minor corrections following discussion with David

This commit is contained in:
Pierre-Francois Loos 2019-05-11 23:11:39 +02:00
parent b0697e5a67
commit feeeeb7190
2 changed files with 48 additions and 48 deletions

View File

@ -29,15 +29,16 @@
\citation{Kato51,Kato57} \citation{Kato51,Kato57}
\citation{Pack66,Morgan93,Tew08,ExSpherium10,eee15} \citation{Pack66,Morgan93,Tew08,ExSpherium10,eee15}
\newlabel{FirstPage}{{}{1}{}{section*.1}{}} \newlabel{FirstPage}{{}{1}{}{section*.1}{}}
\@writefile{toc}{\contentsline {title}{Dressing the configuration interaction matrix with explicit correlation}{1}{section*.2}} \@writefile{toc}{\contentsline {title}{Dressing the configuration interaction matrix with explicit correlation}{1}{section*.2}\protected@file@percent }
\@writefile{toc}{\contentsline {abstract}{Abstract}{1}{section*.1}} \@writefile{toc}{\contentsline {abstract}{Abstract}{1}{section*.1}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {I}Introduction}{1}{section*.3}} \@writefile{toc}{\contentsline {section}{\numberline {I}Introduction}{1}{section*.3}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {II}Ans{\"a}tz}{1}{section*.4}} \@writefile{toc}{\contentsline {section}{\numberline {II}Ans{\"a}tz}{1}{section*.4}\protected@file@percent }
\newlabel{eq:ansatz}{{1}{1}{}{equation.2.1}{}} \newlabel{eq:ansatz}{{1}{1}{}{equation.2.1}{}}
\newlabel{eq:D}{{2}{1}{}{equation.2.2}{}} \newlabel{eq:D}{{2}{1}{}{equation.2.2}{}}
\newlabel{eq:WF-F12-CIPSI}{{3}{1}{}{equation.2.3}{}} \newlabel{eq:WF-F12-CIPSI}{{3}{1}{}{equation.2.3}{}}
\newlabel{eq:Ja}{{5}{1}{}{equation.2.5}{}} \newlabel{eq:Ja}{{5}{1}{}{equation.2.5}{}}
\@writefile{toc}{\contentsline {section}{\numberline {III}Effective Hamiltonian}{1}{section*.5}} \@writefile{toc}{\contentsline {section}{\numberline {III}Effective Hamiltonian}{1}{section*.5}\protected@file@percent }
\newlabel{eq:DrH}{{8}{1}{}{equation.3.8}{}}
\citation{Tenno04a} \citation{Tenno04a}
\citation{Garniron18} \citation{Garniron18}
\citation{Garniron18} \citation{Garniron18}
@ -47,15 +48,14 @@
\citation{3ERI1,3ERI2,4eRR,IntF12} \citation{3ERI1,3ERI2,4eRR,IntF12}
\citation{Kutzelnigg91,Klopper02,Valeev04,Werner07,Hattig12} \citation{Kutzelnigg91,Klopper02,Valeev04,Werner07,Hattig12}
\citation{Klopper02,Valeev04} \citation{Klopper02,Valeev04}
\newlabel{eq:DrH}{{9}{2}{}{equation.3.9}{}}
\newlabel{eq:IHF}{{10}{2}{}{equation.3.10}{}}
\newlabel{eq:tI}{{11}{2}{}{equation.3.11}{}}
\newlabel{eq:DrH}{{12}{2}{}{equation.3.12}{}}
\@writefile{toc}{\contentsline {section}{\numberline {IV}Matrix elements}{2}{section*.6}}
\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Schematic representation of the various orbital spaces and their notation. The arrows represent the three types of excited determinants contributing to the dressing term: the pure doubles $\ket *{_{ij}^{\alpha \beta }}$ (green), the mixed doubles $\ket *{_{ij}^{a \beta }}$ (magenta) and the pure singles $\ket *{_{i}^{\alpha }}$ (orange).}}{2}{figure.1}}
\newlabel{fig:CBS}{{1}{2}{Schematic representation of the various orbital spaces and their notation. The arrows represent the three types of excited determinants contributing to the dressing term: the pure doubles $\ket *{_{ij}^{\alpha \beta }}$ (green), the mixed doubles $\ket *{_{ij}^{a \beta }}$ (magenta) and the pure singles $\ket *{_{i}^{\alpha }}$ (orange)}{figure.1}{}}
\newlabel{eq:RI}{{13}{2}{}{equation.4.13}{}}
\citation{Garniron17b} \citation{Garniron17b}
\newlabel{eq:IHF}{{9}{2}{}{equation.3.9}{}}
\newlabel{eq:DrH}{{10}{2}{}{equation.3.10}{}}
\@writefile{toc}{\contentsline {section}{\numberline {IV}Matrix elements}{2}{section*.6}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Schematic representation of the various orbital spaces and their notation. The arrows represent the three types of excited determinants contributing to the dressing term: the pure doubles $\ket *{_{ij}^{\alpha \beta }}$ (green), the mixed doubles $\ket *{_{ij}^{a \beta }}$ (magenta) and the pure singles $\ket *{_{i}^{\alpha }}$ (orange).}}{2}{figure.1}\protected@file@percent }
\newlabel{fig:CBS}{{1}{2}{Schematic representation of the various orbital spaces and their notation. The arrows represent the three types of excited determinants contributing to the dressing term: the pure doubles $\ket *{_{ij}^{\alpha \beta }}$ (green), the mixed doubles $\ket *{_{ij}^{a \beta }}$ (magenta) and the pure singles $\ket *{_{i}^{\alpha }}$ (orange)}{figure.1}{}}
\newlabel{eq:RI}{{11}{2}{}{equation.4.11}{}}
\newlabel{eq:IHF-RI}{{12}{2}{}{equation.4.12}{}}
\citation{Kutzelnigg91} \citation{Kutzelnigg91}
\citation{Tenno04a} \citation{Tenno04a}
\citation{Persson96,Persson97,May04,Tenno04b,Tew05,May05} \citation{Persson96,Persson97,May04,Tenno04b,Tew05,May05}
@ -74,10 +74,10 @@
\citation{AlmoraDiaz14} \citation{AlmoraDiaz14}
\citation{Yousaf08,Yousaf09} \citation{Yousaf08,Yousaf09}
\citation{Giner13,Giner15,Caffarel16} \citation{Giner13,Giner15,Caffarel16}
\newlabel{eq:IHF-RI}{{14}{3}{}{equation.4.14}{}} \@writefile{toc}{\contentsline {section}{\numberline {V}Computational details}{3}{section*.7}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {V}Computational details}{3}{section*.7}} \@writefile{toc}{\contentsline {section}{\numberline {VI}Results}{3}{section*.8}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {VI}Results}{3}{section*.8}} \@writefile{toc}{\contentsline {section}{\numberline {VII}Conclusion}{3}{section*.9}\protected@file@percent }
\@writefile{lot}{\contentsline {table}{\numberline {I}{\ignorespaces FCI-F12 and FCI total ground-state energy of the neutral atoms for $Z = 2$ to $10$ calculated with Dunning's cc-pCVXZ and cc-pVXZ basis sets. \leavevmode {\color {red}The corresponding cc-pVXZ\_OPTRI or cc-pCVXZ\_OPTRI auxiliary basis is used as CABS.}}}{3}{table.1}} \@writefile{lot}{\contentsline {table}{\numberline {I}{\ignorespaces FCI-F12 and FCI total ground-state energy of the neutral atoms for $Z = 2$ to $10$ calculated with Dunning's cc-pCVXZ and cc-pVXZ basis sets. \leavevmode {\color {red}The corresponding cc-pVXZ\_OPTRI or cc-pCVXZ\_OPTRI auxiliary basis is used as CABS.}}}{3}{table.1}\protected@file@percent }
\newlabel{tab:atoms}{{I}{3}{FCI-F12 and FCI total ground-state energy of the neutral atoms for $Z = 2$ to $10$ calculated with Dunning's cc-pCVXZ and cc-pVXZ basis sets. \alert {The corresponding cc-pVXZ\_OPTRI or cc-pCVXZ\_OPTRI auxiliary basis is used as CABS.}}{table.1}{}} \newlabel{tab:atoms}{{I}{3}{FCI-F12 and FCI total ground-state energy of the neutral atoms for $Z = 2$ to $10$ calculated with Dunning's cc-pCVXZ and cc-pVXZ basis sets. \alert {The corresponding cc-pVXZ\_OPTRI or cc-pCVXZ\_OPTRI auxiliary basis is used as CABS.}}{table.1}{}}
\bibdata{CI-F12Notes,CI-F12,CI-F12-control} \bibdata{CI-F12Notes,CI-F12,CI-F12-control}
\bibcite{Kutzelnigg85}{{1}{1985}{{Kutzelnigg}}{{}}} \bibcite{Kutzelnigg85}{{1}{1985}{{Kutzelnigg}}{{}}}
@ -127,10 +127,6 @@
\bibcite{Klopper04}{{45}{2004}{{Klopper}}{{}}} \bibcite{Klopper04}{{45}{2004}{{Klopper}}{{}}}
\bibcite{Manby06}{{46}{2006}{{Manby\ \emph {et~al.}}}{{Manby, Werner, Adler,\ and\ May}}} \bibcite{Manby06}{{46}{2006}{{Manby\ \emph {et~al.}}}{{Manby, Werner, Adler,\ and\ May}}}
\bibcite{Tenno07}{{47}{2007}{{Ten-no}}{{}}} \bibcite{Tenno07}{{47}{2007}{{Ten-no}}{{}}}
\@writefile{lot}{\contentsline {table}{\numberline {II}{\ignorespaces CIPSI, FCI-F12, i-FCIQMC and FCI total ground-state energy of the \ce {H2}, \ce {F2} and \ce {H2)} molecules at experimental geometry with Dunning's cc-pVXZ basis set. The corresponding cc-pVXZ\_OPTRI auxiliary basis is used as CABS.}}{4}{table.2}}
\newlabel{tab:molecules}{{II}{4}{CIPSI, FCI-F12, i-FCIQMC and FCI total ground-state energy of the \ce {H2}, \ce {F2} and \ce {H2)} molecules at experimental geometry with Dunning's cc-pVXZ basis set. The corresponding cc-pVXZ\_OPTRI auxiliary basis is used as CABS}{table.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {VII}Conclusion}{4}{section*.9}}
\@writefile{toc}{\contentsline {section}{\numberline {}Acknowledgments}{4}{section*.10}}
\bibcite{Komornicki11}{{48}{2011}{{Komornicki\ and\ King}}{{}}} \bibcite{Komornicki11}{{48}{2011}{{Komornicki\ and\ King}}{{}}}
\bibcite{Reine12}{{49}{2012}{{Reine, Helgaker,\ and\ Lind}}{{}}} \bibcite{Reine12}{{49}{2012}{{Reine, Helgaker,\ and\ Lind}}{{}}}
\bibcite{GG16}{{50}{2016}{{Barca\ and\ Gill}}{{}}} \bibcite{GG16}{{50}{2016}{{Barca\ and\ Gill}}{{}}}
@ -146,6 +142,9 @@
\bibcite{Sharkey11}{{60}{2011}{{Sharkey\ and\ Adamowicz}}{{}}} \bibcite{Sharkey11}{{60}{2011}{{Sharkey\ and\ Adamowicz}}{{}}}
\bibcite{Bubin11}{{61}{2011}{{Bubin\ and\ Adamowicz}}{{}}} \bibcite{Bubin11}{{61}{2011}{{Bubin\ and\ Adamowicz}}{{}}}
\bibcite{Sharkey10}{{62}{2010}{{Sharkey, Bubin,\ and\ Adamowicz}}{{}}} \bibcite{Sharkey10}{{62}{2010}{{Sharkey, Bubin,\ and\ Adamowicz}}{{}}}
\@writefile{lot}{\contentsline {table}{\numberline {II}{\ignorespaces CIPSI, FCI-F12, i-FCIQMC and FCI total ground-state energy of the \ce {H2}, \ce {F2} and \ce {H2)} molecules at experimental geometry with Dunning's cc-pVXZ basis set. The corresponding cc-pVXZ\_OPTRI auxiliary basis is used as CABS.}}{4}{table.2}\protected@file@percent }
\newlabel{tab:molecules}{{II}{4}{CIPSI, FCI-F12, i-FCIQMC and FCI total ground-state energy of the \ce {H2}, \ce {F2} and \ce {H2)} molecules at experimental geometry with Dunning's cc-pVXZ basis set. The corresponding cc-pVXZ\_OPTRI auxiliary basis is used as CABS}{table.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {}Acknowledgments}{4}{section*.10}\protected@file@percent }
\bibcite{Klopper10}{{63}{2010}{{Klopper\ \emph {et~al.}}}{{Klopper, Bachorz, Tew,\ and\ Hattig}}} \bibcite{Klopper10}{{63}{2010}{{Klopper\ \emph {et~al.}}}{{Klopper, Bachorz, Tew,\ and\ Hattig}}}
\bibcite{Pachucki10}{{64}{2010}{{Pachucki}}{{}}} \bibcite{Pachucki10}{{64}{2010}{{Pachucki}}{{}}}
\bibcite{Cleland12}{{65}{2012}{{Cleland\ \emph {et~al.}}}{{Cleland, Booth, Overy,\ and\ Alavi}}} \bibcite{Cleland12}{{65}{2012}{{Cleland\ \emph {et~al.}}}{{Cleland, Booth, Overy,\ and\ Alavi}}}

View File

@ -1,6 +1,5 @@
\documentclass[aip,jcp,reprint,showkeys]{revtex4-1} \documentclass[aip,jcp,reprint,showkeys]{revtex4-1}
\usepackage{graphicx,dcolumn,bm,xcolor,microtype,hyperref,multirow,amscd,amsmath,amssymb,amsfonts,physics,mhchem} \usepackage{graphicx,dcolumn,bm,xcolor,microtype,hyperref,multirow,amscd,amsmath,amssymb,amsfonts,physics,mhchem}
\usepackage{mathpazo,libertine} \usepackage{mathpazo,libertine}
\newcommand{\alert}[1]{\textcolor{red}{#1}} \newcommand{\alert}[1]{\textcolor{red}{#1}}
\newcommand{\cdash}{\multicolumn{1}{c}{---}} \newcommand{\cdash}{\multicolumn{1}{c}{---}}
@ -56,7 +55,7 @@
% addresses % addresses
\newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\'e de Toulouse, CNRS, UPS, France} \newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\'e de Toulouse, CNRS, UPS, France}
\newcommand{\MPI}{Max-Planck-Institut f\"ur Festk\"orperforschung, Heisenbergstra{\ss}e 1, 70569 Stuttgart, Germany}
\begin{document} \begin{document}
\title{Dressing the configuration interaction matrix with explicit correlation} \title{Dressing the configuration interaction matrix with explicit correlation}
@ -65,6 +64,8 @@
\affiliation{\LCPQ} \affiliation{\LCPQ}
\author{Michel Caffarel} \author{Michel Caffarel}
\affiliation{\LCPQ} \affiliation{\LCPQ}
\author{David P. Tew}
\affiliation{\MPI}
\author{Pierre-Fran\c{c}ois Loos} \author{Pierre-Fran\c{c}ois Loos}
\email[Corresponding author: ]{loos@irsamc.ups-tlse.fr} \email[Corresponding author: ]{loos@irsamc.ups-tlse.fr}
\affiliation{\LCPQ} \affiliation{\LCPQ}
@ -132,19 +133,18 @@ The projector
ensures the orthogonality between $\kD$ and $\kF$ (where $\hI$ is the identity operator), and ensures the orthogonality between $\kD$ and $\kF$ (where $\hI$ is the identity operator), and
\begin{equation} \begin{equation}
\label{eq:Ja} \label{eq:Ja}
f = \sum_{i < j} \gamma_{ij} f_{ij} f = \sum_{i < j} f_{ij}
% f = \sum_{i < j} \gamma_{ij} f_{ij}
\end{equation} \end{equation}
is a correlation factor with is a (linear) correlation factor.% with
\begin{equation} %\begin{equation}
\gamma_{ij} = % \gamma_{ij} =
\begin{cases} % \begin{cases}
1/2, & \text{for opposite-spin electrons}, % 1/2, & \text{for opposite-spin electrons},
\\ % \\
1/4, & \text{for same-spin electrons}. % 1/4, & \text{for same-spin electrons}.
\end{cases} % \end{cases}
\end{equation} %\end{equation}
\alert{The correlation factor \eqref{eq:Ja} is not size-consistent.}
As first shown by Kato \cite{Kato51, Kato57} (and further elaborated by various authors \cite{Pack66, Morgan93, Tew08, ExSpherium10, eee15}), for small $r_{12}$, the two-electron correlation factor $f_{12}$ in Eq.~\eqref{eq:Ja} must behave as As first shown by Kato \cite{Kato51, Kato57} (and further elaborated by various authors \cite{Pack66, Morgan93, Tew08, ExSpherium10, eee15}), for small $r_{12}$, the two-electron correlation factor $f_{12}$ in Eq.~\eqref{eq:Ja} must behave as
\begin{equation} \begin{equation}
f_{12} = \gamma_{12}\,r_{12} + \order{r_{12}^2}. f_{12} = \gamma_{12}\,r_{12} + \order{r_{12}^2}.
@ -156,7 +156,7 @@ As first shown by Kato \cite{Kato51, Kato57} (and further elaborated by various
Our primary goal is to introduce the explicit correlation between electrons at relatively low computational cost. Our primary goal is to introduce the explicit correlation between electrons at relatively low computational cost.
Therefore, assuming that $\hH \ket{\Psi} = E\,\Psi$, one can write, by projection over $\bra{I}$, Therefore, assuming that $\hH \ket{\Psi} = E\,\Psi$, one can write, by projection over $\bra{I}$,
\begin{equation} \begin{equation}
\cD{I} \qty[ H_{II} + \cD{I}^{-1} \mel*{I}{\hH}{F} - E] + \sum_{J \ne I} \cD{J} H_{IJ} = 0. \cD{I} \qty[ H_{II} + \cD{I}^{-1} \mel*{I}{\hH}{F} - E] + \sum_{J \ne I} \cD{J} H_{IJ} = 0,
\end{equation} \end{equation}
where $H_{IJ} = \mel{I}{\hH}{J}$. where $H_{IJ} = \mel{I}{\hH}{J}$.
Hence, we obtain the desired energy by diagonalizing the dressed Hamiltonian: Hence, we obtain the desired energy by diagonalizing the dressed Hamiltonian:
@ -175,19 +175,21 @@ with
\mel{I}{\hH}{F} = \sum_J \cF{J} \qty[ \mel{I}{\hH f}{J} - \sum_{K} H_{IK} f_{KJ} ], \mel{I}{\hH}{F} = \sum_J \cF{J} \qty[ \mel{I}{\hH f}{J} - \sum_{K} H_{IK} f_{KJ} ],
\end{equation} \end{equation}
and $f_{IJ} = \mel{I}{f}{J}$. and $f_{IJ} = \mel{I}{f}{J}$.
We refer to this strategy as diagonal dressing as only the diagonal of $\hH$ is modified in Eq.~\eqref{eq:DrH}. Because only the diagonal of $\hH$ is modified in Eq.~\eqref{eq:DrH}, we refer to this strategy as diagonal dressing.
It is interesting to note that, in an infinite basis, we have $\mel{I}{\hH}{F} = 0$, which demonstrates that the dressed term vanishes in the limit of a complete one-electron basis, as one would expect. It is interesting to note that, in an infinite basis, we have $\mel{I}{\hH}{F} = 0$, which demonstrates that the dressed term vanishes in the limit of a complete one-electron basis, as one would expect.
Moreover, because the CI-F12 energy is obtained via projection, the present method is not variational.
At this stage, two key comments are in order. At this stage, two key comments are in order.
First, as one may have realized, the coefficients $\cF{I}$ are unknown. First, as one may have realized, the coefficients $\cF{I}$ are unknown.
\alert{However, they can be set to ensure the $s$- and $p$-wave electron-electron cusp conditions (SP ansatz). \cite{Tenno04a}} However, they can be set to ensure the $s$- and $p$-wave electron-electron cusp conditions (SP ansatz). \cite{Tenno04a}
\alert{This yields the following linear system of equations \alert{T2: Here include the rules to determine the coefficients $\cF{I}$.}
\begin{equation} %\alert{This yields the following linear system of equations
\label{eq:tI} %\begin{equation}
\sum_J (\delta_{IJ} + f_{IJ}) \cF{J} = \cD{I}, %\label{eq:tI}
\end{equation} % \sum_J (\delta_{IJ} + f_{IJ}) \cF{J} = \cD{I},
which can be easily solved using standard linear algebra packages (where $\delta_{IJ}$ is the Kronecker delta).} %\end{equation}
%which can be easily solved using standard linear algebra packages (where $\delta_{IJ}$ is the Kronecker delta).}
Second, because Eq.~\eqref{eq:DrH} depends on the CI coefficient $\cD{I}$, one must iterate the diagonalization process self-consistently until convergence of the desired eigenvalues of the dressed Hamiltonian $\oH$. Second, because Eq.~\eqref{eq:DrH} depends on the CI coefficient $\cD{I}$, one must iterate the diagonalization process self-consistently until convergence of the desired eigenvalues of the dressed Hamiltonian $\oH$.
At each iteration, we solve Eq.~\eqref{eq:tI} to obtain the coefficients $\cF{I}$ and dress the Hamiltonian [see Eq.~\eqref{eq:DrH}]. At each iteration, we solve Eq.~\eqref{eq:tI} to obtain the coefficients $\cF{I}$ and dress the Hamiltonian [see Eq.~\eqref{eq:DrH}].
@ -195,8 +197,8 @@ In practice, we initially start with a CI vector obtained by the diagonalization
We refer the interested reader to Ref.~\onlinecite{Garniron18} for additional details about our dressing scheme. We refer the interested reader to Ref.~\onlinecite{Garniron18} for additional details about our dressing scheme.
Note that the present formalism is state-specific and only focus on the ground state. Note that the present formalism is state-specific and only focus on the ground state.
Multi-state can potentially developed following our work in Ref.~\onlinecite{Garniron18}. A multi-state strategy can be applied following our work in Ref.~\onlinecite{Garniron18}.
In the state-specific case, it is possible to avoid the potentially troublesome division by $\cD{I}^{-1}$ shuffling around the dressing term. In the state-specific case, it is possible to avoid the potentially troublesome division by $\cD{I}^{-1}$ by shuffling around the dressing term.
Assuming, witout loss of generality that $\cD{0}$ is the largest coefficient $\cD{I}$, we have Assuming, witout loss of generality that $\cD{0}$ is the largest coefficient $\cD{I}$, we have
\begin{equation} \begin{equation}
\label{eq:DrH} \label{eq:DrH}
@ -211,7 +213,6 @@ Assuming, witout loss of generality that $\cD{0}$ is the largest coefficient $\c
H_{IJ}, & \text{otherwise}. H_{IJ}, & \text{otherwise}.
\end{cases} \end{cases}
\end{equation} \end{equation}
It is important to mention that, because the CI-F12 energy is obtained via projection, the present method is not variational.
%%% FIG 1 %%% %%% FIG 1 %%%
\begin{figure} \begin{figure}
@ -227,7 +228,7 @@ It is important to mention that, because the CI-F12 energy is obtained via proje
\section{Matrix elements} \section{Matrix elements}
%---------------------------------------------------------------- %----------------------------------------------------------------
Compared to a conventional CI calculation, new matrix elements are required. Compared to a conventional CI calculation, new matrix elements are required.
The simplest of them $f_{IJ}$ --- required in Eqs.~\eqref{eq:IHF} and \eqref{eq:tI} --- can be easily computed by applying Condon-Slater rules. \cite{SzaboBook} The simplest of them $f_{IJ}$ --- required in Eq.~\eqref{eq:IHF} --- can be easily computed by applying Condon-Slater rules. \cite{SzaboBook}
They involve two-electron integrals over the correlation factor $f_{12}$. They involve two-electron integrals over the correlation factor $f_{12}$.
Their computation has been thoroughly studied in the literature in the last thirty years. \cite{Kutzelnigg91, Klopper92, Persson97, Klopper02, Manby03, Werner03, Klopper04, Tenno04a, Tenno04b, May05, Manby06, Tenno07, Komornicki11, Reine12, GG16} Their computation has been thoroughly studied in the literature in the last thirty years. \cite{Kutzelnigg91, Klopper92, Persson97, Klopper02, Manby03, Werner03, Klopper04, Tenno04a, Tenno04b, May05, Manby06, Tenno07, Komornicki11, Reine12, GG16}
These can be more or less expensive to compute depending on the choice of the correlation factor. These can be more or less expensive to compute depending on the choice of the correlation factor.