formating paper

This commit is contained in:
Pierre-Francois Loos 2019-03-10 21:07:11 +01:00
parent 7a48ce2fb9
commit 66a77fcb7b
8 changed files with 897 additions and 580 deletions

View File

@ -22,34 +22,36 @@
\citation{Tenno12a,Tenno12b,Hattig12,Kong12}
\citation{Tew07b}
\citation{Huron73,Evangelisti83}
\citation{Heully92}
\citation{Giner13,Scemama13a,Scemama13b,Scemama14,Giner15,Caffarel16}
\citation{Heully92,Garniron18}
\citation{Giner13,Scemama13a,Scemama13b,Scemama14,Giner15,Caffarel16,Loos18b,Loos19}
\citation{Shiozaki11}
\citation{Kato51,Kato57}
\citation{Pack66,Morgan93}
\citation{Tenno04a}
\citation{Pulay82}
\newlabel{FirstPage}{{}{1}{}{section*.1}{}}
\@writefile{toc}{\contentsline {title}{Dressing the configuration interaction matrix with explicit correlation}{1}{section*.2}}
\@writefile{toc}{\contentsline {abstract}{Abstract}{1}{section*.1}}
\newlabel{eq:D}{{1}{1}{}{equation.0.1}{}}
\newlabel{eq:WF-F12-CIPSI}{{2}{1}{}{equation.0.2}{}}
\newlabel{eq:Ja}{{4}{1}{}{equation.0.4}{}}
\newlabel{eq:DrH}{{8}{1}{}{equation.0.8}{}}
\newlabel{eq:IHF}{{9}{1}{}{equation.0.9}{}}
\newlabel{eq:tI}{{10}{1}{}{equation.0.10}{}}
\@writefile{toc}{\contentsline {section}{\numberline {I}Introduction}{1}{section*.3}}
\@writefile{toc}{\contentsline {section}{\numberline {II}Ansatz}{1}{section*.4}}
\newlabel{eq:D}{{1}{1}{}{equation.2.1}{}}
\newlabel{eq:WF-F12-CIPSI}{{2}{1}{}{equation.2.2}{}}
\newlabel{eq:Ja}{{4}{1}{}{equation.2.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {III}Dressing}{1}{section*.5}}
\newlabel{eq:DrH}{{8}{1}{}{equation.3.8}{}}
\newlabel{eq:IHF}{{9}{1}{}{equation.3.9}{}}
\citation{Pulay82}
\citation{SzaboBook}
\citation{Kutzelnigg91,Klopper92,Persson97,Klopper02,Manby03,Werner03,Klopper04,Tenno04a,Tenno04b,May05,Manby06,Tenno07,Komornicki11,Reine12,GG16}
\citation{Kutzelnigg91,Klopper92}
\citation{3ERI1,3ERI2,4eRR,IntF12}
\citation{Kutzelnigg91,Klopper02,Valeev04,Werner07,Hattig12}
\citation{Klopper02,Valeev04}
\citation{PT2}
\citation{Garniron17b}
\citation{Kutzelnigg91}
\citation{Tenno04a}
\citation{Persson96,Persson97,May04,Tenno04b,Tew05,May05}
\citation{Tew05}
\citation{QP}
\citation{Garniron19}
\citation{Kong12}
\citation{Nakashima07}
\citation{Puchalski09}
@ -64,6 +66,12 @@
\citation{AlmoraDiaz14}
\citation{Yousaf08,Yousaf09}
\citation{Giner13,Giner15,Caffarel16}
\newlabel{eq:tI}{{10}{2}{}{equation.3.10}{}}
\@writefile{toc}{\contentsline {section}{\numberline {IV}Matrix elements}{2}{section*.6}}
\newlabel{eq:RI}{{11}{2}{}{equation.4.11}{}}
\newlabel{eq:IHF-RI}{{12}{2}{}{equation.4.12}{}}
\@writefile{toc}{\contentsline {section}{\numberline {V}Conclusion}{2}{section*.7}}
\@writefile{toc}{\contentsline {section}{\numberline {}Acknowledgments}{2}{section*.8}}
\bibdata{CI-F12Notes,CI-F12}
\bibcite{Kutzelnigg85}{{1}{1985}{{Kutzelnigg}}{{}}}
\bibcite{Kutzelnigg91}{{2}{1991}{{Kutzelnigg\ and\ Klopper}}{{}}}
@ -85,57 +93,58 @@
\bibcite{Huron73}{{18}{1973}{{Huron, Malrieu,\ and\ Rancurel}}{{}}}
\bibcite{Evangelisti83}{{19}{1983}{{Evangelisti, Daudey,\ and\ Malrieu}}{{}}}
\bibcite{Heully92}{{20}{1992}{{Heuilly\ and\ Malrieu}}{{}}}
\bibcite{Giner13}{{21}{2013}{{Giner, Scemama,\ and\ Caffarel}}{{}}}
\bibcite{Scemama13a}{{22}{2013{}}{{Scemama\ \emph {et~al.}}}{{Scemama, Caffarel, Oseret,\ and\ Jalby}}}
\bibcite{Scemama13b}{{23}{2013{}}{{Scemama\ \emph {et~al.}}}{{Scemama, Caffarel, Oseret,\ and\ Jalby}}}
\bibcite{Scemama14}{{24}{2014}{{Scemama\ \emph {et~al.}}}{{Scemama, Applencourt, Giner,\ and\ Caffarel}}}
\newlabel{eq:RI}{{11}{2}{}{equation.0.11}{}}
\newlabel{eq:IHF-RI}{{12}{2}{}{equation.0.12}{}}
\bibcite{Giner15}{{25}{2015}{{Giner, Scemama,\ and\ Caffarel}}{{}}}
\bibcite{Caffarel16}{{26}{2016}{{Caffarel\ \emph {et~al.}}}{{Caffarel, Applencourt, Giner,\ and\ Scemama}}}
\bibcite{Shiozaki11}{{27}{2011}{{Shiozaki, Knizia,\ and\ Werner}}{{}}}
\bibcite{Kato51}{{28}{1951}{{Kato}}{{}}}
\bibcite{Kato57}{{29}{1957}{{Kato}}{{}}}
\bibcite{Pack66}{{30}{1966}{{Pack\ and\ {Byers Brown}}}{{}}}
\bibcite{Morgan93}{{31}{1993}{{{Morgan III}\ and\ Kutzelnigg}}{{}}}
\bibcite{Tenno04a}{{32}{2004{}}{{Ten-no}}{{}}}
\bibcite{Pulay82}{{33}{1982}{{Pulay}}{{}}}
\bibcite{SzaboBook}{{34}{1989}{{Szabo\ and\ Ostlund}}{{}}}
\bibcite{Klopper92}{{35}{1992}{{Klopper\ and\ Rohse}}{{}}}
\bibcite{Klopper02}{{36}{2002}{{Klopper\ and\ Samson}}{{}}}
\bibcite{Manby03}{{37}{2003}{{Manby}}{{}}}
\bibcite{Werner03}{{38}{2003}{{Werner, Manby,\ and\ Knowles}}{{}}}
\bibcite{Klopper04}{{39}{2004}{{Klopper}}{{}}}
\bibcite{Manby06}{{40}{2006}{{Manby\ \emph {et~al.}}}{{Manby, Werner, Adler,\ and\ May}}}
\bibcite{Tenno07}{{41}{2007}{{Ten-no}}{{}}}
\bibcite{Komornicki11}{{42}{2011}{{Komornicki\ and\ King}}{{}}}
\bibcite{Reine12}{{43}{2012}{{Reine, Helgaker,\ and\ Lind}}{{}}}
\bibcite{GG16}{{44}{2016}{{Barca\ and\ Gill}}{{}}}
\bibcite{3ERI1}{{45}{2016}{{Barca, Loos,\ and\ Gill}}{{}}}
\bibcite{3ERI2}{{46}{tion}{{Barca, Loos,\ and\ Gill}}{{}}}
\bibcite{4eRR}{{47}{ress}{{Barca\ and\ Loos}}{{}}}
\bibcite{IntF12}{{48}{2017}{{Barca\ and\ Loos}}{{}}}
\bibcite{Valeev04}{{49}{2004}{{Valeev}}{{}}}
\bibcite{Werner07}{{50}{2007}{{Werner, Adler,\ and\ Manby}}{{}}}
\bibcite{PT2}{{51}{2017}{{Garniron\ \emph {et~al.}}}{{Garniron, Scemama, Loos,\ and\ Caffarel.}}}
\bibcite{QP}{{52}{2015}{{Scemama\ \emph {et~al.}}}{{Scemama, Giner, Applencourt, David,\ and\ Caffarel}}}
\bibcite{Nakashima07}{{53}{2007}{{Nakashima\ and\ Nakatsuji}}{{}}}
\bibcite{Puchalski09}{{54}{2009}{{Puchalski, Kedziera,\ and\ Pachucki}}{{}}}
\bibcite{Sharkey11}{{55}{2011}{{Sharkey\ and\ Adamowicz}}{{}}}
\bibcite{Bubin11}{{56}{2011}{{Bubin\ and\ Adamowicz}}{{}}}
\bibcite{Sharkey10}{{57}{2010}{{Sharkey, Bubin,\ and\ Adamowicz}}{{}}}
\bibcite{Klopper10}{{58}{2010}{{Klopper\ \emph {et~al.}}}{{Klopper, Bachorz, Tew,\ and\ Hattig}}}
\bibcite{Pachucki10}{{59}{2010}{{Pachucki}}{{}}}
\bibcite{Cleland12}{{60}{2012}{{Cleland\ \emph {et~al.}}}{{Cleland, Booth, Overy,\ and\ Alavi}}}
\bibcite{AlmoraDiaz14}{{61}{2014}{{Almora-Diaz}}{{}}}
\bibcite{Yousaf08}{{62}{2008}{{Yousaf\ and\ Peterson}}{{}}}
\bibcite{Yousaf09}{{63}{2009}{{Yousaf\ and\ Peterson}}{{}}}
\bibcite{Garniron18}{{21}{2018}{{Garniron\ \emph {et~al.}}}{{Garniron, Scemama, Giner, Caffarel,\ and\ Loos}}}
\bibcite{Giner13}{{22}{2013}{{Giner, Scemama,\ and\ Caffarel}}{{}}}
\bibcite{Scemama13a}{{23}{2013{}}{{Scemama\ \emph {et~al.}}}{{Scemama, Caffarel, Oseret,\ and\ Jalby}}}
\bibcite{Scemama13b}{{24}{2013{}}{{Scemama\ \emph {et~al.}}}{{Scemama, Caffarel, Oseret,\ and\ Jalby}}}
\bibcite{Scemama14}{{25}{2014}{{Scemama\ \emph {et~al.}}}{{Scemama, Applencourt, Giner,\ and\ Caffarel}}}
\bibcite{Giner15}{{26}{2015}{{Giner, Scemama,\ and\ Caffarel}}{{}}}
\bibcite{Caffarel16}{{27}{2016}{{Caffarel\ \emph {et~al.}}}{{Caffarel, Applencourt, Giner,\ and\ Scemama}}}
\bibcite{Loos18b}{{28}{2018}{{Loos\ \emph {et~al.}}}{{Loos, Scemama, Blondel, Garniron, Caffarel,\ and\ Jacquemin}}}
\bibcite{Loos19}{{29}{2019}{{Loos\ \emph {et~al.}}}{{Loos, Boggio-Pasqua, Scemama, Caffarel,\ and\ Jacquemin}}}
\bibcite{Shiozaki11}{{30}{2011}{{Shiozaki, Knizia,\ and\ Werner}}{{}}}
\bibcite{Kato51}{{31}{1951}{{Kato}}{{}}}
\bibcite{Kato57}{{32}{1957}{{Kato}}{{}}}
\bibcite{Pack66}{{33}{1966}{{Pack\ and\ {Byers Brown}}}{{}}}
\bibcite{Morgan93}{{34}{1993}{{{Morgan III}\ and\ Kutzelnigg}}{{}}}
\bibcite{Tenno04a}{{35}{2004{}}{{Ten-no}}{{}}}
\bibcite{Pulay82}{{36}{1982}{{Pulay}}{{}}}
\bibcite{SzaboBook}{{37}{1989}{{Szabo\ and\ Ostlund}}{{}}}
\bibcite{Klopper92}{{38}{1992}{{Klopper\ and\ Rohse}}{{}}}
\bibcite{Klopper02}{{39}{2002}{{Klopper\ and\ Samson}}{{}}}
\bibcite{Manby03}{{40}{2003}{{Manby}}{{}}}
\bibcite{Werner03}{{41}{2003}{{Werner, Manby,\ and\ Knowles}}{{}}}
\bibcite{Klopper04}{{42}{2004}{{Klopper}}{{}}}
\bibcite{Manby06}{{43}{2006}{{Manby\ \emph {et~al.}}}{{Manby, Werner, Adler,\ and\ May}}}
\bibcite{Tenno07}{{44}{2007}{{Ten-no}}{{}}}
\bibcite{Komornicki11}{{45}{2011}{{Komornicki\ and\ King}}{{}}}
\bibcite{Reine12}{{46}{2012}{{Reine, Helgaker,\ and\ Lind}}{{}}}
\bibcite{GG16}{{47}{2016}{{Barca\ and\ Gill}}{{}}}
\bibcite{3ERI1}{{48}{2016}{{Barca, Loos,\ and\ Gill}}{{}}}
\bibcite{3ERI2}{{49}{tion}{{Barca, Loos,\ and\ Gill}}{{}}}
\bibcite{4eRR}{{50}{ress}{{Barca\ and\ Loos}}{{}}}
\bibcite{IntF12}{{51}{2017}{{Barca\ and\ Loos}}{{}}}
\bibcite{Valeev04}{{52}{2004}{{Valeev}}{{}}}
\@writefile{lot}{\contentsline {table}{\numberline {I}{\ignorespaces FCI-F12, CIPSI and FCI total ground-state energy of the neutral atoms for $Z = 2$ to $10$ calculated with Dunning's cc-pVXZ basis set. The corresponding cc-pVXZ\_OPTRI auxiliary basis is used as CABS.}}{3}{table.1}}
\newlabel{tab:atoms}{{I}{3}{FCI-F12, CIPSI and FCI total ground-state energy of the neutral atoms for $Z = 2$ to $10$ calculated with Dunning's cc-pVXZ basis set. The corresponding cc-pVXZ\_OPTRI auxiliary basis is used as CABS}{table.1}{}}
\bibcite{Werner07}{{53}{2007}{{Werner, Adler,\ and\ Manby}}{{}}}
\bibcite{Garniron17b}{{54}{2017}{{Garniron\ \emph {et~al.}}}{{Garniron, Scemama, Loos,\ and\ Caffarel}}}
\bibcite{Garniron19}{{55}{2019}{{Garniron\ \emph {et~al.}}}{{Garniron, Gasperich, Applencourt, Benali, Fert{\'e}, Paquier, Pradines, Assaraf, Reinhardt, Toulouse, Barbaresco, Renon, David, Malrieu, V{\'e}ril, Caffarel, Loos, Giner,\ and\ Scemama}}}
\bibcite{Nakashima07}{{56}{2007}{{Nakashima\ and\ Nakatsuji}}{{}}}
\bibcite{Puchalski09}{{57}{2009}{{Puchalski, Kedziera,\ and\ Pachucki}}{{}}}
\bibcite{Sharkey11}{{58}{2011}{{Sharkey\ and\ Adamowicz}}{{}}}
\bibcite{Bubin11}{{59}{2011}{{Bubin\ and\ Adamowicz}}{{}}}
\bibcite{Sharkey10}{{60}{2010}{{Sharkey, Bubin,\ and\ Adamowicz}}{{}}}
\bibcite{Klopper10}{{61}{2010}{{Klopper\ \emph {et~al.}}}{{Klopper, Bachorz, Tew,\ and\ Hattig}}}
\bibcite{Pachucki10}{{62}{2010}{{Pachucki}}{{}}}
\bibcite{Cleland12}{{63}{2012}{{Cleland\ \emph {et~al.}}}{{Cleland, Booth, Overy,\ and\ Alavi}}}
\bibcite{AlmoraDiaz14}{{64}{2014}{{Almora-Diaz}}{{}}}
\bibcite{Yousaf08}{{65}{2008}{{Yousaf\ and\ Peterson}}{{}}}
\bibcite{Yousaf09}{{66}{2009}{{Yousaf\ and\ Peterson}}{{}}}
\bibstyle{aipnum4-1}
\citation{REVTEX41Control}
\citation{aip41Control}
\@writefile{lot}{\contentsline {table}{\numberline {I}{\ignorespaces FCI-F12, CIPSI and FCI total ground-state energy of the neutral atoms for $Z = 2$ to $10$ calculated with Dunning's cc-pVXZ basis set. The corresponding cc-pVXZ\_OPTRI auxiliary basis is used as CABS.}}{3}{table.1}}
\newlabel{tab:atoms}{{I}{3}{FCI-F12, CIPSI and FCI total ground-state energy of the neutral atoms for $Z = 2$ to $10$ calculated with Dunning's cc-pVXZ basis set. The corresponding cc-pVXZ\_OPTRI auxiliary basis is used as CABS}{table.1}{}}
\newlabel{LastBibItem}{{63}{3}{}{table.2}{}}
\@writefile{lot}{\contentsline {table}{\numberline {II}{\ignorespaces CIPSI, FCI-F12 i-FCIQMC and FCI total ground-state energy of the \ce {H2}, \ce {F2} and \ce {H2)} molecules at experimental geometry with Dunning's cc-pVXZ basis set. The corresponding cc-pVXZ\_OPTRI auxiliary basis is used as CABS.}}{4}{table.2}}
\newlabel{tab:molecules}{{II}{4}{CIPSI, FCI-F12 i-FCIQMC and FCI total ground-state energy of the \ce {H2}, \ce {F2} and \ce {H2)} molecules at experimental geometry with Dunning's cc-pVXZ basis set. The corresponding cc-pVXZ\_OPTRI auxiliary basis is used as CABS}{table.2}{}}
\newlabel{LastBibItem}{{66}{4}{}{section*.8}{}}
\newlabel{LastPage}{{}{4}{}{}{}}

View File

@ -6,7 +6,7 @@
%Control: page (0) single
%Control: year (1) truncated
%Control: production of eprint (0) enabled
\begin{thebibliography}{63}%
\begin{thebibliography}{66}%
\makeatletter
\providecommand \@ifxundefined [1]{%
\@ifx{#1\undefined}
@ -215,6 +215,18 @@
{Malrieu}},\ }\href@noop {} {\bibfield {journal} {\bibinfo {journal} {Chem.
Phys. Lett.}\ }\textbf {\bibinfo {volume} {199}},\ \bibinfo {pages} {545}
(\bibinfo {year} {1992})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Garniron}\ \emph {et~al.}(2018)\citenamefont
{Garniron}, \citenamefont {Scemama}, \citenamefont {Giner}, \citenamefont
{Caffarel},\ and\ \citenamefont {Loos}}]{Garniron18}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {Y.}~\bibnamefont
{Garniron}}, \bibinfo {author} {\bibfnamefont {A.}~\bibnamefont {Scemama}},
\bibinfo {author} {\bibfnamefont {E.}~\bibnamefont {Giner}}, \bibinfo
{author} {\bibfnamefont {M.}~\bibnamefont {Caffarel}}, \ and\ \bibinfo
{author} {\bibfnamefont {P.~F.}\ \bibnamefont {Loos}},\ }\href {\doibase
10.1063/1.5044503} {\bibfield {journal} {\bibinfo {journal} {J. Chem.
Phys.}\ }\textbf {\bibinfo {volume} {149}},\ \bibinfo {pages} {064103}
(\bibinfo {year} {2018})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Giner}, \citenamefont {Scemama},\ and\ \citenamefont
{Caffarel}(2013)}]{Giner13}%
\BibitemOpen
@ -280,6 +292,31 @@
}\href@noop {} {\bibfield {journal} {\bibinfo {journal} {J. Chem. Phys.}\
}\textbf {\bibinfo {volume} {144}},\ \bibinfo {pages} {151103} (\bibinfo
{year} {2016})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Loos}\ \emph {et~al.}(2018)\citenamefont {Loos},
\citenamefont {Scemama}, \citenamefont {Blondel}, \citenamefont {Garniron},
\citenamefont {Caffarel},\ and\ \citenamefont {Jacquemin}}]{Loos18b}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {P.-F.}\ \bibnamefont
{Loos}}, \bibinfo {author} {\bibfnamefont {A.}~\bibnamefont {Scemama}},
\bibinfo {author} {\bibfnamefont {A.}~\bibnamefont {Blondel}}, \bibinfo
{author} {\bibfnamefont {Y.}~\bibnamefont {Garniron}}, \bibinfo {author}
{\bibfnamefont {M.}~\bibnamefont {Caffarel}}, \ and\ \bibinfo {author}
{\bibfnamefont {D.}~\bibnamefont {Jacquemin}},\ }\href {\doibase
10.1021/acs.jctc.8b00406} {\bibfield {journal} {\bibinfo {journal} {J.
Chem. Theory Comput.}\ }\textbf {\bibinfo {volume} {14}},\ \bibinfo {pages}
{4360} (\bibinfo {year} {2018})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Loos}\ \emph {et~al.}(2019)\citenamefont {Loos},
\citenamefont {Boggio-Pasqua}, \citenamefont {Scemama}, \citenamefont
{Caffarel},\ and\ \citenamefont {Jacquemin}}]{Loos19}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {P.~F.}\ \bibnamefont
{Loos}}, \bibinfo {author} {\bibfnamefont {M.}~\bibnamefont {Boggio-Pasqua}},
\bibinfo {author} {\bibfnamefont {A.}~\bibnamefont {Scemama}}, \bibinfo
{author} {\bibfnamefont {M.}~\bibnamefont {Caffarel}}, \ and\ \bibinfo
{author} {\bibfnamefont {D.}~\bibnamefont {Jacquemin}},\ }\href {\doibase
10.1021/acs.jctc.8b01205} {\bibfield {journal} {\bibinfo {journal} {J.
Chem. Theory Comput.}\ }\textbf {\bibinfo {volume} {15}},\ \bibinfo {pages}
{in press} (\bibinfo {year} {2019})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Shiozaki}, \citenamefont {Knizia},\ and\
\citenamefont {Werner}(2011)}]{Shiozaki11}%
\BibitemOpen
@ -463,27 +500,44 @@
{year} {2007})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Garniron}\ \emph {et~al.}(2017)\citenamefont
{Garniron}, \citenamefont {Scemama}, \citenamefont {Loos},\ and\
\citenamefont {Caffarel.}}]{PT2}%
\citenamefont {Caffarel}}]{Garniron17b}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {Y.}~\bibnamefont
{Garniron}}, \bibinfo {author} {\bibfnamefont {A.}~\bibnamefont {Scemama}},
\bibinfo {author} {\bibfnamefont {P.~F.}\ \bibnamefont {Loos}}, \ and\
\bibinfo {author} {\bibfnamefont {M.}~\bibnamefont {Caffarel.}},\ }\href@noop
{} {\bibfield {journal} {\bibinfo {journal} {J. Chem. Phys.}\ }\textbf
{\bibinfo {volume} {147}},\ \bibinfo {pages} {034101} (\bibinfo {year}
{2017})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Scemama}\ \emph {et~al.}(2015)\citenamefont
{Scemama}, \citenamefont {Giner}, \citenamefont {Applencourt}, \citenamefont
{David},\ and\ \citenamefont {Caffarel}}]{QP}%
\bibinfo {author} {\bibfnamefont {P.-F.}\ \bibnamefont {Loos}}, \ and\
\bibinfo {author} {\bibfnamefont {M.}~\bibnamefont {Caffarel}},\ }\href
{\doibase 10.1063/1.4992127} {\bibfield {journal} {\bibinfo {journal} {J.
Chem. Phys.}\ }\textbf {\bibinfo {volume} {147}},\ \bibinfo {pages} {034101}
(\bibinfo {year} {2017})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Garniron}\ \emph {et~al.}(2019)\citenamefont
{Garniron}, \citenamefont {Gasperich}, \citenamefont {Applencourt},
\citenamefont {Benali}, \citenamefont {Fert{\'e}}, \citenamefont {Paquier},
\citenamefont {Pradines}, \citenamefont {Assaraf}, \citenamefont {Reinhardt},
\citenamefont {Toulouse}, \citenamefont {Barbaresco}, \citenamefont {Renon},
\citenamefont {David}, \citenamefont {Malrieu}, \citenamefont {V{\'e}ril},
\citenamefont {Caffarel}, \citenamefont {Loos}, \citenamefont {Giner},\ and\
\citenamefont {Scemama}}]{Garniron19}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {A.}~\bibnamefont
{Scemama}}, \bibinfo {author} {\bibfnamefont {E.}~\bibnamefont {Giner}},
\bibfield {author} {\bibinfo {author} {\bibfnamefont {Y.}~\bibnamefont
{Garniron}}, \bibinfo {author} {\bibfnamefont {K.}~\bibnamefont {Gasperich}},
\bibinfo {author} {\bibfnamefont {T.}~\bibnamefont {Applencourt}}, \bibinfo
{author} {\bibfnamefont {G.}~\bibnamefont {David}}, \ and\ \bibinfo {author}
{\bibfnamefont {M.}~\bibnamefont {Caffarel}},\ }\href {\doibase
10.5281/zenodo.30624} {\enquote {\bibinfo {title} {Quantum package v0.6},}\ }
(\bibinfo {year} {2015}),\ \bibinfo {note}
{doi:10.5281/zenodo.30624}\BibitemShut {NoStop}%
{author} {\bibfnamefont {A.}~\bibnamefont {Benali}}, \bibinfo {author}
{\bibfnamefont {A.}~\bibnamefont {Fert{\'e}}}, \bibinfo {author}
{\bibfnamefont {J.}~\bibnamefont {Paquier}}, \bibinfo {author} {\bibfnamefont
{B.}~\bibnamefont {Pradines}}, \bibinfo {author} {\bibfnamefont
{R.}~\bibnamefont {Assaraf}}, \bibinfo {author} {\bibfnamefont
{P.}~\bibnamefont {Reinhardt}}, \bibinfo {author} {\bibfnamefont
{J.}~\bibnamefont {Toulouse}}, \bibinfo {author} {\bibfnamefont
{P.}~\bibnamefont {Barbaresco}}, \bibinfo {author} {\bibfnamefont
{N.}~\bibnamefont {Renon}}, \bibinfo {author} {\bibfnamefont
{G.}~\bibnamefont {David}}, \bibinfo {author} {\bibfnamefont {J.~P.}\
\bibnamefont {Malrieu}}, \bibinfo {author} {\bibfnamefont {M.}~\bibnamefont
{V{\'e}ril}}, \bibinfo {author} {\bibfnamefont {M.}~\bibnamefont {Caffarel}},
\bibinfo {author} {\bibfnamefont {P.~F.}\ \bibnamefont {Loos}}, \bibinfo
{author} {\bibfnamefont {E.}~\bibnamefont {Giner}}, \ and\ \bibinfo {author}
{\bibfnamefont {A.}~\bibnamefont {Scemama}},\ }\href@noop {} {\bibfield
{journal} {\bibinfo {journal} {J. Chem. Theory Comput.}\ }\textbf {\bibinfo
{volume} {in press}} (\bibinfo {year} {2019})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Nakashima}\ and\ \citenamefont
{Nakatsuji}(2007)}]{Nakashima07}%
\BibitemOpen

View File

@ -1,13 +1,133 @@
%% This BibTeX bibliography file was created using BibDesk.
%% http://bibdesk.sourceforge.net/
%% Created for Pierre-Francois Loos at 2017-07-21 21:57:53 +0200
%% Created for Pierre-Francois Loos at 2019-03-10 21:06:16 +0100
%% Saved with string encoding Unicode (UTF-8)
@article{Garniron19,
Author = {Y. Garniron and K. Gasperich and T. Applencourt and A. Benali and A. Fert{\'e} and J. Paquier and B. Pradines and R. Assaraf and P. Reinhardt and J. Toulouse and P. Barbaresco and N. Renon and G. David and J. P. Malrieu and M. V{\'e}ril and M. Caffarel and P. F. Loos and E. Giner and A. Scemama},
Date-Added = {2019-03-10 21:06:09 +0100},
Date-Modified = {2019-03-10 21:06:15 +0100},
Journal = {J. Chem. Theory Comput.},
Title = {Quantum Package 2.0: a open-source determinant-driven suite of programs},
Volume = {in press},
Year = {2019}}
@article{Scemama18a,
Author = {A. Scemama and Y. Garniron and M. Caffarel and P. F. Loos},
Date-Added = {2019-03-10 21:04:59 +0100},
Date-Modified = {2019-03-10 21:05:07 +0100},
Doi = {10.1021/acs.jctc.7b01250},
Journal = {J. Chem. Theory Comput.},
Pages = {1395},
Title = {Deterministic construction of nodal surfaces within quantum Monte Carlo: the case of FeS},
Volume = {14},
Year = {2018},
Bdsk-Url-1 = {https://doi.org/10.1021/acs.jctc.7b01250}}
@article{Scemama18b,
Author = {Anthony Scemama and Anouar Benali and Denis Jacquemin and Michel Caffarel and Pierre-Fran{\c{c}}ois Loos},
Date-Added = {2019-03-10 21:04:59 +0100},
Date-Modified = {2019-03-10 21:05:12 +0100},
Doi = {10.1063/1.5041327},
Journal = {J. Chem. Phys.},
Month = {jul},
Number = {3},
Pages = {034108},
Publisher = {{AIP} Publishing},
Title = {Excitation energies from diffusion Monte Carlo using selected configuration interaction nodes},
Url = {https://doi.org/10.1063%2F1.5041327},
Volume = {149},
Year = 2018,
Bdsk-Url-1 = {https://doi.org/10.1063%2F1.5041327},
Bdsk-Url-2 = {https://doi.org/10.1063/1.5041327}}
@article{Veril_2018,
Author = {M. Veril and P. Romaniello and J. A. Berger and P. F. Loos},
Date-Added = {2019-03-10 21:04:59 +0100},
Date-Modified = {2019-03-10 21:04:59 +0100},
Doi = {10.1021/acs.jctc.8b00745},
Journal = {J. Chem. Theory Comput.},
Pages = {5220},
Title = {Unphysical Discontinuities in {{GW}} Methods},
Volume = {14},
Year = {2018},
Bdsk-Url-1 = {https://doi.org/10.1021/acs.jctc.8b00745}}
@article{Garniron18,
Author = {Y. Garniron and A. Scemama and E. Giner and M. Caffarel and P. F. Loos},
Date-Added = {2019-03-10 21:04:56 +0100},
Date-Modified = {2019-03-10 21:05:47 +0100},
Doi = {10.1063/1.5044503},
Journal = {J. Chem. Phys.},
Pages = {064103},
Title = {Selected Configuration Interaction Dressed by Perturbation},
Volume = {149},
Year = {2018},
Bdsk-Url-1 = {https://doi.org/10.1063/1.5044503}}
@article{Loos18a,
Author = {P. F. Loos and P. Romaniello and J. A. Berger},
Date-Added = {2019-03-10 21:04:56 +0100},
Date-Modified = {2019-03-10 21:05:22 +0100},
Doi = {10.1021/acs.jctc.8b00260},
Journal = {J. Chem. Theory Comput.},
Pages = {3071},
Title = {Green Functions and Self-Consistency: Insights From the Spherium Model},
Volume = {14},
Year = {2018},
Bdsk-Url-1 = {https://dx.doi.org/10.1021/acs.jctc.8b00260}}
@article{Loos18b,
Author = {Pierre-Fran{\c{c}}ois Loos and Anthony Scemama and Aymeric Blondel and Yann Garniron and Michel Caffarel and Denis Jacquemin},
Date-Added = {2019-03-10 21:04:56 +0100},
Date-Modified = {2019-03-10 21:05:31 +0100},
Doi = {10.1021/acs.jctc.8b00406},
Journal = {J. Chem. Theory Comput.},
Month = {jul},
Number = {8},
Pages = {4360--4379},
Publisher = {American Chemical Society ({ACS})},
Title = {A Mountaineering Strategy to Excited States: Highly Accurate Reference Energies and Benchmarks},
Url = {https://doi.org/10.1021%2Facs.jctc.8b00406},
Volume = {14},
Year = 2018,
Bdsk-Url-1 = {https://doi.org/10.1021%2Facs.jctc.8b00406},
Bdsk-Url-2 = {https://doi.org/10.1021/acs.jctc.8b00406}}
@article{Loos19,
Author = {P. F. Loos and M. Boggio-Pasqua and A. Scemama and M. Caffarel and D. Jacquemin},
Date-Added = {2019-03-10 21:04:56 +0100},
Date-Modified = {2019-03-10 21:05:26 +0100},
Doi = {10.1021/acs.jctc.8b01205},
Journal = {J. Chem. Theory Comput.},
Pages = {in press},
Title = {Reference energies for double excitations},
Volume = {15},
Year = {2019},
Bdsk-Url-1 = {https://doi.org/10.1021/acs.jctc.8b01205}}
@article{Garniron17b,
Author = {Yann Garniron and Anthony Scemama and Pierre-Fran{\c{c}}ois Loos and Michel Caffarel},
Date-Added = {2019-03-10 21:04:41 +0100},
Date-Modified = {2019-03-10 21:05:44 +0100},
Doi = {10.1063/1.4992127},
Journal = {J. Chem. Phys.},
Month = {jul},
Number = {3},
Pages = {034101},
Publisher = {{AIP} Publishing},
Title = {Hybrid stochastic-deterministic calculation of the second-order perturbative contribution of multireference perturbation theory},
Url = {https://doi.org/10.1063%2F1.4992127},
Volume = {147},
Year = 2017,
Bdsk-Url-1 = {https://doi.org/10.1063%2F1.4992127},
Bdsk-Url-2 = {https://doi.org/10.1063/1.4992127}}
@article{PT2,
Author = {Y. Garniron and A. Scemama and P. F. Loos and M. Caffarel.},
Date-Added = {2017-07-21 19:57:06 +0000},

View File

@ -1,4 +1,4 @@
This is BibTeX, Version 0.99d (TeX Live 2016/Debian)
This is BibTeX, Version 0.99d (TeX Live 2018)
Capacity: max_strings=100000, hash_size=100000, hash_prime=85009
The top-level auxiliary file: CI-F12.aux
The style file: aipnum4-1.bst
@ -23,45 +23,45 @@ Control: production of article title (-1) disabled
Control: page (0) single
Control: year (1) truncated
Control: production of eprint (0) enabled
You've used 65 entries,
You've used 68 entries,
5918 wiz_defined-function locations,
1953 strings with 19398 characters,
and the built_in function-call counts, 60829 in all, are:
= -- 4101
> -- 1786
< -- 361
+ -- 564
- -- 449
* -- 8887
:= -- 6473
add.period$ -- 64
call.type$ -- 65
change.case$ -- 254
chr.to.int$ -- 63
cite$ -- 65
duplicate$ -- 5506
empty$ -- 4400
format.name$ -- 890
if$ -- 12014
1977 strings with 20511 characters,
and the built_in function-call counts, 66033 in all, are:
= -- 4329
> -- 2029
< -- 401
+ -- 638
- -- 515
* -- 9820
:= -- 6931
add.period$ -- 66
call.type$ -- 68
change.case$ -- 264
chr.to.int$ -- 66
cite$ -- 68
duplicate$ -- 5956
empty$ -- 4761
format.name$ -- 1025
if$ -- 13072
int.to.chr$ -- 3
int.to.str$ -- 72
missing$ -- 738
newline$ -- 241
num.names$ -- 189
pop$ -- 2560
int.to.str$ -- 75
missing$ -- 798
newline$ -- 250
num.names$ -- 198
pop$ -- 2719
preamble$ -- 1
purify$ -- 315
purify$ -- 330
quote$ -- 0
skip$ -- 2165
skip$ -- 2323
stack$ -- 0
substring$ -- 1658
swap$ -- 5119
text.length$ -- 154
substring$ -- 1753
swap$ -- 5619
text.length$ -- 184
text.prefix$ -- 0
top$ -- 10
type$ -- 857
type$ -- 920
warning$ -- 1
while$ -- 252
while$ -- 264
width$ -- 0
write$ -- 552
write$ -- 576
(There was 1 warning)

File diff suppressed because it is too large Load Diff

View File

@ -1,2 +1,8 @@
\BOOKMARK [0][-]{section*.2}{Dressing the configuration interaction matrix with explicit correlation}{}% 2
\BOOKMARK [1][-]{section*.1}{Abstract}{section*.2}% 1
\BOOKMARK [1][-]{section*.3}{Introduction}{section*.2}% 3
\BOOKMARK [1][-]{section*.4}{Ansatz}{section*.2}% 4
\BOOKMARK [1][-]{section*.5}{Dressing}{section*.2}% 5
\BOOKMARK [1][-]{section*.6}{Matrix elements}{section*.2}% 6
\BOOKMARK [1][-]{section*.7}{Conclusion}{section*.2}% 7
\BOOKMARK [1][-]{section*.8}{Acknowledgments}{section*.2}% 8

Binary file not shown.

View File

@ -74,28 +74,28 @@ The performance of the newly-designed explicitly-correlated dressing CI method i
\maketitle
%----------------------------------------------------------------
\textit{Introduction.---}
\section{Introduction}
%----------------------------------------------------------------
One of the most fundamental problem of conventional electronic structure methods is their slow energy convergence with respect to the size of the one-electron basis set.
This problem was already spotted thirty years ago by Kutzelnigg \cite{Kutzelnigg85} who proposed to introduce explicitly the correlation between electrons via the introduction of the interelectronic distance $r_{12} = \abs{\br_1 - \br_2}$ as a basis function \cite{Kutzelnigg91, Termath91, Klopper91a, Klopper91b, Noga94}.
This problem was already spotted thirty years ago by Kutzelnigg \cite{Kutzelnigg85} who proposed to introduce explicitly the correlation between electrons via the introduction of the interelectronic distance $r_{12} = \abs{\br_1 - \br_2}$ as a basis function. \cite{Kutzelnigg91, Termath91, Klopper91a, Klopper91b, Noga94}
This yields a prominent improvement of the energy convergence from $O(L^{-3})$ to $O(L^{-7})$ (where $L$ is the maximum angular momentum of the one-electron basis).
This idea was later generalised to more accurate correlation factors $f_{12} \equiv f(r_{12})$ \cite{Persson96, Persson97, May04, Tenno04b, Tew05, May05}.
The resulting F12 methods achieve chemical accuracy for small organic molecules with relatively small Gaussian basis sets \cite{Tenno12a, Tenno12b, Hattig12, Kong12}.
For example, as illustrated by Tew and coworkers, one can obtain, at the CCSD(T) level, quintuple-zeta quality correlation energies with a triple-zeta basis \cite{Tew07b}.
This idea was later generalised to more accurate correlation factors $f_{12} \equiv f(r_{12})$. \cite{Persson96, Persson97, May04, Tenno04b, Tew05, May05}
The resulting F12 methods achieve chemical accuracy for small organic molecules with relatively small Gaussian basis sets. \cite{Tenno12a, Tenno12b, Hattig12, Kong12}
For example, as illustrated by Tew and coworkers, one can obtain, at the CCSD(T) level, quintuple-zeta quality correlation energies with a triple-zeta basis. \cite{Tew07b}
In the present study, following Kutzelnigg's idea, we propose to introduce the explicit correlation between electrons within the configuration interaction (CI) method via a dressing of the CI matrix \cite{Huron73, Evangelisti83}.
This method, involving effective Hamiltonian theory, has been shown to be successful in other scenarios \cite{Heully92}.
In the present study, following Kutzelnigg's idea, we propose to introduce the explicit correlation between electrons within the configuration interaction (CI) method via a dressing of the CI matrix. \cite{Huron73, Evangelisti83}
This method, involving effective Hamiltonian theory, has been shown to be successful in other scenarios. \cite{Heully92, Garniron18}
Compared to other explicitly-correlated methods, this dressing strategy has the advantage of introducing the explicit correlation at a low computational cost.
The present explicitly-correlated dressing CI method is completely general and can be applied to any type of truncated, full, or even selected CI methods \cite{Giner13, Scemama13a, Scemama13b, Scemama14, Giner15, Caffarel16}.
The present explicitly-correlated dressed CI method is completely general and can be applied to any type of truncated, full, or even selected CI methods. \cite{Giner13, Scemama13a, Scemama13b, Scemama14, Giner15, Caffarel16, Loos18b, Loos19}
However, for the sake of generality, we will discuss here the dressing of the full CI (FCI) matrix.
%Here, we focus on systems well described by a single (reference) determinant $\kO$ assumed to be a Hartree-Fock (HF) determinant.
%The multireference version of the present method will be reported in a separate study.
Atomic units are used throughout.
%----------------------------------------------------------------
\textit{Ansatz.---}
\section{Ansatz}
%----------------------------------------------------------------
Inspired by a number of previous research \cite{Shiozaki11}, our electronic wave function ansatz $\ket{\Psi} = \kD + \kF$ is simply written as the sum of a ``conventional'' part
Inspired by a number of previous research, \cite{Shiozaki11} our electronic wave function ansatz $\ket{\Psi} = \kD + \kF$ is simply written as the sum of a ``conventional'' part
\begin{equation}
\label{eq:D}
\kD = \sum_{I} c_I \kI
@ -131,7 +131,7 @@ As first shown by Kato \cite{Kato51, Kato57} (and further elaborated by various
\end{equation}
%----------------------------------------------------------------
\textit{Dressing.---}
\section{Dressing}
%----------------------------------------------------------------
Our primary goal is to introduce the explicit correlation between electrons at low computational cost.
Therefore, assuming that $\hH \ket{\Psi} = E \Psi$, one can write, by projection over $\bra{I}$,
@ -159,7 +159,7 @@ It is interesting to note that, in an infinite basis, we have $\mel{I}{\hH}{F} =
At this stage, two key comments are in order.
First, as one may have realized, the coefficients $t_I$ are unknown.
\alert{However, they can be set to ensure the $s$- and $p$-wave electron-electron cusp conditions (SP ansatz) \cite{Tenno04a}.}
\alert{However, they can be set to ensure the $s$- and $p$-wave electron-electron cusp conditions (SP ansatz). \cite{Tenno04a}}
\alert{This yields the following linear system of equations
\begin{equation}
@ -171,7 +171,7 @@ which can be easily solved using standard linear algebra packages.}
Second, because Eq.~\eqref{eq:DrH} depends on the CI coefficient $c_I$, one must iterate the diagonalization process self-consistently until convergence of the desired eigenvalues of the dressed Hamiltonian $\oH$.
At each iteration, we solve Eq.~\eqref{eq:tI} to obtain the coefficients $t_I$ and dress the Hamiltonian [see Eq.~\eqref{eq:DrH}].
In practice, we initially start with a CI vector obtained by the diagonalization of the undressed Hamiltonian, and convergence is usually reached within few cycles.
For pathological cases, a DIIS-like procedure may be employed \cite{Pulay82}.
For pathological cases, a DIIS-like procedure may be employed. \cite{Pulay82}
%%% FIG 1 %%%
%\begin{figure}
@ -184,21 +184,21 @@ For pathological cases, a DIIS-like procedure may be employed \cite{Pulay82}.
%%% %%%
%----------------------------------------------------------------
\textit{Matrix elements.---}
\section{Matrix elements}
%----------------------------------------------------------------
Compared to a conventional CI calculation, new matrix elements are required.
The simplest of them $f_{IJ}$ --- required in Eqs.~\eqref{eq:IHF} and \eqref{eq:tI} --- can be easily computed by applying Condon-Slater rules \cite{SzaboBook}.
The simplest of them $f_{IJ}$ --- required in Eqs.~\eqref{eq:IHF} and \eqref{eq:tI} --- can be easily computed by applying Condon-Slater rules. \cite{SzaboBook}
They involve two-electron integrals over the geminal factor $f_{12}$.
Their computation has been thoroughly studied in the literature in the last thirty years \cite{Kutzelnigg91, Klopper92, Persson97, Klopper02, Manby03, Werner03, Klopper04, Tenno04a, Tenno04b, May05, Manby06, Tenno07, Komornicki11, Reine12, GG16}.
Their computation has been thoroughly studied in the literature in the last thirty years. \cite{Kutzelnigg91, Klopper92, Persson97, Klopper02, Manby03, Werner03, Klopper04, Tenno04a, Tenno04b, May05, Manby06, Tenno07, Komornicki11, Reine12, GG16}
These can be more or less expensive to compute depending on the choice of the correlation factor.
As shown in Eq.~\eqref{eq:IHF}, the present explicitly-correlated CI method also requires matrix elements of the form $\mel{I}{\hH f}{ J}$.
These are more problematic, as they involve the computation of numerous three-electron integrals over the operator $r_{12}^{-1}f_{13}$, as well as new two-electron integrals \cite{Kutzelnigg91, Klopper92}.
We have recently developed recurrence relations and efficient upper bounds in order to compute these types of integrals \cite{3ERI1, 3ERI2, 4eRR, IntF12}.
These are more problematic, as they involve the computation of numerous three-electron integrals over the operator $r_{12}^{-1}f_{13}$, as well as new two-electron integrals. \cite{Kutzelnigg91, Klopper92}
We have recently developed recurrence relations and efficient upper bounds in order to compute these types of integrals. \cite{3ERI1, 3ERI2, 4eRR, IntF12}
However, we will explore here a different route.
We propose to compute them using the resolution of the identity (RI) approximation \cite{Kutzelnigg91, Klopper02, Valeev04, Werner07, Hattig12}, which requires a complete basis set (CBS).
This CBS is built as the union of the orbital basis set (OBS) $\qty{p}$ (divided as occupied $\qty{i}$ and virtual $\qty{a}$ subspaces) augmented by a complementary auxiliary basis set (CABS) $\qty{\alpha}$, such as $ \qty{p} \cap \qty{\alpha} = \varnothing$ and $\braket{p}{\alpha} = 0$ \cite{Klopper02, Valeev04}.% (see Fig.~\ref{fig:CBS}).
We propose to compute them using the resolution of the identity (RI) approximation, \cite{Kutzelnigg91, Klopper02, Valeev04, Werner07, Hattig12} which requires a complete basis set (CBS).
This CBS is built as the union of the orbital basis set (OBS) $\qty{p}$ (divided as occupied $\qty{i}$ and virtual $\qty{a}$ subspaces) augmented by a complementary auxiliary basis set (CABS) $\qty{\alpha}$, such as $ \qty{p} \cap \qty{\alpha} = \varnothing$ and $\braket{p}{\alpha} = 0$. \cite{Klopper02, Valeev04}% (see Fig.~\ref{fig:CBS}).
In the CBS, one can write
\begin{equation}
@ -217,7 +217,7 @@ Substituting \eqref{eq:RI} into the first term of the right-hand side of Eq.~\eq
\end{split}
\end{equation}
where $\mD$ is the set of ``conventional'' determinants obtained by excitations from the occupied space $\qty{i}$ to the virtual one $\qty{a}$, and $\mC = \mA \setminus \mD$.
Because $f$ is a two-electron operator, the way to compute efficiently Eq.~\eqref{eq:IHF-RI} is actually very similar to what is done within second-order multireference perturbation theory \cite{PT2}.
Because $f$ is a two-electron operator, the way to compute efficiently Eq.~\eqref{eq:IHF-RI} is actually very similar to what is done within second-order multireference perturbation theory. \cite{Garniron17b}
%The set $\mC$ is defined by two simple rules.
%First, because $f$ is a two-electron operator (and thanks to the matrix element $f_{AJ}$ in \eqref{eq:IHF-RI}), we know that the sum over $A$ is restricted to the singly- or doubly-excited determinants with respect to the determinant $\kJ$.
@ -228,7 +228,7 @@ Because $f$ is a two-electron operator, the way to compute efficiently Eq.~\eqre
%iii) the pure singles $\ket*{_{i}^{\alpha}}$.
Although $\mel{0}{\hH}{_{i}^{a}} = 0$, note that the Brillouin theorem does not hold in the CABS, i.e.~$\mel{0}{\hH}{_{i}^{\alpha}} \neq 0$.
Here, we will eschew the generalized Brillouin condition (GBC) which set these to zero \cite{Kutzelnigg91}.
Here, we will eschew the generalized Brillouin condition (GBC) which set these to zero. \cite{Kutzelnigg91}
%\begin{gather}
% \mel*{0}{\hH}{_i^\alpha} = \mel{i}{h}{\alpha} + \sum_{j} \mel{ij}{}{\alpha j}
@ -269,12 +269,12 @@ In all the calculations presented below, we consider the following Slater-type c
\begin{equation}
f_{12} = \frac{1 - \exp( - \la r_{12} )}{\la},
\end{equation}
which is fitted using $N_\text{GG}$ Gaussian geminals fo computational convenience \cite{Persson96, Persson97, May04, Tenno04b, Tew05, May05}, i.e.
which is fitted using $N_\text{GG}$ Gaussian geminals fo computational convenience, \cite{Persson96, Persson97, May04, Tenno04b, Tew05, May05} i.e.
\begin{equation}
\exp( - \la r_{12} ) \approx \sum_{\nu=1}^{\NGG} a_\nu \exp( - \la_\nu r_{12}^2 ).
\end{equation}
The coefficients $a_\nu$ can be found in Ref.~\onlinecite{Tew05} for various $\NGG$, but we consider $\NGG = 6$ in this study.
All the calculations have been performed with Quantum Package \cite{QP}.
All the calculations have been performed with Quantum Package. \cite{Garniron19}
%%% TABLE 1 %%%
\begin{table}
@ -283,68 +283,68 @@ All the calculations have been performed with Quantum Package \cite{QP}.
FCI-F12, CIPSI and FCI total ground-state energy of the neutral atoms for $Z = 2$ to $10$ calculated with Dunning's cc-pVXZ basis set.
The corresponding cc-pVXZ\_OPTRI auxiliary basis is used as CABS.}
\begin{ruledtabular}
\begin{tabular}{lcccd}
Atom & $N$ & FCI-F12 & CIPSI & \text{FCI} \\
\begin{tabular}{lcdd}
Atom & $N$ & \mcc{FCI-F12} & \mcc{FCI} \\
\hline
\ce{He} & D & & & -2.887\,595 \footnotemark[1] \\
(cc-pV$N$Z) & T & & & -2.900\,232 \footnotemark[1] \\
& Q & & & -2.902\,411 \footnotemark[1] \\
& 5 & & & -2.903\,152 \footnotemark[1] \\
& 6 & & & -2.903\,432 \footnotemark[1] \\
& $\infty$ & & & -2.903\,724 \footnotemark[2] \\
\ce{He} & D & & -2.887\,595 \footnotemark[1] \\
(cc-pV$N$Z) & T & & -2.900\,232 \footnotemark[1] \\
& Q & & -2.902\,411 \footnotemark[1] \\
& 5 & & -2.903\,152 \footnotemark[1] \\
& 6 & & -2.903\,432 \footnotemark[1] \\
& $\infty$ & & -2.903\,724 \footnotemark[2] \\
\hline
\ce{Li} & D & & & -7.466\,025 (FCI) \\
(cc-pCV$N$Z) & T & & & -7.474\,251 (FCI) \\
& Q & & & -7.476\,373 (FCI) \\
& $\infty$ & & & -7.478\,060 \footnotemark[3] \\
\ce{Li} & D & & -7.466\,025 (FCI) \\
(cc-pCV$N$Z) & T & & -7.474\,251 (FCI) \\
& Q & & -7.476\,373 (FCI) \\
& $\infty$ & & -7.478\,060 \footnotemark[3] \\
\hline
\ce{Be} & D & & & -14.651\,833 (FCI) \\
(cc-pCV$N$Z) & T & & & -14.662\,368 (FCI) \\
& Q & & & -14.665\,566 (CIPSI) \\
& $\infty$ & & & -14.667\,356 \footnotemark[4] \\
& $\infty$ & & & -14.667\,39 (TOTO) \\
\ce{Be} & D & & -14.651\,833 (FCI) \\
(cc-pCV$N$Z) & T & & -14.662\,368 (FCI) \\
& Q & & -14.665\,566 (CIPSI) \\
& $\infty$ & & -14.667\,356 \footnotemark[4] \\
& $\infty$ & & -14.667\,39 (TOTO) \\
\hline
\ce{B} & D & & & -24.619\,101 (FCI) \\
(cc-pwCV$N$Z) & T & & & -24.643\,222 (CIPSI) \\
& Q & & & -24.650\,331 (CIPSI) \\
& 5 & & & -24.652\,309 (CIPSI) \\
& $\infty$ & & & -24.653\,866 \footnotemark[5] \\
& $\infty$ & & & -24.653\,90 (TOTO) \\
\ce{B} & D & & -24.619\,101 (FCI) \\
(cc-pwCV$N$Z) & T & & -24.643\,222 (CIPSI) \\
& Q & & -24.650\,331 (CIPSI) \\
& 5 & & -24.652\,309 (CIPSI) \\
& $\infty$ & & -24.653\,866 \footnotemark[5] \\
& $\infty$ & & -24.653\,90 (TOTO) \\
\hline
\ce{C} & D & & & -37.792\,469 (FCI) \\
(cc-pwCV$N$Z) & T & & & -37.829\,847 (CIPSI) \\
& Q & & & -37.839\,816 (CIPSI) \\
& 5 & & & -37.842\,731 (CIPSI) \\
& $\infty$ & & & -37.840\,129 6 \\
& $\infty$ & & & -37.845\,0 (TOTO) \\
\ce{C} & D & & -37.792\,469 (FCI) \\
(cc-pwCV$N$Z) & T & & -37.829\,847 (CIPSI) \\
& Q & & -37.839\,816 (CIPSI) \\
& 5 & & -37.842\,731 (CIPSI) \\
& $\infty$ & & -37.840\,129 6 \\
& $\infty$ & & -37.845\,0 (TOTO) \\
\hline
\ce{N} & D & & & -54.517\,650 (FCI) \\
(cc-pwCV$N$Z) & T & & & \\
& Q & & & \\
& 5 & & & -54.585\,926 (CIPSI) \\
& $\infty$ & & & -54.588\,917 \footnotemark[7] \\
& $\infty$ & & & -54.589\,3 (TOTO) \\
\ce{N} & D & & -54.517\,650 (FCI) \\
(cc-pwCV$N$Z) & T & & \\
& Q & & \\
& 5 & & -54.585\,926 (CIPSI) \\
& $\infty$ & & -54.588\,917 \footnotemark[7] \\
& $\infty$ & & -54.589\,3 (TOTO) \\
\hline
\ce{O} & D & & & \\
(cc-pwCV$N$Z) & T & & & \\
& Q & & & -75.054\,737 (CIPSI) \\
& 5 & & & -75.062\,002 (CIPSI) \\
& $\infty$ & & & -75.066\,892 \footnotemark[7] \\
& $\infty$ & & & -75.067\,4 (TOTO) \\
\ce{O} & D & & \\
(cc-pwCV$N$Z) & T & & \\
& Q & & -75.054\,737 (CIPSI) \\
& 5 & & -75.062\,002 (CIPSI) \\
& $\infty$ & & -75.066\,892 \footnotemark[7] \\
& $\infty$ & & -75.067\,4 (TOTO) \\
\hline
\ce{F} & D & & & -99.566\,902 (CIPSI) \\
(cc-pwCV$N$Z) & T & & & -99.682\,616 (CIPSI) \\
& Q & & & -99.715\,563 (CIPSI) \\
& 5 & & & -99.726\,249 (CIPSI) \\
& $\infty$ & & & -99.733\,424 \footnotemark[7] \\
& $\infty$ & & & -99.734\,1 (TOTO) \\
\ce{F} & D & & -99.566\,902 (CIPSI) \\
(cc-pwCV$N$Z) & T & & -99.682\,616 (CIPSI) \\
& Q & & -99.715\,563 (CIPSI) \\
& 5 & & -99.726\,249 (CIPSI) \\
& $\infty$ & & -99.733\,424 \footnotemark[7] \\
& $\infty$ & & -99.734\,1 (TOTO) \\
\hline
\ce{Ne} & D & & & \\
(cc-pwCV$N$Z) & T & & & \\
& Q & & & \\
& 5 & & & \\
& $\infty$ & & & -128.937\,274 \footnotemark[7] \\
& $\infty$ & & & -128.938\,3 (TOTO) \\
\ce{Ne} & D & & \\
(cc-pwCV$N$Z) & T & & \\
& Q & & \\
& 5 & & \\
& $\infty$ & & -128.937\,274 \footnotemark[7] \\
& $\infty$ & & -128.938\,3 (TOTO) \\
\end{tabular}
\end{ruledtabular}
\footnotetext[1]{Reference \onlinecite{Kong12}}
@ -391,12 +391,12 @@ Molecule & cc-pVXZ & \mcc{CIPSI} & \mcc{FCI-F12} &
%%%
In Table \ref{tab:atoms}, we report the total atomic energy of the neutral atoms from $Z = 2$ to $10$ for various Dunning's basis sets.
In all calculations, the associated OPTRI basis is used as CABS \cite{Yousaf08, Yousaf09}.
In all calculations, the associated OPTRI basis is used as CABS. \cite{Yousaf08, Yousaf09}
In Table \ref{tab:molecules}, we report the total energy of the \ce{H2}, \ce{F2} and \ce{H2O} molecules at experimental geometry \cite{Giner13, Giner15, Caffarel16}.
In Table \ref{tab:molecules}, we report the total energy of the \ce{H2}, \ce{F2} and \ce{H2O} molecules at experimental geometry. \cite{Giner13, Giner15, Caffarel16}
%----------------------------------------------------------------
\textit{Conclusion.---}
\section{Conclusion}
%----------------------------------------------------------------
We have introduced a dressed version of the well-established CI method to incorporate explicitly the correlation between electrons.
We have shown that the new CI-F12 method allows to fix one of the main issue of conventional CI methods, i.e.~the slow convergence of the electronic energy with respect to the size of the one-electron basis set. Albeit not variational, our method is able to catch a large fraction of the basis set incompleteness error at a low computational cost compared to other variants.
@ -404,8 +404,10 @@ In particular, one eschew the computation of four-electron integrals as well as
We believe that the present approach is a significant step towards the development of an accurate and efficient explicitly-correlated full CI methods.
%----------------------------------------------------------------
\textit{Acknowledgments.---}
This work was performed using HPC resources from CALMIP (Toulouse) under allocation 2016-0510 and from GENCI-TGCC (Grant 2016-08s015).
\begin{acknowledgments}
The authors would like to thank the \emph{Centre National de la Recherche Scientifique} (CNRS) for funding.
This work was performed using HPC resources from GENCI-TGCC (Grant No.~2018-A0040801738), and CALMIP (Toulouse) under allocations 2018-0510, 2018-18005 and 2019-18005.
\end{acknowledgments}
%----------------------------------------------------------------
\bibliography{CI-F12}