital expansion and the kl-
ansatz benefit more from additional core functions, while additional diffuse functions
are more important for the kq- and pq-ansätze. It is fairly obvious, however, that
since the tight functions and the diffuse functions expand different parts of the orbital
space, we should eventually use both in combination. The basis sets aug-cc-pCVXZ
have been made for this.

The aug-cc-pCVXZ sets provide sufficient flexibility for both core and valence,
and perform very well for neon. In fact, the current best estimate of the MP2



Table 7.10: All-electron second-order correlation energies (−E/mEh)
for the neon atom. A dagger (†) is given for calculations that failed
to converge, and a double dagger (††) is given for calculations that
are currently too computationally demanding. The (‡) is explained on
page 171. Refer to Table B.12 to have all energies listed with ten digits.

Orbital basis VOE KL KQ PQ

cc-pVDZ 187.57 300.98 346.93 356.37
cc-pVTZ 277.29 350.32 380.61 383.99
cc-pVQZ 326.26 371.77 386.19 387.30

cc-pCVDZ 228.30 310.43 356.40 364.16
cc-pCVTZ 329.10 362.47 383.67 385.49
cc-pCVQZ 361.51 378.51 † n/a

aug-cc-pVDZ 209.06 323.58 369.27 380.66
aug-cc-pVTZ 285.91 358.89 384.86 387.55
aug-cc-pVQZ 330.01 375.51 387.21 n/a

aug-cc-pCVDZ (sp) 157.71 265.30 344.39 356.17
aug-cc-pCVTZ (sp) 187.48 273.91 357.11 364.54
aug-cc-pCVQZ (sp) 190.94 275.73 358.59 365.74
aug-cc-pCV5Z (sp) 191.74 276.26 359.24 366.36

aug-cc-pCVDZ 249.90 333.13 375.05 384.56
aug-cc-pCVTZ (spd) 309.08 353.91 386.23 388.008
aug-cc-pCVQZ (spd) 319.34 358.23 387.14 n/a
aug-cc-pCV5Z (spd) 321.57 359.37 †† n/a

aug-cc-pCVTZ 337.29 370.72 387.14 388.189
aug-cc-pCVQZ (spdf) 354.18 377.17 † n/a

aug-cc-pCVQZ 365.16 382.12 †† n/a
aug-cc-pCV5Z‡ 375.93 385.54 †† n/a

correction energy for the neon atom, is obtained using the pq-ansatz and the basis
set aug-cc-pCVTZ (see Table 7.11). With this basis set, the kq-ansatz retrieves
99.7% of the estimated limit, while the kl-ansatz and the virtual orbital expansion
retrieves 95.5% and 86.9%, respectively. For the latter methods, the lack of high
angular momentum functions is apparent. The best energy estimate for the kl-ansatz
is obtained using the aug-cc-pCV5Z basis set, consisting of orbitals 11s10p8d6f4g2h.
Using this basis set we manage to retrieve 99.3% of the correlation energy, which is
satisfactory.

Three-electron integrals could not be calculated using the exact aug-cc-pCV5Z



basis set however. Due to the high level of contraction in the s-block of atomic
orbitals, the integral calculation ran out of memory. In order to push the calculation
through, the two atomic orbitals with highest exponent were removed from the
basis set, thus reducing the number of contracted primitives from 10 to 8. For the
conventional MP2 calculation this removal merely increased the pair energy from
−375.933 mEh to −375.931 mEh, and we do not expect the removal to be significantly
more important for the kl-ansatz. The aug-cc-pCV5Z basis set has been marked with
a ‡ to notify the change, however.

Since the aug-cc-pCVXZ basis sets give excellent results for the neon atom, we
have used these to explore partial-wave expansions. Having electron configuration
1s22s22p6, the smallest partial-wave expansion that makes sense for the neon atom
must contain both s- and p-orbitals. Although sensible, Table 7.10 shows that basis
sets without high angular momentum functions give poor energy estimates. This
is in accordance with the observations made for beryllium. As we shall see below,
polarisation functions are needed for neon mainly due to the 1D coupling between 2p
orbitals. Without d-orbitals or higher, this interaction cannot be properly described.

The best energy obtained in a basis set consisting of s- and p-orbitals, is 94.4%
of the estimated limit for the pq-ansatz, 92.5% for the kq-ansatz, and 71.2% for the
kl-ansatz. Once d-orbitals are included, however, these percentages rise to 99.97%,
99.7%, and 92.6%, respectively. For the kq- and pq-ansätze, therefore, it is sufficient
to include d-orbitals unless very accurate energies are requested.

In Table 7.11 we compare our results with values obtained from the literature.
Accurate estimates for the MP2 correction energy of neon are given by several
authors. Among these estimates, the pq-ansatz energy is not the lowest, but since
it is the only value that has been obtained variationally, we still consider it the best.
Comparing the energies obtained with the pq-ansatz and basis sets aug-cc-pCVDZ,
aug-cc-pCVTZ(spd), and aug-cc-pCVTZ, however, it is reasonable to conclude that
the true limit is “considerably” lower than −388.19 mEh, probably also lower than
−388.31 mEh; the value obtained by Lindgren and Salomonsen.

Before moving to the next table, we note that the energy estimate obtained
by Wenzel and co-workers [14] using nonlinearly optimised GTGs, is not among
the best. This is somewhat surprising, considering the fact that the best energy
estimates for the helium and beryllium atoms were obtained using this method. For
the neon atom Wenzel and co-workers defined geminal basis functions as

gi(1, 2) = xl1
1P ym1

1P zn1
1P xl2

2Qym2
2Qzn2

2Q

× exp
[
−αi(r1 − Pi)

2 − βi(r2 −Qi)
2 − γir

2
12

] (7.2)

which is similar to (7.1), except for the angular factors in front of the exponential
term. As for the helium atom, all GTGs are centred on the neon atom, that is
Pi = Qi = 0. The exponents αi, βi and γi were optimised for each geminal under



Table 7.11: All-electron second-order correlation energies (−E/mEh) for the neon
atom. Comparison with literature data. Entries are listed chronologically. The
total correlation energy is −390.47 mEh [112].

Authors E(2)

This work
kl-ansatz (aug-cc-pCV5Z‡) 385.54
kq-ansatz (aug-cc-pVQZ) 387.21
pq-ansatz (aug-cc-pCVTZ) 388.19

Wind et al. [108]
MP2-R12-SO (exact 3-electron integrals in basis 20s14p11d9f7g5h) 388.06
MP2-R12/A (20s14p11d9f7g5h) 388.29
MP2-R12/B (20s14p11d9f7g5h) 388.00

Flores [89]
FEM-MP2 with l ≤ 12 and angular extrapolation 388.10

Petersson et al. [90]
CBS (complete basis set) model 386.38

Wenzel et al. [14]
Nonlinearly optimised GTGs 385.26

Lindgren and Salomonsen [109, 110]
Numerical integration of the Coupled-Cluster equations 388.31

Janowski and Malinowski [111]
Calculated 384.98
Radially and angular extrapolated 387.92

the restrictions

αiβi + αiγi + βiγi > 0 and αi + βi + γi > 0 (7.3)

and using a modification of the weak orthogonality functional. This functional,
which is referred to as the modified weak orthogonality (MWO) functional, is de-
scribed in Ref. [14]. The non-negative integers l1, m1, n1, l2, m2, n2 define the angular
symmetry of the basis function gi(1, 2), and are chosen according to the completeness
criteria given by King [93]. As discussed in section 7.2, pair functions belonging to
the totally symmetric representation may be expanded completely in basis functions
for which l1, m1, n1, l2, m2, n2 are equal to zero.

In neon, however, there are also pairs belonging to representations different from
the totally symmetric representation, and for these pairs, appropriate angular factors
must be included. For the 1s2px singlet and triplet interactions, for instance, Wenzel
used basis functions with angular symmetry (l1, m1, l2, m2) = (0, 0, 1, 0). Likewise,
for the 2px2py triplet interaction, basis functions with angular symmetry (1,0,0,1)
and (0,1,1,0) was used, and for the singlet interaction (0,0,1,1) was also included.



Table 7.12: Second-order pair energies (−E/mEh) for the neon atom using
different methods.

Pair GTGa R12/SOb KLc KQd PQe PQf

1s2 40.22 40.252 40.150 39.965 40.224 40.229
1s2s, 1S 3.95 3.974 3.960 3.929 3.974 3.975
1s2s, 3S 1.58 1.582 1.567 1.566 1.585 1.585
2s2 12.00 12.038 11.984 12.033 12.044 12.046
1s2p, 1P 8.10 8.176 8.055 8.103 8.139 8.161
1s2p, 3P 13.86 13.911 13.846 13.763 13.825 13.880
2s2p, 1P 59.85 60.472 59.765 60.438 59.702 60.532
2s2p, 3P 26.55 26.708 26.633 26.679 26.439 26.757
2p2, 1S 45.24 45.565 45.450 45.553 45.544 45.574
2p2, 1D 87.06 88.042 86.907 87.891 65.957 88.031
2p2, 3P 86.85 87.341 87.224 87.296 87.110 87.417

E(2) 385.26 388.061 385.541 387.215 364.543 388.189

a MP2-R12-SO from Ref. [108].
b Nonlinearly optimised GTGs from Ref. [14].
c Orbital basis aug-cc-pCV5Z.
d Orbital basis aug-cc-pVQZ.
e Orbital basis aug-cc-pCVTZ (sp).
f Orbital basis aug-cc-pCVTZ (spd).

To describe each pair function, Wenzel and co-workers used a 40 term GTG
expansion, whereas Bukowski et al. [102] used 150 and 350 GTGs, respectively, to
obtain their excellent helium and beryllium energies. Although Bukowski and co-
workers obtained descent pair energies even for 30 terms expansions, the 40 GTGs
of Wenzel had to describe all symmetry components of the 2p2 interactions, leaving
less variationally flexibility for each. And as discussed below, the relatively poor
performance of the GTG approach by Wenzel and co-workers, are mainly due to a
deficient description of the 2p2 interactions.

In Table 7.12, we give pair energies obtained by some selected methods, including
the GTG approach by Wenzel et al.. The pair energies given in the two rightmost
columns are both obtained using the pq-ansatz, but their one-electron basis sets
differ slightly in that one of them also contains d-orbitals. As a result, seven out
of eleven pair energies differ by less than 0.10 mEh, three pair energies differ by
less than 1 mEh, while the last pair energy, the 1D(2p2) interaction, differ by more
than 22 mEh. For this interaction, therefore, d-orbitals are essential. In terms of
MP2-R12 theory, Klopper [41, 100] has also made the observations that the 1D(2p2)
interaction is the most difficult to converge.



Note, however, that for the nonlinearly optimised GTGs, Wenzel and co-workers
obtain an excellent estimate of the 1D interaction, considering that only s- and p-
orbitals are used. This is very intriguing as the pq-ansatz, at least in principle,
should be able to produce pair energies of similar quality. The major difference
is that in the nonlinear optimisation of exponents, negative values for αi, βi, and
γi are allowed, providing these exponents fulfil (7.3). Table III of Ref. [14], which
lists the 40 optimal exponents for the 2s2px interaction in neon, shows that some
of the GTGs in fact do get negative exponents. Most likely, therefore, the excellent
estimate of the 1D interaction is due to these basis functions.

Since the pair functions presented in this work are constructed from pairs of
orbitals, only the GCF exponent may be chosen negative. Currently, it is somewhat
unclear, however, how much the implementation much be modified in order to allow
for negative GCF exponents.

In a last glance at Table 7.12, we also note, that the kq-ansatz performs poorly
relative to the pq-ansatz for the 1s2 pair. In fact, for all pairs involving the 1s
orbital, except the singlet 1s2p interaction, the pair energies listed for the kq-ansatz
in Table 7.12 are also inferior to the energies listed for the kl-ansatz. Since the kl-
ansatz exploits a smaller subset of the MO space than the kq-ansatz, this is purely
a basis set effect. A comparison of the basis sets used for the different GTG ansätze
listed in Table 7.12, shows that the basis set giving the best energy for the kq-ansatz
is the only one not containing flexible core functions. This explains the inferior
performance observed for the core–core and core–valence correlation energies.

In Table 7.13 we compare the kl-ansatz with the rotational variant ij-ansatz and
different MP2-R12 methods. As explained in section 6.1, the difference between
the ij- and kl-ansätze is that in the latter the pair function of a specific pair ij is
expanded using all pairs of occupied orbitals kl, whereas in the former only the pair
ij is utilised. In addition to being rotational invariant, the kl-ansatz also gives a
larger variation space, and consequently a better energy. For the basis set aug-cc-
pCVDZ, for instance, the difference between the two ansätze is more than 6 mEh.
As the orbital basis increases, however, the difference in performance diminishes,
and for the basis set aug-cc-pCV5Z, it is down to 0.6 mEh.

The ansatz denoted IJ-SO in Table 7.13, refers to the MP2-R12/SO implemen-
tation of Wind et al. [108], in which three-electron integrals are calculated explic-
itly. This approach is less approximate than the usual MP2-R12 methods, and
the resolution-of-the-identity (RI) approximation is largely avoided. Wind and co-
workers did not employ the usual orbital invariant approach, however, and energies
obtained with the MP2-R12/SO method should therefore be compared with the
ij-ansatz rather than the kl-ansatz.

In Table 7.13 we see that the MP2-R12/SO method gives lower energies than
the ij-ansatz for most of the basis sets. This somewhat counter-intuitive result may
be a MP2-R12 effect caused by the RI approximation. The WO functional is only a
good approximation to the SO functional if the pair function is sufficiently flexible,



Table 7.13: All-electron second-order correlation energies (−E/mEh)
for the neon atom compared with linear r12 methods.

Orbital basis VOE KL-1A’a KL-1Ba IJ-SOb IJ KL

cc-pVDZ 187.57 — — 306.6 290.49 300.98
cc-pVTZ 277.29 — — 343.1 343.19 350.32
cc-pVQZ 326.26 — — 365.9 367.63 371.77

cc-pCVDZ 228.30 302.89 288.45 318.7 303.98 310.43
cc-pCVTZ 329.10 357.46 355.56 362.4 360.37 362.47
cc-pCVQZ 361.51 375.21 373.26 377.1 377.40 378.51

aug-cc-pVDZ 209.06 — — 322.7 313.00 323.58
aug-cc-pVTZ 285.91 — — 356.1 351.85 358.89
aug-cc-pVQZ 330.01 — — 373.2 371.42 375.51

aug-cc-pCVDZ 249.90 312.28 302.91 — 326.54 333.13
aug-cc-pCVTZ 337.29 362.35 360.07 — 368.78 370.72
aug-cc-pCVQZ 365.16 377.35 375.88 — 381.14 382.12
aug-cc-pCV5Z 375.93 384.46 383.92 — 384.97c 385.54c

a Referring to the MP2-R12/1A’ and MP2-R12/1B methods de-
scribed in Ref. [42]. Both methods are based on the kl-ansatz.

b Referring to the MP2-R12/SO method described in Ref. [108]. This
method is based on the ij-ansatz.

c Using the quenched aug-cc-pCV5Z basis set described on page 171.

however, and the results may therefore also be a GTG effect. The fact that we have
expanded correlation factors in a set of GCFs instead of using a linear r12, is not an
issue however. The set of GCFs employed in our calculations is saturated to within
0.1 mEh for the inner part of the Coulomb hole (cf. section 6.3), and for the outer
part of the hole, the expansion of GCFs ought to provide a better description than
a single r12.

For the basis set cc-pCVQZ the situation is reversed, however, and the ij-ansatz
gives a lower energy than the MP2-R12/SO method. Assuming that the RI approx-
imation holds sufficiently well for this basis set (due to size and saturation), this
result is in agreement with the larger variation space offered by the ij-ansatz.

In Table 7.13 we also list correlation energies obtained with two of the conven-
tional MP2-R12 methods. These methods use the rotational invariant formulations,
and should therefore be compared to the kl-ansatz. Moreover, in the formulation
of the MP2-R12 methods listed here, the resolution of the identity is expanded in
a separate basis set of quality 32s24p18d15f12g9h6i. The RI-approximation may
therefore be assumed to hold, allowing a direct comparison with the kl-ansatz. We



Table 7.14: Second-order correlation energies (−E/mEh) for the
hydrogen molecule. An inter-nuclear distance of 74.08481 pm
was used. Energies marked with a double-dagger (‡) undershoot
the true energy, probably due to a non-positive-definite Fock
operator. Refer to Table B.13 to have all energies listed with
nine digits.

Orbital basis VOE KL KQ PQ

cc-pVDZ 26.38 31.63 33.580 33.8019
cc-pVTZ 31.68 33.48 34.151 34.2263
cc-pVQZ 33.11 34.00 34.226 n/a

aug-cc-pVDZ(s) 15.95 29.82 33.535 33.7943
aug-cc-pVTZ(s) 17.91 30.07 33.836 34.1317
aug-cc-pVQZ(s) 18.36 30.11 33.934 34.3232‡

aug-cc-pV5Z (s) 18.43 30.13 33.943 34.3680‡

aug-cc-pVDZ 27.29 32.74 33.879 34.0464
aug-cc-pVTZ(sp) 29.88 33.31 34.177 34.2434
aug-cc-pVQZ(sp) 30.45 33.50 34.220 34.2460
aug-cc-pV5Z (sp) 30.65 33.53 34.229 34.2491

aug-cc-pVTZ 31.99 33.82 34.209 34.2525
aug-cc-pVQZ(spd) 32.74 34.06 34.240 n/a
aug-cc-pV5Z (spd) 32.98 34.11 34.247 n/a

aug-cc-pVQZ 33.25 34.14 34.241 n/a

see that the GTG approach generally performs better than the MP2-R12 methods.
The variation space is larger for the former, however, and this result is therefore in
excellent agreement with the reasoning already made for the ij-ansatz.

7.5 The hydrogen molecule

The smallest system containing a chemical bond is the hydrogen molecule. This
molecule has the same number of electrons as the helium atom, but since the sym-
metry is lower, we cannot expect the energy to be obtained with the same accuracy
as for helium. If we cannot manage to get a decent correlation energy for hydrogen,
however, our GTG-MP2 ansätze will probably not perform well for other molecules
either. The hydrogen molecule is therefore an important test system.

In Table 7.14 we give our second-order correlation energies for a hydrogen mole-
cule with bond length 1.4a0 = 74.0848pm. In the upper part of the table we give



Table 7.15: Second-order correlation energies (−E/mEh) for a hydrogen
molecule with an inter-nuclear distance of 71.42857 pm. Entries are listed
chronologically. The total correlation energy is −40.8461 mEh [115].

Authors E(2)

This work
kl-ansatz (aug-cc-pVQZ) 34.14
kq-ansatz (aug-cc-pVQZ) 34.247
pq-ansatz (aug-cc-pV5Z-spd) 34.252

Bukowski et al. [88]
120 nonlinearly optimised GTGs 34.244

Klopper and Kutzelnigg [113]
MP2-R12/A (9s8p4d1f) 34.23
MP2-R12/B (9s8p4d1f) 34.17

Jeziorski et al. [114]
40 nonlinearly optimised GTGs 34.20

correlation energies obtained with the cc-pVXZ series of basis sets. We shall not
discuss these values in any detail, merely comment that the pq-ansatz used with the
cc-pVTZ basis set gives the same energy as the kq-ansatz used with the cc-pVQZ
basis set.

In the rest of Table 7.14 we use the aug-cc-pVXZ series of basis sets to explore
partial-wave expansions in the s-, sp-, and spd-orbital spaces.

Expansion of the pair function in s-orbitals appears to give good energy estimates
with the kq- and pq-ansätze, and may therfore, at first sight, seem like a good idea.
If we compare with energies obtained with the full aug-cc-pVTZ basis set, however,
inconsistencies are seen. Clearly, the energies obtained with the pq-ansatz and
the two largest s-expansions are undershooting the true MP2 correction energy.
In section 3.4.1 we argued that pair energies obtained by minimising the WO or
SO functionals may undershoot the true pair energy if the Fock operator is poorly
described. A quick look at the Hartree–Fock orbitals obtained with the aug-cc-pVQZ
basis set shows that the occupied 1σ orbital contains small amounts of p-functions, as
well as smaller amounts of d- and f -functions. It is therefore reasonable to assume
that the undershooting observed in Table 7.14 is due to a poorly described Fock
operator. Since the Fock operator are of equal or less quality for all s-expansions,
we conclude that energies obtained with s-orbitals are all incorrect even though most
of them are well above the MP2 correction limit.

The pair energies obtained with sp-expansions are all above the limit, and for
the larger expansions we have reason to assume that the Fock operator is described
accurately. For the largest expansion we also get good energy estimates, and the



pq-, kq- and kl-ansätze recover some 99.99%, 99.93%, and 97.9% of the estimated
limit, respectively (see Table 7.15). When d-orbitals are included in the partial-
wave expansions, the pq-ansatz give the current best estimate of the MP2 correction
energy, while the kq- and kl-ansätze recover some 99.98% and 99.6%, respectively,
of this limit estimate. The best correlation energy using the kl-ansatz is obtained
with the aug-cc-pVQZ basis set. In this case some 99.7% of the correlation energy
is recovered.

In Table 7.15, we compare our best correlation energies with values obtained from
the literature. Note, that there are fewer energy estimates available for molecules
than for atoms, as several of the methods giving accurate correlation energies, are
either specialised for atoms [89, 109, 111] or only implemented for atoms [108].

The best correlation energies given in Table 7.15 are the energy estimates ob-
tained with the pq- and kq-ansätze in this work. These estimates of −34.252 mEh

and −34.247 mEh were obtained using 1710 and 171 GTGs, respectively. The value
obtained by Bukowski and co-workers [88] using 120 nonlinearly optimised GTGs is
only a few µEh behind, however. Bukowski defined the pair function as for the he-
lium atom (see Equation 7.1), but included the coordinates of the GTGs lying in the
direction of the molecular axis in the optimisation. For linear molecules it has been
shown [116, 117] that any two-electron pair function belonging to the totally sym-
metric representation can be represented by geminals with no angular components.
If Bukowski and co-workers include more GTGs in their pair function expansion,
therefore, they ought to be able to improve on the energy estimate presented here.

The energies obtained by Klopper and Kutzelnigg [113] using the two MP2-R12
approximations are also acceptable, especially considering the size of the basis set
that was used.

7.6 Lithium hydride

In Table 7.16 we present all-electron second-order correlation energies for a lithium
hydride molecule with bond length 3.015a0 = 159.6pm. We have not listed any
energies for the pq-ansatz, however, as singularities in the equation solver prevented
us from using this ansatz. The problems observed for lithium hydride are similar
to those experienced for the helium calculations involving a ghost basis set. These
problems are of technical nature, however, and if we remove the singularities, energy
estimates may also be obtained for the pq-ansatz. Since the systems studied in
previous sections of this work obtained their best energy estimates with the pq-
ansatz, we will probably not be able to exploit the full potential of the GTG-MP2
method for the lithium hydride molecule.

As mentioned in section 6.2, we have not used the correlation-consistent basis
sets to describe the lithium hydride molecule. Instead we have used two sets of
atomic natural orbitals (ANOs) developed by Roos and co-workers [72, 73]. The



Table 7.16: All electron second-order correlation energies (−E/mEh)
for the lithium hydride molecule with an inter-nuclear distance of
r(Li–H)=159.5469 pm. Due to problems with singular matrices the
pq-ansatz could not be used. Basis sets marked with an asterisk (∗)
are used uncontracted. Refer to Table B.14 for more precise energies.

Orbital basis (Li,H) VOE KL KQ

ANO–1 (10s4p , 7s)∗ 28.97 58.13 70.549
ANO–1 (10s4p3d , 7s)∗ 32.83 60.76 71.419
ANO–1 (10s4p , 7s3p)∗ 40.80 63.79 72.373
ANO–1 (10s4p3d , 7s3p)∗ 41.80 64.50 72.511

ANO–2 (14s9p , 8s)∗ 49.99 63.81 70.900
ANO–2 (14s9p4d , 8s)∗ 54.41 66.72 71.808
ANO–2 (14s9p , 8s4p)∗ 61.78 69.52 72.678
ANO–2 (14s9p4d , 8s4p)∗ 63.06 70.38 72.809
ANO–2 (14s9p4d3f , 8s4p)∗ 63.68 70.79 72.850
ANO–2 (14s9p4d , 8s4p3d)∗ 65.24 71.20 72.864
ANO–2 (14s9p4d3f , 8s4p3d)∗ 65.40 71.33 72.877

basis function exponents for these basis sets are given in Appendix C.
Even though the pq-ansatz could not be used, Table 7.16 shows that the correla-

tion energies obtained with the kq-ansatz are also good. This is in agreement with
observations made for the hydrogen molecule. When the kq-ansatz is combined with
the basis set (14s9p4d3f, 8s4p3d)∗ we get −72.877 mEh, which is our best correlation
energy for the lithium hydride molecule. A comparison with Table 7.17 shows that
we have recovered 99.98% of the estimated limit. Note also, that reasonably good
correlation energies are obtained even when the f -orbitals on lithium are not used.

For the kl-ansatz the best correlation energy obtained is −71.20 mEh which is
only 97.9% of the limit. For this ansatz, therefore, far better correlation energies
are obtained for the hydrogen molecule.

In Table 7.17 we compare our best correlation energies with literature data.
The best correlation energy for the lithium hydride molecule is given by Bukowski
and co-workers [102]. Using 350 GTGs of type (7.1) in which five of the nonlinear
parameters were optimised variationally, they obtained −72.890 mEh. This excellent
result is almost matched by Noga et al. [103] who obtained −72.869 mEh using the
MBPT-R12/B method. This method is not variational, however, and it is therefore
somewhat difficult to evaluate the quality of the result. The complete-basis-set
(CBS) value of Petersson [90], on the other hand, is far off the limit.

When comparing with literature data, we see that the kq-ansatz performs very
well. In Table 7.18 we have split the best correlation energy obtained with this ansatz



Table 7.17: Second-order correlation energies (−E/mEh) for the lithium
hydride molecule with an inter-nuclear distance of r(Li–H)=159.5469 pm.
Comparison with literature data. Entries are listed chronologically. The
total correlation energy is approximately −83.2 mEh [75].

Authors E(2)

This work
kl-ansatz [ANO–2 (14s9p4d3f, 8s4p3d)∗] 71.33
kq-ansatz [ANO–2 (14s9p4d3f, 8s4p3d)∗] 72.877

Bukowski et al. [102]
350 nonlinearly optimised GTGs 72.890

Noga et al. [103]
MBPT-R12/A (11s8p6d5f, 9s8p6d5f) 72.973
MBPT-R12/B (11s8p6d5f, 9s8p6d5f) 72.869

Klopper and Kutzelnigg [113]
MP2-R12/A (11s7p4d1f, 9s6p3d1f) 72.76
MP2-R12/B (11s7p4d1f, 9s6p3d1f) 72.16

Petersson et al. [90]
CBS (complete basis set) model 73.54

Alexander et al. [118]
700 nonlinearly optimised, randomly tempered GTGs 72.781

Table 7.18: Second-order pair correlation energies (−E/mEh) for
the lithium hydride molecule with an inter-nuclear distance of r(Li–
H)=159.5469 pm.

Pair R12/Aa R12/Ba GTGb KLc KQc

1σ2 1Σ+ 39.51 39.45 39.590 38.527 39.609
1σ2σ 1Σ+ 1.48 1.41 1.471 1.409 1.490

3Σ+ 1.37 1.30 1.324 1.284 1.340
2σ2 1Σ+ 30.41 30.00 30.396 30.106 30.437

E(2) 72.76 72.16 72.781 71.326 72.877

a Energies are obtained with the MP2-R12/A and MP2-R12/B meth-
ods in a basis of quality (11s8p6d5f, 9s8p6d5f). From Ref. [113].

b Using nonlinearly optimised GTGs. From Ref. [118].
c Using basis set ANO–2 (14s9p4d3f, 8s4p3d)∗.



into separate pair energies. Also presented are the best pair energies obtained with
the kl-ansatz as well as pair energies obtained from literature. Unfortunately, neither
Bukowski nor Noga listed pair energies in their papers, and we are therefore left to
compare with the pair energies given by Alexander et al. [118] and Klopper and
Kutzelnigg [113]. Except for the 1σ2σ triplet energy obtained with the MP2-R12/A
method, we see that the kq-ansatz give slightly lower energies for all pairs.

7.7 Hydrogen fluoride

Having established that our ansätze perform well for the smaller hydrogen and
lithium hydride molecules, we turn to the slightly larger hydrogen fluoride molecule.
This ten-electron system is also linear, but differs from H2 and LiH in that it has
electron pairs that do not belong to the totally symmetric representation. Based
on our experience with the neon atom, we expect d-orbitals centred at the fluorine
atom to be important for such pairs.

In Table 7.19 we present our second-order correlation energies for a hydrogen
fluoride molecule with a bond length of 1.73280a0 = 91.6958pm. For all calculations
we have used the correlation consistent basis sets of Dunning and co-workers [65–69]
with emphasis on the aug-cc-pCVXZ series. Note that, for this molecule, singulari-
ties is not a problem with the pq-ansatz. For many of the basis sets, however, the
pq-ansatz is not applicable due to extensive memory requirements. Moreover, as we
shall see below, some of the correlation energies obtained with the pq-ansatz cannot
be fully trusted.

Most of the correlation energies given in Table 7.19 have been obtained using sub-
sets of the different aug-cc-pCVXZ basis sets. By comparing some of these energies,
the importance of d-orbitals becomes evident. For the kq-ansatz, for instance, the en-
ergy obtained with the aug-cc-pCVQZ(sp,sp) basis set, −358.65 mEh, is rather poor,
although the basis set is well saturated in the s- and p-orbital spaces. If we use the
value −384.38 mEh as an estimate of the limit (cf. Table 7.20), we find that merely
93.3% of the correlation energy has been recovered. Once d-orbitals are added on
the fluorine atom, however, the energy recovery increases to 99.5%. The same trend
is observed for the pq-ansatz. With the basis set aug-cc-pCVTZ(sp,s), only 93.7%
of the correlation energy is recovered, while for the basis set aug-cc-pCVTZ(spd,s),
the recoverage is 99.8%. For the hydrogen fluoride molecule, therefore, good corre-
lation energy estimates may be obtained if we use basis sets saturated in the s-, p-
and d-orbital spaces for fluorine and the s- and p-orbital spaces for hydrogen. This
agrees with results obtained for the neon atom and the hydrogen molecule.

For the kl-ansatz, however, much larger basis sets must be used. Based on
our experience with the neon atom, basis sets should be of aug-cc-pCV5Z quality
or better if more than 99% of the correlation energy is to be recovered. For the
hydrogen fluoride molecule, however, we were not able to use a better basis set than



Table 7.19: All electron second-order correlation energies (−E/mEh) for
the hydrogen fluoride molecule. For the structure we have used r(H–
F)=91.6958 pm. Refer to Table B.15 to have energies listed with ten
digits.

Orbital basis (F,H) VOE KL KQ PQ

cc-pVDZ 203.78 306.89 350.48 360.21
cc-pCVDZ 242.85 316.33 356.63 365.24
aug-cc-pVDZ 224.56 328.36 369.51 379.21

aug-cc-pCVDZ (sp , s) 173.76 270.15 342.20 353.93
aug-cc-pCVDZ (sp , sp) 181.81 277.41 347.24 359.99
aug-cc-pCVDZ (spd, s) 260.01 334.59 373.02 381.59
aug-cc-pCVDZ 263.71 337.79 374.03 382.01

aug-cc-pCVTZ (sp , s) 197.21 276.21 350.87 360.05
aug-cc-pCVTZ (sp , sp) 207.60 285.11 357.05 366.66
aug-cc-pCVTZ (spd, s) 309.14 351.26 381.36 383.685
aug-cc-pCVTZ (spd, sp) 313.51 354.70 382.35 n/a
aug-cc-pCVTZ (spd, spd) 317.00 357.35 382.64 n/a
aug-cc-pCVTZ 339.89 370.41 383.690 n/a

aug-cc-pCVQZ (sp , s) 200.46 277.74 352.03 361.17
aug-cc-pCVQZ (sp , sp) 212.02 287.47 358.65 367.92
aug-cc-pCVQZ (spd, s) 318.47 354.94 382.25 n/a
aug-cc-pCVQZ (spd, sp) 323.31 358.65 383.221 n/a
aug-cc-pCVQZ (spd, spd) 327.53 361.68 383.529 n/a

the aug-cc-pCVTZ basis, for which only −370.41 mEh, or 96.4%, of the second-order
correlation energy was recovered.

In Table 7.20, we compare our best correlation energies for the hydrogen fluoride
molecule with literature data. The current best estimate of the limit, −384.38 mEh,
has been obtained by Klopper [119] using the MP2-R12/B method. Klopper ob-
tained this estimate using a basis set of 19s14p8d6f4g3h quality for fluorine and
9s6p4d3f quality for hydrogen. Even though the MP2-R12/B method is not vari-
ational, experience shows that correlation energies obtained with this method con-
verges to the limit from above. Since a rather large one-electron basis set was
employed, the value obtained by Klopper ought to be considered the best. The best
correlation energy obtained in this work, −383.69 mEh, has been obtained using the
kq-ansatz and the aug-cc-pCVTZ basis set. A comparison with the value of Klop-
per, shows that 99.82% has been recovered. The true limit is probably somewhat
lower than the value obtained by Klopper, however. If we assume that the basis set



Table 7.20: Second-order correlation energies (−E/mEh) for the hydrogen
fluoride molecule. Comparison with literature data. An inter-nuclear dis-
tance r(H–F)=91.6958 pm was used. Entries are listed chronologically. The
total correlation energy is approximately −388 mEh [120].

Authors E(2)

This work
kl-ansatz (aug-cc-pCVTZ) 370.41
kq-ansatz (aug-cc-pCVTZ) 383.69
pq-ansatz (aug-cc-pCVTZ-spd-s) 383.69

Klopper [119]
MP2-R12/B (19s14p8d6f4g3h, 9s6p4d3f) 384.38

Müller et al. [120]
MP2-R12/A (18s12p10d8f6g, 10s7p5d) 384.36
MP2-R12/B (18s12p10d8f6g, 10s7p5d) 384.17

Klopper [100]
MP2-R12/A (15s9p7d5f3g1h, 9s7p5d3f1g) 384.47
MP2 (15s9p7d5f3g1h, 9s7p5d3f1g) 371.68

Petersson et al. [90]
CBS (complete basis set) model 378.80

observations made for the neon atom also applies to the hydrogen fluoride molecule,
the true second-order correlation energy is slightly more than 1 mEh lower in energy
than our aug-cc-pCVTZ value, or approximately −384.8 mEh.

All highly accurate correlation energies reported in literature have been obtained
using different MP2-R12 approaches with one-electron basis sets of high quality. As
shown in Table 7.20, these estimates are in good agreement with each other.

An estimate of the correlation energy, has also been reported by Petersson [90]
using his CBS theory. Although he obtains better energies than conventional MP2,
the performance of the CBS theory is clearly inferior to that of the MP2-R12 meth-
ods.

Note also, that there are no correlation energies listed in Table 7.20 for the
GTG method where the nonlinear parameters are optimised. Although Wenzel and
Zabolitzky [121] have reported pair energies for three totally symmetric pairs, there
are no total correlation energies available. The pair energies given are those of the
1σ2, 2σ2, and 3σ2 pairs and are 40.2 mEh, 12.4 mEh, and 27.2 mEh, respectively.
We add that these pair energies were computed to illustrate a new optimisation
technique only.

In Table 7.21 we compare pair energies for hydrogen fluoride using some selected
methods. The two rightmost columns list pair energies obtained with the pq-ansatz



Table 7.21: Second-order pair energies (−E/mEh) for a
hydrogen fluoride molecule with an inter-nuclear distance
of r(H–F)=91.6958 pm.

Pair R12/Aa KLb KQb PQc PQd

1σ2 40.57 40.038 40.546 40.558 40.570
1σ2σ 3.60 3.493 3.614 3.598 3.616
2σ2 13.06 12.643 13.057 13.471 13.107
1σ3σ 2.07 1.859 2.076 2.064 2.075
2σ3σ 20.16 19.230 20.116 19.057 20.236
3σ2 29.30 28.574 29.243 28.878 29.271

S
in

gl
et

s

1σ1π 4.99 4.422 4.981 5.010 5.006
2σ1π 39.97 37.670 39.884 38.653 39.818
3σ1π 33.15 31.201 32.998 25.370 32.517
1π2 71.30 68.057 71.067 60.887 71.531

1σ2σ 1.59 1.455 1.596 1.614 1.598
1σ3σ 3.31 3.082 3.300 3.217 3.293
2σ3σ 8.81 8.590 8.802 8.826 8.783
1σ1π 8.56 7.957 8.532 8.558 8.570

T
ri

p
le

ts

2σ1π 18.79 18.143 18.764 18.586 18.836
3σ1π 56.49 55.711 56.416 53.246 56.143
1π2 28.74 28.287 28.699 28.457 28.717

E(2) 384.47 381.412 383.691 360.050 383.687

a MP2-R12/A from Ref. [100].
b Using basis aug-cc-pCVTZ
c Using basis aug-cc-pCVTZ (sp, s)
d Using basis aug-cc-pCVTZ (spd, s)

but different one-electron basis sets. The two basis sets differ only in that one of
them has four d-orbitals for the fluorine atom while the other has none. Differ-
ences observed in pair energies between the two columns, therefore, illustrate the
importance of d-orbitals.

For electron pairs involving σ-orbitals only, there is little difference between the
two columns. This is to be expected as σ-orbitals are symmetric around the bond
axis, and the interaction between two such orbitals has little to gain from the angular
flexibility provided by d-orbitals. For electron pairs involving π-orbitals, however,
some large differences are observed between the two columns. Assuming that the
molecular bond lies along the z-axis, a π-orbital consists of either px- or py-orbitals
as well as small amounts of appropriate d-orbitals. For the major part, these p- and



d-orbitals come from the fluorine atom, but if they are provided for hydrogen, small
amounts of these orbitals also participate in the π-orbital. This is not the case here,
however, and the π-orbitals therefore behave as fluorine p-orbitals. As expected,
Table 7.21 shows that the largest basis set dependency is observed for the singlet
interaction between two such π-orbitals. This is in full agreement with observations
made for neon pair energies in Table 7.12. Note also, that the singlet interactions
between the 3σ-orbital and the two 1π-orbitals also need d-functions in order to be
properly described. This is easily explained by a high pz content in the 3σ-orbital.

The pair energy decomposition given in Table 7.21 also shows something else.
For the 1(2σ2), 1(1σ1π), 3(1σ2σ), and 3(2σ3σ) interactions, the pair energies ob-
tained with the pq-ansatz in the small aug-cc-pCVTZ(sp,s) basis set are lower than
the energies obtained in the aug-cc-pCVTZ(spd,s) basis. Although this may seem as
a violation of the variation principle, it is merely due to deficiencies in the Fock op-
erator. A similar problem was observed for the hydrogen molecule and we concluded
then that p-orbitals were needed on each hydrogen atom. A similar conclusion may
be drawn here. Note that, the pair energies obtained with the aug-cc-pCVTZ(spd,s)
basis set does not seem unreasonably low. The additional d-orbitals provided by
this basis set may therefore relieve the deficiency caused by the lack of hydrogen
p-orbitals.

We conclude this section by noting that since our pair energies are supposedly
variational, we may combine pair energies obtained with the kq- and pq-ansätze,
depending of which gives the better energy, in pursuit of the second-order correlation
energy limit. Assuming that the energies obtained with the pq-ansatz and the aug-
cc-pCVTZ(spd,s) basis set may be trusted, this approach gives −384.53 mEh as
an upper bound to the second-order correlation energy of the hydrogen fluoride
molecule.

7.8 Water

7.8.1 The second-order correlation energy

As our systems grow larger, the increased number of three-electron integrals makes
it harder to utilise basis sets of high quality. For the water molecule, for instance,
the aug-cc-pCVTZ basis set contains 105 basis functions, while the corresponding
number for the hydrogen fluoride molecule and the neon atom are only 82 and 59,
respectively. Since the number of three-electron integrals grows as N6

basis, the aug-
cc-pCVTZ basis set quickly becomes inaccessible as our systems grow larger; at least
with the current approach of calculating all three-electron integrals exactly.

The computation time does not only increase with the number of basis functions,
however, but also with a reduced amount of local symmetry. Local symmetry is
symmetry in either of the x-, y-, and z-planes and is related to point-group symmetry



Table 7.22: All electron second-order correlation energies
(−E/mEh) for the water molecule. Except for the calculation
marked with an b, all geometries are as specified in tablenote a.
Refer to Table B.16 to have energies listed with ten digits.

Orbital basis (O,H) VOE KL KQ PQ

cc-pVDZ 203.96 298.07 334.28 342.97
cc-pCVDZ 241.33 307.05 339.13 346.65
aug-cc-pVDZ 221.83 315.79 349.94 357.71

aug-cc-pCVDZ (sp ,s) 171.61 258.93 320.69 332.67
aug-cc-pCVDZ (sp ,sp) 192.98 277.17 332.42 346.64
aug-cc-pCVDZ (spd,s) 249.81 317.45 351.79 359.35
aug-cc-pCVDZ 259.24 324.72 353.48 359.66

aug-cc-pCVTZ (sp ,s) 190.51 263.39 326.71 337.51
aug-cc-pCVTZ (sp ,sp) 217.65 285.90 341.10 352.56
aug-cc-pCVTZ (spd,s) 289.59 330.18 357.66 360.65
aug-cc-pCVTZ (spd,sp) 300.21 337.75 359.65 n/a
aug-cc-pCVTZ (spd,spd) 307.86 342.83 360.35 n/a
aug-cc-pCVTZb 324.28 351.48 361.39 n/a

aug-cc-pCVQZ (sp ,s) 193.84 264.84 327.87 338.84
aug-cc-pCVQZ (sp ,sp) 223.42 289.00 342.91 n/a
aug-cc-pCVQZ (spd,s) 298.20 333.20 358.52 n/a
aug-cc-pCVQZ (spd,sp) 309.62 341.34 360.49 n/a

a Structure: ∠(HOH)=104.52◦ and r(O–H)=95.720 pm.
b Structure: ∠(HOH)=104.34◦ and r(O–H)=95.885 pm.

as well as the choice of coordinate system. In molecules with no symmetry planes,
there is no local symmetry, but the reverse is not necessarily true. Local symmetry
is important since it allows us to take short-cuts in the integral evaluation as certain
quantities are known to be zero. For the hydrogen peroxide conformations presented
in section 7.9, for instance, the calculation time of the trans-conformation is only
half that of the gauche-conformation due to local symmetry.

In this section we study the water molecule. Whereas the hydrogen fluoride
molecule studied in the previous section had local symmetry in both the x- and
y-planes, the water molecule only have local symmetry in the x-plane. This does
not only give us additional computation time in the integral code, but also require
different parts of the integral code to be used. Bugs that were not observed for
smaller molecules may therefore potentially turn up for water.

In Table 7.22 we present our second-order correlation energies for the water



Table 7.23: Second-order correlation energies (−E/mEh) for the water
molecule. Comparison with literature data. Entries are listed chronologi-
cally. Except for the energies marked with an b, the water geometry was
as specified in tablenote a. The total correlation energy is approximately
−370 mEh [120].

Authors E(2)

This work
kl-ansatz (aug-cc-pCVTZ) 351.49b

kq-ansatz (aug-cc-pCVTZ) 361.39b

pq-ansatz (aug-cc-pCVDZ) 359.79
Klopper [119]

MP2-R12/B (19s14p8d6f4g3h, 9s6p4d3f) 361.92
Müller et al. [120]

MP2-R12/A (17s11p9d7f5g, 10s7p5d) 362.32
MP2-R12/B (17s11p9d7f5g, 10s7p5d) 361.52

Klopper [100]
MP2-R12/A (15s9p7d5f3g1h, 9s7p5d3f1g) 362.01

Bukowski et al. [15]
Nonlinearly optimised GTGs 356.43

a Structure: ∠(HOH)=104.52◦ and r(O–H)=95.720 pm.
b Structure: ∠(HOH)=104.34◦ and r(O–H)=95.885 pm.

molecule. Essentially, we have used the same basis set combinations that were used
for the hydrogen fluoride molecule. As also observed for hydrogen fluoride, there
are several basis sets for which the pq-ansatz could not be used. Especially, we miss
results for the basis set aug-cc-pCVTZ(spd) which showed excellent performance for
the neon atom.

Our best correlation energy for the water molecule, −361.39 mEh, was obtained
with the aug-cc-pCVTZ basis set and the kq-ansatz. Unfortunately, this basis set
was only used in the linearisation study presented below, and in this case, the
geometry of the bent water molecule was slightly different. The correlation energies
obtained with this different geometry are given in Table B.17. If we compare the
correlation energies obtained with the two different geometries and the kq-ansatz
and the aug-cc-pCVQZ(spd,sp) basis set, we see that the different structure gives
us an energy which is too low by some 0.10–0.15 mEh.

In Table 7.23 we compare our best correlation energies with values obtained from
literature. The best estimate of the second-order correlation energy for water is that
obtained by Klopper [119] with the MP2-R12/B method. His energy estimate of
−361.92 mEh was obtained using a large one-electron basis set, and as commented



in section 7.7, experience shows that such MP2-R12/B values in practice are upper
bounds to the true correlation energy. If we correct our best energy estimate for
the shift caused by the geometry difference, we find that some 99.78% of the energy
obtained by Klopper is recovered. Table 7.24, which lists pair energies for some
selected methods, suggests that the remaining energy fraction of 0.22% is evenly
distributed among the 25 pairs.

As for hydrogen fluoride, all highly accurate energy estimates presented in the
literature have been obtained using a combination of high quality basis sets and
MP2-R12 methods. For the water molecule, however, there is also a reasonably
good energy estimate obtained using nonlinearly optimised GTGs. This estimate of
−356.43 mEh is given by Bukowski et al. [15] who used approximately 150 GTGs to
describe each electron pair. Bukowski and co-workers show that GTGs constitute a
complete basis for the two-electron space for C2v symmetry if the geminal centres are
optimised in the molecular plane. Due to high computational cost or complexity,
however, they did not optimise the geminal centres in the water calculation, but
compensated for this by adding d-functions for the oxygen atom and p-functions for
the hydrogen atom. The quality of their energy estimate, suggests that a lot more
functions need to be added in order to fully compensate for the fixation of centres.

7.8.2 The second-order correction to the barrier to linearity

In the middle of the 1990s, rovibrational states characteristic for the water molecule
were identified in the sunspot spectrum of the sun [122, 123]. In combination with
an increased spectroscopic capability to detect higher-lying bending states [124,
125], this discovery initiated a renewed interest in the barrier to linearity of the
water molecule [126–133]. Although the barrier is relatively large, approximately
11 100 cm−1, it has become an important issue as it not only affects the prediction
of high-lying vibrational bending states, but also low-lying bending states and the
rotational states supported by these [126–130].

While the Hartree–Fock limit to the barrier is easily established, this is not
the case for the MP2 correlation contribution [131, 132]. Using the aug-cc-pV6Z
basis set [134], for instance, Tarczay et al. [132] calculated the valence contribution
explicitly to be −330 cm−1, whereas they with extrapolation techniques estimated
the complete basis set limit to be −348 cm−1. The large aug-cc-pV6Z basis set,
therefore, only managed to recover some 95% of the MP2 contribution. If we go
beyond MP2, the corrections seem to be less dependent of the quality of the basis
set, making the MP2 limit particularly important for the ab initio estimate of the
barrier.

In order to compute the barrier to linearity, we have calculated correlation en-
ergies for a linear and a bent geometry of the water molecule. The angles and bond
lengths used in these geometries are given in Table 7.25 along with the barrier esti-
mates. Estimates are presented for all ansätze, but since only a few basis sets could



Table 7.24: Second-order pair correlation energies (−E/mEh)
for the water molecule. The water geometry differ slightly for
some of the calculations. See Table 7.23 for details.

Pair R12/Aa GTGb KLc KQd PQe

1a2
1 40.86 40.76 40.36 40.842 40.849

1a12a1 3.21 3.20 3.12 3.229 3.234
2a2

1 13.31 13.17 12.98 13.293 13.324
1a13a1 2.16 2.14 1.92 2.154 2.113
2a13a1 17.67 17.21 16.96 17.639 17.582
3a2

1 25.81 25.09 25.05 25.755 25.610
1b2

1 26.31 25.98 25.46 26.254 26.280
1b2

2 25.65 25.10 25.17 25.616 25.517

S
in

gl
et

s

1a11b1 2.26 2.26 1.98 2.255 2.214
2a11b1 18.93 18.72 18.06 18.897 18.802
3a11b1 16.95 16.49 16.05 16.855 16.653
1a11b2 1.53 1.53 1.34 1.534 1.511
2a11b2 21.28 20.94 20.57 21.217 21.153
3a11b2 17.78 17.35 17.28 17.765 17.707
1b11b2 14.60 14.32 13.89 14.530 14.328

1a12a1 1.54 1.53 1.41 1.544 1.543
1a13a1 3.30 3.28 3.05 3.283 3.187
2a13a1 8.49 8.25 8.29 8.479 8.422
1a11b1 3.93 3.93 3.63 3.916 3.804
2a11b1 9.40 9.19 9.12 9.378 9.336
3a11b1 26.69 26.37 26.34 26.657 26.567

T
ri

p
le

ts

1a11b2 2.69 2.69 2.49 2.685 2.629
2a11b2 8.13 8.01 7.98 8.127 8.103
3a11b2 23.84 23.40 23.59 23.817 23.711
1b11b2 25.70 25.45 25.39 25.672 25.609

E(2) 362.01 356.43 351.485 361.393 359.787

a MP2-R12/A from Ref. [100].
b Nonlinearly optimised GTGs from Ref. [15]
c Using basis aug-cc-pCVTZ
d Using basis aug-cc-pCVTZ
e Using basis aug-cc-pCVDZ



Table 7.25: All-electron second-order correlation energy barriers
to linearity for the water molecule. Energies are given in mEh.
Water geometries, which have been taken from Ref. [133], are given
in tablenote a.

Orbital basis (O,H) VOE KL KQ PQ

cc-pVDZ 1.541 0.397 −0.789 −1.631
cc-pVTZ 0.014 −0.560 −1.176 n/a
cc-pCVDZ 1.666 0.810 −0.620 −1.077
cc-pCVTZ 0.028 −0.399 −1.151 n/a

aug-cc-pVDZ −0.399 −1.691 −2.245 −2.539
aug-cc-pVTZ (spd, sp) −0.796 −1.442 −2.220 n/a
aug-cc-pVTZ −1.092 −1.628 −2.095 n/a
aug-cc-pCVTZ (spd, sp) −0.833 −1.352 −2.194 n/a
aug-cc-pCVQZ (spd, sp) −0.704 −1.302 −2.191 n/a
aug-cc-pCVDZ −0.311 −1.319 −2.053 −2.207
aug-cc-pCVDZ + ICP −0.665 −1.664 −2.053 n/a
aug-cc-pCVTZ −1.086 −1.475 −2.088 n/a

a Geometry, bent : ∠(HOH)=104.343◦ and r(O–H)=95.885 pm.
Geometry, linear : ∠(HOH)=180.000◦ and r(O–H)=93.411 pm.

be used for the pq-ansatz, the results listed for this ansatz are mainly included for
reference. The correlation energies for the two different geometries of water are not
discussed and are therefore given in Table B.17 of appendix B

In the upper part of Table 7.25, we give correlation energy barriers obtained
with some small cc-pVXZ and cc-pCVXZ basis sets. Among these estimates both
positive and negative values are observed. To second order, the correction made
to the barrier due to electron–electron correlation is approximately −2.1 mEh (see
below), implying that the barrier is lowered. All our estimates using conventional
MP2 get this wrong, and predict a heightening rather than a lowering of the barrier.
The kl-ansatz performs slightly better and correctly predicts a lowering of the barrier
when the larger TZ basis sets are used, but the magnitude predicted for the barrier,
is far off. For the kq-ansatz, the barrier is predicted to be lowered for all basis sets,
but also in this case the magnitude of the correction is wrong.

Proceeding with the aug-cc-pVXZ and aug-cc-pCVXZ basis sets, we see that
all estimates correctly predict a lowering of the barrier, although the magnitude
in some cases is still far off. For the virtual orbital expansion, for instance, we
only recover half of the true barrier correction. With the kl-ansatz the performance
is somewhat better and we note, especially, that the different basis sets produce
very similar barrier estimates. The best estimate is probably obtained with internal



Table 7.26: Core (top) and valence (bottom) contributions
to the second-order correlation energy barrier to linearity
for the water molecule. The basis sets used are aug-cc-
pCVTZ (A) and aug-cc-pCVQZ(spd,sp) (B). For the en-
ergy conversion we have used 1 mEh = 219.47463 cm−1.

Single-point energy/mEh Barrier
Bent geom. Linear geom. mEh cm−1

A −61.4412271 −61.9452909 −0.5041 −110.6
B −61.5362531 −62.0436242 −0.5074 −111.4

A −299.9515832 −301.5353845 −1.5838 −347.6
B −299.0833648 −300.7673288 −1.6839 −369.6

Counterpoise-correction (ICP) and the basis set aug-cc-pVDZ, in which case nearly
80% of the true barrier correction is recovered.

Internal Counterpoise-correction specifies that the linear and the bent water
molecules are calculated in exactly the same basis set. Thus, when we straighten
the bent molecule, duplicate hydrogen basis functions are maintained in the bent
positions, and vice versa when the linear molecule is bent. This ensures a more
balanced description of the two geometries.

While even the best estimate using the kl-ansatz is only modest, the kq-ansatz
is seen to perform well for all basis sets. Even for the smallest of the basis sets,
aug-cc-pVDZ, the kq-ansatz overshoots the magnitude of the barrier by less than
7%, which is quite remarkable.

Our best estimate of the all-electron energy barrier is −2.088 mEh and is obtained
with the aug-cc-pCVTZ basis set. Since this basis set gives the lowest correlation
energy for the two water geometries, it is reasonable to assume that it gives the best
barrier estimate. When we split up the estimates in core and valence contributions,
however, we see that the aug-cc-pCVQZ(spd,sp) basis set gives a slightly better
description of the core correlation. The core and valence contributions for the aug-
cc-pCVTZ and aug-cc-pCVQZ(spd,sp) basis sets are given in Table 7.26.

Although the latter performs slightly better for core correlation, we see that the
former performs far better for valence correlation, probably due to the f -functions
on oxygen and d-functions on hydrogen. The additional flexibility provided by these
functions is very important, especially for the bent geometry. Since the aug-cc-
pCVQZ(spd,sp) basis set lacks these functions, the description of the linear geometry
becomes better, and as a consequence, the estimate of the valence contribution to
the barrier becomes too large.

It is difficult to say how well our estimate of the core and valence contributions
is converged. Since an internal counterpoise-correction makes no difference for the



Table 7.27: Core (top) and valence (bottom) contributions to the second-
order correlation energy barrier (E/cm−1) to linearity for the water
molecule. A comparison with literature data. Basis sets are specified
in the text. Entries are listed chronologically.

Authors ∆E(2)[core]

This work
kq-ansatz with basis aug-cc-pCVQZ(spd,sp) −111

Valeev et al. [133]
MP2-R12/A with basis K21h −110

Tarczay et al. [132]
MP2-R12/A with basis K2 −109
MP2 with basis K2 −106

∆E(2)[valence]

This work
kq-ansatz with basis aug-cc-pCVTZ −348

Valeev et al. [133]
MP2-R12/A with basis K43i −357
MP2 with basis K43i −325
CBS limita −353

Tarczay et al. [132]
MP2-R12/B with basis K2 + ICP −344

a Using a two-point extrapolation of type ECBS = EX + aX−3 with the
basis sets aug-cc-pV{5,6}Z+ICP.

kq-ansatz when the aug-cc-pCVDZ basis set is used, however, it seems reasonable
to assume that the larger aug-cc-pCVTZ basis provides a well-balanced and good
estimate of the barrier.

In Table 7.27 we compare our best estimates of the core and valence contribu-
tions to the barrier with literature data. The best estimates found in literature
have been obtained using MP2-R12 methods and large basis sets denoted K2, K21h,
and K43i. In (oxygen, hydrogen) quality these basis sets are (15s9p7d5f, 9s7p5d),
(15s9p7d5f3g1h, 9s7p5d3f1g), and (19s13p11d9f7g5h3i, 13s11p9d7f5g3h), respec-
tively.

For core correlation, the GTG and MP2-R12/A approaches give similar estimates
of the barrier, and when the MP2-R12/A method is combined with the larger K21h

basis set, the difference is no more than 1 cm−1. Note, also, that the barrier difference
is only 3 cm−1 between the MP2 and the MP2-R12/A methods when the K2 basis
set is used. This good performance for the conventional MP2 approach is most likely



related to cancellation of errors.
Although the aug-cc-pCVQZ basis set give an unbalanced valence description

of the two water geometries, this is probably not the case for the description of
the core. Opening for the possibility, however, we suggest that the core correlation
correction of the barrier is in the range −111.0 ± 0.5 cm−1.

For valence energy, Table 7.27 shows that the different approaches produce quite
different estimates of the barrier. Note, for instance, that Valeev et al. [133] obtained
a barrier estimate of only −325 cm−1 using conventional MP2 and the large K43i

basis set, which is some 30 cm−1 off the limit suggested in their paper. The valence
estimate of the barrier is therefore very sensitive to the quality of the basis set, as
ought to be expected from the high degree of rehybridisation involved when the
molecule is made linear. As shown by Tarczay et al. [132], the conventional MP2
calculations are especially sensitive to this rehybridisation, and barrier estimates
should therefore preferably be made in basis sets employing ICP.

The MP2-R12/A estimate of the barrier using the large K43i set is possibly the
current best estimate of the barrier. If the three i-orbitals on oxygen and the three h-
orbitals on hydrogen are removed, however, the barrier estimate changes by as much
as 6 cm−1 to −363 cm−1. It is therefore reason to question how well the estimate
of −357 cm−1 is converged. Based on the results obtained in this work, we suggest
that the barrier of −357± 5 cm−1, suggested by Valeev and co-workers are changed
to −353 ± 5 cm−1. The total correction made to the barrier to linearity by the core
and valence correlation energies then become −464± 5 cm−1 or −2.11± 0.02 mEh.

7.9 The rotational barriers of hydrogen peroxide

Since the results obtained for the water molecule are quite encouraging, we proceed
by studying the rotational barriers of the hydrogen peroxide molecule. The stable
conformation of hydrogen peroxide is a gauche conformation in which the dihedral
angle is approximately 113◦ [135]. The molecule may be rotated around the oxygen–
oxygen bond, and under a full rotation, a barrier is crossed for the cis and trans
conformations. In this section we estimate the height of these two barriers at the
second-order level of theory.

As the purpose is mainly to check whether our GTG-MP2 approach is successful
for systems of this size, we have not used accurate geometries for the three conforma-
tions, but crude estimates obtained from a conventional MP2 optimisation using the
basis set aug-cc-pVDZ. The bond lengths and angles obtained in this optimisation,
are summarised as in Table 7.28.

Before we look at the GTG results, we study the correlation energy barriers using
conventional MP2 and the four basis set series cc-pVXZ, cc-pCVXZ, aug-cc-pVXZ,
and aug-cc-pCVXZ. The results are given in Table 7.29. The single-point correlation
energies used to compute these barriers are given in Appendix B as Table B.18.



Table 7.28: Bond length and bond angles used for the
three hydrogen peroxide conformations in the study
of the rotational barriers. Bond lengths are given in
pico-meter and angles in degrees.

r(O–O) r(O–H) ∠(HOO) ∠(dihedral)

cis 145.79 96.44 103.87 0.0
gauche 145.05 96.44 99.33 114.2
trans 146.09 96.35 97.69 180.0

We start by investigating the estimates of the cis barrier. Table 7.29 shows
that all four basis set series agree on the sign of the barrier correction, but not
on the magnitude. While the cc-pVXZ series seems to stabilise around +0.1 mEh

as the cardinal number X is increased, the cc-pCVXZ and aug-cc-pVXZ series are
decreasing rather steadily, and for X = 5, the barrier estimates are approximately
+0.05 mEh for both series. For the aug-cc-pCVXZ series, on the other hand, the
barrier increases with increasing X for low values of X, but decreases for X : Q → 5,
and ends at +0.024 mEh. Since the aug-cc-pCVXZ series of basis sets are the highest
saturated, we consider the estimate of +0.024 mEh to be the best estimate of the
barrier. We therefore conclude that that the correction due to the correlation energy
leads to a slightly increased cis barrier.

For the trans barrier correction, we also note that the different series agree on
the sign, but not entirely on the magnitude of the correction. The cc-pVXZ series
is somewhat erratic and ends with an estimate of −0.38 mEh, the cc-pCVXZ series
has a rather stable estimate of −0.44 mEh, and the aug-cc-pVXZ series is increasing
and ends at −0.38 mEh. The last series, aug-cc-pCVXZ, is steadily increasing, and
ends at −0.42 mEh, which we consider the best estimate of the trans barrier correc-
tion. As opposed to the cis correction, we see that the trans correction lowers the
corresponding rotational barrier.

Using the aug-cc-pCV5Z basis set, the Hartree–Fock barriers are estimated to
be 11.772 mEh for the cis conformation and 2.102 mEh for the trans conformation.
To second-order, therefore, the rotational barriers become 11.80 mEh and 2.53 mEh,
respectively, or 2588 cm−1 and 554 cm−1.

In Table 7.30 we present barrier estimates obtained with the kl- and kq-ansätze
and various basis sets. The single-point correlation energies used to compute the
barriers are given in appendix B as Table B.19.

Some of the basis sets used in the GTG study have not been encountered earlier
in this work, and require a short explanation. The basis set “aug-cc-pVDZ +aug-H”,
for instance, is the cc-pVDZ basis set augmented with extra functions for hydrogen.
These extra functions are taken from aug-cc-pVDZ. Similarly, “aug-cc-pVDZ +d-



Table 7.29: All-electron correlation energy bar-
riers (E/mEh) for rotating the gauche confor-
mation of hydrogen peroxide into the cis or
trans conformations. All energies are obtained
using conventional MP2.

Basis Nbas cis trans

cc-pVDZ 38 +0.289 −0.407
cc-pVTZ 88 +0.182 −0.415
cc-pVQZ 170 +0.099 −0.416
cc-pV5Z 292 +0.102 −0.375

cc-pCVDZ 46 +0.307 −0.409
cc-pCVTZ 114 +0.135 −0.440
cc-pCVQZ 228 +0.085 −0.444
cc-pCV5Z 400 +0.053 −0.441

aug-cc-pVDZ 64 −0.074 −0.323
aug-cc-pVTZ 138 +0.190 −0.357
aug-cc-pVQZ 252 +0.086 −0.355
aug-cc-pV5Z 414 +0.049 −0.378

aug-cc-pCVDZ 72 −0.060 −0.327
aug-cc-pCVTZ 164 +0.018 −0.384
aug-cc-pCVQZ 310 +0.030 −0.404
aug-cc-pCV5Z 522 +0.024 −0.424

aug-H” is the aug-cc-pVDZ basis set, supplemented with doubly-augmented func-
tions taken from d-aug-cc-pVDZ.

Starting with the cis barriers again, we see that the barrier estimates are rather
disappointing. For both the kl- and the kq-ansatz, the estimates are observed to be
very sensitive to the basis set, and even for the two largest basis sets, aug-cc-pCVDZ
and aug-cc-pVTZ(spd,sp), the barrier estimates differ considerably. Moreover, we
also note that there are large differences between the ansätze, but this result is in
agreement with earlier observations and less worrying.

If we consult Table B.19, we see that the basis set aug-cc-pVTZ(spd,sp) gives
correlation energies that are some 8 mEh lower than the energies obtained with the
aug-cc-pCVDZ basis set. Although the aug-cc-pVTZ(spd,sp) basis was observed
to give an unbalanced description of different water geometries (section 7.8.2), we
choose to consider it the best basis set due to far better single-point energies. The
cis barrier to rotation is therefore estimated to be +0.093 mEh, or almost a factor
four larger than the estimate obtained with conventional MP2.



Table 7.30: Hartree–Fock and all-electron correlation energy bar-
riers (E/mEh) for rotating the gauche conformation of hydrogen
peroxide into the cis or trans conformations. The cis and trans
barriers are given in the upper and lower part of the table, respec-
tively.

Basis HF VOE KL KQ

cc-pVDZ +12.785 +0.289 +0.258 +0.815
cc-pVDZ + aug-H +12.229 +0.140 −0.231 +1.116
cc-pVDZ + aug-O +12.192 +0.006 +0.240 +0.298
aug-cc-pVDZ +12.366 −0.074 +0.054 +0.333
aug-cc-pVDZ + d-aug-H +12.392 −0.150 −0.001 +0.082
aug-cc-pCVDZ +12.374 −0.060 +0.091 +0.241
aug-cc-pVTZ (spd,sp) +12.145 +0.038 +0.027 +0.093

cc-pVDZ +1.452 −0.407 −0.617 −0.252
cc-pVDZ + aug-H +1.512 +0.246 +0.399 +0.367
cc-pVDZ + aug-O +2.266 −0.468 −0.534 −0.414
aug-cc-pVDZ +2.144 −0.323 −0.385 −0.246
aug-cc-pVDZ + d-aug-H +2.167 −0.342 −0.404 −0.452
aug-cc-pCVDZ +2.134 −0.327 −0.306 −0.294
aug-cc-pVTZ (spd,sp) +2.376 −0.494 −0.281 −0.371

For the trans barrier, we see that the estimates are less sensitive to the basis set,
that is, the relative differences between the barrier estimates are smaller. For the
kq-ansatz, however, the difference for the two largest basis sets are still larger than
appreciated. Again, regarding the aug-cc-pVDZ(spd,sp) basis as the better, we get
−0.37 mEh as the estimate of the barrier. For the trans barrier, therefore, the GTG
and VOE estimates are of the same order of magnitude.

Note, finally, that the correlation energy correction to the rotational barriers of
hydrogen peroxide (+0.02 mEh, −0.42 mEh) are much smaller than the correlation
energy correction to the barrier of linearity in the water molecule (−2.1 mEh). Basis
sets of much higher quality must therefore be used unless cancellation of errors are
to be trusted. For the hydrogen peroxide conformations, there are also “long-range”
effects involved which are not present in the water molecule. To get the rotational
barriers accurate, therefore, more diffuse functions, and probably also functions of
high angular momentum, are needed. Considering the small basis sets used in the
GTG study, the poor performance is not surprising.



7.10 Energy recovery by different parts of the pair
function

When Gaussian-type geminals was introduced in the expansion of pair functions in
combination with the traditional orbital approximation [59], they were regarded as a
supplement only. Since only the ij-ansatz was used at that time, the geminals indeed
became a supplement, and the largest portion of the correlation energy, was for all
calculations recovered by the virtual orbitals. When all three-electron integrals are
calculated explicitly, we can only use basis sets with s-, p-, d-, and to some extent
f -orbitals, due to high computation time. For such basis sets, the ij-ansatz proved
to be of limited use, and this motivated us to generalise the geminal ansatz, first to
the kl-ansatz, and then later to the kq- and pq-ansätze.

Whereas the geminal part of the pair function is properly regarded as a supple-
ment when either the ij- or the kl-ansatz is used, this is not the case for the larger
ansätze. To illustrate this, we have split the correlation energies for neon and water
into VOE and GTG contributions, and calculated the portion of energy recovered
by each of these terms alone. The VOE and GTG contributions for the neon atom
are given in Table 7.31 as percentages.

We start by studying the percentages obtained with the kl-ansatz. Since only
pairs of occupied orbitals are used in this ansatz, the amount of energy recovered
by the geminals does not increase once the occupied orbitals have converged. After
that, all improvement in the correlation energy can only come from the virtual
orbitals expansion. To some extent, this may be observed in Table 7.31. For the
cc-pVXZ series, for instance, the portion of the energy recovered by the GTG term
decreases with increasing X, whereas the portion recovered by the VOE increases.
The same relation holds for all the other basis set series, and for the largest basis set,
aug-cc-pCV5Z, 98% of the energy is recovered by the VOE, and the GTGs is only
needed for the last 2%, or 10 mEh. Note also, that for all basis sets the percentage
recovered by the VOE is larger than the percentage recovered by the GTG.

With the kq-ansatz this situation is reversed, and for all basis sets, the largest
portion of the energy is recovered by the GTG part. The difference is largest for
small basis sets, but this is to be expected as the kq-ansatz does not need high
angular momentum function to perform well. Since the GTG part recovers the
larger portion of the energy, terms like supplement and correction would give an
inaccurate description. Instead, the VOE term should in this case be regarded as
the correction.

For the kq-ansatz, we note that the GTGs recover more than 83% of the cor-
relation energy recovered by the full pair function for that basis set. If we move
to the pq-ansatz this percentage increases to 99(!). For the pq-ansatz, therefore,
the virtual orbital expansion only contribute with a very small amount of energy.
Nevertheless, for our best neon energy, the VOE is responsible for the last, and very



Table 7.31: The percentage of the all-electron second-order correla-
tion energy recovered for the neon atom by only the virtual orbital
expansion part or the geminal part of the pair function relative to the
amount of energy recovered when both are used.

KL KQ PQ
Orbital basis VOE GTG VOE GTG VOE GTG

cc-pVDZ 62 54 54 83 53 99.2
cc-pVTZ 79 47 73 93 72 99.4
cc-pVQZ 88 44 85 95 84 99.6

cc-pCVDZ 74 53 64 84 63 99.1
cc-pCVTZ 91 45 86 94 85 99.4
cc-pCVQZ 96 43 — — — —

aug-cc-pVDZ 65 50 57 84 55 99.6
aug-cc-pVTZ 80 45 74 93 74 99.8
aug-cc-pVQZ 88 44 85 95 — —

aug-cc-pCVDZ (sp) 60 61 46 83 44 99.5
aug-cc-pCVTZ (sp) 69 59 53 88 52 99.3
aug-cc-pCVQZ (sp) 69 59 53 89 52 99.2
aug-cc-pCV5Z (sp) 70 59 53 90 52 99.2

aug-cc-pCVDZ 75 49 67 85 65 99.6
aug-cc-pCVTZ (spd) 87 46 80 93 80 99.8
aug-cc-pCVQZ (spd) 89 46 83 94 — —

aug-cc-pCVTZ 91 44 87 94 87 99.8
aug-cc-pCVQZ (spdf) 94 43 — — — —
aug-cc-pCVQZ 96 43 — — — —
aug-cc-pCV5Z 98 43 — — — —

important, 1 mEh.

In Table 7.32, we give the corresponding VOE and GTG contributions for the
water molecule. We do not go into details about these numbers, merely comment
that they show exactly the same trends as the neon numbers.

Since the GTG part of the pair function is the one giving origin to three-electron
integrals, this part should be kept at a minimum. To achieve this, and at the same
time get high quality energy estimates, the virtual orbitals and geminals must be
expanded in different one-electron basis sets. This would allow us to use much larger
basis sets for the expansion of virtual orbitals, and at the same time smaller basis
sets for the geminals. The need for this is commented several places in this work,



Table 7.32: The percentage of the all-electron second-order correlation
energy recovered for the water molecule by only the virtual orbital ex-
pansion part or the geminal part of the pair function relative to the
amount of energy recovered when both are used.

KL KQ PQ
Orbital basis VOE GTG VOE GTG VOE GTG

cc-pVDZ 69 50 61 86 60 98.1
cc-pCVDZ 77 49 71 87 70 98.1

aug-cc-pVDZ 70 47 63 87 62 99.1

aug-cc-pCVDZ (sp , s) 66 57 54 83 52 97.8
aug-cc-pCVDZ (sp , sp) 70 54 58 84 56 98.5
aug-cc-pCVDZ (spd, s) 79 47 71 86 70 98.6
aug-cc-pCVDZ 80 46 73 87 72 99.1

aug-cc-pCVTZ (sp , s) 72 56 58 86 57 97.4
aug-cc-pCVTZ (sp , sp) 76 52 64 86 62 98.6
aug-cc-pCVTZ (spd, s) 88 45 81 90 80 99.0
aug-cc-pCVTZ (spd, sp) 89 44 84 91 — —
aug-cc-pCVTZ 92 42 90 92 — —

aug-cc-pCVQZ (sp , sp) 77 51 — — — —

but in this section we have seen how unbalanced the pair function currently is with
respect to energy contributions made by the orbital and geminal parts.

Note, finally, that even though the pair function seems to be well-balanced for the
kl-ansatz, multiple basis sets are still very useful. While functions of high angular
momentum may be needed for the virtual orbital part, for instance, they are most
likely irrelevant for the occupied orbitals.





Chapter 8

Summary, conclusions, and future
perspectives

In this thesis we have presented a new method for calculating highly accurate MP2
energies for atomic and molecular closed-shell systems. In order to obtain accurate
energy estimates, we have included terms explicitly dependent on the inter-electronic
distances r12 in the pair function. Our pair function is defined as

ũij(1, 2) =
∑

a≥b

cab
ij φab(1, 2)

︸ ︷︷ ︸
orbital part

+
∑

v

cv
ij exp(−γvr

2
12)
∑

x≥y

cxy
ij φ̃xy(1, 2)

︸ ︷︷ ︸
geminal part

(8.1)

where the orbital part is the expansion of virtual orbitals used in conventional MP2
calculations, and the geminal part is an expansion of functions explicitly dependent
on the inter-electronic distance r12. In the geminal part, the φ̃xy is a pair of Hartree–
Fock orbitals or approximated Hartree–Fock orbitals, and exp(−γvr2

12) is a Gaussian
correlation factor (GCF) which ties a pair of orbitals φ̃xy into a Gaussian-type gem-
inal. The xy is a pair of non-specified summation indices that may be selected from
the set {ij, kl, kq, pq} where i, j, k, and l refer to occupied orbitals while p and q are
general orbital indices. Whenever the indices p or q are used, the sum over orbitals
may be replaced by a sum over atomic basis functions. A pair function in which the
summation indices xy have been replaced by ij is referred to as the ij-ansatz, if xy
is replaced by kl we get the kl-ansatz, and so forth.

The GTG-MP2 methods presented in this thesis may be regarded as an mix-
ture/intermediate between the MP2-R12 method developed by Klopper and Kutzel-
nigg [6, 10, 11] and the Gaussian-type geminals (GTG) method developed by Sza-
lewicz, Jeziorski, and others [12–15].

Klopper and Kutzelnigg define pair function similar to (8.1), but instead of
using a sum over Gaussian correlation factors they use a single, linear r12 term.
Moreover, they have restricted the summation indices xy to either of the forms ij
or kl. While the linear r12 term has some theoretically appealing properties, the



Gaussian correlation factors have the advantage that they give integrals that may
be evaluated analytically.

Szalewicz and co-workers do not use the orbital part in their pair function. In-
stead, they use a pure linear combination of GTGs in which all non-linear parameters
are optimised. Their method leads to very accurate pair functions and pair energies
for small systems, but is difficult to generalise to large molecules, partly due to the
expensive non-linear optimisation.

To obtain pair energies, the pair functions must be optimised. This may be
accomplished by minimising the strong orthogonality (SO) functional present in the
variational formulation of MP2 theory

Fij [ũij] ∝ ⟨ũij|Qocc (f(1) + f(2) − εi − εj) Qocc |ũij⟩ + 2 ⟨ũij|Qoccr
−1
12 |φij⟩ (8.2)

leading to expensive three- and four-electron integrals. Klopper and Kutzelnigg
avoid these integrals by introducing the resolution of the identity (RI) in several
places. Using this identity has its price, however, and among other things, the
upper-bound property of pair energies (see Equation 3.57) is lost.

Szalewicz and co-workers also avoid four-electron integrals, but achieve this by
replacing the SO functional with their weak orthogonality (WO) functional

Jij[ũij] ∝ ⟨ũij| f̃(1) + f̃(2) − εi − εj |ũij⟩ + 2 ⟨ũij|Qoccr
−1
12 |φij⟩ (8.3)

where f̃(1) and f̃(2) are modified Fock operators defined as f̃ = f + ∆ijPocc, where
∆ij is a level-shift given by ∆ij = 1

2 (εi + εj − 2ε1) + η. The level-shift parameter
η may be greater than or equal to zero. While the WO functional maintains the
upper-bound property of pair energies as shown in section A, it gives rise to expensive
three-electron integrals.

The energies presented in this work have been obtained by minimising the WO
functional of Szalewicz and co-workers. We only optimise linear parameters, how-
ever, and pair energies are therefore easily obtained by solving a set of linear equa-
tions. We still have to evaluate three-electron integrals, and to be able to calcu-
late them effectively, we have developed a general scheme for symmetry-adapting
many-electron integrals (section 5). This way, two- and three-electron integrals are
calculated analytically within an Abelian subgroup of the true symmetry of the sys-
tem. To speed up integral calculations further, we have also implemented an efficient
parallelisation algorithm (section 6.6).

Even though we have used our explicitly correlated pair functions for obtaining
accurate MP2 energies only, they may also be used to obtain molecular properties;
either using the Hellman–Feynman approximation as done by Bakken et al. [136]
for molecular geometric properties, or using explicit formulas as done by Bukowski
et al. [137] for multipole moments.

The use of explicitly correlated basis functions is not limited to MP2 theory, but
may also be developed for the coupled-cluster and CASPT2 theories, for example.



Table 8.1: Second-order correlation energies (−E/mEh) ob-
tained in this work compared with current best estimates.

System This work Current best Recovery

He 37.37729 37.37744 99.9996%
Be 76.355 76.358 99.996%
Ne 388.19 388.19 100%
He · · ·He 74.804 74.804 100%
H2 34.252 34.252 100%
LiH 72.877 72.890 99.98%
HF 383.69 384.4 99.82%
H2Oa 361.39 361.92 99.85%
H2Ob 111.4 111.4 100%
H2Oc 347.6 357 97.4%

a Slightly different geometries.
b Core correction (in cm−1) to the barrier to linearity.
c Valence correction (in cm−1) to the barrier to linearity.

For the coupled-cluster singles and doubles theory Noga and co-workers [120, 138–
141] have made an implementation in which the linear r12 terms are utilised (CCSD-
R12), while Bukowski and co-workers [102] have made an implementation utilising
Gaussian correlation factors (CCSD-GTG).

In this work we have shown that,when pair functions of the form (8.1) are op-
timised with the WO functional, high quality energies are obtained for both atoms
and molecules. The orbital part of the pair functions has been expanded in standard
one-electron basis functions. For hydrogen, helium, oxygen, and fluorine we have
used the correlation consistent basis sets of Dunning and co-workers [65–69], and for
lithium and beryllium we have used atomic natural orbitals (ANOs) developed by
Roos and co-workers [72, 73]. The correlation function, which ties orbitals into gem-
inals, has been chosen to be a nine-term expansion of Gaussian correlation factors
having even-tempered exponents γv ∈ {1/9, 1/3, . . . , 729}. No attempt has been
made to optimise the non-linear exponents of either the GCFs or the one-electron
basis sets, and the results presented here, merely show the potential of the pair
functions of type (8.1) and not the ultimate performance.

In Table 8.1 we compare our best second-order correlation energies with the best
estimates found in literature. For most of these systems, our correlation energies
are excellent, and for four of them we also have the current best energy estimates.
These estimates were all made using the pq-ansatz. The pq-ansatz has limited use,
however, as it requires large equation systems to be solved. For the HF and water
molecules, for instance, we were not able to use the basis set aug-cc-pCVTZ(spd,sp)



because of memory limit of 2 GB. For these systems, therefore, the pq-ansatz could
not be used with a proper basis set and our best energy estimates were obtained
with the kq-ansatz. The kq-ansatz does not suffer from large memory requirements,
but to obtain accurate pair energies, the one-electron basis must include functions
of higher angular momenta than is needed for the pq-ansatz. The three-electron
integrals, however, become prohibitively expensive to compute when high angular
momenta functions are included, and for the HF and water molecules we were not
able to include enough basis functions to obtain correlation energies as good as the
current best estimates obtained with the MP2-R12 method.

Originally, the geminal part of (8.1) was only intended to be a correction to the
virtual orbital part. As discussed in section 7.10, however, the most of the correla-
tion energy has usually been recovered by the geminal part rather than the virtual
orbital part. This occurs for two reasons: First, we have introduced the kq- and pq-
ansätze, which retrieve correlation energy much more efficiently than the originally
proposed ij-ansatz. Secondly, we are restricted to using the same one-electron basis
set for geminals and virtual orbitals. Whereas high angular momentum functions
are needed to obtain good energy estimates with the virtual orbital expansion, such
functions cannot generally be used because of three-electron integrals.

The use of a common one-electron basis for orbitals and geminals was particularly
unfortunate for the study of the rotational barrier of the hydrogen peroxide molecule
(section 7.9). Due to the expensive three-electron integrals, the largest basis set we
could use was of quality 7s6p4d for oxygen and 4s3p for hydrogen. This basis
set did neither contain flexible core functions nor a sufficient amount of polarisation
functions, and the barrier could therefore only be described with moderate accuracy.

If the use of pair functions of type (8.1) is to become widespread, the one-
electron basis sets used for geminals must be decoupled from the basis sets used
for virtual orbitals. This will allow us to use large basis sets like aug-cc-pVQZ or
aug-cc-pV5Z for the virtual orbital part and a smaller basis set, possibly containing
only s-, p-, and d-orbitals, for the geminal part. Long-range correlation effects,
therefore, may be described with the conventional part of the pair function, while
short-range effects like core correlation may be described with geminals. Moreover,
this approach will make it possible to design basis sets explicitly for geminals. As
discussed by Noga and Valiron [142] in the framework of R12 theory, basis sets
optimised for conventional calculations are not optimal for calculations employing
explicitly correlated wave functions. This non-optimality is expected to be even
more pronounced within GTG-MP2 theory and in particular for the kq-ansatz and
pq-ansätze.

While basis set containing g- and h-orbitals may be needed in the virtual orbital
expansion, they are not needed for the occupied Hartree–Fock orbitals. Use of a
separate basis set for the occupied orbitals should therefore also be considered. Since
the occupied orbitals are needed in the Fock operator, the projection operator, and
the energy calculation, this will reduce the time spent in calculating three-electron



integrals significantly.
For almost all calculations presented in this work, the kl-ansatz performs poorly.

From the neon results in Table 7.13, however, we know that the GTG-MP2 method
with the kl-ansatz perform better than the MP2-R12 methods in the same one-
electron. Obtaining good energies with the kl-ansatz is therfore only a question of
using a sufficiently large basis for the virtual orbital expansion. As argued above,
this will become possible when separate basis sets are used for different parts of the
calculation.

Even though the use of multiple basis sets will allow calculations on larger
molecules, the use of three-electron integrals will still limit the size of systems than
can be treated. A remedy for this will be to introduce the resolution-of-the-identity
(RI) in three-electron integrals, as discussed in section 3.5. The RI may be intro-
duced at two different levels: In the pair function optimisation and in the energy
calculation. In section 3.6, we showed that, if the RI is used in the optimisation, the
time spent in calculating three-electron integrals change from an O(N2

GCF) process to
an O(NGCF) process. The error introduced in energies by using this approximation,
however, is only quadratic in the error in the pair functions. If the RI is also used
in the energy calculation, no three-electron integrals are needed.

As the GTG-MP2 method becomes applicable for larger systems, integrals should
be prescreened. In section 6.7, we developed formulas for prescreening of two- and
three-electron integrals except for kinetic energy integrals, and discussed what kind
of performance improvement that can be expected. We have also argued (section 6.1)
that the AO-formulation of the different ansätze is well-suited for to local methods
such as the LMP2 method of Werner and co-workers [39, 40].

To improve the GTG-MP2 method presented in this work, one or more of the fea-
tures discussed above must be implemented. In order of importance, these features
are:

• Use different basis sets for geminals, virtual orbitals, and occupied orbitals

• Introduce the resolution-of-the-identity to avoid three-electron integrals

• Integral prescreening for better scaling with system size

where integral prescreening also includes local methods. If these techniques are
implemented for the GTG-MP2 method, this method may turn out as the overall
best method for retrieving dynamic correlation energies for both small and medium
sized molecules.





Appendix A

Justification of the WO functional

In section 3.4.3 we showed that if the Hartree–Fock equations have been solved
exactly, the strong orthogonality functional of Sinanoğlu
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∣∣ũP
ij

〉)
,

(A.1)

represents a true upper bound to the exact pair energy. In this section we will show
that the weak orthogonality functional of Szalewicz and co-workers
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in turn represents a true upper bound to the strong orthogonality functional

JP
ij [ũ

P
ij] ≥ FP

ij [ũP
ij] ≥ ϵPij (A.3)

for all trial functions ũP
ij. As we shall see, this proof assumes that the Hartree–Fock

equations are solved exactly, but no further approximations have to be introduced.
Since the SO functional is expressed in terms of the functions QoccũP

ij rather than
ũP

ij, we start by decomposing the trial functions into two parts, one being strongly
orthogonal to the occupied orbital

ũij = Qoccũij︸ ︷︷ ︸
ũ
(1)
ij

+ (1 − Qocc)ũij (A.4)

Whether we work in the parity-adapted formalism or not does not affect the outcome,
and since superscripts will be needed to distinguish between different pair function
components, we ignore the parity adaption from here.

In order to prove (A.3), the pair function must be decomposed into mutually
orthogonal spaces. This is fulfilled by the decomposition (A.4). Furthermore, as



we try to establish a relationship between the WO and SO functionals in which
the difference is written in terms of expectation values, our subspaces should be
closed under the operator Pocc(1)+Pocc(2). This requirement is fulfilled by the first
term of (A.4) but not the second. The latter term, therefore, has to undergo a new
decomposition

(1 − Qocc)ũij = Pocc(1)Pocc(2)ũij︸ ︷︷ ︸
ũ
(2)
ij

+ [Pocc(1) + Pocc(2) − 2Pocc(1)Pocc(2)] ũij︸ ︷︷ ︸
ũ
(3)
ij

(A.5)

Combining decompositions (A.4) and (A.5) we write the pair function as

ũij = ũ(1)
ij + ũ(2)

ij + ũ(3)
ij (A.6)

where the different components are given by

ũ(1)
ij = Qoccũij ≈ double excitations (A.7)

ũ(2)
ij = Pocc(1)Pocc(2)ũij =no excitation (A.8)

ũ(3)
ij = [Pocc(1) + Pocc(2) − 2Pocc(1)Pocc(2)] ũij ≈ single excitations (A.9)

The pair function component ũ(2)
ij lies completely in the space spanned by the oc-

cupied orbitals. We may also regard the components ũ(3)
ij and ũ(1)

ij as single- and
double-excitations respectively, but this analogy is, strictly speaking, only valid
when the orbital basis is complete and pair functions can be fully expanded in it.

The components belonging to different subspaces are mutual orthogonal. Writing
each components as ũ(m)

ij = O(m)ũij where O(m) is the projection operator associated
with the mth subspace, we get

〈
ũ(m)

ij |ũ(n)
ij

〉
= ⟨ũij| O(m)O(n) |ũij⟩ = δmn ⟨ũij| O(m) |ũij⟩ (A.10)

The projection operators O(m) may easily be identified from (A.7)–(A.9). Using the
properties of these operators, we may also show that the pair function components
are eigenfunctions of the projection operator Pocc(1) + Pocc(2)
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Inserting the decomposition (A.6) into the weak orthogonality functional

Jij [ũij] = Λij (⟨ũij| f(1) + f(2) − εi − εj |ũij⟩
+∆ij ⟨ũij|Pocc(1) + Pocc(2) |ũij⟩ + 2 ⟨ũij|Qoccr

−1
12 |φij⟩

) (A.12)



and using relations (A.10) and (A.11) to simplify expressions, we get
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where Fij[ũij ] is the strong orthogonality functional given in (A.1) but for non-parity-
adapted pairs. Note that by virtue of the operator Qocc, the only term linear in ũij

is absorbed into the SO functional. In order to obtain (A.13), we have assumed that
transition moments between different subspaces are zero
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≈ 0 when m ̸= n (A.14)

If the Hartree–Fock equations have been solved exactly, (A.14) becomes an exact
relation. This is trivial since the Fock operator and the projection operators O(m)

then commute

O(m) [f(1) + f(2)]O(n) = δmnO(m) [f(1) + f(2)] (A.15)

In order to prove that the weak orthogonality functional is an upper bound to the
strong orthogonality functional, we must show that the second and third terms
of (A.13) are both positive definite i.e. that

〈
ũ(2)

ij

∣∣∣ f(1) + f(2) − εi − εj + 2∆ij

∣∣∣ũ(2)
ij

〉
≥ 0 (A.16)

〈
ũ(3)

ij

∣∣∣ f(1) + f(2) − εi − εj + ∆ij

∣∣∣ũ(3)
ij

〉
≥ 0 (A.17)

Using the definition of the level shift term ∆ij

∆ij =
1

2
(εi + εj − 2ε1) + η (A.18)

where ε1 is the energy of the lowest occupied orbital and η some nonnegative number
having the dimension of energy, the positive definiteness of (A.16) is easily shown
by rewriting the equation as

〈
ũ(2)

ij

∣∣∣ f(1) + f(2) − εi − εj + 2∆ij

∣∣∣ũ(2)
ij

〉

= ⟨ũij| O(2) (f(1) + f(2) − 2ε1 + 2η)O(2) |ũij⟩

=
∑

kl

|⟨ũij|φkl⟩|2 (εk + εl − 2ε1 + 2η) ≥ 0

(A.19)

which is manifestly nonnegative. Using simple quantum mechanical reasoning,
(A.17) is also easily justified. Since any function in the 3rd subspace are orthogonal



to all doubly occupied states, we know that the f(1) + f(2) expectation value must
be bound from below by

〈
ũ(3)

ij

∣∣∣ f(1) + f(2)
∣∣∣ũ(3)

ij

〉
≥
〈
ũ(3)

ij

∣∣∣ εLUMO + ε1

∣∣∣ũ(3)
ij

〉
(A.20)

where εLUMO is the energy of the lowest unoccupied molecular orbital and e1, as
stated above, is the energy of the lowest occupied orbital. Inserting this result
in (A.17) along with the explicit form of ∆ij we get

〈
ũ(3)

ij

∣∣∣ f(1) + f(2) − εi − εj + ∆ij

∣∣∣ũ(3)
ij

〉

≥
〈
ũ(3)

ij

∣∣∣ εLUMO − 1

2
(εi + εj) + η

∣∣∣ũ(3)
ij

〉
> 0

(A.21)

By relations (A.13), (A.19) and (A.21) we have shown that Jij [ũij] will be a true
upper bound to Fij[ũij] for all trial functions. From this it follows that

Jij [ũij] ≥ ϵij (A.22)

If η = 0 the WO functional gives us the exact pair energy when the trial func-
tion equals the exact pair function or the exact pair function with any amount of
ϕ1(1)ϕ1(2) added to it. This may be written as ũij = uij(1, 2)+λϕ1(1)ϕ1(2), where
uij is the exact pair function and λ is arbitrary. The arbitrariness is caused by
(A.19) which, for this particular choice of η, is invariant to changes in the direction
of the lowest occupied orbitals. Once η > 0 however, this is no longer true and
Jij [ũij] equals the exact pair energy only when ũij is exactly equal to uij. Therefore,
in minimising the WO functional with η > 0, the parameters in ũij take on such
values as to satisfy not only the stationary condition (first order equation) but also
the strong orthogonality condition

Qoccuij = uij (A.23)

As we expand the pair function in a more flexible basis it will automatically become
more strongly orthogonal to the occupied orbitals. This has one very important
consequence. From (A.4) we see that if the SO condition is close to fulfilled, we

may write ũij ≈ ũ(1)
ij . This however, implies that Jij[ũij ] ≈ Fij [ũij], and that the

WO functional does a job nearly as good as the SO functional in optimising pair
functions. When using the former to optimise pair functions, it is therefore of
interest to know to what extent the SO condition is fulfilled. This may conveniently
be measured by calculating the size of the (1 − Qocc)ũij component. Thus, for the
pair of electrons i and j, we define the SO measure χSO

ij as

⟨ũij|ũij⟩χSO
ij = ⟨(1 − Qocc)ũij|(1 − Qocc)ũij⟩

= ⟨ũij|Pocc(1) + Pocc(2) − Pocc(1)Pocc(2) |ũij⟩
(A.24)



Originally, the programs used to obtain second-order energies for this thesis did
not have the double-projected integrals available, and the SO measure were instead
calculated as

χSO
ij ≤ ⟨ũij|Pocc(1) + Pocc(2) |ũij⟩

⟨ũij|ũij⟩
(A.25)

thus making the pair functions look less orthogonal to the occupied orbitals than
they really are. This is clearly unfortunate if the SO measure is large, since this
disables us to predict whether or not the WO functional represents a good approxi-
mation to the SO functional. Note that (A.23) will not be fulfilled if we use the SO
functional to optimise pair functions, as the minimum value of Fij [ũij], namely εij,
is attained when ũij = uij(1, 2) + (1 − Qocc)χ, where χ is an arbitrary function. In
dealing with second-order energies, however, this does not represent a problem as
Qocc is present in the energy expression and projects out any SO violating compo-
nents of the pair function. If the pair functions were to be used to obtain third-order
energy corrections, on the other hand, one would have to project the strongly or-
thogonal component out of the function ũmin

ij obtained in the minimisation process.
This projection would then be an approximation to uij and could be used directly
in the third-order energy expressions.

Using pair functions obtained from the WO functional to calculate higher-order
energy corrections is not straight forward. Although the parameter η may be in-
creased in order to make pair functions more strongly orthogonal, this eventually
leads to a WO functional dominated by the level-shift term (the one involving ∆ij).
Such a functional will upon minimisation give pair functions that satisfy the strong
orthogonality requirement very accurately at the expense of not precisely fulfilling
the first-order perturbation equation [75]. Thus η must neither be too small nor too
large. Unfortunately, there are no guidelines to follow as to which intermediate value
of η is optimal. Therefore, when using pair functions obtained from the WO func-
tional to calculate third-order energy corrections, Szalewicz et al. [45] recommend
that the minimisation is performed with η = 0. The resulting pair functions are then
orthogonalised to the occupied orbitals by a modified SO operator. We conclude
this section by adding that if the pair functions are expanded in a complete basis,
the energy corrections will be independent of η.





Appendix B

Supplementary tables



Table B.1: The size distribution of AO integrals for the trans -H2O2 molecule
when using the cc-pVDZ basis and one GCF. The stack each integral belongs to
is given by ∆ = −int(log10 |Isize|). Within each part of the table frequencies given
on stacks 0–15 add up to 1 for each integral type.

∆ I21 I22 I2K1 I2K2 I2V1 I2V2 I2C0 I2C1 I3C1 I3E1 I3C2 I3E2 I32

0 .0238 .0103 .0601 .0414 .3928 .2764 .0603 .0265 .0013 .0013 .0005 .0003 .0004
1 .3354 .2445 .3186 .2982 .4531 .5169 .4472 .3674 .0513 .0513 .0273 .0187 .0211
2 .4734 .5110 .4069 .4048 .0986 .1421 .3686 .4414 .3830 .3830 .3073 .2801 .2867
3 .1018 .1559 .1457 .1799 .0215 .0290 .0680 .1031 .4028 .4028 .4485 .4729 .4640
4 .0281 .0384 .0265 .0341 .0029 .0039 .0195 .0239 .1217 .1217 .1630 .1717 .1716
5 .0033 .0057 .0042 .0054 .0002 .0004 .0024 .0036 .0300 .0300 .0411 .0438 .0434
6 .0003 .0006 .0007 .0008 .0000 .0000 .0003 .0003 .0044 .0044 .0064 .0067 .0069
7 .0000 .0000 .0000 .0001 .0000 .0000 .0000 .0000 .0007 .0007 .0010 .0011 .0011
8 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0001 .0001γ

=
1 3

9 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
10 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
11 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
12 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
13 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
14 .0000 .0000 .0002 .0001 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
15 .0338 .0335 .0372 .0353 .0309 .0313 .0336 .0338 .0048 .0048 .0047 .0046 .0048

0 .0001 .0001 .0009 .0019 .0035 .0008 .0603 .0006 .0000 .0000 .0000 .0000 .0000
1 .0064 .0006 .0275 .0680 .1545 .0513 .4472 .0450 .0002 .0002 .0000 .0000 .0000
2 .1319 .0499 .1709 .3592 .4700 .3449 .3686 .3301 .0147 .0147 .0033 .0002 .0000
3 .4448 .3361 .3941 .3867 .2579 .4188 .0680 .4158 .1920 .1920 .0800 .0096 .0021
4 .2737 .4079 .2739 .1092 .0720 .1196 .0195 .1242 .4318 .4318 .3616 .1098 .0444
5 .0915 .1214 .0753 .0354 .0091 .0286 .0024 .0429 .2525 .2525 .3629 .3477 .2514
6 .0153 .0428 .0160 .0070 .0023 .0054 .0003 .0075 .0838 .0838 .1400 .3357 .4032
7 .0031 .0073 .0036 .0007 .0003 .0006 .0000 .0008 .0172 .0172 .0400 .1435 .2032
8 .0002 .0009 .0005 .0000 .0000 .0000 .0000 .0000 .0027 .0027 .0063 .0403 .0747γ

=
9

9 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0004 .0004 .0010 .0073 .0135
10 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0011 .0025
11 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0004
12 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
13 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
15 .0331 .0331 .0372 .0319 .0304 .0301 .0336 .0331 .0047 .0047 .0047 .0046 .0046

0 .0000 .0000 .0000 .0001 .0000 .0000 .0603 .0001 .0000 .0000 .0000 .0000 .0000
1 .0001 .0000 .0002 .0052 .0004 .0002 .4472 .0001 .0000 .0000 .0000 .0000 .0000
2 .0000 .0001 .0006 .1274 .0032 .0006 .3686 .0131 .0000 .0000 .0000 .0000 .0000
3 .0053 .0010 .0250 .4303 .1193 .0341 .0680 .1869 .0003 .0003 .0001 .0000 .0000
4 .1084 .0345 .1426 .2844 .4316 .3100 .0195 .4432 .0119 .0119 .0023 .0000 .0000
5 .4002 .2920 .3769 .0989 .3064 .4397 .0024 .2251 .1610 .1610 .0596 .0001 .0000
6 .3243 .4327 .2971 .0169 .0906 .1437 .0003 .0843 .4130 .4130 .3262 .0024 .0001
7 .0992 .1455 .0925 .0044 .0147 .0355 .0000 .0109 .2813 .2813 .3844 .0385 .0017
8 .0236 .0521 .0226 .0004 .0030 .0050 .0000 .0031 .0998 .0998 .1623 .2158 .0317

γ
=

24
3

9 .0056 .0078 .0044 .0000 .0004 .0008 .0000 .0003 .0237 .0237 .0502 .3899 .1907
10 .0005 .0016 .0005 .0000 .0000 .0000 .0000 .0000 .0037 .0037 .0084 .2294 .3888
11 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0005 .0005 .0015 .0942 .2508
12 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0002 .0199 .1024
13 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0044 .0233
14 .0000 .0000 .0000 .0001 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0006 .0051
15 .0328 .0328 .0375 .0319 .0303 .0303 .0336 .0328 .0047 .0047 .0047 .0047 .0055



Table B.2: The size distribution of AO integrals for the water dimer when using
the cc-pVDZ basis and one GCF. The stack each integral belongs to is given by
∆ = −int(log10 |Isize|). Within each part of the table frequencies given on stacks
0–15 add up to 1 for each integral type.

∆ I21 I22 I2K1 I2K2 I2V1 I2V2 I2C0 I2C1 I3C1 I3E1 I3C2 I3E2 I32

0 .0202 .0089 .0331 .0272 .1191 .0980 .0499 .0268 .0007 .0007 .0003 .0002 .0002
1 .1157 .1065 .0971 .0919 .1963 .1243 .1807 .1087 .0199 .0199 .0136 .0108 .0093
2 .1958 .1121 .1634 .1065 .2420 .2318 .2351 .1496 .0708 .0708 .0543 .0302 .0375
3 .2447 .2452 .2518 .2178 .1568 .1712 .2146 .2510 .1574 .1574 .1135 .0805 .1107
4 .1559 .1786 .1765 .1951 .0822 .1192 .1001 .1717 .2014 .2014 .1821 .1763 .1906
5 .0742 .1041 .1008 .1313 .0458 .0718 .0491 .0833 .1651 .1651 .1693 .1891 .1859
6 .0522 .0719 .0612 .0885 .0611 .0628 .0499 .0586 .1071 .1071 .1315 .1554 .1386
7 .0583 .0679 .0440 .0579 .0436 .0540 .0480 .0555 .0725 .0725 .0909 .0995 .0884
8 .0348 .0414 .0325 .0386 .0192 .0309 .0314 .0431 .0658 .0658 .0749 .0762 .0730γ

=
1 3

9 .0176 .0270 .0136 .0186 .0048 .0069 .0141 .0198 .0563 .0563 .0639 .0658 .0619
10 .0065 .0110 .0051 .0076 .0035 .0031 .0021 .0068 .0384 .0384 .0464 .0508 .0466
11 .0020 .0023 .0026 .0034 .0024 .0029 .0020 .0024 .0184 .0184 .0257 .0296 .0255
12 .0027 .0024 .0013 .0013 .0013 .0020 .0027 .0027 .0093 .0093 .0131 .0144 .0123
13 .0013 .0015 .0001 .0001 .0000 .0001 .0013 .0013 .0062 .0062 .0078 .0080 .0072
14 .0003 .0007 .0004 .0004 .0002 .0002 .0003 .0003 .0046 .0046 .0052 .0055 .0051
15 .0178 .0186 .0164 .0138 .0215 .0209 .0189 .0183 .0061 .0061 .0074 .0077 .0071

0 .0001 .0001 .0009 .0016 .0017 .0008 .0499 .0006 .0000 .0000 .0000 .0000 .0000
1 .0066 .0007 .0224 .0542 .0770 .0410 .1807 .0412 .0002 .0002 .0000 .0000 .0000
2 .0831 .0450 .0722 .0761 .0729 .0767 .2351 .0892 .0089 .0089 .0023 .0001 .0000
3 .0647 .0855 .0665 .1094 .1473 .1081 .2146 .0935 .0432 .0432 .0291 .0073 .0013
4 .1493 .0950 .1475 .2000 .1881 .1898 .1001 .2016 .0690 .0690 .0560 .0230 .0202
5 .1999 .2029 .1805 .1441 .1221 .1398 .0491 .1511 .1302 .1302 .0972 .0227 .0188
6 .1224 .1497 .1337 .0699 .0622 .0919 .0499 .0781 .1550 .1550 .1529 .0588 .0400
7 .0571 .0763 .0929 .0563 .0798 .0567 .0480 .0608 .1261 .1261 .1404 .1017 .0920
8 .0835 .0608 .0790 .0925 .0916 .0922 .0314 .1051 .0916 .0916 .1062 .1122 .1101γ

=
9

9 .0933 .1036 .0821 .0711 .0764 .0792 .0141 .0708 .0860 .0860 .0809 .1014 .1095
10 .0634 .0692 .0614 .0554 .0383 .0637 .0021 .0516 .0867 .0867 .0861 .0853 .0914
11 .0353 .0548 .0299 .0306 .0121 .0258 .0020 .0236 .0791 .0791 .0833 .0984 .0942
12 .0121 .0235 .0098 .0110 .0059 .0084 .0027 .0073 .0543 .0543 .0699 .1123 .1112
13 .0065 .0072 .0038 .0062 .0024 .0041 .0013 .0053 .0294 .0294 .0414 .1023 .1067
14 .0032 .0054 .0012 .0020 .0015 .0013 .0003 .0015 .0157 .0157 .0218 .0713 .0821
15 .0194 .0204 .0164 .0196 .0210 .0204 .0189 .0188 .0249 .0249 .0323 .1031 .1225

0 .0000 .0000 .0000 .0001 .0001 .0001 .0499 .0001 .0000 .0000 .0000 .0000 .0000
1 .0001 .0000 .0003 .0048 .0003 .0002 .1807 .0002 .0000 .0000 .0000 .0000 .0000
2 .0000 .0001 .0009 .0817 .0012 .0004 .2351 .0113 .0000 .0000 .0000 .0000 .0000
3 .0074 .0004 .0206 .0604 .0725 .0286 .2146 .0929 .0003 .0003 .0000 .0000 .0000
4 .0712 .0336 .0682 .1407 .0701 .0855 .1001 .0604 .0074 .0074 .0016 .0000 .0000
5 .0691 .0917 .0598 .2018 .1330 .1052 .0491 .1717 .0405 .0405 .0249 .0001 .0000
6 .1171 .0834 .1377 .1256 .1862 .1727 .0499 .1830 .0637 .0637 .0527 .0016 .0000
7 .2161 .1910 .1796 .0561 .1290 .1462 .0480 .1090 .1192 .1192 .0884 .0186 .0011
8 .1290 .1617 .1334 .0708 .0687 .0989 .0314 .0523 .1529 .1529 .1479 .0188 .0169

γ
=

24
3

9 .0623 .0840 .0926 .0940 .0624 .0548 .0141 .0778 .1299 .1299 .1431 .0348 .0187
10 .0663 .0498 .0774 .0731 .0980 .0890 .0021 .0872 .0928 .0928 .1110 .0827 .0315
11 .0964 .0936 .0830 .0444 .0732 .0700 .0020 .0686 .0785 .0785 .0797 .1013 .0792
12 .0664 .0855 .0674 .0163 .0514 .0769 .0027 .0414 .0865 .0865 .0824 .1080 .1002
13 .0486 .0554 .0403 .0064 .0202 .0354 .0013 .0159 .0812 .0812 .0840 .0871 .1083
14 .0174 .0306 .0158 .0044 .0087 .0085 .0003 .0051 .0623 .0623 .0746 .0800 .0898
15 .0326 .0391 .0231 .0192 .0251 .0277 .0189 .0231 .0848 .0848 .1096 .4671 .5541



Table B.3: The size distribution of AO integrals for the C2 molecule using the cc-
pVDZ basis and one GCF with exponent γ = 9. The stack each integral belongs
to is given by ∆ = −int(log10 |Isize|). Within each part of the table frequencies
given on stacks 0–15 add up to 1 for each integral type.

∆ I21 I22 I2K1 I2K2 I2V1 I2V2 I2C0 I2C1 I3C1 I3E1 I3C2 I3E2 I32

0 .0002 .0002 .0007 .0009 .0011 .0006 .0744 .0004 .0000 .0000 .0000 .0000 .0000
1 .0008 .0001 .0084 .0370 .0235 .0011 .5718 .0194 .0001 .0001 .0001 .0000 .0000
2 .1086 .0238 .1232 .4989 .5420 .2576 .2415 .4102 .0076 .0076 .0013 .0001 .0000
3 .5760 .4089 .4262 .3239 .3013 .5465 .0210 .4164 .2376 .2376 .0691 .0019 .0002
4 .2115 .4173 .3036 .0465 .0372 .0984 .0004 .0601 .5614 .5614 .5282 .0804 .0198
5 .0105 .0561 .0358 .0002 .0010 .0029 .0000 .0009 .1567 .1567 .3299 .4997 .3360
6 .0002 .0009 .0043 .0001 .0000 .0002 .0000 .0005 .0139 .0139 .0466 .3375 .4794
7 .0000 .0000 .0006 .0000 .0001 .0001 .0000 .0000 .0010 .0010 .0030 .0557 .1340
8 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0028 .0087
9 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001

10 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

R
C

-C
=

20
0

p
m

11 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
12 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
13 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
15 .0921 .0927 .0972 .0924 .0937 .0926 .0908 .0921 .0216 .0216 .0216 .0218 .0219

0 .0002 .0002 .0005 .0009 .0007 .0003 .0378 .0004 .0000 .0000 .0000 .0000 .0000
1 .0006 .0001 .0078 .0359 .0106 .0006 .0759 .0189 .0001 .0001 .0000 .0000 .0000
2 .0600 .0232 .0435 .0260 .0392 .0409 .0848 .0568 .0049 .0049 .0011 .0000 .0000
3 .0152 .0524 .0113 .0117 .0755 .0265 .1716 .0050 .0187 .0187 .0150 .0018 .0001
4 .0239 .0061 .0349 .0738 .0822 .1223 .0957 .0646 .0169 .0169 .0146 .0144 .0105
5 .0943 .0651 .0759 .0840 .0432 .0406 .0864 .0937 .0461 .0461 .0330 .0011 .0066
6 .0551 .0921 .0564 .0254 .0366 .0397 .1082 .0316 .0649 .0649 .0641 .0107 .0039
7 .0397 .0317 .0646 .0852 .0586 .0470 .1003 .0810 .0433 .0433 .0469 .0373 .0289
8 .1378 .0807 .1195 .1648 .1594 .0909 .0578 .1489 .0626 .0626 .0498 .0252 .0354
9 .1680 .1489 .1659 .1629 .1833 .1927 .0376 .1745 .0886 .0886 .0743 .0138 .0123

10 .1488 .1744 .1475 .1223 .0977 .1373 .0242 .1205 .1256 .1256 .1062 .0421 .0285

R
C

-C
=

40
0

p
m

11 .0871 .1245 .0919 .0662 .0677 .0859 .0205 .0639 .1391 .1391 .1371 .0729 .0648
12 .0458 .0576 .0411 .0276 .0300 .0454 .0061 .0303 .1086 .1086 .1264 .1151 .0989
13 .0203 .0329 .0125 .0161 .0125 .0234 .0020 .0131 .0791 .0791 .0904 .1319 .1338
14 .0086 .0131 .0007 .0033 .0026 .0060 .0004 .0031 .0690 .0690 .0741 .1197 .1244
15 .0947 .0970 .1260 .0941 .1002 .1005 .0908 .0939 .1325 .1325 .1671 .4139 .4518

0 .0002 .0002 .0005 .0009 .0007 .0003 .0261 .0004 .0000 .0000 .0000 .0000 .0000
1 .0006 .0001 .0078 .0359 .0077 .0006 .0709 .0189 .0001 .0001 .0000 .0000 .0000
2 .0600 .0232 .0435 .0260 .0418 .0409 .0284 .0568 .0048 .0048 .0010 .0000 .0000
3 .0152 .0524 .0110 .0000 .0244 .0132 .0524 .0000 .0172 .0172 .0132 .0018 .0001
4 .0000 .0000 .0000 .0000 .0312 .0446 .0368 .0000 .0082 .0082 .0114 .0144 .0105
5 .0000 .0000 .0000 .0000 .0000 .0068 .0291 .0000 .0127 .0127 .0111 .0010 .0066
6 .0000 .0000 .0003 .0005 .0018 .0000 .0397 .0005 .0093 .0093 .0127 .0000 .0000
7 .0058 .0005 .0175 .0247 .0666 .0171 .0987 .0204 .0038 .0038 .0055 .0000 .0000
8 .0288 .0204 .0328 .0594 .0298 .0667 .0393 .0516 .0107 .0107 .0052 .0000 .0000
9 .0795 .0516 .0553 .0536 .0253 .0288 .0156 .0611 .0296 .0296 .0217 .0013 .0001

10 .0216 .0620 .0287 .0048 .0099 .0175 .0167 .0048 .0400 .0400 .0400 .0106 .0080

R
C

-C
=

60
0

p
m

11 .0105 .0039 .0093 .0131 .0061 .0031 .0111 .0159 .0129 .0129 .0229 .0324 .0244
12 .0180 .0157 .0151 .0168 .0161 .0130 .0338 .0175 .0122 .0122 .0112 .0098 .0197
13 .0167 .0166 .0201 .0154 .0207 .0216 .0434 .0164 .0146 .0146 .0130 .0009 .0027
14 .0140 .0178 .0126 .0112 .0127 .0172 .0639 .0120 .0163 .0163 .0159 .0053 .0024
15 .7289 .7355 .7455 .7378 .7053 .7087 .3940 .7239 .8074 .8074 .8151 .9223 .9255



Table B.4: The size distribution of AO integrals for the C2 molecule using the aug-
cc-pVDZ basis and one GCF with exponent γ = 9. The stack each integral belongs
to is given by ∆ = −int(log10 |Isize|). Within each part of the table frequencies
given on stacks 0–15 add up to 1 for each integral type.

∆ I21 I22 I2K1 I2K2 I2V1 I2V2 I2C0 I2C1 I3C1 I3E1 I3C2 I3E2 I32

0 .0000 .0000 .0002 .0003 .0004 .0002 .0522 .0001 .0000 .0000 .0000 .0000 .0000
1 .0003 .0000 .0017 .0080 .0059 .0004 .5165 .0030 .0000 .0000 .0000 .0000 .0000
2 .0307 .0037 .0468 .3701 .3366 .0847 .3246 .2542 .0009 .0009 .0002 .0000 .0000
3 .5590 .2657 .3659 .4867 .5130 .6314 .0223 .5784 .0815 .0815 .0144 .0002 .0000
4 .3068 .5716 .4009 .0509 .0743 .2008 .0002 .0790 .5592 .5592 .3394 .0136 .0022
5 .0194 .0738 .0906 .0009 .0030 .0155 .0000 .0016 .3118 .3118 .5269 .2750 .1152
6 .0001 .0015 .0062 .0000 .0003 .0001 .0000 .0002 .0268 .0268 .0954 .5476 .5397
7 .0000 .0000 .0004 .0000 .0000 .0000 .0000 .0000 .0011 .0011 .0048 .1370 .2975
8 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0077 .0258
9 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0007

10 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

R
C

-C
=

20
0

p
m

11 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
12 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
13 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
15 .0837 .0837 .0872 .0831 .0665 .0668 .0843 .0835 .0187 .0187 .0187 .0187 .0188

0 .0000 .0000 .0001 .0001 .0001 .0000 .0216 .0001 .0000 .0000 .0000 .0000 .0000
1 .0001 .0000 .0011 .0064 .0016 .0002 .1385 .0028 .0000 .0000 .0000 .0000 .0000
2 .0128 .0034 .0144 .0491 .0278 .0089 .2777 .0449 .0005 .0005 .0001 .0000 .0000
3 .0735 .0460 .0435 .1628 .1419 .0835 .2144 .1391 .0079 .0079 .0028 .0001 .0000
4 .2042 .1428 .1165 .1954 .2498 .2247 .0789 .2054 .0494 .0494 .0232 .0024 .0008
5 .1753 .2028 .2082 .1191 .1357 .1900 .0457 .1365 .1493 .1493 .1037 .0124 .0076
6 .0928 .1340 .1387 .0578 .0504 .0807 .0574 .0621 .1842 .1842 .1811 .0495 .0285
7 .0630 .0620 .0931 .0857 .0703 .0450 .0475 .0819 .1239 .1239 .1564 .1109 .0903
8 .1026 .0814 .0945 .1043 .1106 .0946 .0203 .1051 .0792 .0792 .0900 .1221 .1266
9 .0981 .1058 .0936 .0758 .0854 .1110 .0080 .0788 .0999 .0999 .0847 .0879 .1038

10 .0597 .0777 .0592 .0412 .0361 .0558 .0037 .0398 .1123 .1123 .1102 .0794 .0754

R
C

-C
=

40
0

p
m

11 .0234 .0411 .0262 .0134 .0154 .0248 .0029 .0140 .0826 .0826 .1011 .1224 .1087
12 .0074 .0132 .0087 .0040 .0042 .0082 .0009 .0043 .0421 .0421 .0604 .1401 .1395
13 .0029 .0047 .0022 .0022 .0018 .0033 .0003 .0019 .0218 .0218 .0295 .1082 .1232
14 .0012 .0019 .0002 .0005 .0004 .0008 .0001 .0004 .0140 .0140 .0173 .0639 .0781
15 .0830 .0833 .0997 .0823 .0684 .0685 .0821 .0828 .0330 .0330 .0395 .1005 .1177

0 .0000 .0000 .0001 .0001 .0001 .0000 .0165 .0001 .0000 .0000 .0000 .0000 .0000
1 .0001 .0000 .0011 .0063 .0011 .0001 .0683 .0027 .0000 .0000 .0000 .0000 .0000
2 .0128 .0033 .0138 .0438 .0208 .0077 .0884 .0428 .0004 .0004 .0001 .0000 .0000
3 .0503 .0435 .0312 .0209 .0434 .0361 .1357 .0287 .0061 .0061 .0024 .0001 .0000
4 .0242 .0279 .0262 .0501 .0879 .0745 .1092 .0427 .0167 .0167 .0131 .0024 .0008
5 .0610 .0428 .0425 .0553 .0496 .0660 .0824 .0614 .0277 .0277 .0201 .0091 .0067
6 .0464 .0616 .0451 .0579 .0475 .0380 .0673 .0529 .0506 .0506 .0424 .0082 .0091
7 .0802 .0537 .0753 .0831 .0812 .0595 .0789 .0817 .0429 .0429 .0483 .0169 .0114
8 .0715 .0816 .0966 .0820 .1005 .1128 .0449 .0801 .0553 .0553 .0463 .0190 .0219
9 .0853 .0797 .0728 .0623 .0476 .0617 .0237 .0691 .0617 .0617 .0594 .0200 .0148

10 .0495 .0682 .0599 .0395 .0454 .0461 .0133 .0394 .0755 .0755 .0700 .0375 .0348

R
C

-C
=

60
0

p
m

11 .0422 .0393 .0427 .0351 .0346 .0379 .0100 .0379 .0577 .0577 .0678 .0453 .0391
12 .0289 .0376 .0315 .0238 .0259 .0355 .0099 .0255 .0492 .0492 .0512 .0512 .0557
13 .0178 .0255 .0168 .0109 .0137 .0197 .0172 .0110 .0426 .0426 .0458 .0363 .0382
14 .0079 .0111 .0114 .0046 .0050 .0071 .0335 .0048 .0355 .0355 .0398 .0395 .0390
15 .4216 .4240 .4329 .4242 .3956 .3972 .2008 .4193 .4779 .4779 .4934 .7146 .7285



Table B.5: Second-order correlation energies (−E/mEh) for the helium atom.
The entry marked with a dagger (†) failed to converge in the equation solver.

Orbital basis VOE KL KQ PQ

cc-pVDZ 25.8283396 33.7507519 36.7128111 36.9501418
cc-pVTZ 33.1375618 35.8656663 37.1832756 37.2997823
cc-pVQZ 35.4780039 36.7677458 37.3262452 37.3628376
cc-pV5Z 36.4065109 37.0944128 37.3630241 37.3738190

aug-cc-pVDZ(s) 11.4999266 29.3884687 36.9410031 37.0912806
aug-cc-pVTZ(s) 12.8983089 29.4829479 37.0531861 37.2166302
aug-cc-pVQZ(s) 13.2837987 29.5715668 37.2075987 37.3352629
aug-cc-pV5Z(s) 13.4357419 29.5903158 37.2353877 37.3613037
aug-cc-pV6Z(s) 13.4717990 29.5941402 37.2392707 37.3689399

aug-cc-pVDZ 26.9625116 35.2322784 37.1692450 37.2925905
aug-cc-pVTZ(sp) 31.1114901 35.7675026 37.2509427 37.3459518
aug-cc-pVQZ(sp) 32.0629483 35.9724312 37.3495672 37.3724487
aug-cc-pV5Z(sp) 32.3483217 36.0169177 37.3689839 37.3768968
aug-cc-pV6Z(sp) 32.4241476 36.0389875 37.3723078 37.3772022

aug-cc-pVTZ 33.6208150 36.5168146 37.2546865 37.3609842
aug-cc-pVQZ(spd) 35.0309781 36.8841931 37.3515670 37.3754901
aug-cc-pV5Z(spd) 35.4579308 36.9785018 37.3712882 37.3771734
aug-cc-pV6Z(spd) 35.5816092 37.0031851 37.3752050 37.3772866

aug-cc-pVQZ 35.7241295 37.0605428 37.3535817 37.3757587
aug-cc-pV5Z(spdf) 36.2915310 37.1854102 37.3719707 n/a
aug-cc-pV6Z(spdf) 36.4685698 37.2247233 37.3754580 n/a

aug-cc-pV5Z 36.5340057 37.2344197 37.3724829 n/a
aug-cc-pV6Z(spdfg) 36.7768787 37.2566701 † n/a

aug-cc-pV6Z 36.8819326 37.3053519 n/a n/a

d-aug-cc-pVDZ 27.0053301 35.2896959 37.1904140 37.3079330
d-aug-cc-pVTZ(sp) 31.1199958 35.7778669 37.2581569 37.3547094
d-aug-cc-pVQZ(sp) 32.0648825 35.9751658 37.3505827 37.3736193
d-aug-cc-pV5Z(sp) 32.3491615 36.0193452 37.3693452 37.3769670

d-aug-cc-pVTZ 33.6340446 36.5312307 37.2627313 37.3678115
d-aug-cc-pVQZ(spd) 35.0352615 36.8914008 37.3527960 37.3761708



Table B.6: Second-order correlation energies (−E/mEh) for the helium
dimer. An inter-nuclear distance of 5.6a0 was used.

Orbital basis VOE KL KQ PQ

cc-pVDZ 51.6634092 67.9745642 73.5603014 73.9383031
cc-pVTZ 66.2940279 71.8541489 74.4109357 74.6425264
cc-pVQZ 70.9843200 73.6154395 74.6964127 n/a

aug-cc-pVDZ(s) 22.9997077 59.3853235 73.9294819 74.2059079
aug-cc-pVTZ(s) 25.7937448 59.4093538 74.1438677 74.4535003
aug-cc-pVQZ(s) 26.5639368 59.5871140 74.4410613 74.6887158
aug-cc-pV5Z(s) 26.8677850 59.6246381 74.4976666 74.7393166
aug-cc-pV6Z(s) 26.9399968 59.6400197 74.5053953 74.7549872

aug-cc-pVDZ 53.9749009 70.6568190 74.4029833 74.6366350
aug-cc-pVTZ(sp) 62.2613806 71.6567364 74.5544924 74.7428267
aug-cc-pVQZ(sp) 64.1618525 72.0659499 74.7467067 74.7947802
aug-cc-pV5Z(sp) 64.7320344 72.1578087 74.7845331 74.8023462
aug-cc-pV6Z(sp) 64.8838531 72.2011736 74.7911152 74.8041685

aug-cc-pVTZ 67.2896986 73.1122844 74.5662835 74.7745032
aug-cc-pVQZ(spd) 70.1092366 73.8444521 74.7552083 n/a
aug-cc-pV5Z(spd) 70.9628443 74.0307299 74.7938016 n/a
aug-cc-pV6Z(spd) 71.2100451 74.0783222 74.8008871 n/a

aug-cc-pVQZ 71.4969535 74.1840905 74.7591960 n/a

d-aug-cc-pVDZ 54.0680050 70.7596231 74.4406590 74.6668764
d-aug-cc-pVTZ(sp) 62.2800868 71.6770247 74.5693601 74.7597793
d-aug-cc-pVQZ(sp) 64.1665903 72.0714322 74.7491134 74.7972713
d-aug-cc-pV5Z(sp) 64.7344929 72.1623792 74.7857329 74.8038410

d-aug-cc-pVTZ 67.3247445 73.1591661 74.5849510 n/a
d-aug-cc-pVQZ(spd) 70.1195356 73.8591108 74.7580983 n/a



Table B.7: Second-order correlation energies (−E/mEh) for the
helium atom with a ghost basis at a distance of 5.6 a0. Results
for the pq-ansatz could not be obtained due to problems with
singular matrices.

Orbital basis VOE KL KQ

cc-pVDZ 25.8291499 33.7511534 36.7210450
cc-pVTZ 33.1385493 35.8665516 37.1849852
cc-pVQZ 35.4786865 36.7683524 37.3270348

aug-cc-pVDZ(s) 11.5020125 29.3891785 36.9421582
aug-cc-pVTZ(s) 12.8989897 29.4831533 37.0535724
aug-cc-pVQZ(s) 13.2840192 29.5717098 37.2076486
aug-cc-pV5Z(s) 13.4359002 29.5904548 37.2354038
aug-cc-pV6Z(s) 13.4719769 29.5943159 37.2392817

aug-cc-pVDZ 26.9701214 35.2400077 37.1698435
aug-cc-pVTZ(sp) 31.1132388 35.7696095 37.2514610
aug-cc-pVQZ(sp) 32.0634846 35.9731637 37.3496909
aug-cc-pV5Z(sp) 32.3485805 36.0175302 37.3690318
aug-cc-pV6Z(sp) 32.4243317 36.0393383 37.3723239

aug-cc-pVTZ 33.6228816 36.5191476 37.2553186
aug-cc-pVQZ(spd) 35.0319239 36.8857237 37.3517408
aug-cc-pV5Z(spd) 35.4584578 36.9792453 37.3713643
aug-cc-pV6Z(spd) 35.5818731 37.0034954 37.3752208

aug-cc-pVQZ 35.7251164 37.0620342 37.3537622

d-aug-cc-pVDZ 27.0164478 35.2959904 37.1898620
d-aug-cc-pVTZ(sp) 31.1222891 35.7802640 37.2586302
d-aug-cc-pVQZ(sp) 32.0655051 35.9759700 37.3506479
d-aug-cc-pV5Z(sp) 32.3494583 36.0199726 37.3693793

d-aug-cc-pVTZ 33.6396880 36.5369593 37.2643691
d-aug-cc-pVQZ(spd) 35.0367506 36.8935047 37.3529859



Table B.8: Energies (−E/mEh) for the helium atom with a ghost basis.
The distance is given in a0. For the Hartree–Fock and the conventional
MP2 calculations the basis set d-aug-cc-pV6Z was used. For the MP2
calculations with geminals the basis set was aug-cc-pVQZ(spd).

Distance HF VOE KL KQ

4.8 2861.6733399 36.8861319 36.8871824 37.3518463
5.0 2861.6733248 36.8858527 36.8867889 37.3518173
5.1 2861.6733195 36.8857270 36.8865972 37.3518029
5.2 2861.6733160 36.8856088 36.8864093 37.3517887
5.4 2861.6733127 36.8853923 36.8860502 37.3517625
5.6 2861.6733116 36.8851980 36.8857237 37.3517408
5.8 2861.6733107 36.8850228 36.8854403 37.3517244
6.0 2861.6733096 36.8848660 36.8852047 37.3517117
6.5 2861.6733017 36.8845547 36.8848036 37.3516838
7.0 2861.6732835 36.8843370 36.8845814 37.3516462
7.5 2861.6732712 36.8841744 36.8844489 37.3516130
8.0 2861.6732653 36.8840557 36.8843649 37.3516032
8.5 2861.6732554 36.8839780 36.8843103 37.3515814
∞ 2861.6732130 36.8837739 36.8841931 37.3515670

Table B.9: Energies (−E/mEh) for the helium dimer. The inter-
nuclear distance is given in a0. For the Hartree–Fock and the conven-
tional MP2 calculations the basis set d-aug-cc-pV6Z was used. For the
MP2 calculations with geminals the basis set was aug-cc-pVQZ(spd).

Distance HF VOE KL KQ

4.8 5723.1434424 73.9024690 73.9312853 74.8357142
5.0 5723.2210981 73.8734973 73.9012405 74.8070068
5.1 5723.2480474 73.8616350 73.8887696 74.7952983
5.2 5723.2692552 73.8512219 73.8777133 74.7850491
5.4 5723.2990439 73.8340177 73.8591627 74.7681938
5.6 5723.3174243 73.8206645 73.8444521 74.7552083
5.8 5723.3287378 73.8102465 73.8327348 74.7451650
6.0 5723.3356857 73.8020764 73.8233696 74.7373594
6.5 5723.3434308 73.7883950 73.8072745 74.7244293
7.0 5723.3456547 73.7806083 73.7978805 74.7170954
7.5 5723.3462821 73.7759959 73.7922250 74.7128689
8.0 5723.3464568 73.7731682 73.7884353 74.7099956
8.5 5723.3464900 73.7713948 73.7852171 74.7080675



Table B.10: Interaction energies (E/µEh) for the helium
dimer. The inter-nuclear distance is given in atomic units.
For the Hartree–Fock and the conventional MP2 calculations
the basis set d-aug-cc-pV6Z was used. For the MP2 calcula-
tions with geminals the basis set was aug-cc-pVQZ(spd).

Distance HF VOE KL KQ

4.8 −203.2374 130.2052 156.9205 132.0216
5.0 −125.5515 101.7919 127.6627 103.3722
5.1 −98.5916 90.1810 115.5752 91.6925
5.2 −77.3768 80.0043 104.8947 81.4717
5.4 −47.5815 63.2331 87.0623 64.6688
5.6 −29.1989 50.2685 73.0047 51.7267
5.8 −17.8836 40.2009 61.8542 41.7162
6.0 −10.9335 32.3444 52.9602 33.9918
6.5 −3.1726 19.2856 37.6673 21.0617
7.0 −.9123 11.9343 28.7177 13.8030
7.5 −.2603 7.6471 23.3272 9.6429
8.0 −.0738 5.0568 19.7055 6.7892
8.5 −.0208 3.4388 16.5965 4.9047



Table B.11: All-electron second-order correlation energies (−E/mEh) for the
beryllium atom. The ANO basis sets are listed in appendix C. Basis sets
marked with an asterisk (∗) are used uncontracted.

Orbital basis VOE KL KQ PQ

ANO-1 (3s) 2.0500671 51.9700515 59.5924656 60.0480308
ANO-1 (4s) 3.7537654 52.5806604 61.1019983 62.1986634
ANO-1 (5s) 6.7935157 53.7589910 64.9110746 66.3533722
ANO-1 (6s) 14.8354794 55.6068514 65.9401855 67.0366919
ANO-1 (10s)∗ 15.6764185 55.6747570 66.0407661 67.4182203

ANO-1 (6s1p) 34.8606891 68.2236437 75.3069070 75.9839822
ANO-1 (6s2p) 36.4047854 68.4433675 75.4197070 76.1764601
ANO-1 (6s3p) 38.6340904 69.5358581 75.6998620 76.2464388
ANO-1 (6s4p) 42.0004484 70.2106081 75.7449296 76.2622820
ANO-1 (10s4p)∗ 42.8405675 70.2839948 75.8073821 76.2763501

ANO-1 (6s4p1d) 44.8933497 71.1359768 76.0720001 76.2985333
ANO-1 (6s4p2d) 45.4863128 71.2871452 76.0972040 76.3042673
ANO-1 (6s4p3d) 45.6132845 71.3525249 76.1077354 76.3071769
ANO-1 (10s4p3d)∗ 46.4532133 71.4272452 76.1668369 76.3168693

ANO-2 (14s)∗ 15.9116278 55.7636497 66.2388156 68.2173195
ANO-2 (14s4p)∗a 43.0976956 70.3291847 75.8662703 76.3326173
ANO-2 (14s9p)∗ 64.0517928 74.1842257 75.9386530 76.3489560
ANO-2 (14s9p3d)∗b 67.6725935 75.2720105 76.3140458 76.3554699
ANO-2 (14s9p4d)∗ 68.2785773 75.3927002 76.3178389 n/a
ANO-2 (14s9p4d3f)∗ 69.4012176 75.6215710 76.3454845 n/a

a Using the four p-orbitals from the ANO-1 basis set.
b Using the three d-orbitals from the ANO-1 basis set.



Table B.12: All-electron second-order correlation energies (−E/mEh) for the neon
atom. A dagger (†) is given for calculations that failed to converge, and a dou-
ble dagger (††) is given for calculations that are currently too computationally
demanding. The (‡) is explained in the text.

Orbital basis VOE KL KQ PQ

cc-pVDZ 187.5671849 300.9758221 346.9322131 356.3721867
cc-pVTZ 277.2916007 350.3179262 380.6103510 383.9947580
cc-pVQZ 326.2584438 371.7724088 386.1863930 387.2971932

cc-pCVDZ 228.3024582 310.4283062 356.3977967 364.1591298
cc-pCVTZ 329.1000331 362.4669245 383.6677557 385.4860928
cc-pCVQZ 361.5148089 378.5113843 † n/a

aug-cc-pVDZ 209.0598646 323.5838432 369.2693485 380.6600417
aug-cc-pVTZ 285.9063227 358.8924258 384.8629582 387.5515309
aug-cc-pVQZ 330.0104735 375.5079092 387.2148488 n/a

aug-cc-pCVDZ (sp) 157.7052447 265.2959277 344.3857403 356.1744428
aug-cc-pCVTZ (sp) 187.4763890 273.9064328 357.1121973 364.5434555
aug-cc-pCVQZ (sp) 190.9429692 275.7315810 358.5871838 365.7442404
aug-cc-pCV5Z (sp) 191.7427128 276.2621516 359.2356941 366.3603952

aug-cc-pCVDZ 249.8950577 333.1340121 375.0497838 384.5626936
aug-cc-pCVTZ (spd) 309.0780668 353.9141661 386.2315890 388.0079499
aug-cc-pCVQZ (spd) 319.3442255 358.2311241 387.1361791 n/a
aug-cc-pCV5Z (spd) 321.5666821 359.3687694 n/a

aug-cc-pCVTZ 337.2915361 370.7179317 387.1358532 388.1886004
aug-cc-pCVQZ (spdf) 354.1847489 377.1694689 † n/a

aug-cc-pCVQZ 365.1575107 382.1186939 †† n/a
aug-cc-pCV5Z‡ 375.9331092 385.5411256 †† n/a



Table B.13: Second-order correlation energies (−E/mEh) for the hydrogen
molecule. An inter-nuclear distance of 74.08481 pm was used. Energies
marked with a double-dagger (‡) undershoot the true energy, probably due
to a non-positive-definite Fock operator.

Orbital basis VOE KL KQ PQ

cc pVDZ 26.3792393 31.6303701 33.5803206 33.8018975
cc-pVTZ 31.6790935 33.4759448 34.1512751 34.2262683
cc-pVQZ 33.1139759 33.9950799 34.2260982 n/a

aug-cc-pVDZ(s) 15.9526977 29.8195520 33.5348578 33.7942858
aug-cc-pVTZ(s) 17.9143332 30.0687929 33.8360853 34.1316651
aug-cc-pVQZ(s) 18.3559651 30.1145183 33.9337122 34.3231950‡

aug-cc-pV5Z (s) 18.4308635 30.1313834 33.9426885 34.3679945‡

aug-cc-pVDZ 27.2901476 32.7392165 33.8788877 34.0464343
aug-cc-pVTZ(sp) 29.8816660 33.3089378 34.1774876 34.2434412
aug-cc-pVQZ(sp) 30.4520480 33.4952722 34.2198759 34.2459881
aug-cc-pV5Z (sp) 30.6510425 33.5285683 34.2293332 34.2490788

aug-cc-pVTZ 31.9882134 33.8235774 34.2088953 34.2524911
aug-cc-pVQZ(spd) 32.7432582 34.0612479 34.2398888 n/a
aug-cc-pV5Z (spd) 32.9806260 34.1084555 34.2467649 n/a

aug-cc-pVQZ 33.2525468 34.1394478 34.2414171 n/a



Table B.14: All electron second-order correlation energies (−E/mEh)
for the lithium hydride molecule with an inter-nuclear distance of r(Li–
H)=159.5469 pm. Due to problems with singular matrices the pq-ansatz
could not be used. Basis sets marked with an asterisk (∗) are used uncon-
tracted.

Orbital basis (Li,H) VOE KL KQ

ANO-1 (10s4p , 7s)∗ 28.9697878 58.1340277 70.5491681
ANO-1 (10s4p3d , 7s)∗ 32.8310082 60.7579716 71.4194854
ANO-1 (10s4p , 7s3p)∗ 40.7978142 63.7946890 72.3729029
ANO-1 (10s4p3d , 7s3p)∗ 41.8034774 64.4968638 72.5106350

ANO-2 (14s9p , 8s)∗ 49.9911124 63.8145582 70.8995447
ANO-2 (14s9p4d , 8s)∗ 54.4061075 66.7187361 71.8082577
ANO-2 (14s9p , 8s4p)∗ 61.7790297 69.5240877 72.6779843
ANO-2 (14s9p4d , 8s4p)∗ 63.0587529 70.3822235 72.8090833
ANO-2 (14s9p4d3f , 8s4p)∗ 63.6824982 70.7895194 72.8504877
ANO-2 (14s9p4d , 8s4p3d)∗ 65.2430876 71.2024629 72.8636829
ANO-2 (14s9p4d3f , 8s4p3d)∗ 65.4036246 71.3257233 72.8767305



Table B.15: All electron second-order correlation energies (−E/mEh) for the
hydrogen fluoride molecule. For the structure we have used r(H–F)=91.6958 pm.

Orbital basis (F,H) VOE KL KQ PQ

cc-pVDZ 203.7801289 306.8868724 350.4820376 360.2138455
cc-pCVDZ 242.8538056 316.3286863 356.6340842 365.2383995
aug-cc-pVDZ 224.5636440 328.3577769 369.5061041 379.2051576

aug-cc-pCVDZ (sp , s) 173.7640838 270.1521942 342.2015061 353.9289289
aug-cc-pCVDZ (sp , sp) 181.8074065 277.4114011 347.2352492 359.9886782
aug-cc-pCVDZ (spd, s) 260.0109489 334.5857683 373.0188841 381.5940191
aug-cc-pCVDZ 263.7082488 337.7896370 374.0281698 382.0054614

aug-cc-pCVTZ (sp , s) 197.2089216 276.2098440 350.8738930 360.0519520
aug-cc-pCVTZ (sp , sp) 207.6018747 285.1132241 357.0505346 366.6610544
aug-cc-pCVTZ (spd, s) 309.1367529 351.2596695 381.3618637 383.6854768
aug-cc-pCVTZ (spd, sp) 313.5078326 354.7045289 382.3451163 n/a
aug-cc-pCVTZ (spd, spd) 317.0040330 357.3456341 382.6404160 n/a
aug-cc-pCVTZ 339.8909722 370.4108039 383.6904579 n/a

aug-cc-pCVQZ (sp , s) 200.4627606 277.7438019 352.0299913 361.1717311
aug-cc-pCVQZ (sp , sp) 212.0211688 287.4722186 358.6465526 367.9188748
aug-cc-pCVQZ (spd, s) 318.4742471 354.9366610 382.2475197 n/a
aug-cc-pCVQZ (spd, sp) 323.3147986 358.6534536 383.2213287 n/a
aug-cc-pCVQZ (spd, spd) 327.5312438 361.6761805 383.5292980 n/a



Table B.16: All electron second-order correlation energies (−E/mEh) for the
water molecule. Except for the calculation marked with an b, all geometries are
as specified in tablenote a.

Orbital basis (O,H) VOE KL KQ PQ

cc-pVDZ 203.9598954 298.0677188 334.2787467 342.9660027
cc-pCVDZ 241.3264464 307.0453161 339.1281887 346.6466825
aug-cc-pVDZ 221.8278994 315.7893544 349.9403721 357.7118544

aug-cc-pCVDZ (sp ,s) 171.6056913 258.9298023 320.6873018 332.6685883
aug-cc-pCVDZ (sp ,sp) 192.9769424 277.1660209 332.4220242 346.6383636
aug-cc-pCVDZ (spd,s) 249.8074029 317.4488319 351.7900855 359.3508897
aug-cc-pCVDZ 259.2360635 324.7248991 353.4825115 359.6559085

aug-cc-pCVTZ (sp ,s) 190.5105297 263.3925722 326.7113670 337.5135991
aug-cc-pCVTZ (sp ,sp) 217.6486357 285.8997955 341.1000204 352.5640490
aug-cc-pCVTZ (spd,s) 289.5892728 330.1781648 357.6645361 360.6535469
aug-cc-pCVTZ (spd,sp) 300.2146011 337.7533368 359.6505337 n/a
aug-cc-pCVTZ (spd,spd) 307.8619366 342.8268330 360.3492427 n/a
aug-cc-pCVTZb 324.2788891 351.4845393 361.3928101 n/a

aug-cc-pCVQZ (sp ,s) 193.8448519 264.8357442 327.8663561 338.8423326
aug-cc-pCVQZ (sp ,sp) 223.4234073 288.9986733 342.9118133 n/a
aug-cc-pCVQZ (spd,s) 298.1965806 333.2011554 358.5168282 n/a
aug-cc-pCVQZ (spd,sp) 309.6164507 341.3354796 360.4936011 n/a

a Structure: ∠(HOH)=104.52◦ and r(O–H)=95.720 pm.
b Structure: ∠(HOH)=104.34◦ and r(O–H)=95.885 pm.



Table B.17: All electron second-order correlation energies (−E/mEh) for lineara

and bentb structures of the water molecule. Geometries are taken from Ref. [133].

Orbital basis (O,H) VOE KL KQ PQ

cc-pVDZ 202.5506202 297.7685262 335.1683221 344.6981702
cc-pVTZ 275.1860955 335.8536189 357.3103755 n/a
cc-pCVDZ 239.7932936 306.3355532 339.8499531 347.8284880
cc-pCVTZ 317.5979608 345.4894664 359.0211532 n/a
aug-cc-pVDZ 222.3795193 317.6051626 352.3118494 360.3802954
aug-cc-pVTZ (spd,sp) 258.4262031 329.5601977 360.3965522 n/a

lin
ea

r

aug-cc-pVTZ 284.7503224 343.8506221 362.1609772 n/a
aug-cc-pCVDZ 259.7010394 326.1707648 355.6626241 361.9945279
aug-cc-pCVDZ + ICP 264.4372252 329.5539008 356.6938085 n/a
aug-cc-pCVTZ (spd,sp) 301.1787044 339.2258233 361.9707977 n/a
aug-cc-pCVTZ 325.3651259 352.9598414 363.4806754 n/a
aug-cc-pCVQZ (spd,sp) 310.4454537 342.7557028 362.8109529 n/a

cc-pVDZ 204.0913132 298.1654360 334.3788222 343.0676472
cc-pVTZ 275.2005849 335.2938567 356.1342898 n/a
cc-pCVDZ 241.4587978 307.1454273 339.2300260 346.7514592
cc-pCVTZ 317.6257577 345.0909465 357.8706514 n/a
aug-cc-pVDZ 221.9808397 315.9138760 350.0669050 357.8409535
aug-cc-pVTZ (spd,sp) 257.6301690 328.1182590 358.1765303 n/a

be
nt

aug-cc-pVTZ 283.6584569 342.2230877 360.0664549 n/a
aug-cc-pCVDZ 259.3897807 324.8516117 353.6098915 359.7872554
aug-cc-pCVDZ + ICP 263.7726174 327.8895298 354.6404850 n/a
aug-cc-pCVTZ (spd,sp) 300.3455303 337.8742016 359.7768385 n/a
aug-cc-pCVTZ 324.2788891 351.4845393 361.3928101 n/a
aug-cc-pCVQZ (spd,sp) 309.7415754 341.4537815 360.6196180 n/a

a Structure, bent : ∠(HOH)=104.343◦ and r(O–H)=95.885 pm.
b Structure, linear : ∠(HOH)=180.000◦ and r(O–H)=93.411 pm.



Table B.18: All-electron second-order correlation energies
(−E/mEh) for the cis, gauche, and trans conformations of
hydrogen peroxide. All energies were obtained using conven-
tional MP2.

Basis cis gauche trans

cc-pVDZ 390.5740485 390.8628834 391.2702935
cc-pVTZ 522.7329364 522.9151624 523.3307032
cc-pVQZ 596.2092874 596.3085115 596.7241990
cc-pV5Z 625.7749596 625.8768200 626.2523032

cc-pCVDZ 465.4366850 465.7438263 466.1525548
cc-pCVTZ 608.3992653 608.5340786 608.9745501
cc-pCVQZ 655.4359979 655.5209129 655.9650220
cc-pCV5Z 673.5691544 673.6217368 674.0628449

aug-cc-pVDZ 421.0351242 420.9615782 421.2846615
aug-cc-pVTZ 538.0707081 538.2607321 538.6181441
aug-cc-pVQZ 602.6217076 602.7073973 603.0620286
aug-cc-pV5Z 629.1126771 629.1611982 629.5393709

aug-cc-pCVDZ 495.9839828 495.9241639 496.2509231
aug-cc-pCVTZ 619.8469604 619.8648870 620.2485387
aug-cc-pCVQZ 660.7814651 660.8119266 661.2164110
aug-cc-pCV5Z 676.1555527 676.1791352 676.6030918



Table B.19: Hartree–Fock and all-electron second-order correlation energies
(−E/mEh) for the cis, gauche, and trans conformations of hydrogen peroxide.
The energies for these conformations are given in the top, middle, and bottom
part of the table, respectively.

Basis HF VOE KL KQ

cc-pVDZ 150771.2012 390.5740485 577.3937636 643.1609623
cc-pVDZ + aug-H 150779.0404 399.7933716 585.7135006 655.0348786
cc-pVDZ + aug-O 150788.8281 419.3366570 606.9663333 668.4945075
aug-cc-pVDZ 150789.2442 421.0351242 608.5112712 670.4350304
aug-cc-pVDZ + d-aug-H 150789.3021 421.2967369 608.7188998 671.5634759
aug-cc-pCVDZ 150789.8267 495.9839700 623.5910010 676.9198280
aug-cc-pVTZ (spd,sp) 150823.3828 489.7217160 632.2016820 684.9133723

cc-pVDZ 150783.9858 390.8628834 577.6521101 643.9760662
cc-pVDZ + aug-H 150791.2695 399.9329510 585.4826804 656.1509016
cc-pVDZ + aug-O 150801.0203 419.3425454 607.2059955 668.7926730
aug-cc-pVDZ 150801.6102 420.9615782 608.5655580 670.7676936
aug-cc-pVDZ + d-aug-H 150801.6938 421.1463317 608.7177331 671.6450854
aug-cc-pCVDZ 150802.2004 495.9241672 623.6815021 677.1613079
aug-cc-pVTZ (spd,sp) 150835.5273 489.7595773 632.2288988 685.0062134

cc-pVDZ 150782.5339 391.2702935 578.2687393 644.2279227
cc-pVDZ + aug-H 150789.7578 399.6869763 585.0837837 655.7837852
cc-pVDZ + aug-O 150798.7539 419.8103951 607.7398724 669.2063081
aug-cc-pVDZ 150799.4666 421.2846615 608.9509079 671.0137681
aug-cc-pVDZ + d-aug-H 150799.5267 421.4885519 609.1220429 672.0972734
aug-cc-pCVDZ 150800.0666 496.2509232 623.9878765 677.4550080
aug-cc-pVTZ (spd,sp) 150833.1515 490.2536701 632.5102519 685.3771570





Appendix C

Listing of the ANO basis sets

Table C.1: Contraction matrix for the beryllium ANO-1 basis set given in Table C.2.
The upper contraction block is for s-functions, the middle block is for p-functions
and the lower contraction block is for d-functions

orb.1 orb.2 orb.3 orb.4 orb.5 orb.6
----------------------------------------------------------------
.00074493 -.0001427 .00015695 -.0001924 .00031124 -.0015720
.00572454 -.0011140 .00143307 -.0039778 .00436640 -.0060853
.02888438 -.0055613 .00562553 -.0015547 .00806211 -.0868722
.10711729 -.0218661 .03083988 -.1094019 .11885124 -.2255310
.28008888 -.0591129 .05111532 .09593658 .04010088 -1.689248
.44599943 -.1277397 .22985975 -1.147861 1.0707772 3.1302542
.28019932 -.1392613 .03609057 1.4866438 -1.879678 -1.852557
.01371755 .61480583 -1.639060 -.0525827 2.0015611 .72511480
-.0059191 .51190760 1.5342452 -1.350883 -2.549105 -.5918967
.00199796 -.0117939 .05893078 1.4017579 1.5882729 .27379324

.08652488 -.0268988 .59021034 -1.350149

.32628265 -.8241012 .40781985 1.8100238

.62511893 .22668606 -1.328299 -1.423157

.13750967 .75535954 1.0185868 .74512678

.27827904 -.9918512 .56070455

.75227605 .45942600 -1.012287

.15882957 .38362412 1.0974151



Table C.2: The atomic natural orbital (ANO) basis sets used for hydrogen, lithium
and beryllium in this work. The ANO-1 basis is taken from Ref.[73] while the ANO-
2 basis is taken from Ref.[72]. The upper block is for s-function, the next block is
for p-functions, and so forth.

Hydrogen Lithium Beryllium
--------------------------------------------------------------------
ANO-1 ANO-2 ANO-1 ANO-2 ANO-1 ANO-2
--------------------------------------------------------------------
82.636374 188.61445 1359.4466 9497.9344 2732.3281 22628.599
12.409558 28.276596 204.02647 1416.8112 410.31981 3372.3181
2.8238540 6.4248300 46.549541 321.45994 93.672648 760.35040
.79767000 1.8150410 13.232594 91.124163 26.587957 211.74048
.25805300 .59106300 4.2861480 29.999891 8.6295600 67.223468
.08989100 .21214900 1.4955420 11.017631 3.0562640 23.372177
.03146200 .07989100 .54223800 4.3728010 1.1324240 8.7213730

.02796200 .07396800 1.8312560 .18173200 3.4680910
.02809500 .80226100 .05917000 1.4521440
.00983300 .36264800 .02071000 .60861500

.11399500 .25768600

.05123700 .10417600

.02246800 .04242700

.00786000 .01484900

1.6625000 2.3050000 .38920000 13.119504 1.1677000 33.710184
.41560000 .80675000 .12170000 3.0774242 .36500000 8.0576495
.10390000 .28236200 .03800000 1.0988005 .11410000 2.8364714

.09882700 .01190000 .43577840 .03570000 1.0999657
.18024320 .44339640
.07613330 .18222640
.03254650 .07572410
.01401820 .03168540
.00490640 .01108990

1.8190000 .34220000 .45000000 .54680000 1.4000000
.72760000 .09170000 .15750000 .14650000 .49000000
.29104000 .02460000 .05512500 .03930000 .17150000

.01929380 .06002500

.24000000 .50000000

.09600000 .20000000

.03840000 .08000000



List of acronyms

ANO atomic natural orbital

AO atomic orbital

aug-cc-pCVXZ augmented cc-pCVXZ [basis]

aug-cc-pVXZ augmented cc-pVXZ [basis]

BSSE basis set superposition error

cc-pCVXZ correlation consistent polarised core–valence X-tuple zeta [basis]

cc-pVXZ correlation consistent polarised valence X-tuple zeta [basis]

CBS complete basis set [model]

CCD coupled-cluster doubles [model]

CCSD coupled-cluster singles-and-doubles [model]

CCSD(T) CCSD [model] with approximate triples correction

CI configuration-interaction [model]

d-aug-cc-pVXZ doubly augmented cc-pVXZ [basis]

DCD double coset decomposition

DCR double coset representative

DZ double zeta [basis]

FCI full CI [model]

GTO Gaussian-type orbital [one-electron function]

GCF Gaussian correlation factor [two-electron function]

GTG Gaussian-type geminal [two-electron function]

HF Hartree–Fock [model]

ICP internal Counterpoise-correction

LHS left hand side

LMP2 local MP2 [method]

MO molecular orbital

MPn nth-order Møller–Plesset [perturbation theory]



MRCI multi-reference CI [model]

MP2-R12 MP2 with r12-dependent basis function

MP2-R12/A MP2-R12 standard approximation A

MP2-R12/B MP2-R12 standard approximation B

MWO modified weak-orthogonality

RHS right hand side

RI resolution of the identity

SCF self-consistent field [model]

SO a) symmetry orbital

b) strong orthogonality

STO Slater-type orbital

TZ triple zeta [basis]

VOE virtual orbital expansion

WO weak orthogonality
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[39] M. Schütz, G. Hetzer and H.-J. Werner, J. Chem. Phys. 111 (1999) 5691.
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