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Explicitly correlated functions have been used since 1929, but initially only for two-electron systems. In 1960,
Boys and Singer showed that if the correlating factor is of Gaussian form, many-electron integrals can be
computed for general molecules. The capability of explicitly correlated Gaussian (ECG) functions to accurately
describe many-electron atoms and molecules was demonstrated only in the early 1980s when Monkhorst,
Zabolitzky and the present authors cast the many-body perturbation theory (MBPT) and coupled cluster (CC)
equations as a system of integro-differential equations and developed techniques of solving these equations with
two-electron ECG functions (Gaussian-type geminals, GTG). This work brought a new accuracy standard to
MBPT/CC calculations. In 1985, Kutzelnigg suggested that the linear r12 correlating factor can also be employed
if n-electron integrals, n42, are factorised with the resolution of identity. Later, this factor was replaced by more
general functions f (r12), most often by e��r12 , usually represented as linear combinations of Gaussian functions
which makes the resulting approach (called F12) a special case of the original GTG expansion. The current
state-of-art is that, for few-electron molecules, ECGs provide more accurate results than any other basis
available, but for larger systems the F12 approach is the method of choice, giving significant improvements over
orbital calculations.

Keywords: correlation energy; explicitly correlated functions; Gaussian geminals; coupled-cluster method;
strong orthogonality

1. Introduction

The N-electron wave functions �, which are solutions

of the Schrödinger equation, are usually approximated

by finite sums of orbital products. Since the resulting

equations can be formulated in terms of matrix

operations, one sometimes uses the name algebraic

approach for the whole family of methods using such

an approximation. For example, in the configuration

interaction method, the wave functions are sums of

determinants built from a chosen set of spinorbitals.

Although such expansions become complete when the

size of orbital basis set becomes infinite [1], the

algebraic approach has difficulties with recovering

one particular feature of �, called the electron-electron

cusp, i.e. the cusp in the wave function appearing when

the distance rij between two electrons goes to zero. This

problem is well illustrated on the example of a

two-electron atom or ion in an 1S state. In view of

spherical symmetry, the exact wave function � for this

state depends only on interparticle distances, including

the interelectronic distance r12. If one tries to

approximate � as a finite sum ~� of orbital products

�i(r1)�j(r2), then

lim
r12!0

@ ~�

@r12
¼ 0, ð1Þ

while the exact function � satisfies [2]

lim
r12!0

@�

@r12
¼

1

2
lim
r12!0

� ð2Þ

with the right-hand side (r.h.s.) not vanishing for

singlet states. The cusp condition, given by

Equation (2), is a consequence of the Coulomb-type

singularity of the electronic Hamiltonian when r1¼ r2.

Equation (1) can be proved by expressing ~� as the

finite partial-wave expansion

~� ¼
Xn
l¼1

Rl ðr1, r2ÞPl ðcos �Þ, ð3Þ

where ri¼ jrij, � is the angle between the vectors r1 and

r2, Pl is the Legendre polynomial and Rl (r1, r2)

is a coordinate-dependent expansion coefficient.
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Since cos � is a quadratic function of r12 (for fixed r1
and r2), the derivative in Equation (1) must vanish in

the limit of r12! 0. One can say equivalently that if

�(r)¼�(a, r), where �(r1, r2) is the exact wave function

and a an arbitrary point in space not coinciding with a

nuclear position, then �(r) has a cusp-type singularity

at r¼ a, while for any finite expansion of �(r1, r2) in

terms of orbital products, the function �(r) will

obviously be analytic at any r (except at the nuclear

positions).
A natural way to deal with this problem is to

introduce wave functions depending explicitly on the rij
distances. This approach was applied for the first time

by Hylleraas [3] in 1929, who used a linear r12 factor

multiplying products of Slater orbitals. Various

extended forms of the Hylleraas functions are still

used in very accurate calculations for three-body

systems, in particular for the helium atom. The

Hylleraas basis set was generalised in 1933 to the

case of two-electron diatomic molecules by James and

Coolidge (JC) [4]. In 1964, Kolos and Wolniewicz [5]

extended the JC basis to allow for the correct

description of molecular dissociation (the extended

basis will be referred to as KW basis).
Applications of bases containing linear r12 factors

and Slater orbitals have turned out to be nearly

impossible so far for molecules with more than two

electrons (an exception is the work of Clary and

Handy [6] published in 1977). It took about 30 years

since the seminal work of Hylleraas to find an

explicitly correlated basis set that could be applied to

many-electron molecules. This breakthrough was

achieved in 1960 when Boys [7] and Singer [8] proposed

to change the r12 dependence from a linear factor to a

Gaussian exponential. The most general form of such

an explicitly correlated Gaussian (ECG) function

contains all distances rij between electrons in an atom

or molecule, but most often only the two-electron

functions are used, which are then called Gaussian-

type geminals (GTG). Early applications of GTGs in

variational calculations [9–12] proved the viability of

the method, but the first physically relevant molecular

applications of this basis were carried out only in the

late 1970s [13–17]. In particular, GTG calculations on

H2 published by the present authors in 1979 [15]

recovered the energy of this molecule to within

0.05mH, whereas the previous most accurate GTG

work had a 4mH error [18] and the most accurate H2

energy at that time had a 0.01mH error [19]. Thus, it

has been shown that GTGs are capable of achieving as

high accuracies as linear-r12 methods. This calculation

required an optimisation of nearly 300 nonlinear

parameters which was performed using conjugated

gradient algorithms. Current state-of-art calculations

for H2 will be discussed below.
Motivated by the success of these applications,

especially that of [15,17], and by the emerging

prominence of the many-body perturbation theory

(MBPT) and the coupled-cluster (CC) methods

[20–23], the present authors started a collaborative

effort with Monkhorst and Zabolitzky in 1981 to

introduce explicitly correlated functions to MBPT/CC

methods [24–28]. To achieve this goal, the coupled

cluster equations at the pair level were reformulated as

a system of integro-differential equations for spin-free

pair functions [27] and variational techniques were

developed [24,28] to solve these equations using the

basis of GTGs. This work, performed mostly in the

Quantum Theory Project (QTP) at the University of

Florida, brought a new accuracy standard to the

MBPT/CC calculations and resulted in a series of

benchmark studies for small systems. The GTG

method was also combined with symmetry-adapted

perturbation theory (SAPT) [29,30] and used to

compute very accurate helium–helium interaction

potential [31–33] which correctly predicted low-tem-

perature bulk properties of helium and the properties

of the helium dimer. In a more recent work, performed

with Bukowski, the present authors proved the

completeness of the GTG basis [34,35] (see also [36]),

and showed how single excitations can be included [37]

or how GTGs can be used to calculate analytical

gradients and properties within the framework of

MBPT [38]. These developments are extensively

reviewed in [39].
In 1985, in independent development, Kutzelnigg

[40] suggested that the linear rij correlating factors can

also be used in MBPT/CC calculations for general

molecules provided that these factors are multiplied by

Gaussian orbitals and that the resolution of identity is

used to compute more-than-two-electron integrals. The

first calculation utilising these ideas was published two

years later [41] and their broader realisation, referred

to as the R12 approach, was achieved in the early

1990s [42,43]. Since the 1990s, the developments in

applications of explicitly correlated functions have

accelerated significantly and in the last decade the

explicitly correlated approach certainly entered the

mainstream of computational chemistry. The most

recent important development is the emergence of the

so-called F12 methods replacing the linear rij correlat-

ing factor by more general functions f (r12), most often

the Slater factor e��r12 . When f (r12) is expanded in

Gaussian functions, which is often done, this approach

reduces to the application of the conventional GTG

expansion. Excellent discussions of explicitly correlated
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methods can be found in Section 4 of the review by

Helgaker et al. [44] and in the review by Tew et al. [45].
In addition to reviewing the development of ECG

methods, we will also survey the most recent applica-

tions of ECG basis sets and in particular of GTGs.

Presently, some applications of ECG functions to small

molecules reach accuracies much better than 1mH that

is typically considered a high quality in large-scale

electronic structure calculations. For example, it has

been possible to reduce uncertainties to nanoH level

for the helium dimer and below picoH level for the

hydrogen molecule [46] using ECG/GTG bases. At this

level of accuracy, relevant, e.g., for creating new

metrology standards, one has to include several

physical interactions beyond the nonrelativistic

Born–Oppenheimer (BO) level: the adiabatic,

relativistic and quantum electrodynamics (QED) cor-

rections [47]. The contribution of these subtle effects

can also be computed with ECG bases.

2. Explicitly correlated geminals in many-body

perturbation theory and coupled-cluster methods

Consider a two-electron atom or molecule in a

spin-free approach. The wave function of such

a system is most often expanded in terms of products

of orbitals:

�ðr1, r2Þ ¼
X
i, j

cij �iðr1Þ�j ðr2Þ: ð4Þ

As discussed in Section 1, such expansions converge

slowly since it is difficult to describe the electron-

electron cusp using orbital products. A general

explicitly correlated expansion of the same wave

function can be written as

�ðr1, r2Þ ¼
X
i, j,k

cijk �iðr1Þ�j ðr2Þ fkðr12Þ: ð5Þ

The components of this expansion are called geminals

and come in several variations depending on the form

of the factor fk(r12). The popular factors have been:

(a) linear-R12

fkðr12Þ ¼ r12, ð6Þ

(b) Slater-type

fkðr12Þ ¼ e��kr12 , ð7Þ

(c) Gaussian-type

fkðr12Þ ¼ e��kr
2
12 : ð8Þ

When the orbital factors multiplying expð��r212Þ are
also of the Gaussian form, one obtains the GTG basis

of Boys and Singer. This is presently the only explicitly

correlated basis for which molecular integrals can be

analytically computed for many-electron molecules.

The Slater-type correlating factors have been initially

used only for three-body systems, like the helium atom,

exhibiting extraordinary effectiveness [48]. Such factors

were introduced in the many-electron context by Ten-

no [49] in 2004 and have been often used since then.
Although the orbital product basis sets are

complete if the one-electron bases are complete, the

advantage of applying the explicit correlation factor is

that one can significantly reduce the number of orbital

products used. The appropriate theorems concerning

the completeness of GTG bases have been proved in

[34–36,50]. It should be emphasised, however, that

only the Slater and the linear correlation factors can

guarantee the exact fulfillment of the cusp condition of

Equation (2). When the Gaussian correlation factors

expð��r212Þ are used, Equation (1) still holds. This

sounds paradoxical in view of the mathematical

completeness of the Gaussian geminal basis and,

especially, its excellent performance in practical

applications. This paradox can be explained by the

fact that a single Gaussian geminal function

expð��r212Þ can approximate a cusp arbitrarily well

(can have arbitrarily large second derivative) by

increasing the nonlinear parameter �. Achieving

a similar approximation of the cusp with

Equation (4) would require using many very high

angular momentum terms in the expansion of the wave

function. Also, what really matters is the correct

description of the correlation hole for small but

nonzero values of r12 (rather than the exact fulfilment

of Equation (2)) and this hole is much easier to

describe with explicit r12 dependence of the wave

function.
Results of initial applications of the ECG basis to

the helium atom and hydrogen molecule [9–12] were

not competitive to those obtainable by other

approaches. In 1972, Pan and King [51] reported,

however, an application of GTGs to the neon atom

using the second-order MBPT approach based on the

Møller–Plesset partition of electronic Hamiltonian –

the method now known as MP2. This application

resulted in the best MP2 energy for neon available at

that time (and until the late 1970s). The success of the

work of Pan and King inspired the present authors as

well as Adamowicz and Sadlej to extend their

approach to molecules. This resulted in a series of

applications [14–17] that led to predictions accurate

enough to be confronted with experiment.
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Another reason that the work of Pan and King was
followed by the quantum chemists in Warsaw was
undoubtedly the influence of Kolos, whose benchmark
calculations for H2 in explicitly correlated basis sets
have been among the most important results achieved
in this field. There was therefore a natural quest for
extending such an approach to larger molecules.
We also realised that GTGs could be used to perform
calculations not possible with the JC or KW bases. For
instance, it is very easy to analytically compute the
Fourier transformation of the ECG basis [15]. Kolos
appreciated this merit of the GTG basis and later
participated in the GTG studies of electron scattering
on H2 [52–55] performed in 1982 at the QTP.

In applications of GTGs performed within the
MBPT/CC framework, one has to repeatedly solve the
pair equation of the following general form [27,28,39]:

f̂ ð1Þ þ f̂ ð2Þ � "� � "�

h i
�s��ð1, 2Þ ¼ Rs

��ð1, 2Þ, ð9Þ

where the arguments i¼ 1 or 2 are short-hand notation
for the electron coordinates ri, f̂ ðiÞ is the one-electron
Fock Hamiltonian, "� is the orbital energy of the
Hartree–Fock orbital ��, s¼ 1 or 3 denotes the singlet
or triplet spin symmetry, respectively, and the function
appearing on the r.h.s. depends on the level of theory.
In the simplest MP2 case, this function is given by

Rs
�� ¼ �q̂2

1

r12
�s��, ð10Þ

where �s��ð1, 2Þ ¼ ½��ð1Þ��ð2Þ þ ð2� sÞ��ð2Þ��ð1Þ� and
q̂2 is the so-called strong orthogonality (SO) projector

q̂2ð1, 2Þ ¼ q̂1ð1Þq̂1ð2Þ ð11Þ

defined in terms of the standard one-electron operator

q̂1 ¼ 1� p̂, p̂ ¼
XN=2
�¼1

p̂�, p̂� ¼ j��ih��j ð12Þ

projecting outside the space spanned by N/2 doubly
occupied orbitals ��. In higher orders of MBPT and in
the CC method, the function Rs

�� on the r.h.s. of
Equation (9) depends on all pair functions obtained in
lower orders of MBPT or in the previous iteration of
CC equations. Similarly, as in the first-order, the r.h.s.
of Equation (9) satisfies the strong orthogonality
condition, Rs

�� ¼ q̂2 R
s
��.

Equation (9) has to be solved with the condition
that the pair functions are strongly orthogonal to the
occupied space:

�s�� ¼ q̂2�
s
��: ð13Þ

The SO condition is trivially fulfilled in algebraic
MBPT/CC approaches since the pair functions are

expanded in terms of virtual Hartree–Fock orbitals.
In explicitly correlated approaches, this condition leads
to very significant complications and additional costs
of calculations. To see this, let us consider the
Hylleraas functional used to solve Equation (9)

J s
��½ ~�� ¼ h ~�j f̂ ð1Þ þ f̂ð2Þ � "� � "�jq̂2 ~�i � 2Reh ~�jRs

��i:

ð14Þ

We assumed here that the Hartree–Fock problem has
been solved exactly so that f̂ ð1Þ commutes with q̂2 and,
consequently, the SO projection has to be carried out
only in the ket. Since the action of the projector q̂2
leads to an additional integration

p̂�ð2Þ ~� ¼ ��ð2Þ

Z
��ð2

0Þ ~�ð1, 20Þd20, ð15Þ

the ‘overlap’ component of J s
��½ ~�� quadratic in pair

functions contains the following integral

h ~�jp̂�ð2Þ ~�i ¼

Z
~�ð1, 2Þ��ð2Þ��ð2

0Þ ~�ð1, 20Þd1d2d20: ð16Þ

This integral is a nonseparable three-electron one
instead of a two-electron one which would appear if
the SO condition was not imposed. Since the operators
f̂ðiÞ contain an implicit integration over the third
electron coming from their Coulomb and exchange
parts, the quadratic term leads to four-electron
integrals. Whereas these integrals can be reduced to
two-electron ones in a fairly straightforward way, the
resulting expressions are time consuming to compute.

In the early GTG calculations, all the needed four-
electron integrals were computed [14,17,51]. A method
of avoiding such calculations, called the weak-ortho-
gonality (WO) approach, was proposed in [24,25].
In this method, the operator q̂2 is removed from the
quadratic term in Equation (14) and a ‘penalty’ term

ð"�=2þ "�=2� "1 þ �Þ h ~�jp̂ð1Þ þ p̂ð2Þj ~�i ð17Þ

is added to the functional, where � is the so-called SO-
enforcing parameter. The penalty term was chosen
such that for �40 the minimum of the WO functional
is attained when ~� becomes identical with the strongly
orthogonal pair function �s��ð1, 2Þ satisfying
Equation (9). The penalty term obviously vanishes
for a strongly-orthogonal ~�. An improved form of the
WO functional (with a somewhat more complicated
penalty term) was proposed in [56] and this improved
form is now used in practical calculations [39].
Appropriately large values of � will result in pair
functions being strongly orthogonal to an arbitrary
accuracy. In practice, one sets this parameter to values
which give a balanced treatment of the description
of pair correlation and of strong orthogonality.
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It turned out that it is much easier to fulfil the latter

condition than the former and the results in larger

basis sets were practically independent of �.
Tew et al. [57] made an important observation that

the results obtained with the WO functional can be

dramatically improved when the trial function �̂ is first
projected with the orbital approximation to q̂2
defined by

q̂2,orb ¼ 1� p̂ð1Þ p̂ð2Þ � p̂ð1Þ q̂1,orbð2Þ � q̂1,orbð1Þ p̂ð2Þ,

ð18Þ

where

q̂1,orb ¼
Xnv
�

j��ih��j, ð19Þ

the sum ranging over the finite set of nv virtual orbitals

�� available in a given calculation. When nv¼1 and

the set of orbitals is complete then q̂1,orb ¼ q̂1 and

q̂2,orb ¼ q̂2. If the products of virtual orbitals are

included in the basis used to represent �̂, as it is done
in the so-called F12 methods which will be discussed

later on, then this approximate projection does not

lead to new integrals, as compared to the application of

the WO functional. Tew et al. [57] refer to this specific

realisation of the WO functional (with trial function ~�
replaced by q̂2,orb ~�) as the intermediate orthogonality

functional (IO).
At the MP2 level, the approach described above is

completely sufficient, but at the CCD or CCSD levels

(CC method with double or single and double

excitations, respectively) the presence of q̂2 in the

terms on the r.h.s. of Equation (9) still results in four-

electron integrals and the calculation of these integrals

is the time-limiting step of these methods. In order to

speed up such calculations, an additional approxima-

tion was proposed in [28]. First, one defines an

approximate SO ‘projector’ (neither idempotent nor

Hermitian)

q̂B ¼ P̂Bq̂2, ð20Þ

where P̂B is the orthogonal projector on the geminal

basis set used. The operator q̂B is an approximation to

q̂2 and it becomes exact when the geminal basis set

becomes complete. One may view the function q̂B� as

the least-square approximation of the strongly pro-

jected pair function q̂2� by a linear combination of the

geminal basis functions used in the calculation. The

approximate projector q̂B can be applied to pair

functions between CCD or CCSD iterations at

virtually no additional costs, resulting in a significant

reduction of the SO-violating components. Such a

method of solving CC equations is referred to as the

weak-orthogonality plus projection (WOP) approach

[28,39]. The application of the WOP method does not
eliminate, however, the four-electron integrals already
appearing at the level of linear CCD (LCCD) method.
Such elimination can be achieved using the so-called
superweak orthogonality functional combined with the
q̂B approximate projection, i.e. the SWOP method
[28,39]. In this method, the q̂2 operator in
Equation (10) or on the r.h.s. of Equation (9) is
replaced by the much simpler projection 1� p̂ð1Þp̂ð2Þ.
The pair functions obtained by solving Equation (9) or
by minimising the corresponding functional
(now referred to as the superweak orthogonality
functional) are not strongly orthogonal, but their
strong-orthogonality violating components can be
eliminated a posteriori by the q̂2 projection and, in
practice, by using the q̂B operator [28]. When the
geminal basis is sufficiently large, the SWOP method
gives practically the same results as the reference
calculation with the exact q̂B projection and the
consequent four-electron integrals [28,37].

With the SWOP approach, only three-electron
integrals remain at the FCCD (factorisable CCD)
level [27]. This result is very important in practice since
the difference between the CCD and FCCD energies is
very small and can be accurately computed using
orbital basis sets only [58]. Furthermore, the single
excitation contribution to the CCSD energy is also
converging fast in the algebraic approach. As a matter
of fact, the explicitly correlated basis appears to be
essential only in computations at the FCCD level of
theory. The remaining contributions to the CCSD
energy (non-factorisable part of the CCD energy and
the single excitation contribution) are not sensitive to
the wave function cusps and can be accurately
obtained with orbital bases. Therefore, the most
efficient computational strategy is to combine results
from the geminal and orbital calculations and to
compute only FCCD energies in GTG basis sets and
the remaining CCSD components in orbital-only basis
sets [58,59]. Note that the FCCD method is equivalent
to the ACP-D45 method of Jankowski and Paldus [60]
or the ACCD method of Chiles and Dykstra [61], both
methods [60,61] originally formulated in the algebraic
approach. The smallness of the CCD contributions
beyond the FCCD level is also consistent with the good
performance of coupled electron pair approximation
(CEPA)-type methods [62–64]. These methods take
account of the large, exclusion principle violating
(EPV) terms included in the FCCD energy and neglect
the non-EPV terms responsible for the difference
between CCD and FCCD energies. One may add
that when SWOP is used, the four-electron integrals do
not appear at the theory levels up to FCCSD
(factorisable CCSD) [37,39] and in particular are not
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present in the FQCCSD method [37] which addition-
ally neglects terms beyond those quadratic in the
cluster operators and provides results very close to
those obtained at the CCSD level [37].

The GTG method with the approximations dis-
cussed above has become a reasonably effective
computational approach which led to benchmark
correlation energies for several atoms and molecules,
for a summary of these results see [39]. The most time-
consuming step in such calculations are optimisations
of nonlinear parameters appearing in GTGs. The
explicit form of a geminal expansion is

�ðr1, r2Þ ¼
XK
i¼1

ci x
l1i
1 y

m1i

1 zn1i1 e��1ijr1�Aij
2

� xl2i2 y
m2i

2 zn2i2 e��2ijr2�Bij
2

� e��12,ijr1�r2j
2

: ð21Þ

The nonlinear parameters are �1i, �2i, �12i, Ai and Bi,
the total of nine parameters per geminal. In the most
often used approach, the geminals are optimised
separately for each pair function. Since the number of
pair functions is N2, the cost of optimisations becomes
more significant for larger molecules and in fact the
GTG calculations have been restricted to systems with
up to 10 electrons (using approximate CCD methods
for Ne [56] and only the MP2 level for water [34]).
On the other hand, if the nonlinear parameters are
carefully optimised, the GTG bases allow one to reach
nanoH accuracies (sub-picoH for the hydrogen
molecule). To reach such an accuracy, one has to use
several hundreds basis functions per pair, i.e. optimise
several thousands of nonlinear parameters.

A number of methods have been devised to speed
up the optimisation. The random-tempering approach

uses random generation of exponents and positions of
geminals that is controlled by a few optimised
parameters [65–68]. Later, various inexpensive meth-
ods of producing initial sets of exponents and positions
were proposed [69], so that only short optimisations
were needed to arrive at very accurate energies. One
other issue was that the nonlinear parameters opti-
mised at the MP2 level are not fully optimal at the CC
levels for systems where the post-MP2 contributions
are large. This problem has recently been solved by
using an independent electron pair functional for the
nonlinear optimisations [70].

3. ECG functions in variational calculations

The GTG bases can also be applied in standard
variational calculations for two-electron systems and
offer some advantages even in applications to the He
atom [71]. A number of investigations of H2 used this
basis [15,52,53,68,72]. Although the accuracy of the H2

energy was not as high as obtainable at that time with
KW basis set, it was higher than obtainable with
conventional orbital methods. Therefore, benchmark
results could be obtained for properties which would
be very difficult to compute using the KW bases, such
as the Compton profile [15], electron scattering cross
sections [52,53] and electron densities [72]. A microH
accuracy of H2 energy was achieved in [68] and in 1994
Rychlewski et al. [73] published a GTG result with
only a nanoH error, more accurate than the best value
obtained in KW bases at that time. This accuracy has
been further improved over the years by increasing the
basis set size, to reach recently 60 fH [46] (Table 1).

Table 1. Electronic energies of H2 (in Hartree) at R¼ 1.4011 bohr as a function of the
number of expansion terms.

Basis size Energy Reference

Gaussian geminals
300 �1.174 475 929 976
600 �1.174 475 931 326
1200 �1.174 475 931 395
2400 �1.174 475 931 399 860
4800 �1.174 475 931 400 135
extrap. �1.174 475 931 400 21(6)

Generalised James–Coolidge (R12)
883 �1.174 475 930 742 Wolniewicz 1995 [74]
3246 �1.174 475 931 397 74 Kurokawa et al. 2005 [75]
7034 �1.174 475 931 399 84 Sims and Hagstrom 2006 [76]
extrap. �1.174 475 931 399(1) Sims and Hagstrom 2006 [76]
6776 �1.174 475 931 400 03 Nakatsuji et al. 2007 [77]
22363 �1.174 475 931 400 215 99 Pachucki 2010 [78]
extrap. �1.174 475 931 400 216 7(3) Pachucki 2010 [78]

Note: Gaussian geminal results are from [46].
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At the moment of writing this review, this value

constitutes the most accurate electronic binding energy

of H2 reported in the literature. However, the recent

yet unpublished result of Pachucki [78] is significantly

more accurate and also shows that the error estimate of

60 fH was very conservative as the difference between

the two results is smaller than 12 fH. The ECG value is

more accurate than the best previous values obtained

in JC-type basis sets [74,76]. The closest published

result is that obtained using the iterative solution of the

Schrödinger equation starting from a simple JC-type

function [75,77].
In the variational approach for systems with more

than two electrons, ECG expansions can be written

� ¼ AN �N,S,MSP̂
XK
k¼1

ck�kð1, 2, . . . ,N Þ

( )
, ð22Þ

where AN is the N-electron antisymmetriser, �N,S,MS is

one of the N-electron spin functions corresponding to

spin quantum numbers S and MS, P̂ is the point-group

symmetry projector, ck are variational parameters and

�k(1, 2, . . . ,N) are ECG basis functions. The explicit

form of the latter functions is

�kð1, 2, . . . ,NÞ ¼
YN
i¼1

e��kijri�Akij
2
YN

i4j¼1

e��kijjri�rj j
2

, ð23Þ

where �ki, �kij and Aki¼ (Xki,Yki,Zki) are nonlinear

variational parameters.
The ECG functions correlating more than two

electrons were applied for the first time in 1975 by

Karunakaran and Christoffersen [79,80], but using

only a few such functions in the expansion. The first

physically meaningful applications were published in

the early 1990s by Cencek and Rychlewski [81] (the

H3 and LiH molecules) and by Schwegler et al. [82]

(the beryllium atom). One should also mention that at

about the same time the ECG functions have been

applied in fully nonadiabatic calculations (without

using the BO approximation) by Kozlowski and

Adamowicz [83]. Numerous ECG applications to

three-, four- and five-electron systems have been

published since then – some of this work has been

reviewed in [84,85] and a few recent examples are

[86–88]. Very accurate ECG calculations for the

helium dimer will be described in Section 5. Within

the past year, the ECG method has been applied to

six-electron systems, the BH molecule [88] and the

carbon atom [89]. An application to a four-atom

nonlinear molecule was also reported (for the dimer

of H2 [90]).

4. Gaussian approximations of the correlation

factors for many-electron systems

As already discussed in Section 1, the linear-r12
functions, although introduced in the early days of
quantum mechanics [3,4], have been for a long time
used only for two-electron systems. The benchmark
calculations performed for the helium atom by Pekeris

[91] and Drake [92] and for the H2 molecule by Kolos
and Wolniewicz [19,93] competed with experimental
measurements for these systems and such competition
continues until today [94]. Such functions have also
been used in several exotic applications such as
muon-catalysed fusion [95,96] including a treatment
of nuclear forces [97,98] and the study of the �-decay
spectrum of molecular tritium, relevant for the
determination of neutrino mass [99–104].

An extension of the bases with the linear-r12 factor
to many-electron atoms, called Hylleraas configuration
interaction (CI) method, was developed by Sims and
Hagstrom [105] and by Woznicki et al. [106–108].
An extension to the general molecular systems was
proposed by Kutzelnigg in 1985 [40]. Although the
calculations of [40] were performed only for the helium

atom, an important finding was that very accurate
energies can be obtained bymultiplying only the leading
CI configuration by the factor r12 and using the rest of
the CI expansion in the orbital form. This results in
significant simplifications of the method compared to
the Hylleraas CI. Still, an application of this approach
to molecules would have produced very difficult many-
electron integrals. Kutzelnigg proposed to reduce such

integrals to two-electron ones by inserting an approx-
imate resolution of identity. This idea was applied by
Kutzelnigg, Klopper and Noga at various levels of
MBPT/CC theory [41–43]. For a review of the R12-
MBPT/CC approach see [44,109,110]. One main
advantage of this approach is that costly optimisations
of nonlinear parameters are avoided and standard

orbital basis sets can be employed. Even if some specific
basis sets have been optimised for this method,
such optimisations can be done once for each atom
and later used for an arbitrary molecule. Another main
advantage is that the use of the resolution of identity
allows much faster calculations of the integrals than in
the traditional GTG method. The R12-MBPT/CC
approaches also involve a variety of additional approx-

imations made to speed up calculations. As one of the
consequences, the R12-MP2 energies are no longer
upper bounds to exact values. The errors due to these
approximations were analysed in [111]. Although for
small systems the R12-MBPT/CC results were less
accurate than the GTG ones, the former method could
be applied to any medium-size molecule.
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The weakness of the linear-r12 factor is that at large
interelectronic separations it is difficult to damp it by
exponential terms. This obvious observation led to a
family of the so-called F12 methods, where r12 is
replaced by f (r12) which behaves similar to r12 at small
separations but does not diverge at large ones. The first
step in these directions was made in 1994 by Bukowski
and the present authors in [69], where r12 was expanded
in terms of GTGs

r12 ¼
X

cie
��ir

2
12 : ð24Þ

An alternative would be to expand the products r12 �
s
��

in terms of a geminal basis by minimising the
following, easily computable functional [69]

G½ ~�� ¼
1ffiffiffiffiffiffi
r12
p ~� �

ffiffiffiffiffiffi
r12
p

�s��

����
����

����
����2: ð25Þ

Persson and Taylor [112,113] also used expansion (24)
and products of orbitals from standard basis sets to
avoid optimisations of nonlinear parameters. This
approach has been further developed by Dahle et al.
[114,115]. A significant achievement was a calculation
of the most accurate MP2 energies for water [115]. The
GTG method without nonlinear optimisations always
gave significant improvements over the corresponding
orbital level, but calculations were still time consuming
due to explicit calculations of many-electron integrals
and large size of geminal expansions. A logical next
step was to use the resolution of identity in such an
approach and this possibility was investigated by May
and Manby [116] in 2004. The method with the
resolution of identity worked very well and it was
implemented in standard quantum chemistry packages
up to CCSD(T) [117] (CCSD plus noniterated triple
excitations) level and even CCSDTQ [118] (complete
excitations up to quadruple ones) level. Several
variants of F12 approaches have been proposed in
recent years, also including a variant which uses the
Slater-type correlating factor [49,119,120]. Note that
all these methods use the explicitly-correlated factors
only in the pair functions. A way of including such
factors in the triple-excitation functions at the
CCSD(T) level has recently been proposed by Kohn
[121].

Whereas the most effective implementations of
F12-MBPT/CC methods use only modestly larger
computer resources than calculations in the same
orbital-only basis and at the same level of theory,
this effectiveness has been achieved applying a series of
approximations. In addition to the standard approx-
imations in calculating the matrix elements of the Fock
operator, these methods retain explicitly correlated
functions only in linear terms [117] of CC equations.

The result is that if one aims at benchmark accuracies,
such F12-MBPT/CC implementations may not be
competitive with orbital calculations in very large
basis sets followed by extrapolations to the complete
basis set (CBS) limit. The performance of the
F12-CCSD(T) has been recently investigated in [122].
Application of singly and doubly augmented orbital
basis sets with cardinal number up to X¼ 7 followed
by CBS extrapolations gave the frozen-core (FC)
CCSD(T) interaction energy of Ar2 at R¼ 3.75 Å
equal to -97.445� 0.063 cm�1. The F12-CCSD(T)/FC
calculations in the largest available basis set with X¼ 5
gave �97.720, and �97.592 cm�1 after an extrapola-
tion from the X¼Q and 5 results. While the later value
is close to the benchmark, it is outside its error bars.
In the case of the CCSD(T) method, the additional
reason for the relatively slow convergence could be
that the F12-CCSD(T)/FC implementation used [117]
does not include explicit correlations in the triples
components of wave function.

5. Applications of ECG functions to calculations

of helium dimer potential

GTGs were first applied to intermolecular interactions
to calculate the dispersion energy of He2 [13], which
requires a similar effort as an MP2 calculation. Later,
GTGs were used to compute several further interaction
energy components for the same system [17]. This work
represents the first application of GTGs beyond the
MP2 level. The computed interaction energy compo-
nents are defined by SAPT whose initial version
accounting for intramonomer correlation effects was
also developed in [17]. A comprehensive theory of these
effects was presented later in [123–126].

The complete He2 SAPT potential based on GTG
calculations was published in 1996 [31,32] and has
since become one of the most often-used ab initio
potentials for this system (henceforth it will be called
SAPT96). These calculations were performed at the
nonrelativistic BO level and we will denote this type of
potential as VBO(R). In the development of SAPT96,
the GTG bases were used to describe the bulk of the
He2 interaction energy, whereas a small remaining
contribution was computed using orbital basis sets.
The orbital calculations for some terms of the second
order in the intermolecular perturbation operator V̂,
which were not programmed using GTGs, were
performed using the standard SAPT approach
[29,30]. Some very small terms in the second order as
well as terms of higher orders in V̂ were computed
using a special version of the SAPT program applic-
able only to He2 but including all intramonomer
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correlation effects. Since, in practice, SAPT converges

to the full CI (FCI) interaction energies computed in

these same basis set [15,127–131], the small high-order

contributions could alternatively be computed using

the FCI method.
Recently, the calculations of [31,32] have been

repeated with increased accuracy [33,58,59,132]. In

particular, basis sets much larger than those in 1996

could be used. The orbital components were extra-

polated to the CBS limits. Both the SAPT approach as

well as the supermolecular approach were used. The

latter one was earlier applied to He2 in [133]. The use of
two independent approaches which agree with each

other to within the estimated uncertainties is a strong

conformation of the soundness of final results.

Furthermore, one can use (for a given interatomic

separation R) the approach which has smaller error

bars [33]. The GTG results were also used to test the

performance of various types of CBS extrapolations

[58,132,134]. In 2007 SAPT calculations [33], the first-

order and most of the second-order contributions to

the interaction energy were obtained using GTG basis

sets and are converged to about 0.1mK, or 0.3 nH,
near the minimum and for larger R. Thus, the main

uncertainty in the potential originates from the

relatively small contributions computed using orbital

basis sets, in particular the FCI contribution.

Compared to the SAPT96 potential, the uncertainties

have been decreased by more than an order of

magnitude. We will refer to the potential of [33,59] as

to CCSAPT07.
A summary of the most accurate calculations for

the near-equilibrium distance of 5.6 bohr is given in

Table 2. The ECG value has the smallest uncertainty

and both the CCSAPT07 and quantum Monte Carlo
(QMC) value of Anderson [135] are consistent with it.

The uncertainty of the ECG value is only 0.2 mK

or 0.6 nH.
The estimated uncertainty of the CCSAPT07

potential at the minimum distance is 300 ppm relative

to the total well depth. However, since the total

electronic energy of the dimer is about 6 atomic units,

this translates to 2 ppb accuracy relative to this energy.

The estimates of uncertainties given above are not

rigorous and have been obtained by analysing the rate
of convergence of the results with basis set size and
performing extrapolations to the CBS limits in several
different ways. One way of judging the reliability of
such estimates is to analyse the estimates from past
publications since these are tested as newer and
more accurate calculations become available. In the
recent series of calculations from our group
[33,58,59,132,134], the uncertainties are fully compa-
tible. In the case of the SAPT96 potential [31,32], the
uncertainties are for most points consistent with those
of the CCSAPT07 potential, but for a few points,
including the minimum separation, these uncertainties
were underestimated by up to about a factor of two
(mainly due to the slower than expected convergence of
the contribution obtained from high-order SAPT or
from FCI calculations). The reliability of the estimates
can also be evaluated by comparisons with calculations
using completely different methods such as the QMC
method [135] or the four-electron ECG method [46]
discussed above. Both comparisons show consistency
with error estimates of [33,59].

The availability of accurate potentials for the
helium dimer has become very important for thermo-
physical measurements of bulk helium. It was realised
in the 1990s [31,32,136–138] that thermophysical
properties of helium computed ab initio have smaller
uncertainties than the corresponding measured values.
Thus, theoretical results could be used to calibrate
thermophysical measurements [139] and create new
metrology standards [139–146]. However, with the
accuracy level achieved for the nonrelativistic BO
potential, various post-VBO(R) effects become compar-
able or even larger than the BO-level uncertainties and
therefore their knowledge becomes of importance. The
largest in magnitude post-VBO(R) contributions are the
adiabatic (diagonal), relativistic and quantum electro-
dynamics corrections. The adiabatic correction was
computed for a large number of values of R by
Komasa et al. [147] using the ECG basis and by
Hellmann et al. [148] using orbitals, but the results
were not consistent. The relativistic [149] and quantum
electrodynamic contributions [150] were initially
known only at the van der Waals minimum distance.
All these corrections have recently been computed for a
large number of R’s and the results have been fitted to
an analytic function and smoothly connected with the
asymptotic dependence [47], including retardation
effects. The resulting total potential has 50 ppm
uncertainty at the minimum. For most contributions,
both the four-electron ECG and orbital bases were
used for each R. For larger R, the latter results had
smaller error bars and were used in the fitting of
analytic potential. The reason that the quality of ECG

Table 2. Nonrelativistic BO interaction energies (in K)
for the helium dimer at the near-equilibrium distance of
5.6 bohr.

SAPT96 [31,32] �11.059� 0.03
CCSAPT07 [33] �11.0037� 0.0031
ECG [46] �11.0006� 0.0002
QMC [135] �10.998� 0.005
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results decreases at larger R is that it is not possible to
define a monomer basis set corresponding to a given
dimer basis set. Two techniques have been developed
to go around this problem: the monomer-contraction
method [46,90,149] and the direct computation method
[151]. Note that the same problem does not appear in
MBPT/CC calculations employing GTG bases and in
fact one can make counterpoise correction for the basis
set superposition error in such calculations [133].

The uncertainties of the bulk helium properties,
such as, for example, the second virial coefficient,
computed from the current ab initio potentials are a
few times smaller than the uncertainties of the best
measurements [146]. The ab initio predictions [47]
can also be compared to experimental values for the
bound state of 4He2. This very unusual, extremely long
molecule has been studied experimentally since the
mid-1990s [152–154]. The computed value of
hRi ¼ 47.1� 0.5 Å (using atomic masses in nuclear
dynamics calculations) can be compared with the best
measurement of this quantity from [154] which gave
hRi ¼ 52� 4 Å, i.e. the error bars of the two values
nearly touch. The ab initio dissociation energy D0 of
1.62� 0.03 mK is 16% above the upper limit of the
value of 1.1 þ0:3�0:2 mK obtained in [154]. Thus, the
agreement is not perfect but reasonable. Currently, the
theoretical uncertainties of hRi are eight times smaller
than experimental ones, however, future experiments
may achieve a higher precision [155,156].

6. Conclusions

The use of explicitly correlated functions, originated in
the early days of quantum mechanics and applicable
for a long time only to two-electron systems, has
recently become a mainstream method applicable to
arbitrary medium-size molecules. The first explicitly
correlated calculations for many-electron molecules
performed in the late 1970s used ECG functions and
such functions currently provide more accurate results
than any other method for small molecules. With
increase of computer power, ECG calculations are
performed for larger and larger molecules since such
calculations are conceptually simple and can, in
principle, provide an almost arbitrary accuracy.
However, variational many-electron ECG calculations
with fully optimised basis functions will always be
limited to relatively small systems because of the N!
increase of costs of such calculations. On the other
hand, the application of fully optimised GTG bases in
MBPT/CC calculations appears to be feasible for
systems with few dozens of electrons. For larger

systems, linear-r12 methods with the resolution of
identity, originated in early 1990s, although still
continue to be a popular computational tool, are
being replaced by the F12 methods. The latter
methods, developed in the last decade, represent an
essential improvement over the linear-r12 approaches
and extend the applicability of GTG bases to large
polyatomic molecules.

ECG functions allowed one to reach unprecedented
accuracy for the helium dimer. Properties of this dimer
as well as of bulk helium predicted entirely from first
principles have uncertainties several times smaller than
the best measurements. The theoretical results will be
used to establish new standards for the Boltzmann
constant, temperature and pressure.
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