forked from PTEROSOR/QUESTDB
Modifs Mimi
This commit is contained in:
parent
f28d600231
commit
d7cd8332a6
@ -287,61 +287,121 @@ The definition of the active space considered for each system as well as the num
|
|||||||
%------------------------------------------------
|
%------------------------------------------------
|
||||||
In this section, we present our scheme to estimate the extrapolation error in SCI calculations.
|
In this section, we present our scheme to estimate the extrapolation error in SCI calculations.
|
||||||
This new protocol is then applied to five- and six-membered ring molecules for which SCI calculations are particularly challenging even for small basis sets.
|
This new protocol is then applied to five- and six-membered ring molecules for which SCI calculations are particularly challenging even for small basis sets.
|
||||||
Note that the present method does only apply to ``state-averaged'' SCI calculations where ground- and excited-state energies are produced during the same calculation with the same set of molecular orbitals, not to ``state-specific'' calculations where one computes solely the energy of a single state (like conventional ground-state calculations).
|
Note that the present method does only apply to \emph{state-averaged} SCI calculations where ground- and excited-state energies are produced during the same calculation with the same set of molecular orbitals, not to \emph{state-specific} calculations where one computes solely the energy of a single state (like conventional ground-state calculations).
|
||||||
|
|
||||||
For the $m$th excited state (where $m = 0$ corresponds to the ground state), we usually estimate its FCI energy $E_{\text{FCI}}^{(m)}$ by performing a linear extrapolation of its variational energy $E_\text{var}^{(m)}$ as a function of its rPT2 correction $E_{\text{rPT2}}^{(m)}$ as follows
|
For the $m$th excited state (where $m = 0$ corresponds to the ground state), we usually estimate its FCI energy $E_{\text{FCI}}^{(m)}$ by performing a linear extrapolation of its variational energy $E_\text{var}^{(m)}$ as a function of its rPT2 correction $E_{\text{rPT2}}^{(m)}$ \cite{Holmes_2017, Garniron_2019} using
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
E_\text{FCI}^{(m)} = E_{\text{var}}^{(m)} + \alpha^{(m)} E_{\text{rPT2}}^{(m)}
|
E_{\text{var}}^{(m)} \approx E_\text{FCI}^{(m)} - \alpha^{(m)} E_{\text{rPT2}}^{(m)},
|
||||||
|
\label{eqx}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
$E_\text{var}^{(m)}$ varies almost linearly as a function of $E_{\text{rPT2}}^{(m)}$, but with a coefficient $\alpha^{(m)}$ which deviates slightly from unity in well-behaved cases.
|
where $E_{\text{var}}^{(m)}$ and $E_{\text{rPT2}}^{(m)}$ are calculated with CIPSI and $E_\text{FCI}^{(m)}$ is the FCI energy
|
||||||
This implies that, at any iteration of the CIPSI algorithm, the estimated error on the CIPSI energy is
|
to be extrapolated. This relation is valid in the regime of a sufficiently large number of determinants where the second-order perturbational
|
||||||
|
correction largely dominates.
|
||||||
|
However, in practice, due to the residual higher-order terms, the coefficient $\alpha^{(m)}$ deviates slightly from unity.
|
||||||
|
|
||||||
|
Using Eq.(\ref{eqx}) the estimated error on the CIPSI energy is calculated as
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
E_{\text{CIPSI}}^{(m)} - E_{\text{FCI}}^{(m)}
|
E_{\text{CIPSI}}^{(m)} - E_{\text{FCI}}^{(m)}
|
||||||
= \qty(E_\text{var}^{(m)}+E_{\text{rPT2}}^{(m)}) - E_{\text{FCI}}^{(m)}
|
= \qty(E_\text{var}^{(m)}+E_{\text{rPT2}}^{(m)}) - E_{\text{FCI}}^{(m)}
|
||||||
= \qty(1-\alpha^{(m)}) E_{\text{rPT2}}^{(m)}
|
= \qty(1-\alpha^{(m)}) E_{\text{rPT2}}^{(m)},
|
||||||
\end{equation}
|
\end{equation}
|
||||||
For the large systems considered here, $\abs{E_{\text{rPT2}}} > 2$ eV.
|
and thus the extrapolated excitation energy associated with the $m$th
|
||||||
Therefore, the accuracy of the excitation energy estimates will strongly depend on our ability to compensate the errors in the calculations.
|
state is given by
|
||||||
|
|
||||||
Because our selection procedure ensures that the rPT2 values of both states match as well as possible (a trick known as PT2 matching \cite{Dash_2018,Dash_2019}), i.e., $E_{\text{rPT2}} = E_{\text{rPT2}}^{(0)} \approx E_{\text{rPT2}}^{(m)}$, the extrapolated excitation energy associated with the $m$th excited state can be estimated as
|
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\Delta E_{\text{FCI}}^{(m)}
|
\Delta E_{\text{FCI}}^{(m)}
|
||||||
= \qty[ E_\text{var}^{(m)} + E_{\text{rPT2}} + \qty(\alpha^{(m)}-1) E_{\text{rPT2}} ]
|
= \qty[ E_\text{var}^{(m)} + E_{\text{rPT2}} + \qty(\alpha^{(m)}-1) E_{\text{rPT2}} ]
|
||||||
- \qty[ E_\text{var}^{(0)} + E_{\text{rPT2}} + \qty(\alpha^{(0)}-1) E_{\text{rPT2}} ]
|
- \qty[ E_\text{var}^{(0)} + E_{\text{rPT2}} + \qty(\alpha^{(0)}-1) E_{\text{rPT2}} ]
|
||||||
+ \order{E_{\text{rPT2}}^2 }
|
+ O\qty[{E_{\text{rPT2}}^2 }]
|
||||||
\end{equation}
|
\end{equation}
|
||||||
which evidences that the error in $\Delta E_{\text{FCI}}^{(m)}$ can be expressed as $\qty(\alpha^{(m)}-\alpha^{(0)}) E_{\text{rPT2}} + \order{E_{\text{rPT2}}^2}$.
|
which evidences that the error in $\Delta E_{\text{FCI}}^{(m)}$ can be expressed as $\qty(\alpha^{(m)}-\alpha^{(0)}) E_{\text{rPT2}} + O\qty[{E_{\text{rPT2}}^2}]$.
|
||||||
Moreover, using a common set of state-averaged natural orbitals for the ground and excited states tends to make the values of $\alpha^{(0)}$ and $\alpha^{(m)}$ very close to each other, such that the error on the energy difference is practically of the order of $E_{\text{rPT2}}^2$.
|
|
||||||
|
|
||||||
At the $n$th CIPSI iteration, we have access to the variational energies of both states, $E_\text{var}^{(0)}(n)$ and $E_\text{var}^{(m)}(n)$, as well as their rPT2 corrections, $E_{\text{rPT2}}^{(0)}(n)$ and $E_{\text{rPT2}}^{(m)}(n)$.
|
Now, for the largest systems considered here, $\qty|{E_{\text{rPT2}}}|$ can be as large as 2~eV and, thus,
|
||||||
The $m$th excitation energy at iteration $n$ is then assumed to be a Gaussian random variable with mean
|
the accuracy of the excitation energy estimates strongly depends on our ability to compensate the errors in the calculations.
|
||||||
|
Here, we greatly enhance the compensation of errors by making use of
|
||||||
|
our selection procedure ensuring that the PT2 values of both states
|
||||||
|
match as well as possible (a trick known as PT2 matching
|
||||||
|
\cite{Dash_2018,Dash_2019}), i.e. $E_{\text{rPT2}} =
|
||||||
|
E_{\text{rPT2}}^{(0)} \approx E_{\text{rPT2}}^{(m)}$, and
|
||||||
|
by using a common set of state-averaged natural orbitals with equal weights for the ground and excited states.
|
||||||
|
This last feature tends to make the values of $\alpha^{(0)}$ and $\alpha^{(m)}$ very close to each other, such that the error on the energy difference
|
||||||
|
is decreased.
|
||||||
|
In the ideal case where we would be able to fully correlate the CIPSI calculations for the ground- and excited-states, the fluctuations of
|
||||||
|
$\Delta E_\text{CIPSI}^{(m)}(n)$ as a function of $n$ would completely vanish and the exact excitation energy would be obtained from the first CIPSI iterations.
|
||||||
|
Quite remarkably, in practice, numerical experience shows that the fluctuations with respect to the extrapolated value $\Delta E_\text{FCI}^{(m)}$ are small,
|
||||||
|
zero-centered, almost independent of $n$ when not too close iteration
|
||||||
|
numbers are considered, and display a Gaussian-like distribution.
|
||||||
|
In addition, the fluctuations are found to be (very weakly) dependent on the iteration number $n$ (see, Fig.\ref{fig2}), so
|
||||||
|
this dependence will not significantly alter our results and will not be considered here.
|
||||||
|
We thus introduce the following random variable
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\Delta E_\text{CIPSI}^{(m)}(n) = \qty[ E_\text{var}^{(m)}(n) + E_{\text{rPT2}}^{(m)}(n) ] - \qty[ E_\text{var}^{(0)}(n) + E_{\text{rPT2}}^{(0)}(n) ]
|
X^{(m)}= \frac{\Delta E_\text{CIPSI}^{(m)}(n)- \Delta E_\text{FCI}^{(m)}}{\sigma(n)}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
and variance
|
where
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\sigma^2(n) \propto \qty[E_{\text{rPT2}}^{(m)}(n)]^2 + \qty[E_{\text{rPT2}}^{(0)}(n)]^2
|
\Delta E_\text{CIPSI}^{(m)}(n) = \qty[ E_\text{var}^{(m)}(n) +
|
||||||
|
E_{\text{rPT2}}^{(m)}(n) ]
|
||||||
|
- \qty[ E_\text{var}^{(0)}(n) + E_{\text{rPT2}}^{(0)}(n) ],
|
||||||
\end{equation}
|
\end{equation}
|
||||||
and we treat all CIPSI iterations as a set of Gaussian-distributed variables ($\mathcal{G}$) with weights $w(n) = 1/\sqrt{\sigma^2(n)}$.
|
and
|
||||||
This choice ensures that the statistical uncertainty vanishes at the FCI limit.
|
${\sigma(n)}$ is a quantity proportional to the average fluctuations of $\Delta E_\text{CIPSI}^{(m)}$.
|
||||||
We then search for a confidence interval $\mathcal{I}$ such that the true value of the excitation energy $\Delta E_{\text{FCI}}^{(m)}$ lies within one standard deviation of $\Delta E_\text{CIPSI}^{(m)}$, i.e., $P( \Delta E_{\text{FCI}}^{(m)} \in [ \Delta E_\text{CIPSI}^{(m)} \pm \sigma ] \; | \; \mathcal{G}) = 0.6827$.
|
A natural choice for $\sigma^2(n)$, playing here the role of a variance, is
|
||||||
The probability that $\Delta E_{\text{FCI}}^{(m)}$ is in an interval $\mathcal{I}$ is
|
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
P\qty( \Delta E_{\text{FCI}}^{(m)} \in \mathcal{I} ) = P\qty( \Delta E_{\text{FCI}}^{(m)} \in I \Big| \mathcal{G}) \times P(\mathcal{G})
|
\sigma^2(n) \propto \qty[E_{\text{rPT2}}^{(m)}(n)]^2 + \qty[E_{\text{rPT2}}^{(0)}(n)]^2,
|
||||||
\end{equation}
|
\end{equation}
|
||||||
where the probability $P(\mathcal{G})$ that the random variables are normally distributed can be deduced from the Jarque-Bera test $J$ as
|
which vanishes in the large-$n$ limit as it should be.
|
||||||
|
|
||||||
|
%%% FIGURE 2 %%%
|
||||||
|
\begin{figure}
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=0.9\linewidth]{fig2/fig2}
|
||||||
|
\caption{Histogram of the random variable $X^{(m)}$ (see, text). About 200 values of the transition energies
|
||||||
|
for the 13 five- and six-membered ring molecules, both for the singlet and triplet transitions and for a number of CIPSI iterations, are used.
|
||||||
|
The number $M$ of iterations kept is chosen according to the statistical test presented in the text.}
|
||||||
|
\label{fig2}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
The histogram of $X^{(m)}$ resulting from the excitation energies
|
||||||
|
obtained at different values of the CIPSI iterations $n$
|
||||||
|
and for the 13 five- and six-membered ring molecules, both for the singlet and triplet transitions,
|
||||||
|
is shown in Fig.\ref{fig2}. To avoid transient effects, only excitation energies at sufficiently large $n$ are retained in the data set.
|
||||||
|
The criterion used to decide from which precise value of $n$ the data should be kept will be presented below. In our application, the total number
|
||||||
|
of values employed to make the histogram is about 200. The dashed line of Fig.\ref{fig2} represents the best Gaussian fit
|
||||||
|
(in the sense of least-squares) reproducing the data.
|
||||||
|
As seen, the distribution can be described by the Gaussian probability
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
P(\mathcal{G}) = 1 - \chi^2_{\text{CDF}}(J,2)
|
P\qty[X^{(m)}] \propto e^{-\frac{{X^{(m)}}^2} {2{\sigma^{*}}^2}}
|
||||||
|
\end{equation}
|
||||||
|
where $\sigma^{*2}$ is some "universal" variance depending only
|
||||||
|
on the way the correlated selection of both states is done, not on the molecule considered in our set.
|
||||||
|
|
||||||
|
An estimate of $\Delta E_{\text{FCI}}^{(m)}$ as the average excitation energy of $\Delta E_\text{CIPSI}^{(m)}$ is thus
|
||||||
|
$$\Delta E_\text{FCI}^{(m)} = \frac{ \sum_{n=1}^M \frac{\Delta E_\text{CIPSI}^{(m)}(n)} {\sigma(n)} }
|
||||||
|
{ \sum_{n=1}^M \frac{1}{\sigma(n)} },
|
||||||
|
$$
|
||||||
|
where $M$ is the number of data kept.
|
||||||
|
Now, regarding the estimate of the error on $\Delta E_\text{FCI}^{(m)}$ some caution is required since, although the distribution is globally Gaussian-like
|
||||||
|
(see Fig.\ref{fig2}) there exists
|
||||||
|
some significant departure from it and we need to take this feature into account.
|
||||||
|
|
||||||
|
More precisely, we search for a confidence interval $\mathcal{I}$ such that the true value of the excitation energy $\Delta E_{\text{FCI}}^{(m)}$ lies within one standard deviation of $\Delta E_\text{CIPSI}^{(m)}$, i.e., $P\qty( \Delta E_{\text{FCI}}^{(m)} \in \qty[ \Delta E_\text{CIPSI}^{(m)} \pm \sigma ] \; \Big| \; \mathcal{G}) = 0.6827$.
|
||||||
|
In a Bayesian framework, the probability that $\Delta E_{\text{FCI}}^{(m)}$ is in an interval $\mathcal{I}$ is
|
||||||
|
\begin{equation}
|
||||||
|
P\qty( \Delta E_{\text{FCI}}^{(m)} \in \mathcal{I} ) = P\qty( \Delta E_{\text{FCI}}^{(m)} \in I \Big| \mathcal{G}) \times P\qty(\mathcal{G})
|
||||||
|
\end{equation}
|
||||||
|
where $P\qty(\mathcal{G})$ is the probability that the random variables considered in the latest CIPSI iterations are normally distributed.
|
||||||
|
A common test in statistics of the normality of a distribution is the Jarque-Bera test $J$ and we have
|
||||||
|
\begin{equation}
|
||||||
|
P\qty(\mathcal{G}) = 1 - \chi^2_{\text{CDF}}(J,2)
|
||||||
\end{equation}
|
\end{equation}
|
||||||
where $\chi^2_{\text{CDF}}(x,k)$ is the cumulative distribution function (CDF) of the $\chi^2$-distribution with $k$ degrees of freedom.
|
where $\chi^2_{\text{CDF}}(x,k)$ is the cumulative distribution function (CDF) of the $\chi^2$-distribution with $k$ degrees of freedom.
|
||||||
As the number of samples is usually small, we use Student's $t$-distribution to estimate the statistical error.
|
As the number of samples $M$ is usually small, we use Student's $t$-distribution to estimate the statistical error.
|
||||||
The inverse of the cumulative distribution function of the $t$-distribution, $t_{\text{CDF}}^{-1}$, allows us to find how to scale the interval by a parameter
|
The inverse of the cumulative distribution function of the $t$-distribution, $t_{\text{CDF}}^{-1}$, allows us to find how to scale the interval by a parameter
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\beta = t_{\text{CDF}}^{-1} \qty[
|
\beta = t_{\text{CDF}}^{-1} \qty[
|
||||||
\frac{1}{2} \qty( 1 + \frac{0.6827}{P(\mathcal{G})}), M ]
|
\frac{1}{2} \qty( 1 + \frac{0.6827}{P(\mathcal{G})}), M ]
|
||||||
\end{equation}
|
\end{equation}
|
||||||
such that $P\qty( \Delta E_{\text{FCI}}^{(m)} \in \qty[ \Delta E_{\text{CIPSI}}^{(m)} \pm \beta \sigma ] ) = p = 0.6827$.
|
such that $P\qty( \Delta E_{\text{FCI}}^{(m)} \in \qty[ \Delta E_{\text{CIPSI}}^{(m)} \pm \beta \sigma ] ) = p = 0.6827$.
|
||||||
Only the last $M>2$ computed energy differences are considered. $M$ is chosen such that $P(\mathcal{G})>0.8$ and such that the error bar is minimal.
|
Only the last $M>2$ computed transition energies are considered. $M$ is chosen such that $P(\mathcal{G})>0.8$ and such that the error bar is minimal.
|
||||||
If all the values of $P(\mathcal{G})$ are below $0.8$, $M$ is chosen such that $P(\mathcal{G})$ is maximal.
|
If all the values of $P(\mathcal{G})$ are below $0.8$, $M$ is chosen such that $P(\mathcal{G})$ is maximal.
|
||||||
A Python code associated with this procedure is provided in the {\SupInf}.
|
A Python code associated with this procedure is provided in the {\SupInf}.
|
||||||
|
|
||||||
@ -409,10 +469,10 @@ The error bars reported in parenthesis correspond to one standard deviation.
|
|||||||
\end{threeparttable}
|
\end{threeparttable}
|
||||||
\end{table}
|
\end{table}
|
||||||
|
|
||||||
%%% FIGURE 2 %%%
|
%%% FIGURE 3 %%%
|
||||||
\begin{figure}
|
\begin{figure}
|
||||||
\centering
|
\centering
|
||||||
\includegraphics[width=\linewidth]{fig2}
|
\includegraphics[width=\linewidth]{fig3}
|
||||||
\caption{Deviation from the CCSDT excitation energies for the lowest singlet and triplet excitation energies (in eV) of five- and six-membered rings obtained at the CIPSI/6-31+G(d) level of theory. Red dots: excitation energies and error bars estimated via the present method (see Sec.~\ref{sec:error}). Blue dots: excitation energies obtained via a three-point linear fit using the three largest CIPSI wave functions, and error bars estimated via the extrapolation distance, \ie, the difference in excitation energies obtained with the three-point linear extrapolation and the largest CIPSI wave function.}
|
\caption{Deviation from the CCSDT excitation energies for the lowest singlet and triplet excitation energies (in eV) of five- and six-membered rings obtained at the CIPSI/6-31+G(d) level of theory. Red dots: excitation energies and error bars estimated via the present method (see Sec.~\ref{sec:error}). Blue dots: excitation energies obtained via a three-point linear fit using the three largest CIPSI wave functions, and error bars estimated via the extrapolation distance, \ie, the difference in excitation energies obtained with the three-point linear extrapolation and the largest CIPSI wave function.}
|
||||||
\label{fig:errors}
|
\label{fig:errors}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
@ -430,10 +490,10 @@ from diatomics to molecules as large as naphthalene (see Fig.~\ref{fig:molecules
|
|||||||
pure hydrocarbons and various heteroatomic structures, etc. Each of the five subsets making up the QUEST dataset is detailed below. Throughout the present review, we report several statistical indicators: the mean signed
|
pure hydrocarbons and various heteroatomic structures, etc. Each of the five subsets making up the QUEST dataset is detailed below. Throughout the present review, we report several statistical indicators: the mean signed
|
||||||
error (MSE), mean absolute error (MAE), root-mean square error (RMSE), and standard deviation of the errors (SDE), as well as the maximum positive [Max(+)] and maximum negative [Max($-$)] errors.
|
error (MSE), mean absolute error (MAE), root-mean square error (RMSE), and standard deviation of the errors (SDE), as well as the maximum positive [Max(+)] and maximum negative [Max($-$)] errors.
|
||||||
|
|
||||||
%%% FIGURE 3 %%%
|
%%% FIGURE 4 %%%
|
||||||
\begin{figure}
|
\begin{figure}
|
||||||
\centering
|
\centering
|
||||||
\includegraphics[width=\linewidth]{fig3}
|
\includegraphics[width=\linewidth]{fig4}
|
||||||
\caption{Molecules from each of the five subsets making up the present QUEST dataset of highly-accurate vertical excitation energies:
|
\caption{Molecules from each of the five subsets making up the present QUEST dataset of highly-accurate vertical excitation energies:
|
||||||
QUEST\#1 (red), QUEST\#2 (magenta and/or underlined), QUEST\#3 (black), QUEST\#4 (green), and QUEST\#5 (blue).}
|
QUEST\#1 (red), QUEST\#2 (magenta and/or underlined), QUEST\#3 (black), QUEST\#4 (green), and QUEST\#5 (blue).}
|
||||||
\label{fig:molecules}
|
\label{fig:molecules}
|
||||||
|
Binary file not shown.
33
Manuscript/fig2/data_gaussian_histogram_paper
Normal file
33
Manuscript/fig2/data_gaussian_histogram_paper
Normal file
@ -0,0 +1,33 @@
|
|||||||
|
-5.8181818181818182E-002 1.0503392263823726E-013
|
||||||
|
-5.4545454545454543E-002 3.1979374437806884E-012
|
||||||
|
-5.0909090909090911E-002 7.8108457347063320E-011
|
||||||
|
-4.7272727272727272E-002 1.5304314242122915E-009
|
||||||
|
-4.3636363636363640E-002 2.4055667144690598E-008
|
||||||
|
-4.0000000000000001E-002 3.0332531323628614E-007
|
||||||
|
-3.6363636363636362E-002 3.0682279452286258E-006
|
||||||
|
-3.2727272727272730E-002 2.4897417674801438E-005
|
||||||
|
-2.9090909090909087E-002 1.6207226680756907E-004
|
||||||
|
-2.5454545454545448E-002 8.4635161104256395E-004
|
||||||
|
-2.1818181818181816E-002 3.5455258945109665E-003
|
||||||
|
-1.8181818181818177E-002 1.1915114370157230E-002
|
||||||
|
-1.4545454545454540E-002 3.2122067227954430E-002
|
||||||
|
-1.0909090909090908E-002 6.9469868291055614E-002
|
||||||
|
-7.2727272727272693E-003 0.12052501154967402
|
||||||
|
-3.6363636363636368E-003 0.16774346335684942
|
||||||
|
2.1684043449710089E-018 0.18728446158700213
|
||||||
|
3.6363636363636411E-003 0.16774346335685103
|
||||||
|
7.2727272727272797E-003 0.12052501154967629
|
||||||
|
1.0909090909090912E-002 6.9469868291057640E-002
|
||||||
|
1.4545454545454544E-002 3.2122067227955672E-002
|
||||||
|
1.8181818181818191E-002 1.1915114370157782E-002
|
||||||
|
2.1818181818181823E-002 3.5455258945111712E-003
|
||||||
|
2.5454545454545455E-002 8.4635161104262119E-004
|
||||||
|
2.9090909090909101E-002 1.6207226680758102E-004
|
||||||
|
3.2727272727272730E-002 2.4897417674803691E-005
|
||||||
|
3.6363636363636362E-002 3.0682279452289367E-006
|
||||||
|
3.9999999999999994E-002 3.0332531323632113E-007
|
||||||
|
4.3636363636363640E-002 2.4055667144693550E-008
|
||||||
|
4.7272727272727272E-002 1.5304314242124981E-009
|
||||||
|
5.0909090909090904E-002 7.8108457347074978E-011
|
||||||
|
5.4545454545454550E-002 3.1979374437811545E-012
|
||||||
|
5.8181818181818182E-002 1.0503392263825442E-013
|
33
Manuscript/fig2/data_histogram_paper
Normal file
33
Manuscript/fig2/data_histogram_paper
Normal file
@ -0,0 +1,33 @@
|
|||||||
|
-5.8283990969853983E-002 0.0000000000000000
|
||||||
|
-5.4692045827783142E-002 0.0000000000000000
|
||||||
|
-5.1100100685712302E-002 5.2356020942408380E-003
|
||||||
|
-4.7508155543641448E-002 0.0000000000000000
|
||||||
|
-4.3916210401570607E-002 5.2356020942408380E-003
|
||||||
|
-4.0324265259499767E-002 1.0471204188481676E-002
|
||||||
|
-3.6732320117428927E-002 0.0000000000000000
|
||||||
|
-3.3140374975358072E-002 0.0000000000000000
|
||||||
|
-2.9548429833287228E-002 5.2356020942408380E-003
|
||||||
|
-2.5956484691216385E-002 5.2356020942408380E-003
|
||||||
|
-2.2364539549145530E-002 5.2356020942408380E-003
|
||||||
|
-1.8772594407074690E-002 1.0471204188481676E-002
|
||||||
|
-1.5180649265003851E-002 3.6649214659685861E-002
|
||||||
|
-1.1588704122933013E-002 4.1884816753926704E-002
|
||||||
|
-7.9967589808621585E-003 9.4240837696335081E-002
|
||||||
|
-4.4048138387913181E-003 0.13612565445026178
|
||||||
|
-8.1286869672047755E-004 0.21465968586387435
|
||||||
|
2.7790764453503769E-003 0.10471204188481675
|
||||||
|
6.3710215874212169E-003 0.12565445026178010
|
||||||
|
9.9629667294920572E-003 7.3298429319371722E-002
|
||||||
|
1.3554911871562898E-002 2.0942408376963352E-002
|
||||||
|
1.7146857013633738E-002 4.1884816753926704E-002
|
||||||
|
2.0738802155704582E-002 5.2356020942408380E-003
|
||||||
|
2.4330747297775450E-002 1.0471204188481676E-002
|
||||||
|
2.7922692439846290E-002 1.0471204188481676E-002
|
||||||
|
3.1514637581917131E-002 5.2356020942408380E-003
|
||||||
|
3.5106582723987964E-002 1.5706806282722512E-002
|
||||||
|
3.8698527866058804E-002 5.2356020942408380E-003
|
||||||
|
4.2290473008129645E-002 0.0000000000000000
|
||||||
|
4.5882418150200485E-002 0.0000000000000000
|
||||||
|
4.9474363292271353E-002 0.0000000000000000
|
||||||
|
5.3066308434342194E-002 5.2356020942408380E-003
|
||||||
|
5.6658253576413034E-002 0.0000000000000000
|
59
Manuscript/fig2/fig2.org
Normal file
59
Manuscript/fig2/fig2.org
Normal file
@ -0,0 +1,59 @@
|
|||||||
|
** Initialize R packages
|
||||||
|
#+begin_src R :results output :session *R* :exports code
|
||||||
|
library(ggplot2)
|
||||||
|
library(latex2exp)
|
||||||
|
library(extrafont)
|
||||||
|
library(RColorBrewer)
|
||||||
|
loadfonts()
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+RESULTS:
|
||||||
|
:
|
||||||
|
: Registering fonts with R
|
||||||
|
|
||||||
|
** Read data
|
||||||
|
#+begin_src R :results output :session *R* :exports both
|
||||||
|
df <- read.table("data_histogram_paper");
|
||||||
|
df$x <- df$V1
|
||||||
|
df$y <- df$V2
|
||||||
|
df2 <- read.table("data_gaussian_histogram_paper");
|
||||||
|
spline.d <- as.data.frame(spline(df2$V1, df2$V2))
|
||||||
|
summary(spline.d)
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+RESULTS:
|
||||||
|
:
|
||||||
|
: x y
|
||||||
|
: Min. :-0.05818 Min. :0.000e+00
|
||||||
|
: 1st Qu.:-0.02909 1st Qu.:2.000e-08
|
||||||
|
: Median : 0.00000 Median :1.213e-04
|
||||||
|
: Mean : 0.00000 Mean :3.093e-02
|
||||||
|
: 3rd Qu.: 0.02909 3rd Qu.:3.011e-02
|
||||||
|
: Max. : 0.05818 Max. :1.873e-01
|
||||||
|
|
||||||
|
#+begin_src R :results output graphics :file (org-babel-temp-file "figure" ".png") :exports both :width 600 :height 400 :session *R*
|
||||||
|
p <- ggplot(data=df, aes(x, y)) +
|
||||||
|
geom_bar(stat="identity", fill="steelblue")
|
||||||
|
p <- p+ geom_line(data=spline.d, lwd=1, linetype="dashed")
|
||||||
|
p <- p + scale_x_continuous(name=TeX("$X^{(m)}$"))
|
||||||
|
p <- p + scale_y_continuous(name=TeX("Frequency"))
|
||||||
|
p <- p + theme(text = element_text(size = 20, family="Times"),
|
||||||
|
legend.position = c(.20, .20),
|
||||||
|
legend.title = element_blank())
|
||||||
|
p
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+RESULTS:
|
||||||
|
[[file:/tmp/babel-nBBwmV/figureJJu58N.png]]
|
||||||
|
|
||||||
|
* Export to pdf
|
||||||
|
#+begin_src R :results output :session *R* :exports code
|
||||||
|
pdf("fig2.pdf", family="Times", width=8, height=5)
|
||||||
|
p
|
||||||
|
dev.off()
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+RESULTS:
|
||||||
|
:
|
||||||
|
: png
|
||||||
|
: 2
|
BIN
Manuscript/fig2/fig2.pdf
Normal file
BIN
Manuscript/fig2/fig2.pdf
Normal file
Binary file not shown.
Binary file not shown.
BIN
Manuscript/fig4.pdf
Normal file
BIN
Manuscript/fig4.pdf
Normal file
Binary file not shown.
Loading…
Reference in New Issue
Block a user