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Local explicitly correlated coupled-cluster methods: Efficient removal
of the basis set incompleteness and domain errors

Thomas B. Adler and Hans-Joachim Wernera�

Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany

�Received 15 May 2009; accepted 9 June 2009; published online 25 June 2009�

We propose an explicitly correlated local LCCSD-F12 method in which the basis set incompleteness
error as well as the error caused by truncating the virtual orbital space to pair-specific local domains
are strongly reduced. This is made possible by including explicitly correlated terms that are
orthogonalized only to the pair-specific configuration space. Thus, the contributions of excitations
outside the domains are implicitly accounted for by the explicitly correlated terms. It is
demonstrated for a set of 54 reactions that the reaction energies computed with the new LCCSD-F12
method and triple-zeta basis sets deviate by at most 2.5 kJ/mol from conventional CCSD complete
basis set results �RMS: 0.6 kJ/mol�. The local approximations should make it possible to achieve
linear scaling of the computational cost with molecular size. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3160675�

Standard ab initio electronic structure calculations suffer
from two major problems: The very steep scaling of the com-
putational cost with increasing molecular size, and the ex-
tremely slow convergence of the correlation energy with ba-
sis set size. These two problems can be much alleviated by
local and explicit correlation methods, respectively.

Local methods1–3 exploit the short-range character of
electron correlation, and using appropriate local orbital basis
sets and approximations linear cost scaling can be
achieved.4–7 This has made it possible to perform accurate
local coupled-cluster calculations with single and double ex-
citations and a perturbative treatment of triple excitations
�LCCSD�T�� for much larger molecules than with the con-
ventional CCSD�T� method. For example, some enzyme re-
actions have recently been studied using quantum mechani-
cal �QM� and classical molecular mechanics hybrid methods
with LCCSD�T� used in the QM part for up to 49 atoms.8,9

Unfortunately, the local approximations introduce some
errors.10 These are not always easy to control and may affect
energy differences such as reaction energies or barrier
heights. Therefore, local correlation methods have not yet
become widely used standard tools in quantum chemistry.

Explicit correlation methods11–25 introduce extra terms
into the wave function that depend on the interelectronic
distance r12 and thus allow to describe the wave function
cusp for r12→0 appropriately. The most successful

form of these terms is a simple Slater function, F̂12=
−� −1 exp�−�r12�.

15–17 This leads to a dramatic reduction in
the basis set incompleteness errors, and it has recently been
demonstrated for many different molecular properties that
with such so-called F12 methods highly accurate results can
be obtained already with double- or triple-zeta basis
sets.18,23–28

Recently, we have proposed an explicitly correlated
LMP2-F12 method �local second-order Møller–Plesset per-

turbation theory� in which the two ideas were combined.29–31

It was demonstrated that despite the complications due to the
explicitly correlated terms nearly linear scaling of the com-
putational cost as a function of molecular size can be
achieved.31 In addition, the explicitly correlated terms not
only reduce the basis set incompleteness errors, but for rea-
sons that will be discussed below also eliminate to a large
extent the errors caused by the local approximations.30,31

Thus, the local explicitly correlated LMP2-F12 calculations
yielded virtually the same results as the much more expen-
sive canonical MP2-F12 calculations.

In the current work, we extend this approach to the more
accurate explicitly correlated LCCSD-F12 method. It will be
demonstrated that despite local approximations the same ac-
curacy as with conventional CCSD-F12 methods can be ob-
tained.

In the following, we will first summarize the ansatz for
the LCCSD-F12 wave function and briefly outline the local
approximations. Currently, the method is simulated by adapt-
ing a conventional CCSD-F12 program, in order to see
whether the much more tedious fully local implementation is
worthwhile. The benchmark calculations presented in the
second part of this communication strongly militate in favor
of such an implementation.

The LCCSD-F12 wave function is defined as

�LCCSD-F12 = exp�T̂1 + T̂2 + T̂2��HF, �1�

where T̂1, T̂2, and T̂2 are defined as

T̂1 = �
i

�
a��i�

ta
i Êai, �2�

T̂2 =
1

2 �
ij�Ps

�
a,b��ij�

T ab
ij ÊaiÊbj , �3�
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T̂2 =
1

2 �
ij�Ps�

�
�,�

T ��
ij Ê�iÊ�j , �4�

with

T ��
ij = �

kl

����Q̂12
ij F̂12�kl�T kl

ij , �5�

F̂12 = −
1

�
exp�− �r12� . �6�

The operators T̂1, T̂2 describe single and double excitations
from occupied into virtual orbitals with amplitudes ta

i and
T ab

ij , respectively. Here and in the following, the indices
i , j ,k , l denote correlated localized molecular orbitals
�LMOs� and the indices a ,b ,c ,d denote virtual orbitals. In
local correlation methods as first proposed by Pulay and
co-worker1,2 the virtual orbital space is spanned by nonor-
thogonal projected atomic orbitals �PAOs�. These have the
property of being local, and are therefore suitable for intro-
ducing two kinds of local approximations: First, the summa-
tion over orbital pairs ij can be restricted to a list Ps of strong
pairs, in which the LMOs i and j are spatially close. Second,
the excitations into the virtual space can be restricted to sub-
spaces of PAOs that are spatially close to i or j. Such sub-
spaces are denoted domains, and a� �i� denotes a domain of
PAOs for single excitations from LMO i. Similarly, the union
of the orbital domains �i� and �j� defines a pair domain,
denoted �ij�. For simplicity we will assume in the following
that the orbitals a ,b in each domain have been orthonormal-
ized. The orthogonal orbitals a ,b are then pair specific, but
since it should always be obvious from the context to which
pair they belong they will not be indexed.

Naturally, the restriction of the excitations to domains
leads to a reduction in the computed correlation energy. This
is usually denoted as domain error and amounts in conven-
tional local correlation calculations to 1%–2% of the corre-
lation energy obtained with the same basis set in a nonlocal
calculation. Even though this relative error is rather small, it
can cause significant and non-negligible errors when energy
differences are computed.

The additional operator T̂2 contains explicitly correlated
terms. These formally include contracted excitations into a
complete space of orbitals � ,�. As will be discussed and
demonstrated in the following, these excitations not only
strongly reduce the basis set incompleteness error, but at the
same time also eliminate the domain error to a large extent. It
should be noted that the complete set of orbitals � ,� never
occurs in the working equations. In the derivation of the
required Hamiltonian matrix elements they lead to resolu-
tions of the identity which can mostly be replaced by new
analytical integrals.

The amplitudes T kl
ij in the explicitly correlated terms can

be determined from the wave function cusp conditions.32 It
can be shown that for singlet and triplet pairs the amplitudes
T ij

�=T ij
ij �T ji

ij should be 1/2 and 1/4, respectively, and all
others should be zero. This can be combined to

T kl
ij = 3

8�ik� jl + 1
8� jk�il. �7�

This “fixed amplitude ansatz”15 will be used throughout the
current paper. It is size consistent, unitarily invariant, and has
the advantage that no additional amplitude equations have to
be solved.

Q̂12
ij is a pair-specific strong orthogonality projector30,31

that keeps the explicitly correlated terms orthogonal to the
conventional part of the wave function

Q̂12
ij = 1 + �

m,n
�mn��mn� − �

m,�
��m���m�� + ��m���m��

− �
c,d��ij�

�cd��cd� , �8�

where m, c, and � run over the occupied, virtual, and com-
plete orbital spaces, respectively. In practice, the resolution
of the identity �RI�, i.e., the summation over �, is approxi-
mated by the union of the orbital basis and a complementary
auxiliary basis set.16

The only difference to the ordinary projector used in
standard MP2-F12 or CCSD-F12 theory is that the summa-
tion in the last term is restricted to the pair domain c ,d
� �ij�. This is not an additional approximation but is implied
by the local ansatz in the conventional part of the wave func-
tion. This restriction means that double excitations into vir-
tual orbitals outside the domain �ij� are not entirely excluded
as in standard local correlation methods, but for a pair ij
approximated by

�T̂ 2
ij = �

a,b��ij�
F̄ab

ij ÊaiÊbj , �9�

where F̄ab
ij =�klT kl

ij�kl�F̂12�ab�. This can be viewed as an ex-
ternally contracted excitation operator, i.e., instead of fully

optimized amplitudes T ab
ij the fixed matrix elements F̄ab

ij are
used. In our previous work30,31 we already demonstrated for
LMP2-F12 that these terms correct to a very large extent for
the domain error, and are a prerequisite for achieving linear
scaling of the computational cost with molecular size.

Our LCCSD-F12 method is based on the CCSD-F12a
approximation introduced recently.24,25 Here we use ansatz
3�A, which is simpler and more suitable for a linear scaling
algorithm29,31 than the more rigorous ansatz 3C which is
normally used in the CCSD-F12 method. In approximation
3�A the extended Brillouin condition is implied and certain
exchange terms are neglected. Furthermore, the X-matrix is
neglected �for details see Refs. 13 and 23�. These approxi-
mations have a minor impact on energy differences such as
reaction energies �see, e.g., Ref. 23�.

The only difference in the LCCSD-F12 and LCCSD am-

plitude equations are the terms �Rab
ij = �ab�r12

−1Q̂12
ij F̂12�kl�T kl

ij .
Neglecting the contributions of the complementary auxiliary
orbitals, which have a very small effect,25 yields explicitly
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�Rab
ij 	 W̄ab

ij − �
m,n

�ab�r12
−1�mn�F̄mn

ij

− �
m,c

��ab�r12
−1�mc�F̄mc

ij + �ab�r12
−1�cm�F̄cm

ij �

− �
c,d��ij�

�ab�r12
−1�cd�F̄cd

ij for a,b � �ij� , �10�

where W̄ ab
ij =�kl�ab�r12

−1F̂12�kl�T kl
ij . The first important obser-

vation is that in the last term of Eq. �10� the use of the local
projector directly leads to linear scaling of the number of
two-electron integrals �ab�r12

−1�cd� over four external orbitals.
This is true because a ,b ,c ,d� �ij� and the number of orbit-
als in a given domain is independent of the molecular size. In
fact, exactly the same integrals are needed in standard
LCCSD theory in similar contractions with the amplitudes
T ab

ij . Thus, both contractions can be done together with vir-

tually no extra cost by forming T cd
ij − F̄cd

ij . The contraction of
these quantities with the integrals �ab�r12

−1�cd� scales linearly
with molecular size, without introducing any additional ap-
proximations.

Unfortunately, this is not the case for the first and second
summations in Eq. �10� which involve integrals over two and
three external orbitals. Since these terms arise from the RI
approximation they are not automatically affected by the lo-

cal ansatz. However, in a local orbital basis the integrals F̄mn
ij ,

F̄cm
ij , and F̄mc

ij will be small unless m, n, and c are spatially
close to the orbitals i and j. Therefore, we can restrict the
summations to domains. We have found that it is sufficient to
restrict c to the pair domain �ij�, and to include in the sum-
mation over m ,n only the LMOs whose domains overlap
with the orbital domains �i� or �j�; furthermore, it is possible
to neglect the contributions of core orbitals. The errors intro-
duced by these approximations are very small. If these ap-
proximations are made, the number of transformed two-
electron integrals �ab�r12

−1�mn� and �ab�r12
−1�mc� and the

computational effort will scale linearly with molecular size.
Since the standard LCCSD method also scales linearly,7

overall linear scaling should be possible.
The new LCCSD-F12 method was implemented in the

MOLPRO package33 of ab initio methods. As a first test of its
accuracy, the same 21 molecules and 16 reactions as in Refs.
29 and 30 were chosen. The CCSD-F12 and LCCSD-F12
results were compared to standard CCSD calculations in
which the complete basis set �CBS� limits were approxi-
mated by extrapolating the correlation energies obtained with
the aug-cc-pVQZ and aug-cc-pV5Z basis sets34 using the
extrapolation formula35,36 En=ECBS+An−3. For all explicitly

correlated calculations the VTZ-F12 AO-basis sets37 along
with the associated RI-basis sets38 were used. All integrals
needed in the LMP2-F12 calculation were obtained by robust
density fitting39 using the aug-cc-pVTZ/MP2FIT fitting basis
sets.40 Density fitting was not used in the Hartree–Fock and
LCCSD calculations. The exponent � of the correlation fac-
tor in the explicitly correlated treatments was set to 1.0a0

−1

throughout. In extensive benchmarks this value was found to
be a good compromise for many different properties.25,27,28

The occupied orbitals were localized by the method of
Pipek and Mezey.41 The contribution of the most diffuse
function of each angular momentum at each atom was elimi-
nated in the localization criterion, which improves the
localization.10 The PAO domains were defined by the
Boughton–Pulay procedure3,42 using a completeness criterion
of 0.985. Since the molecules treated here were relatively
small, weak pair approximations were not applied. Thus, the
difference between CCSD and LCCSD calculations just re-
flects the domain approximation.

In Table I correlation energies of five typical molecules
are presented and compared to the CCSD/CBS reference val-
ues. Due to the domain approximation the CCSD and
LCCSD correlation energies differ by several millihartrees,
while CCSD-F12 and LCCSD-F12 energies differ at most by
0.1 mH. That means that the domain error is almost com-
pletely removed due to the implicit effect of the terms in Eq.
�9�. Comparing the correlation energies with the basis set
limits, it can be seen that the results for the conventional
methods are far from basis set convergence. The CCSD-F12
and LCCSD-F12 results are much closer to the CBS limits
but somewhat overestimate them, an effect which is well
known for the approximations F12a and 3�A. The results in
Table I were obtained without domain approximations in the
first two summations of Eq. �10�. If such approximations are
made as described above, the LCCSD-F12 energies change
by at most 1 mH.

Table II lists the deviations of the correlation contribu-
tions to the reaction energies from the estimated CCSD basis
set limits. It can be seen that due to the domain error the
conventional CCSD and LCCSD results often differ by sev-
eral kJ/mol ��1 kcal/mol�. The basis set incompleteness er-
ror of the conventional methods is of the same order of mag-
nitude. In contrast, both kinds of errors are strongly reduced
in the explicitly correlated methods: The maximum absolute
deviations �MAX� for both CCSD-F12 and LCCSD-F12 are
roughly 1 kJ/mol, and the mean absolute deviations �MADs�
as well as the root mean square �RMS� deviations of both
methods are very similar and less than 0.5 kJ/mol. Overall,

TABLE I. Correlation energies �−Ecorr in mH obtained with the VTZ-F12 basis set in comparison to the
extrapolated CCSD/CBS�45� values.

Molecule CCSD LCCSD CCSD-F12 LCCSD-F12 CBS

C2H4O 611.8 609.2 658.0 658.1 650.4
CH3CHO 606.1 603.8 651.6 651.7 643.9
C2H5OH 648.2 644.3 697.3 697.3 689.1
NH2CONH2 851.9 847.6 918.0 917.9 908.2
HCOOCH3 844.7 841.1 911.7 911.7 901.7

241101-3 LCCSD-F12 J. Chem. Phys. 130, 241101 �2009�
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the errors of the LCCSD-F12 values are approximately one
order of magnitude smaller than the corresponding LCCSD
ones. This is similar to what has been found earlier for
LMP2-F12.30 If domain approximations in the first two sums
of Eq. �10� are made �see above�, the MAX, MAD, and RMS
values increase only slightly to 1.17, 0.49, and 0.34 kJ/mol,
respectively.

In an extended investigation of 54 closed-shell reactions
as defined in Ref. 25, which also involve second row atoms,
the MAX, MAD, and RMS results for LCCSD-F12 �CCSD-
F12� were found to be 2.5 �2.6�, 0.7 �0.7�, and 0.6 �0.6�
kJ/mol. Again these values are not much affected by making
domain approximations in the first two summations of Eq.
�10�: The corresponding LCCSD-F12 values are 3.7, 0.8, and
0.7 kJ/mol, respectively. The additional errors mainly arise
from the approximations in the first summation in Eq. �10�,
and can be much reduced by extending the summation over
m ,n to include the next shell of neighboring LMOs. This
will be investigated in more detail once a fully local imple-
mentation is available and larger molecules can be treated.

To conclude, the new LCCSD-F12 method proposed
here not only strongly reduces the basis set incompleteness
error but also the domain error, and thus eliminates the main
problem of conventional local coupled-cluster methods. The
development of a fully local implementation of the LCCSD-
F12 method is currently under way in our laboratory. It is
expected that near linear scaling of the computational effort
with molecular size will be achieved. Furthermore, a pertur-
bative local treatment of triple excitations as described in
Refs. 5 and 6 will be included, yielding a highly efficient
LCCSD�T�-F12 method that can be applied to molecules
with 50–100 atoms.

This work was funded in the priority program 1145 of
the Deutsche Forschungsgemeinschaft and supported by the
Fonds der Chemischen Industrie. T.B.A. would also like to
thank the Studienstiftung des deutschen Volkes.
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