CI-F12/Manuscript/CI-F12.tex

414 lines
23 KiB
TeX
Raw Normal View History

2019-02-27 11:32:52 +01:00
\documentclass[aip,jcp,reprint,showkeys]{revtex4-1}
\usepackage{graphicx,dcolumn,bm,xcolor,microtype,hyperref,multirow,amscd,amsmath,amssymb,amsfonts,physics,mhchem}
\usepackage{mathpazo,libertine}
\newcommand{\alert}[1]{\textcolor{red}{#1}}
\newcommand{\cdash}{\multicolumn{1}{c}{---}}
\newcommand{\mc}{\multicolumn}
\newcommand{\mcc}[1]{\multicolumn{1}{c}{#1}}
\newcommand{\mr}{\multirow}
\newcommand{\eps}{\varepsilon}
\newcommand{\la}{\lambda}
\newcommand{\br}{\bm{r}}
\newcommand{\oH}{\mathring{H}}
\newcommand{\EPT}{E_\text{PT2}}
\newcommand{\EHF}{E_\text{HF}}
\newcommand{\NGG}{N_\text{GG}}
\newcommand{\hH}{\Hat{H}}
\newcommand{\hO}{\Hat{O}}
\newcommand{\hT}{\Hat{T}}
\newcommand{\hV}{\Hat{V}}
\newcommand{\hU}{\Hat{U}}
\newcommand{\hQ}{\Hat{Q}}
\newcommand{\hS}{\Hat{S}}
\newcommand{\hP}{\Hat{P}}
\newcommand{\hI}{\Hat{I}}
\newcommand{\mA}{\mathcal{A}}
\newcommand{\mC}{\mathcal{C}}
\newcommand{\mD}{\mathcal{D}}
\newcommand{\mE}{\mathcal{E}}
\newcommand{\mK}{\mathcal{K}}
\newcommand{\mF}{\mathcal{F}}
\newcommand{\mL}{\mathcal{L}}
\newcommand{\kA}{\ket{A}}
\newcommand{\kD}{\ket{D}}
\newcommand{\kI}{\ket{I}}
\newcommand{\kJ}{\ket{J}}
\newcommand{\kE}{\ket{E}}
\newcommand{\kK}{\ket{K}}
\newcommand{\kL}{\ket{L}}
\newcommand{\kF}{\ket{F}}
\newcommand{\kO}{\ket{0}}
% addresses
\newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\'e de Toulouse, CNRS, UPS, France}
2019-02-27 12:01:10 +01:00
\begin{document}
2019-02-27 11:32:52 +01:00
2019-02-27 12:01:10 +01:00
\title{Dressing the configuration interaction matrix with explicit correlation}
2019-02-27 11:32:52 +01:00
\author{Anthony Scemama}
\affiliation{\LCPQ}
\author{Michel Caffarel}
\affiliation{\LCPQ}
\author{Pierre-Fran{\c c}ois Loos}
\email[Corresponding author: ]{loos@irsamc.ups-tlse.fr}
\affiliation{\LCPQ}
\begin{abstract}
We present an explicitly-correlated version of the configuration interaction (CI) method.
An explicitly-correlated term is introduced via dressing of the CI matrix.
The dressing is guided by electron-electron cusp conditions.
This greatly enhances the convergence with respect to the one-electron basis set compared to conventional CI methods.
The performance of the newly-designed explicitly-correlated dressing CI method is illustrated on atoms and molecules.
\end{abstract}
\keywords{configuration interaction; explicitly-correlated methods; dressed Hamiltonian}
\maketitle
%----------------------------------------------------------------
\textit{Introduction.---}
%----------------------------------------------------------------
One of the most fundamental problem of conventional electronic structure methods is their slow energy convergence with respect to the size of the one-electron basis set.
This problem was already spotted thirty years ago by Kutzelnigg \cite{Kutzelnigg85} who proposed to introduce explicitly the correlation between electrons via the introduction of the interelectronic distance $r_{12} = \abs{\br_1 - \br_2}$ as a basis function \cite{Kutzelnigg91, Termath91, Klopper91a, Klopper91b, Noga94}.
This yields a prominent improvement of the energy convergence from $O(L^{-3})$ to $O(L^{-7})$ (where $L$ is the maximum angular momentum of the one-electron basis).
This idea was later generalised to more accurate correlation factors $f_{12} \equiv f(r_{12})$ \cite{Persson96, Persson97, May04, Tenno04b, Tew05, May05}.
The resulting F12 methods achieve chemical accuracy for small organic molecules with relatively small Gaussian basis sets \cite{Tenno12a, Tenno12b, Hattig12, Kong12}.
For example, as illustrated by Tew and coworkers, one can obtain, at the CCSD(T) level, quintuple-zeta quality correlation energies with a triple-zeta basis \cite{Tew07b}.
In the present study, following Kutzelnigg's idea, we propose to introduce the explicit correlation between electrons within the configuration interaction (CI) method via a dressing of the CI matrix \cite{Huron73, Evangelisti83}.
This method, involving effective Hamiltonian theory, has been shown to be successful in other scenarios \cite{Heully92}.
Compared to other explicitly-correlated methods, this dressing strategy has the advantage of introducing the explicit correlation at a low computational cost.
The present explicitly-correlated dressing CI method is completely general and can be applied to any type of truncated, full, or even selected CI methods \cite{Giner13, Scemama13a, Scemama13b, Scemama14, Giner15, Caffarel16}.
However, for the sake of generality, we will discuss here the dressing of the full CI (FCI) matrix.
%Here, we focus on systems well described by a single (reference) determinant $\kO$ assumed to be a Hartree-Fock (HF) determinant.
%The multireference version of the present method will be reported in a separate study.
Atomic units are used throughout.
%----------------------------------------------------------------
\textit{Ansatz.---}
%----------------------------------------------------------------
Inspired by a number of previous research \cite{Shiozaki11}, our electronic wave function ansatz $\ket{\Psi} = \kD + \kF$ is simply written as the sum of a ``conventional'' part
\begin{equation}
\label{eq:D}
2019-02-27 12:01:10 +01:00
\kD = \sum_{I} c_I \kI
2019-02-27 11:32:52 +01:00
\end{equation}
composed by a linear combination of determinants $\kI$ of coefficients $c_I$ and an ``explicitly-correlated'' part
\begin{equation}
\label{eq:WF-F12-CIPSI}
2019-02-27 12:01:10 +01:00
\kF = \sum_{I} t_I \hQ f \kI
2019-02-27 11:32:52 +01:00
\end{equation}
with coefficients $t_I$.
The projector
\begin{equation}
2019-02-27 12:01:10 +01:00
\hQ = \hI - \sum_{I} \dyad{I}
2019-02-27 11:32:52 +01:00
\end{equation}
ensures the orthogonality between $\kD$ and $\kF$, and
\begin{equation}
\label{eq:Ja}
2019-02-27 12:01:10 +01:00
f = \sum_{i < j} \gamma_{ij} f_{ij}
2019-02-27 11:32:52 +01:00
\end{equation}
is a correlation factor, and
\begin{equation}
2019-02-27 12:01:10 +01:00
\gamma_{ij} =
\begin{cases}
1/2, & \text{for opposite-spin electrons},
\\
1/4, & \text{for same-spin electrons}.
\end{cases}
2019-02-27 11:32:52 +01:00
\end{equation}
As first shown by Kato \cite{Kato51, Kato57} (and further elaborated by various authors \cite{Pack66, Morgan93}), for small $r_{12}$, the two-electron correlation factor $f_{12}$ in Eq.~\eqref{eq:Ja} must behave as
\begin{equation}
2019-02-27 12:01:10 +01:00
f_{12} = \gamma_{12}\,r_{12} + \order{r_{12}^2}.
2019-02-27 11:32:52 +01:00
\end{equation}
%----------------------------------------------------------------
\textit{Dressing.---}
%----------------------------------------------------------------
Our primary goal is to introduce the explicit correlation between electrons at low computational cost.
Therefore, assuming that $\hH \ket{\Psi} = E \Psi$, one can write, by projection over $\bra{I}$,
\begin{equation}
2019-02-27 12:01:10 +01:00
c_I \qty[ H_{II} + c_I^{-1} \mel*{I}{\hH}{F} - E] + \sum_{J \ne I} c_J H_{IJ} = 0.
2019-02-27 11:32:52 +01:00
\end{equation}
where $H_{IJ} = \mel{I}{\hH}{J}$.
Hence, we obtain the desired energy by diagonalizing the dressed Hamiltonian:
\begin{equation}
\label{eq:DrH}
2019-02-27 12:01:10 +01:00
\oH_{IJ} =
\begin{cases}
H_{II} + c_I^{-1}\mel*{I}{\hH}{F}, & \text{if $I = J$},
\\
H_{IJ}, & \text{otherwise},
\end{cases}
2019-02-27 11:32:52 +01:00
\end{equation}
with
\begin{equation}
\label{eq:IHF}
2019-02-27 12:01:10 +01:00
\mel{I}{\hH}{F} = \sum_J t_J \qty[ \mel{I}{\hH f}{J} - \sum_{K} H_{IK} f_{KJ} ],
2019-02-27 11:32:52 +01:00
\end{equation}
and $f_{IJ} = \mel{I}{f}{J}$.
It is interesting to note that, in an infinite basis, we have $\mel{I}{\hH}{F} = 0$, which demonstrates that our dressed CI method becomes exact in the limit of a complete one-electron basis.
At this stage, two key comments are in order.
First, as one may have realized, the coefficients $t_I$ are unknown.
\alert{However, they can be set to ensure the $s$- and $p$-wave electron-electron cusp conditions (SP ansatz) \cite{Tenno04a}.}
\alert{This yields the following linear system of equations
\begin{equation}
\label{eq:tI}
2019-02-27 12:01:10 +01:00
\sum_J (\delta_{IJ} + f_{IJ}) t_J = c_I,
2019-02-27 11:32:52 +01:00
\end{equation}
which can be easily solved using standard linear algebra packages.}
Second, because Eq.~\eqref{eq:DrH} depends on the CI coefficient $c_I$, one must iterate the diagonalization process self-consistently until convergence of the desired eigenvalues of the dressed Hamiltonian $\oH$.
At each iteration, we solve Eq.~\eqref{eq:tI} to obtain the coefficients $t_I$ and dress the Hamiltonian [see Eq.~\eqref{eq:DrH}].
In practice, we initially start with a CI vector obtained by the diagonalization of the undressed Hamiltonian, and convergence is usually reached within few cycles.
For pathological cases, a DIIS-like procedure may be employed \cite{Pulay82}.
%%% FIG 1 %%%
%\begin{figure}
2019-02-27 12:01:10 +01:00
% \includegraphics[width=\linewidth]{fig1}
% \caption{
% \label{fig:CBS}
% Schematic representation of the various orbital spaces and their notation.
% The arrows represent the three types of excited determinants contributing to the dressing: the pure doubles $\ket*{_{ij}^{\alpha \beta}}$ (green), the mixed doubles $\ket*{_{ij}^{a \beta}}$ (magenta) and the pure singles $\ket*{_{i}^{\alpha}}$ (orange).}
2019-02-27 11:32:52 +01:00
%\end{figure}
2019-02-27 12:01:10 +01:00
%%% %%%
2019-02-27 11:32:52 +01:00
%----------------------------------------------------------------
\textit{Matrix elements.---}
%----------------------------------------------------------------
Compared to a conventional CI calculation, new matrix elements are required.
The simplest of them $f_{IJ}$ --- required in Eqs.~\eqref{eq:IHF} and \eqref{eq:tI} --- can be easily computed by applying Condon-Slater rules \cite{SzaboBook}.
They involve two-electron integrals over the geminal factor $f_{12}$.
Their computation has been thoroughly studied in the literature in the last thirty years \cite{Kutzelnigg91, Klopper92, Persson97, Klopper02, Manby03, Werner03, Klopper04, Tenno04a, Tenno04b, May05, Manby06, Tenno07, Komornicki11, Reine12, GG16}.
These can be more or less expensive to compute depending on the choice of the correlation factor.
As shown in Eq.~\eqref{eq:IHF}, the present explicitly-correlated CI method also requires matrix elements of the form $\mel{I}{\hH f}{ J}$.
These are more problematic, as they involve the computation of numerous three-electron integrals over the operator $r_{12}^{-1}f_{13}$, as well as new two-electron integrals \cite{Kutzelnigg91, Klopper92}.
We have recently developed recurrence relations and efficient upper bounds in order to compute these types of integrals \cite{3ERI1, 3ERI2, 4eRR, IntF12}.
However, we will explore here a different route.
We propose to compute them using the resolution of the identity (RI) approximation \cite{Kutzelnigg91, Klopper02, Valeev04, Werner07, Hattig12}, which requires a complete basis set (CBS).
This CBS is built as the union of the orbital basis set (OBS) $\qty{p}$ (divided as occupied $\qty{i}$ and virtual $\qty{a}$ subspaces) augmented by a complementary auxiliary basis set (CABS) $\qty{\alpha}$, such as $ \qty{p} \cap \qty{\alpha} = \varnothing$ and $\braket{p}{\alpha} = 0$ \cite{Klopper02, Valeev04}.% (see Fig.~\ref{fig:CBS}).
In the CBS, one can write
\begin{equation}
\label{eq:RI}
2019-02-27 12:01:10 +01:00
\hI = \sum_{A \in \mA} \dyad{A}{A}
2019-02-27 11:32:52 +01:00
\end{equation}
where $\mA$ is the set of all the determinants $\kA$ corresponding to electronic excitations from occupied orbitals $\qty{i}$ to the extended virtual orbital space $\qty{a} \cup \qty{\alpha}$.
Substituting \eqref{eq:RI} into the first term of the right-hand side of Eq.~\eqref{eq:IHF}, one gets
\begin{equation}
\label{eq:IHF-RI}
\begin{split}
2019-02-27 12:01:10 +01:00
\mel{I}{\hH}{F}
& = \sum_J t_J \qty[ \sum_{A \in \mA} H_{IA} f_{AJ} - \sum_{K \in \mD} H_{IK} f_{KJ} ]
\\
& = \sum_J t_J \sum_{A \in \mC} H_{IA} f_{AJ},
2019-02-27 11:32:52 +01:00
\end{split}
\end{equation}
where $\mD$ is the set of ``conventional'' determinants obtained by excitations from the occupied space $\qty{i}$ to the virtual one $\qty{a}$, and $\mC = \mA \setminus \mD$.
Because $f$ is a two-electron operator, the way to compute efficiently Eq.~\eqref{eq:IHF-RI} is actually very similar to what is done within second-order multireference perturbation theory \cite{PT2}.
%The set $\mC$ is defined by two simple rules.
%First, because $f$ is a two-electron operator (and thanks to the matrix element $f_{AJ}$ in \eqref{eq:IHF-RI}), we know that the sum over $A$ is restricted to the singly- or doubly-excited determinants with respect to the determinant $\kJ$.
%Second, to ensure that $H_{IA} \neq 0$, $A$ must be connected to $\kI$, i.e.~differs from $\kI$ by no more than two spin orbitals.
%Three types of determinants have these two properties:
%i) the pure doubles $\ket*{_{ij}^{\alpha \beta}}$;
%ii) the mixed doubles $\ket*{_{ij}^{a \beta}}$;
%iii) the pure singles $\ket*{_{i}^{\alpha}}$.
Although $\mel{0}{\hH}{_{i}^{a}} = 0$, note that the Brillouin theorem does not hold in the CABS, i.e.~$\mel{0}{\hH}{_{i}^{\alpha}} \neq 0$.
Here, we will eschew the generalized Brillouin condition (GBC) which set these to zero \cite{Kutzelnigg91}.
%\begin{gather}
2019-02-27 12:01:10 +01:00
% \mel*{0}{\hH}{_i^\alpha} = \mel{i}{h}{\alpha} + \sum_{j} \mel{ij}{}{\alpha j}
% \\
% \mel*{0}{\hH}{_{ij}^{\alpha\beta}} = \mel{ij}{}{\alpha \beta}
% \\
% \mel*{0}{\hH}{_{ij}^{a\beta}} = \mel{ij}{}{a \beta}
2019-02-27 11:32:52 +01:00
%\end{gather}
%
%\begin{gather}
2019-02-27 12:01:10 +01:00
% \mel*{_k^c}{\hH}{_i^\alpha} = \mel{c}{h}{\alpha} + \sum_{j} \mel{cj}{}{\alpha j}
% \\
% \mel*{_k^c}{\hH}{_{ij}^{\alpha\beta}} = 0
% \\
% \mel*{_k^c}{\hH}{_{ij}^{a\beta}} =
2019-02-27 11:32:52 +01:00
%\end{gather}
%
%\begin{gather}
2019-02-27 12:01:10 +01:00
% \mel*{_{kl}^{cd}}{\hH}{_i^\alpha} =
% \\
% \mel*{_{kl}^{cd}}{\hH}{_{ij}^{\alpha\beta}} =
% \\
% \mel*{_{kl}^{cd}}{\hH}{_{ij}^{a\beta}} =
2019-02-27 11:32:52 +01:00
%\end{gather}
%
%\begin{gather}
2019-02-27 12:01:10 +01:00
% \mel*{_{klm}^{cde}}{\hH}{_i^\alpha} =
% \\
% \mel*{_{klm}^{cde}}{\hH}{_{ij}^{\alpha\beta}} =
% \\
% \mel*{_{klm}^{cde}}{\hH}{_{ij}^{a\beta}} =
2019-02-27 11:32:52 +01:00
%\end{gather}
%----------------------------------------------------------------
\textit{Results.---}
%----------------------------------------------------------------
In all the calculations presented below, we consider the following Slater-type correlation factor \cite{Tenno04a}
\begin{equation}
2019-02-27 12:01:10 +01:00
f_{12} = \frac{1 - \exp( - \la r_{12} )}{\la},
2019-02-27 11:32:52 +01:00
\end{equation}
which is fitted using $N_\text{GG}$ Gaussian geminals fo computational convenience \cite{Persson96, Persson97, May04, Tenno04b, Tew05, May05}, i.e.
\begin{equation}
2019-02-27 12:01:10 +01:00
\exp( - \la r_{12} ) \approx \sum_{\nu=1}^{\NGG} a_\nu \exp( - \la_\nu r_{12}^2 ).
2019-02-27 11:32:52 +01:00
\end{equation}
The coefficients $a_\nu$ can be found in Ref.~\onlinecite{Tew05} for various $\NGG$, but we consider $\NGG = 6$ in this study.
All the calculations have been performed with Quantum Package \cite{QP}.
2019-02-27 12:01:10 +01:00
%%% TABLE 1 %%%
2019-02-27 11:32:52 +01:00
\begin{table}
\caption{
\label{tab:atoms}
FCI-F12, CIPSI and FCI total ground-state energy of the neutral atoms for $Z = 2$ to $10$ calculated with Dunning's cc-pVXZ basis set.
The corresponding cc-pVXZ\_OPTRI auxiliary basis is used as CABS.}
\begin{ruledtabular}
2019-02-27 12:01:10 +01:00
\begin{tabular}{lcccd}
Atom & $N$ & FCI-F12 & CIPSI & \text{FCI} \\
2019-02-27 11:32:52 +01:00
\hline
2019-02-27 12:01:10 +01:00
\ce{He} & D & & & -2.887\,595 \footnotemark[1] \\
(cc-pV$N$Z) & T & & & -2.900\,232 \footnotemark[1] \\
& Q & & & -2.902\,411 \footnotemark[1] \\
& 5 & & & -2.903\,152 \footnotemark[1] \\
& 6 & & & -2.903\,432 \footnotemark[1] \\
& $\infty$ & & & -2.903\,724 \footnotemark[2] \\
2019-02-27 11:32:52 +01:00
\hline
2019-02-27 12:01:10 +01:00
\ce{Li} & D & & & -7.466\,025 (FCI) \\
(cc-pCV$N$Z) & T & & & -7.474\,251 (FCI) \\
2019-03-02 20:38:03 +01:00
& Q & & & -7.476\,373 (FCI) \\
2019-02-27 12:01:10 +01:00
& $\infty$ & & & -7.478\,060 \footnotemark[3] \\
2019-02-27 11:32:52 +01:00
\hline
2019-02-27 12:01:10 +01:00
\ce{Be} & D & & & -14.651\,833 (FCI) \\
2019-03-02 20:38:03 +01:00
(cc-pCV$N$Z) & T & & & -14.662\,368 (FCI) \\
2019-02-27 12:01:10 +01:00
& Q & & & -14.665\,566 (CIPSI) \\
& $\infty$ & & & -14.667\,356 \footnotemark[4] \\
& $\infty$ & & & -14.667\,39 (TOTO) \\
2019-02-27 11:32:52 +01:00
\hline
2019-03-02 20:38:03 +01:00
\ce{B} & D & & & -24.619\,101 (FCI) \\
2019-02-27 12:01:10 +01:00
(cc-pwCV$N$Z) & T & & & -24.643\,222 (CIPSI) \\
& Q & & & -24.650\,331 (CIPSI) \\
& 5 & & & -24.652\,309 (CIPSI) \\
& $\infty$ & & & -24.653\,866 \footnotemark[5] \\
& $\infty$ & & & -24.653\,90 (TOTO) \\
2019-02-27 11:32:52 +01:00
\hline
2019-03-02 20:38:03 +01:00
\ce{C} & D & & & -37.792\,469 (FCI) \\
2019-02-27 12:01:10 +01:00
(cc-pwCV$N$Z) & T & & & -37.829\,847 (CIPSI) \\
& Q & & & -37.839\,816 (CIPSI) \\
& 5 & & & -37.842\,731 (CIPSI) \\
& $\infty$ & & & -37.840\,129 6 \\
& $\infty$ & & & -37.845\,0 (TOTO) \\
\hline
2019-03-02 20:38:03 +01:00
\ce{N} & D & & & -54.517\,650 (FCI) \\
2019-02-27 12:01:10 +01:00
(cc-pwCV$N$Z) & T & & & \\
& Q & & & \\
2019-03-02 20:38:03 +01:00
& 5 & & & -54.585\,926 (CIPSI) \\
2019-02-27 12:01:10 +01:00
& $\infty$ & & & -54.588\,917 \footnotemark[7] \\
& $\infty$ & & & -54.589\,3 (TOTO) \\
\hline
\ce{O} & D & & & \\
(cc-pwCV$N$Z) & T & & & \\
2019-03-02 20:38:03 +01:00
& Q & & & -75.054\,737 (CIPSI) \\
& 5 & & & -75.062\,002 (CIPSI) \\
2019-02-27 12:01:10 +01:00
& $\infty$ & & & -75.066\,892 \footnotemark[7] \\
& $\infty$ & & & -75.067\,4 (TOTO) \\
\hline
2019-03-02 20:38:03 +01:00
\ce{F} & D & & & -99.566\,902 (CIPSI) \\
(cc-pwCV$N$Z) & T & & & -99.682\,616 (CIPSI) \\
& Q & & & -99.715\,563 (CIPSI) \\
& 5 & & & -99.726\,249 (CIPSI) \\
2019-02-27 12:01:10 +01:00
& $\infty$ & & & -99.733\,424 \footnotemark[7] \\
& $\infty$ & & & -99.734\,1 (TOTO) \\
\hline
\ce{Ne} & D & & & \\
(cc-pwCV$N$Z) & T & & & \\
& Q & & & \\
& 5 & & & \\
& $\infty$ & & & -128.937\,274 \footnotemark[7] \\
& $\infty$ & & & -128.938\,3 (TOTO) \\
2019-02-27 11:32:52 +01:00
\end{tabular}
2019-02-27 12:01:10 +01:00
\end{ruledtabular}
2019-02-27 11:32:52 +01:00
\footnotetext[1]{Reference \onlinecite{Kong12}}
\footnotetext[2]{Reference \onlinecite{Nakashima07}}
\footnotetext[3]{Reference \onlinecite{Puchalski09}}
\footnotetext[4]{Reference \onlinecite{Sharkey11}}
\footnotetext[5]{Reference \onlinecite{Bubin11}}
\footnotetext[6]{Reference \onlinecite{Sharkey10}}
\footnotetext[7]{Reference \onlinecite{Klopper10}}
\end{table}
%%%
%%% TABLE 2 %%%
\begin{table*}
\caption{
\label{tab:molecules}
CIPSI, FCI-F12 i-FCIQMC and FCI total ground-state energy of the \ce{H2}, \ce{F2} and \ce{H2)} molecules at experimental geometry with Dunning's cc-pVXZ basis set.
The corresponding cc-pVXZ\_OPTRI auxiliary basis is used as CABS.}
\begin{ruledtabular}
\begin{tabular}{lccccc}
2019-02-27 12:01:10 +01:00
Molecule & cc-pVXZ & \mcc{CIPSI} & \mcc{FCI-F12} & \mcc{i-FCIQMC} & \mcc{FCI} \\
2019-02-27 11:32:52 +01:00
\hline
2019-02-27 12:01:10 +01:00
\ce{H2} & D & & & \\
& T & & & \\
& Q & & & \\
& 5 & & & \\
& $\infty$ & & & & $-1.174\,476$\footnotemark[1] \\
2019-02-27 11:32:52 +01:00
\hline
2019-02-27 12:01:10 +01:00
\ce{F2} & D & $-199.099\,28$\footnotemark[2] & & $-199.099\,41(9)$\footnotemark[3] \\
& T & $-199.296\,5$\footnotemark[2] & & $-199.297\,7(1)$\footnotemark[3] \\
2019-02-27 11:32:52 +01:00
\hline
2019-02-27 12:01:10 +01:00
\ce{H2O} & D & $-76.282\,136$\footnotemark[4] & & & $-76.282\,865$\footnotemark[5] \\
& T & $-76.388\,287$\footnotemark[4] & & & $-76.390\,158$\footnotemark[5] \\
& Q & $-76.419\,324$\footnotemark[4] & & & $-76.421\,148$\footnotemark[5] \\
& 5 & $-76.428\,550$\footnotemark[4] & & & $-76.431\,105$\footnotemark[5] \\
2019-02-27 11:32:52 +01:00
\end{tabular}
2019-02-27 12:01:10 +01:00
\end{ruledtabular}
2019-02-27 11:32:52 +01:00
\footnotetext[1]{Reference \onlinecite{Pachucki10}}
\footnotetext[2]{Reference \onlinecite{Giner15}}
\footnotetext[3]{Reference \onlinecite{Cleland12}}
\footnotetext[4]{Reference \onlinecite{Caffarel16}}
\footnotetext[5]{Reference \onlinecite{AlmoraDiaz14}}
\end{table*}
%%%
In Table \ref{tab:atoms}, we report the total atomic energy of the neutral atoms from $Z = 2$ to $10$ for various Dunning's basis sets.
In all calculations, the associated OPTRI basis is used as CABS \cite{Yousaf08, Yousaf09}.
In Table \ref{tab:molecules}, we report the total energy of the \ce{H2}, \ce{F2} and \ce{H2O} molecules at experimental geometry \cite{Giner13, Giner15, Caffarel16}.
%----------------------------------------------------------------
\textit{Conclusion.---}
%----------------------------------------------------------------
We have introduced a dressed version of the well-established CI method to incorporate explicitly the correlation between electrons.
We have shown that the new CI-F12 method allows to fix one of the main issue of conventional CI methods, i.e.~the slow convergence of the electronic energy with respect to the size of the one-electron basis set. Albeit not variational, our method is able to catch a large fraction of the basis set incompleteness error at a low computational cost compared to other variants.
In particular, one eschew the computation of four-electron integrals as well as some types of three-electron integrals.
We believe that the present approach is a significant step towards the development of an accurate and efficient explicitly-correlated full CI methods.
%----------------------------------------------------------------
\textit{Acknowledgments.---}
This work was performed using HPC resources from CALMIP (Toulouse) under allocation 2016-0510 and from GENCI-TGCC (Grant 2016-08s015).
%----------------------------------------------------------------
\bibliography{CI-F12}
\end{document}