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ABSTRACT
By expressing the electronic wavefunction in an explicitly correlated (Jastrow-factorized) form, a similarity-transformed effective Hamiltonian
can be derived. The effective Hamiltonian is non-Hermitian and contains three-body interactions. The resulting ground-state eigenvalue
problem can be solved projectively using a stochastic configuration-interaction formalism. Our approach permits the use of highly flexible
Jastrow functions, which we show to be effective in achieving extremely high accuracy, even with small basis sets. Results are presented for
the total energies and ionization potentials of the first-row atoms, achieving accuracy within a mH of the basis-set limit, using modest basis
sets and computational effort.
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Methods aiming to obtain high-accuracy solutions to the elec-
tronic Schrödinger equation must tackle two essential components
of the problem, namely, providing highly flexible expansions capa-
ble of resolving nonanalytic features of the wavefunction, including
the Kato cusps1 at electron coalescence points, as well as treatment
of many-electron correlation at medium and long range. The com-
bination of these two facets of the problem leads to overwhelming
computational complexity requiring large basis sets and high-order
correlation methods, approximations to which can result in a sig-
nificant loss of accuracy. The goal of achieving “chemical” accuracy
remains extremely challenging for all but the simplest systems.

In Fock space approaches, including the majority of quantum
chemical methodologies based on configurational expansions, the
first-quantized Schrödinger Hamiltonian is replaced by a second-
quantized form expressed in a one-electron basis. The passage from
first quantization to the second is invoked primarily to impose
antisymmetry on the solutions via fermionic creation and anni-
hilation operators of the orbital basis. However, this formula-
tion loses the ability to explicitly include electron pair variables
(such as electron-electron distances) into the wavefunction, which
has long been known2 to be crucial in obtaining an efficient

description of electron correlation. Correlation effects are then indi-
rectly obtained via superpositions of Slater determinants over the
Fock space, as in configuration interaction, coupled-cluster, and
tensor-decomposition methods. These are computationally costly
methods, especially with large basis sets. In quantum chemistry,
explicitly correlated methods usually proceed via the R12 formalism
of Kutzelnigg3 and its more modern F12 variants4 in combination
with perturbation theory5 or coupled-cluster theory.6 These meth-
ods augment the Fock-space (configurational) wavefunctions with
strongly orthogonal geminal terms with fixed amplitudes, impos-
ing a first-order cusp condition. This approximation is suitable for
systems whose ground state wavefunction is dominated by a sin-
gle determinant. The inclusion of explicit correlation in strongly
correlated, multideterminantal wavefunctions remains an open
challenge.

In this paper, we postpone the passage to second quantiza-
tion until after electron-pair information has been incorporated
into the wavefunction. This is achieved by factorizing the electronic
wavefunction Ψ in Jastrow7 form,

Ψ = eτΦ, (1)
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where τ = ∑i<ju(ri, rj) with u(ri, rj) = u(rj, ri) is a symmetric
correlation function over electron pairs and Φ is the associated
many-body function we will aim to compute. The precise form of
u has a significant bearing on the efficacy of the method8–12 and
will be later discussed. Substituting 1 into the Schrödinger equa-
tion ĤΨ = EΨ and rearranging, we obtain Φ as an eigenfunction
of the similarity transformed (ST) Hamiltonian H̃, i.e., H̃Φ = EΦ,
with

H̃ = e−τĤeτ = Ĥ + [Ĥ, τ] +
1
2
[[Ĥ, τ], τ]. (2)

The commutator expansion truncates at the second order because
the only terms in Ĥ which do not commute with τ are the (second-
derivative) kinetic energy operators. The explicit form of H̃ contains
additional two- and three-body terms,

H̃ = Ĥ −∑
i
(

1
2
▽

2
i τ + (▽iτ) ▽i +

1
2
(▽iτ)2

)

= Ĥ −∑
i<j

K̂(ri, rj) − ∑
i<j<k

L̂(ri, rj, rk),

where

K̂(ri, rj) =
1
2
(▽

2
i u(ri, rj) +▽2

j u(ri, rj) + (▽iu(ri, rj))2

+ (▽ju(ri, rj))2
) + (▽iu(ri, rj) ⋅ ▽i)

+ (▽ju(ri, rj) ⋅ ▽j),

L̂(ri, rj, rk) = ▽iu(ri, rj) ⋅ ▽iu(ri, rk) +▽ju(rj, ri) ⋅ ▽ju(rj, rk)

+ ▽k u(rk, ri) ⋅ ▽ku(rk, rj).

The similarity transformed Hamiltonian is non-Hermitian, owing
to the gradient terms in K̂. Projective techniques can be used to
obtain the distinct right or left eigenvectors for a given eigenvalue
E. The FCIQMC (full configuration interaction quantum Monte
Carlo) method and its initiator approximation13,14 has been previ-
ously adapted for this purpose15,16 and we use it in this study. Note
that our method differs from the Transcorrelated (TC) method of
Boys and Handy17 and modern extensions18 in three crucial aspects:
we solve for Φ as a full multideterminant expansion (to be obtained
via an FCIQMC procedure) while Φ is a single Slater determinant in
their work. Second, the formal unitary invariance of our Φ negates
the need for orbital optimization and we simply use Hartree-Fock
(HF) orbitals as the basis of our Fock space. Third, we do not attempt
simultaneous optimization of the Jastrow function and Φ. Many
of the difficulties associated with the non-Hermitian nature of H̃,
which have plagued many previous attempts at the TC method, are
thus avoided. The multideterminant nature of Φ also gives much
greater flexibility to this function than a single Slater determinant,
which we believe to be crucial in obtaining high accuracy. Indeed,
Φ must share the same nodal surface as Ψ for an exact factoriza-
tion, and a full CI form for Φ gives it much more flexibility in this
regard than orbital optimization within a Slater-Jastrow form. This
is a fundamental advantage of the present method, in addition to the
avoidance of the often troublesome redundancy in the orbital opti-
mization and Jastrow optimization procedure. Of course, the price to

be paid is a formally exponential scaling method. However, the cost
of this can be ameliorated via the stochastic FCIQMC procedure.
Our approach differs from that of the related work of Ten-no19,20

in that we use a highly flexible form for both the Jastrow and mul-
tideterminantal expansions, rather than using a fixed short-ranged
Jastrow function and a low order perturbative or coupled-cluster
expansion.

Using this first-quantized Hamiltonian, we can construct
a second-quantized Hamiltonian for a given set of orbitals
{ϕ1, . . ., ϕM} with the corresponding spin- 1

2 creation (annihilation)
operators a†

pσ(apσ),

H̃ = ∑
pqσ

hpqa
†
pσaqσ +

1
2 ∑pqrs
(Vpq

rs − K
pq
rs )∑

στ
a†
pσa

†
qτasτarσ

−
1
6 ∑pqrstu

Lpqrstu ∑
στλ

a†
pσa

†
qτa

†
rλauλatτasσ , (3)

where hpq = ⟨ϕp∣h∣ϕq⟩ and Vpq
rs = ⟨ϕpϕq∣r−1

12 ∣ϕrϕs⟩ are the one- and
two-body terms of the Schrödinger Hamiltonian, respectively, and
Kpq
rs = ⟨ϕpϕq∣K̂∣ϕrϕs⟩ and Lpqrstu = ⟨ϕpϕqϕr ∣L̂∣ϕsϕtϕu⟩ are the cor-

responding terms arising from the similarity transformation. Note
that the 3-body operator L̂ is Hermitian, and for real orbitals, it
has 48-fold symmetry, a useful feature in reducing the memory
requirement to store these integrals. Nevertheless, storage of the
6-index integrals represents the major bottleneck of this method-
ology, limiting us at present to about 100 orbitals. This bottle-
neck can be alleviated using tensor-decomposition and fast on-the-
fly evaluation of the integrals, which will be the subject of future
work.

Although the form of this similarity transformed Hamiltonian
has been known for a long time,21 to the best of our knowledge
it has never been treated in its full form until now. We retain all
three-body terms, motivated in part by our recent study of the two-
dimensional Hubbard model using Gutzwiller similarity transfor-
mations16 in which we show that the 3-body terms do not incur
a huge cost in the FCIQMC formalism, and their full treatment
enables essentially exact results to be obtained. Furthermore, this
study shows that the similarity transformations can help enormously
in the study of strongly correlated systems, by significantly compact-
ifying the right eigenvector of the ground state (which are gener-
ally highly multiconfigurational otherwise). This suggests that the
present formalism may also help in treating strongly correlated ab
initio Hamiltonians in a manner beyond that of post hoc explicitly
correlated methodologies.22

The formulation requires the calculation of additional non-
Hermitian two-electron matrix elements and Hermitian three-
electron matrix elements. These are computed using numerical
quadrature over the direct product of atom centered grids built from
Treutler-Ahlrichs radial grids and Lebedev angular grids, obtained
from the PySCF program.23 The numerical summations factorize
into a series of steps with N2

gridN
2
bas, NgridN4

bas, or NgridN6
bas cost,

each of which are highly parallelizable, and convergence of the inte-
grals with the grid size is rapid. Further details are provided in
the supplementary material. Our numerical approach makes pos-
sible use of arbitrary forms of Jastrow function and all integrals
necessary to carry out the ST-FCIQMC calculations are readily
available.
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In the present study of the first-row atoms and cations, we
investigated two correlation factors of the form used by Boys and
Handy,17

u(ri, rj) =
m+n+o≤6

∑

mno
cmno(r̄mi r̄

n
j + r̄mj r̄

n
i )r̄

o
ij, r̄ =

r
1 + r

.

This function has electron-electron (e-e), electron-nucleus (e-n),
and e-e-n 3-body terms, which arise from m = n = 0, o > 0, and
m, n > 0, o = 0, and m, n, o > 0 terms, respectively. In this form of
correlation factor, the s-wave Kato cusp condition can be satisfied,
but not the p-wave or higher,24 and this feature ultimately deter-
mines the asymptotic rate of convergence to the basis set limit.25

The parameters cmno are taken from the variance-minimization vari-
ational Monte Carlo (VMC) study of the first-row atoms of Schmidt
and Moskowitz.26 In the first case (termed SM7), we used a form
without the e-e-n terms, and in the second (termed SM17), we used
the full form of the Jastrow factor with 17 terms, including the e-e-n
terms. Comparison of the results for the two correlation factors gives
insight into the role played by the additional terms in the Jastrow
factor in the present methodology.

The ST-FCIQMC calculations were performed in stan-
dard valence correlation quantum chemical basis sets, cc-pVXZ,
X = D, T, Q (with 14, 30, and 55 basis functions, respectively).
The non-Hermitian nature of the Hamiltonian, together with 3-
body interactions, has previously been treated in FCIQMC15,16 and
implemented in the NECI code27 and was further adapted for the
molecular Hamiltonian presented here.

The results of the ST-FCIQMC calculations for the total atomic
energies are shown in Table I. Reference energies are taken from the
experiment, corrected for relativistic effects as computed by Chakra-
vorty et al.28 The errors in the total energies for the three basis
sets are plotted in Fig. 1. For comparison with quantum chem-
istry methods, we also report energies computed using the cou-
pled cluster method CCSD(T)29 and its explicitly correlated variant
CCSD(T)-F12.30 The former gives an indication of the severity of the

FIG. 1. Errors in the total energies of the atoms, in H, for the two correlation
functions and the F12 methodology.

basis-set problem [for example, a mean absolute error (MAE) of 39
mH at cc-pVQZ], while the latter shows how much this error can
be reduced using a state of the art explicit-correlation method when
using valence basis sets for all-electron energies (MAE of 20 mH at
cc-pVQZ). It is clear that the present methodology gives a marked
improvement in the total energies, especially using the SM17 corre-
lation factor: an MAE of only 1 mH with the cc-pVQZ basis set. A
very small degree of nonvariationality (less than 1 mH) is observed
in a few cases with the lighter elements. Strict variationality is lost
in a non-Hermitian formulation and is often the major concern
in transcorrelated methods, leading to energies far below the exact
energy. Here, with the full treatment of the ST Hamiltonian, cou-
pled with the projective eigensolver, the results show that this is
of no serious concern. The cause of the present nonvariationality
lies in the fact that the correlation factor does not fulfill the p-wave

TABLE I. Total atomic energies (hartrees), for CCSD(T), CCSD(T)-F12, and the ST Hamiltonian, using the SM7 and SM17 correlation factors. MAE for each method across the
series is also shown.

Method Basis Li Be B C N O F Ne MAE

CCSD(T) cc-pVDZ −7.432 64 −14.617 41 −24.590 26 −37.761 56 −54.479 94 −74.911 155 −99.529 32 −128.680 69 0.121
cc-pVTZ −7.446 06 −14.623 79 −24.605 38 −37.789 53 −54.524 87 −74.984 94 −99.632 19 −128.815 13 0.069
cc-pVQZ −7.449 83 −14.640 08 −24.623 50 −37.812 09 −54.553 09 −75.023 19 −99.681 58 −128.876 76 0.039

F12 cc-pVDZ −7.474 58 −14.654 00 −24.631 21 −37.809 01 −54.537 07 −74.992 08 −99.636 23 −128.811 25 0.053
cc-pVTZ −7.472 67 −14.656 53 −24.636 26 −37.818 83 −54.552 93 −75.017 52 −99.669 94 −128.858 90 0.036
cc-pVQZ −7.473 70 −14.659 33 −24.641 87 −37.828 84 −54.569 16 −75.040 56 −99.700 70 −128.898 16 0.020

SM7 cc-pVDZ −7.467 26 −14.655 17 −24.632 79 −37.814 69 −54.534 48 −74.977 85 −99.606 02 −128.783 85 0.063
cc-pVTZ −7.476 27 −14.659 43 −24.644 58 −37.837 03 −54.572 36 −75.040 55 −99.694 21 −128.893 89 0.019
cc-pVQZ −7.477 85 −14.667 91 −24.654 17 −37.847 91 −54.587 78 −75.062 96 −99.725 07 −128.929 67 0.003

SM17 cc-pVDZ −7.477 07 −14.667 93 −24.645 21 −37.827 72 −54.557 19 −75.016 39 −99.658 34 −128.836 82 0.036
cc-pVTZ −7.478 04 −14.667 89 −24.650 03 −37.839 28 −54.579 89 −75.053 03 −99.713 77 −128.909 44 0.010
cc-pVQZ −7.478 45 −14.667 49 −24.652 87 −37.844 61 −54.588 44 −75.066 09 −99.732 83 −128.935 42 0.001

Expt. −7.478 06 −14.667 36 −24.653 91 −37.845 00 −54.589 20 −75.067 30 −99.733 90 −128.937 60
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TABLE II. IPs in mH, for the CCSD(T)-F12 method and for the ST Hamiltonian with the SM7 and SM17 correlation
factors.

Method Basis Li Be B C N O F Ne MAE

F12 cc-pVDZ 197.70 341.36 302.47 410.24 529.60 490.44 629.71 780.26 6.07
cc-pVTZ 197.67 341.81 304.13 412.73 532.91 496.17 636.44 789.34 2.39
cc-pVQZ 197.82 341.98 304.53 413.52 534.21 498.77 639.20 792.62 0.96

SM7 cc-pVDZ 195.13 341.87 297.70 404.70 522.79 474.22 617.48 768.90 13.45
cc-pVTZ 198.21 342.02 303.63 412.20 531.89 491.33 631.71 785.12 4.30
cc-pVQZ 198.55 342.77 304.54 413.51 533.91 497.15 637.62 790.90 1.57

SM17 cc-pVDZ 188.50 341.40 299.54 407.46 526.84 482.62 627.60 779.22 9.65
cc-pVTZ 198.54 342.64 305.66 414.66 535.31 499.05 640.95 793.95 0.58
cc-pVQZ 198.44 342.70 304.98 414.24 535.19 500.65 642.37 795.82 0.50

Expt. 198.15 342.58 304.99 413.97 534.60 500.50 641.10 794.50

cusp condition, leading to an over-correlation of the same-spin pairs
of electrons, which prevents the accuracy reaching that is obtain-
able through F12 theory with high-order coupled cluster methods.31

Spin-dependent correlation factors may be a way forward, but incur
other complications, and is the subject of current work.

The additional 2- and 3-body terms turn out to make large
but generally opposing changes to the total energies. For example,
for the Ne atom in the cc-pVQZ basis, with the SM17 correlation
factor the expectation values of these terms for the Hartree-Fock
(HF) determinant are ⟨DHF∣K̂∣DHF⟩ = −382 mH and ⟨DHF|L|DHF⟩

= +109 mH. The effect on the FCI energy is similar: the K̂ terms
reduce the energy below the exact energy (by 51 mH), while the L
terms are substantially positive, making the total energy of H̃ exact
to within 2 mH. We also see that the SM17 correlation factor is much
more effective than SM7. A key property of the SM17 form is that the
correlation hole depth can vary depending on the distances of the
pair of electrons from the nucleus, getting deeper if the pair is fur-
ther away from the nucleus. This additional flexibility is very help-
ful in differentiating between the core-electron and valence-electron
correlation.

We obtained the ionization potentials (IPs) by computing
the cation total energies (Table II). Here, we used the same
Jastrow parameters as used in the atomic calculations, without
further optimization—this provides a stern test of the transfer-
ability of methodology. The results show that at both cc-pVTZ

and cc-pVQZ basis sets, the MAE for the IPs are only 0.58
and 0.50 mH for the SM17 correlation factor, compared to 2.39
and 0.96 for the CCSD(T)-F12 method. The marked improve-
ment of the SM17 results over SM7 highlights the effective-
ness of the e-e-n terms in the Jastrow functions to deliver very
high accuracy even using the comparatively modest cc-pVTZ
basis.

A promising aspect of the present approach is its ability to
describe core electron correlation without the need to include tight
functions in the basis-set, this already being evident in the excellent
total energies of Table I. To investigate this further, in Table III, we
report the series of the total energy of neon with differing numbers of
electrons, from Ne to Ne7+, which are increasingly dominated by the
core electrons. The results from the ST-FCIQMC with the atomic
SM17 Jastrow factor are particularly interesting as they give agree-
ment in the total energy to within a couple of mH for all systems.
This is without a core-correlation basis set. For the other methods
such as CCSD(T)-F12, a core-valence basis set (e.g., cc-pCVQZ) is
essential to describe the total energy. This, however, leads to a very
significant increase in the size of the basis set (e.g., cc-pVQZ has 55,
cc-pCVQZ 84, and cc-pCV5Z 145 basis functions). The ability of
the present methodology to capture core correlation via the Jastrow
factor, obviating the need to correlate them in the configurational
expansion, is a major advantage that will prove even more useful in
heavier systems.

TABLE III. Energies of the cations of Ne using SM17 vs CCSD(T) and CCSD(T)-F12.

Method Basis Ne7+ Ne6+ Ne5+ Ne4+ Ne3+ Ne2+ Ne+ Ne

CCSD(T) cc-pVQZ −102.6530 −110.2577 −116.0512 −120.6884 −124.2615 −126.5857 −128.0871 −128.8768
CCSD(T) cc-pV5Z −102.6585 −110.2646 −116.0616 −120.7011 −124.2757 −126.6027 −128.1067 −128.8989
CCSD(T) cc-pCVQZ −102.6788 −110.2859 −116.0820 −120.7209 −124.2951 −126.6205 −128.1224 −128.9123
CCSD(T) cc-pCV5Z −102.6809 −110.2888 −116.0871 −120.7275 −124.3027 −126.6303 −128.1346 −128.9269
CCSD(T)-F12 cc-pCV5Z −102.6818 −110.2900 −116.0891 −120.7303 −124.3062 −126.6359 −128.1420 −128.9360
ST-FCIQMC cc-pVQZ −102.6817 −110.2910 −116.0886 −120.7288 −124.3045 −126.6334 −128.1397 −128.9355
Expt.28 −102.6822 −110.2909 −116.0902 −120.7312 −124.3068 −126.6366 −128.1431 −128.9376
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In conclusion, it is worthwhile reemphasizing a crucial differ-
ence between the present method and the standard explicitly corre-
lated methods such as F12, namely, how the redundancy between the
Jastrow function and the configurational function is dealt with. In
the F12 methods, strong orthogonality projectors are used to elim-
inate this redundancy, i.e., correlation that can be described by the
Fock space wavefunction (in a given basis set) is removed from the
correlation factor. As such, only simple correlation functions, typi-
cally of the exponential form u(r1, r2) = −γ−1e−γr12 , are employed in
the F12 methods, more complicated forms (such as SM7 and SM17)
being less effective because of the projections. In the present method,
on the other hand, the configurational function Φ is explicitly solved
in the presence of the potential terms arising from the correlation func-
tion and can benefit from them: a more realistic correlation function
leads to a simpler Φ and more rapid convergence with respect to
the parameters (basis set, CI expansion, etc.) that define Φ, hence
the observed significant improvement in performance in going from
SM7 to SM17.

To summarize, we show that eigenfunctions of a Jastrow-
factorized similarity-transformed Hamiltonian can be computed
using the FCIQMC technique and leads to accurate results for atoms,
close to the basis-set limit, even when the configurational wave-
function is expanded in limited basis sets. A major advantage of
the present approach, as compared to the F12 methodologies, is
that forms of correlation factors beyond pure e-e functions can be
used without the need for projection operators, and deliver excel-
lent energies without the need for augmented basis sets. A further
advantage, which comes from the FCI formulation presented, is the
ability to tackle strongly correlated systems such as stretched open-
shell molecules. This will be the subject of future work along with the
optimization of Jastrow factors using different trial wavefunctions.
The main bottleneck in the current implementation is the need to
store 3-body integrals. Work is underway to alleviate this.

See the supplementary material for details of the numerical
evaluation of the Hamiltonian matrix elements.

The authors gratefully acknowledge funding from the Max
Planck Society.
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