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All-electron Fixed-node Di↵usion Monte Carlo calculations for the nonrelativistic ground-state
energy of the water molecule at equilibrium geometry are presented. The determinantal part of the
trial wavefunction is obtained from a selected Configuration Interaction calculation [Configuration
Interaction using a Perturbative Selection done Iteratively (CIPSI) method] including up to about
1.4 ⇥ 106 of determinants. Calculations are made using the cc-pCVnZ family of basis sets, with n = 2
to 5. In contrast with most quantum Monte Carlo works no re-optimization of the determinantal part
in presence of a Jastrow is performed. For the largest cc-pCV5Z basis set the lowest upper bound
for the ground-state energy reported so far of �76.437 44(18) is obtained. The fixed-node energy
is found to decrease regularly as a function of the cardinal number n and the Complete Basis Set
limit associated with exact nodes is easily extracted. The resulting energy of �76.438 94(12) — in
perfect agreement with the best experimentally derived value — is the most accurate theoretical
estimate reported so far. We emphasize that employing selected configuration interaction nodes of
increasing quality in a given family of basis sets may represent a simple, deterministic, reproducible,
and systematic way of controlling the fixed-node error in di↵usion Monte Carlo. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4947093]

The only uncontrolled source of error1 in quantum
Monte Carlo (QMC) methods is the fixed-node approximation
introduced to suppress the wild fluctuations of the sign of the
wavefunction (fermion sign problem). Although the fixed-
node error is small (typically, a few percents of the correlation
energy), and many fixed-node QMC calculations of impressive
accuracy have been realized, the error can still be too large
in some applications, particularly in the important case of the
computation of (very) small energy di↵erences.

A major challenge for QMC is thus to set up a strategy
of construction of trial wavefunctions having “good” nodes
and, even more importantly, to propose a systematic way
of improving such nodes. In practice, a standard strategy
consists in introducing trial wavefunctions of the best possible
quality and then to optimize their parameters in a preliminary
Variational Monte Carlo (VMC) step through minimization of
the variational energy or its variance.2 Many functional forms
for the trial function  T have been explored in the literature,
the most popular one being the Jastrow Slater form3

 T = eJ
X

i

ciDi, (1)

combining a Jastrow prefactor eJ containing explicit electronic
correlations and a short multi-determinantal expansion
(typically, a few thousands of determinants) describing
the multireference character of the wavefunction (static
correlation e↵ects).

Very recently some of us have proposed to keep the
standard Jastrow Slater form for the trial wavefunction but to
rely on the more conventional Configuration Interaction (CI)
expansions of quantum chemistry for the multideterminantal

part. No stochastic re-optimization of the CI expansion is
performed, so that “pure CI” nodes are employed.4–6 The
rationale behind this proposal is to search for a better control
of the fixed-node error by exploiting the unique properties of
CI wavefunctions. Indeed, CI approaches provide a simple,
deterministic, and systematic way to build wavefunctions
of controllable quality. In a given one-particle basis set,
the wavefunction is improved by increasing the number of
determinants, up to the Full CI (FCI) limit. Then, by increasing
the basis set, the wavefunction can be further improved,
up to the complete basis set (CBS) limit where the exact
solution of the electronic Schrödinger equation is reached. CI
nodes, defined as the zeroes of the CI expansions, are also
expected to display such a systematic improvement. The main
di�culty is of course the exponential growth of the space
of determinants with respect to the number of electrons
and orbitals. However, this severe exponential increase
can be dramatically attenuated by considering Selected CI
(SCI) approaches designed to keep only the most important
determinants. In practice, we have proposed to make use of the
CIPSI method (Configuration Interaction using a Perturbative
Selection done Iteratively),7,8 one of the numerous variants of
SCI proposed in the literature (see, e.g., Refs. 7–15). In this
approach the multideterminant expansion is built iteratively
by selecting determinants according to the importance of their
second-order perturbational contribution to the total energy.
As illustrated by a number of applications, CIPSI represents
a very e�cient way of approaching the FCI limit using only
a tiny fraction of the total FCI space (see, for example,
a recent all-electron FCI-converged CIPSI calculation for
CuCl2 involving 25 electrons and 36 active orbitals for a FCI
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space including 1018 determinants16). This remarkable result is
actually common to all variants of SCI approaches, including
the FCI-QMC approach of Alavi et al.,17,18 which can be
considered as a stochastic version of SCI. In practice, the main
di�culty in using lengthy multideterminant expansions in
QMC is the expensive cost of evaluating at each Monte Carlo
step the first and second derivatives of the trial wavefunction
(drift vector and local energy). However, e�cient algorithms
have been proposed to perform such calculations.19–21 Here,
we shall use our recently introduced algorithm allowing to
perform converged di↵usion Monte Carlo (DMC) calculations
using multideterminant expansions including up to a few
millions of determinants for a system like the water
molecule.22

A remarkable property systematically observed so far in
our first DMC applications using large CIPSI expansions4–6

is that, except for a possible transient regime at small number
of determinants,23 the fixed-node error associated with CIPSI
nodes decreases monotonically, both as a function of the
number of determinants and of the basis set size, leading to
the possibility of a control of the fixed-node error. Such a
result is known not to be systematically true for a general CI
expansion (see, e.g., Ref. 24). However, its validity here could
be attributed to the fact that determinants are selected in a
hierarchical way (the most important ones first), so that the
wavefunction quality increases step by step, and so the quality
of nodes.

In this Communication all-electron DMC/CIPSI calcula-
tions for the water molecule at equilibrium geometry using
the cc-pCVnZ family of basis sets with n ranging from
2–5 and large multideterminant expansions including up
to 1 423 377 determinants are presented. The lowest (upper
bound) fixed-node energy reported so far of �76.437 44(18) is
obtained. Performing the Complete Basis set (CBS) limit by
extrapolating fixed-node energies as a function of the cardinal
number n of the basis set a value of �76.438 94(12) for the
total energy associated with exact nodes is obtained, in full
agreement with the best known estimate of �76.4389.25

CIPSI expansion. The multideterminant CIPSI expansion
is built by selecting iteratively the most important deter-
minants of the FCI expansion. In short (for more details,
see Ref. 4), at iteration n the multideterminant expansion
 D is written as the sum of the N (n) previously selected
determinants (thus, defining the reference space at this
iteration)

 (n)
D =

N (n)X

i=1

c(n)i Di, (2)

with energy E(n)
0 =

h (n)
D |H | (n)

D i

h (n)
D | (n)

D i
. Then, one determinant (or

a group of determinants) D j not belonging to the reference
space and corresponding to the greatest second-order energy
change (or close to it within some threshold),

�E = �
h (n)

D |H |D ji2

hD j |H |D ji � E(n)
0

, (3)

is (are) selected and added to the reference space. At iteration
(n + 1) the new expansion  (n+1)

D and energy E(n+1)
0 are

obtained by diagonalizing the Hamiltonian matrix within
the new set of selected determinants. The iterative process is
started with the Hartree-Fock determinant or a short expansion
and is stopped when a target number of determinants is
reached. In what follows the variational energy associated
with the final CI expansion will be denoted as Evar

0 .
Water molecule. In this study we present benchmark

calculations for the non-relativistic ground-state energy of the
water molecule at equilibrium geometry, ROH = 0.9572 Å and
✓OH = 104.52�.

CIPSI results. All configuration interaction calculations
have been carried out using our perturbatively selected CI
program QUANTUM PACKAGE (downloadable at Ref. 26).
Standard Dunning type correlation-consistent polarized core-
valence basis sets cc-pCVnZ with n going from 2–5 are
employed. CIPSI calculations have been performed using
natural orbitals issued from the diagonalization of the one-
body density matrix obtained in a preliminary CIPSI run.
For each basis set, the selected CI expansion has been
stopped for one million determinants, except for the largest
cc-pCV5Z basis sets for which two million determinants were
considered. Results are presented in Table I and compared
to the recent benchmark CI calculations of Almora-Dìaz
including up to sextuple excitations.27 As we shall see below,
truncated versions of these one- and two million-determinant
CIPSI expansions will actually be used in DMC, results are
thus presented for these shorter expansions. A remarkable
point is the high e�ciency of CIPSI in obtaining accurate
CI expansion with a small number of determinants. For the
cc-pCVDZ basis set, the variational energy obtained with the
172 256 determinants used in DMC is di↵erent from the FCI
value of Almora-Dìaz by only 0.7 mhartree. For the other
basis sets, the di↵erences remain small, that is 1.8, 1.8, and
2.5 mhartree for the cc-pCVTZ, cc-pCVQZ, and cc-pCV5Z
basis sets, respectively.

Fixed-node DMC (FN-DMC) results. All-electron DMC
calculations have been realized using our general-purpose
QMC program QMC=CHEM (downloadable at Ref. 28).

TABLE I. Number of determinants and corresponding variational energies for CIPSI expansions used in DMC for
each cc-pCVnZ (n= 2 to 5) basis set. Last column: Deviations of the variational energy to the best FCI estimates
of Almora-Dìaz.27 Energies in atomic units.

Basis set FCI size # dets used in DMC Evar
0 FCI, Almora-Dìaz27 Deviation

cc-pCVDZ ⇠1010 172 256 �76.282 136 �76.282 865 0.0007
cc-pCVTZ ⇠2 ·1014 640 426 �76.388 287 �76.390 158 0.0018
cc-pCVQZ ⇠2 ·1017 666 927 �76.419 324 �76.421 148 0.0018
cc-pCV5Z ⇠7 ·1019 1 423 377 �76.428 550 �76.431 105 0.0025
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A minimal Jastrow prefactor taking care of the electron-
electron cusp condition is employed and molecular orbitals
are slightly modified at very short electron-nucleus distances
to impose exact electron-nucleus cusp conditions. The time
step used, ⌧ = 2.10�4 a.u., has been chosen small enough to
make the finite time step error not observable with statistical
fluctuations.

To accelerate DMC calculations and not to use the full
one- and two million-determinant expansion of the initial
CIPSI calculations we have employed the improved truncation
scheme described in Ref. 22. In short, the approach consists
in writing the CI expansion as

N
"
detX

i=1

N
#
detX

j=1

Ci jD"i (R")D
#
j(R#).

For each �-determinant D�
k

(� =",#), the contribution to the

norm of the wavefunction is given either by
PN

#
det

l=1 C2
kl

for

� =" or
PN

"
det

l=1 C2
lk

for � =#. If this contribution is below a
given threshold ✏� the �-determinant D�

k
is discarded (Ckl

or Clk = 08l, for the "- or #-sector, respectively). Here, N�
det

denotes the number of di↵erent �-determinants in the CI
expansion. Such numbers being usually much smaller than
the total number of products of determinants D(R) = D"D#,
the gain in computational cost can be important (see, Table 5
of Ref. 22). Here, we chose to truncate the expansion by
taking ✏ " = ✏ # = 10�8, except for the cc-pCV5Z basis where
a value of 10�9 has been used. Values for ✏� have been
chosen small enough to get converged fixed-node energies
as a function of the number of selected determinants within
statistical errors. In other words, nodes employed in this work
are expected to be close to FCI nodes. The final numbers of
selected determinants used are given in Table I.

The e�ciency of our algorithm for computing large
multideterminant expansions can be quantified by measuring
the ratio of CPU times needed to realize one Monte Carlo
step using either the full expansion or only the single HF
determinant. Such ratios are presented in Table II for each
basis set. Fixed-node DMC energies (in atomic units) obtained
with CIPSI nodes for the various basis sets are also given in
Table II and plotted in Fig. 1 as a function of the inverse
of the cardinal number n = 2 to 5. The horizontal line is the
best estimate of the total nonrelativistic energy reported in the
literature, see Ref. 25. For comparison, we have also reported
the best estimates of the FCI energies of Almora-Dìaz. Quite
remarkably both sets of points display a very similar overall
behavior. In particular, the values converge smoothly to the

TABLE II. All-electron DMC energies (in a.u.) obtained with CIPSI nodes
for each basis set. Second column: Increase of CPU time due to the use of the
large multideterminant expansion.

Basis set[Ndets] TCPU(Ndets)/TCPU(1det) EDMC
0

cc-pCVDZ[172 256] ⇠101 �76.415 71(20)
cc-pCVTZ[640 426] ⇠185 �76.431 82(19)
cc-pCVQZ[666 927] ⇠128 �76.436 22(14)
cc-pCV5Z[1 423 377] ⇠235 �76.437 44(18)

FIG. 1. CBS extrapolation of FCI and DMC/CIPSI energies. Error bars on
DMC data are plotted but almost imperceptible.

same CBS limit as a function of the cardinal number n with a
typical inverse third power law. Using a simple two-parameter
fitting function, E0(n) = E0(CBS) + an�3, the CBS limit for
DMC results gives an extrapolated value of �76.438 94(12).
The error bar has been estimated by reproducing the fit
over a large statistical ensemble of independent data drawn
according to their respective error bars. No correlation
between data being considered, the error value should be
considered as rather conservative. Note that the energy of
�76.437 44 ± 0.000 18 obtained with the cc-pCV5Z nodes is
the lowest upper bound reported so far in DMC or any other
approach. Regarding computational aspects, calculation of
each FN-DMC energies of Table II were performed using 800
cores on the Curie machine (TGCC/CEA/Genci) during about
15 h. The cost of deterministic CIPSI calculations to build the
trial wavefunctions is marginal. Roughly speaking, the cost is
similar to that needed for making CISD calculations with the
same basis sets.

In Table III a selection of the best (lowest) values reported
in the literature for the total energy of the water molecule is
presented. Using DMC, the lowest value published so far is
that of Clark et al. of �76.4368(4). Here, using the nodes
of the CIPSI/cc-pCV5Z expansion an improved value of
�76.437 44(18) is obtained. The lowest upper bound reached
using a post-Hartree Fock correlated approach is that of
Almora-Dìaz of �76.4343, a value significantly higher than
DMC values. Finally, the best (non-variational) estimates are
those obtained by performing CBS extrapolation. At FCI level
the most accurate one is that of Bytautas and Ruedenberg,32

TABLE III. Comparison of nonrelativistic ground-state total energies of
water obtained with the most accurate theoretical methods. Energies in a.u.

Clark et al.,20 DMC (upper bound) �76.436 8(4)
This work, DMC (upper bound) �76.437 44(18)
Almora-Dìaz,27 CISDTQQnSx (upper bound) �76.434 3
Helgaker et al.,29 R12-CCSD(T) �76.439(2)
Muller and Kutzelnigg,30 R12-CCSD(T) �76.437 3
Almora-Dìaz,27 FCI + CBS �76.438 6(9)
Halkier et al.,31 CCSD(T) + CBS �76.438 6
Bytautas and Ruedenberg,32 FCI + CBS �76.439 0(4)
This work, DMC + CBS �76.438 94(12)
Experimentally derived estimate25 �76.438 9
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E0 = �76.4390(4). Here, our value of �76.438 94(12) is, to
the best of our knowledge, the most accurate value reported
so far. In both cases the best experimentally derived estimate
of �76.4389 is recovered within error bars.

In this study we have performed DMC calculations using
nodes of multideterminant CI expansions obtained through a
perturbative selection of the most important determinants
(selected CI). In contrast with most QMC works, no-
reoptimization of nodes in presence of a Jastrow prefactor
has been performed. For each basis set of the cc-pCVnZ
family (n = 2–5), CIPSI nodes obtained are of near-Full-
CI quality. As a result of the deterministic construction of
nodes using CI expansions, the total fixed-node energy is
found to be a smoothly decreasing function of the cardinal
number of the basis set with a typical inverse third power
law. The Complete Basis Set (CBS) limit leading to the total
energy associated with exact nodes is then easy to perform.
From a general perspective, we emphasize that employing
selected CI nodes of increasing quality in a given family of
basis sets may represent a simple, deterministic, reproducible,
and systematic way of controlling the fixed-node error in
DMC.
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Recherche (ANR) for support through Grant No. ANR 2011
BS08 004 01. This work has been made through generous
computational support from CALMIP (Toulouse) under the
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