revision Denis

This commit is contained in:
Pierre-Francois Loos 2020-11-21 15:35:24 +01:00
parent edc2bb6e39
commit b73d59066e
53 changed files with 104926 additions and 355 deletions

Binary file not shown.

File diff suppressed because it is too large Load Diff

500
Data/TBE.dat Normal file
View File

@ -0,0 +1,500 @@
1 & Acetaldehyde & $^1A'' (n \ra \pi^*)$ & V & 91 & 0. & 4.31 & exFCI/AVTZ & Y \\
2 & & $^3A'' (n \ra \pi^*)$ & V & 97 & & 3.97 & exFCI/AVDZ + [CCSDT/AVTZ - CCSDT/AVDZ] & Y \\
3 & Acetone & $^1A_2  (n \ra \pi^*)$ & V & 91 & & 4.47 & CCSDTQ/6-31+G(d) + [CCSDT/AVTZ - CCSDT/6-31+G(d)] & Y \\
4 & & $^1B_2  (n \ra 3s)$ & R & 90 & 0. & 6.46 & CCSDTQ/6-31+G(d) + [CCSDT/AVTZ - CCSDT/6-31+G(d)] & Y \\
5 & & $^1A_2  (n \ra 3p)$ & R & 90 & & 7.47 & CCSDTQ/6-31+G(d) + [CCSDT/AVTZ - CCSDT/6-31+G(d)] & Y \\
6 & & $^1A_1  (n \ra 3p)$ & R & 90 & 0.004 & 7.51 & CCSDTQ/6-31+G(d) + [CCSDT/AVTZ - CCSDT/6-31+G(d)] & Y \\
7 & & $^1B_2  (n \ra 3p)$ & R & 91 & 0.029 & 7.62 & CCSDTQ/6-31+G(d) + [CCSDT/AVTZ - CCSDT/6-31+G(d)] & Y \\
8 & & $^3A_2  (n \ra \pi^*)$ & V & 97 & & 4.13 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
9 & & $^3A_1  (\pi \ra \pi^*)$ & V & 98 & & 6.25 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
10 & Acetylene & $^1\Sigma_u^-  (\pi \ra \pi^*)$ & V & 96 & & 7.10 & exFCI/AVTZ & Y \\
11 &                               & $^1\Delta_u (\pi \ra \pi^*)$ & V & 93 & & 7.44 & exFCI/AVTZ & Y \\
12 &                               & $^3\Sigma_u^+ (\pi \ra \pi^*)$ & V & 99 & & 5.53 & exFCI/AVTZ & Y \\
13 &                               & $^3\Delta_u (\pi \ra \pi^*)$ & V & 99 & & 6.40 & exFCI/AVTZ & Y \\
14 &                               & $^3\Sigma_u^-  (\pi \ra \pi^*)$ & V & 98 & & 7.08 & exFCI/AVTZ & Y \\
15 &                               & $^1A_u [F] (\pi \ra \pi^*)$ & V & 95 & & 3.64 & exFCI/AVTZ & Y \\
16 & & $^1A_2 [F] (\pi \ra \pi^*)$ & V & 95 & & 3.85 & exFCI/AVTZ & Y \\
17 & Acrolein & $^1A''  (n \ra \pi^*)$ & V & 87 & 0. & 3.78 & exFCI/6-31+G(d) + [CCSDT/AVTZ - CCSDT/6-31+G(d)] & Y \\
18 & & $^1A'  (\pi \ra \pi^*)$ & V & 91 & 0.344 & 6.69 & CCSDT/AVTZ & Y \\
19 & & $^1A''  (n \ra \pi^*)$ & V & 79 & 0. & 6.72 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & N \\
20 & & $^1A'  (n \ra 3s)$ & R & 89 & 0.109 & 7.08 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
21 & & $^1A'  (\text{double})$ & V & 75 & n.d. & 7.87 & exFCI/6-31+G(d) + [CC3/AVTZ - CC3/6-31+G(d)] & Y \\
22 & & $^3A''  (n \ra \pi^*)$ & V & 97 & & 3.51 & exFCI/6-31+G(d) + [CC3/AVTZ - CC3/6-31+G(d)] & Y \\
23 & & $^3A'  (\pi \ra \pi^*)$ & V & 98 & & 3.94 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
24 & & $^3A'   (\pi \ra \pi^*)$ & V & 98 & & 6.18 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
25 & & $^3A''  (n \ra \pi^*)$ & V & 92 & & 6.54 & CCSDT/6-31+G(d) + [CC3/AVTZ - CC3/6-31+G(d)] & N \\
26 & Ammonia & $^1A_2  (n \ra 3s)$ & R & 93 & 0.086 & 6.59 & exFCI/AVTZ & Y \\
27 &                               & $^1E  (n \ra 3p)$ & R & 93 & 0.006 & 8.16 & exFCI/AVTZ & Y \\
28 &                               & $^1A_1  (n \ra 3p)$ & R & 94 & 0.003 & 9.33 & exFCI/AVTZ & Y \\
29 &                               & $^1A_2  (n \ra 3s)$ & R & 93 & 0.008 & 9.96 & exFCI/AVTZ & Y \\
30 &                               & $^3A_2  (n \ra 3s)$ & R & 98 & & 6.31 & exFCI/AVTZ & Y \\
31 & Aza-naphthalene & $^1B_{3g} (n \ra \pi^*)$ & V & 88 & & 3.14 & CCSDT/6-31+G(d) + [CC3/AVTZ - CC3/6-31+G(d)] & Y \\
32 & & $^1B_{2u} (\pi \ra \pi^*)$ & V & 86 & 0.190 & 4.28 & CCSDT/6-31+G(d) + [CC3/AVTZ - CC3/6-31+G(d)] & Y \\
33 & & $^1B_{1u} (n \ra \pi^*)$ & V & 88 & n.d. & 4.34 & CCSDT/6-31+G(d) + [CC3/AVTZ - CC3/6-31+G(d)] & Y \\
34 & & $^1B_{2g}   (n \ra \pi^*)$ & V & 87 & & 4.55 & CCSDT/6-31+G(d) + [CC3/AVTZ - CC3/6-31+G(d)] & Y \\
35 & & $^1B_{2g}   (n \ra \pi^*)$ & V & 84 & & 4.89 & CCSDT/6-31+G(d) + [CC3/AVTZ - CC3/6-31+G(d)] & Y \\
36 & & $^1B_{1u} (n \ra \pi^*)$ & V & 82 & n.d. & 5.24 & CCSDT/6-31+G(d) + [CC3/AVTZ - CC3/6-31+G(d)] & N \\
37 & & $^1A_u (n \ra \pi^*)$ & V & 83 & & 5.34 & CCSDT/6-31+G(d) + [CC3/AVTZ - CC3/6-31+G(d)] & Y \\
38 & & $^1B_{3u} (\pi \ra \pi^*)$ & V & 88 & 0.028 & 5.68 & CCSDT/6-31+G(d) + [CC3/AVTZ - CC3/6-31+G(d)] & N \\
39 & & $^1A_g (\pi \ra \pi^*)$ & V & 85 & & 5.80 & CCSDT/6-31+G(d) + [CC3/AVTZ - CC3/6-31+G(d)] & Y \\
40 & & $^1A_u (n \ra \pi^*)$ & V & 84 & & 5.92 & CCSDT/6-31+G(d) + [CC3/AVTZ - CC3/6-31+G(d)] & Y \\
41 & & $^1A_g (n \ra 3s)$ & R & 90 & & 6.50 & CCSDT/6-31+G(d) + [CC3/AVTZ - CC3/6-31+G(d)] & Y \\
42 & & $^3B_{3g}   (n \ra \pi^*)$ & V & 96 & & 2.82 & CC3/AVTZ & N \\
43 & & $^3B_{2u} (\pi \ra \pi^*)$ & V & 97 & & 3.67 & CC3/AVTZ & N \\
44 & & $^3B_{3u} (\pi \ra \pi^*)$ & V & 97 & & 3.75 & CC3/AVTZ & N \\
45 & & $^3B_{1u} (n \ra \pi^*)$ & V & 97 & & 3.77 & CC3/AVTZ & N \\
46 & & $^3B_{2g} (n \ra \pi^*)$ & V & 96 & & 4.34 & CC3/AVTZ & N \\
47 & & $^3B_{2g} (n \ra \pi^*)$ & V & 95 & & 4.61 & CC3/AVTZ & N \\
48 & & $^3B_{3u} (\pi \ra \pi^*)$ & V & 96 & & 4.75 & CC3/AVTZ & N \\
49 & & $^3A_u (n \ra \pi^*)$ & V & 96 & & 4.87 & CC3/AVTZ & N \\
50 & Beryllium & $^1D (\text{double})$ & R & 32 & & 7.15 & exFCI/AVTZ & Y \\
51 & Benzene & $^1B_{2u}   (\pi \ra \pi^*)$ & V & 86 & & 5.06 & CCSDT/AVTZ & Y \\
52 & & $^1B_{1u}   (\pi \ra \pi^*)$ & V & 92 & & 6.45 & CCSDT/AVTZ & Y \\
53 & & $^1E_{1g}   (\pi \ra 3s)$ & R & 92 & & 6.52 & CCSDT/AVTZ & Y \\
54 & & $^1A_{2u}    (\pi \ra 3p)$ & R & 93 & 0.066 & 7.08 & CCSDT/AVTZ & Y \\
55 & & $^1E_{2u}    (\pi \ra 3p)$ & R & 92 & & 7.15 & CCSDT/AVTZ & Y \\
56 & & $^1E_{2g}   (\pi \ra \pi^*)$ & V & 73 & & 8.28 & exFCI/6-31+G(d) + [CC3/AVTZ - CC3/6-31+G(d)] & Y \\
57 & & $^1A_{1g}   (\text{double})$ & V & IntegerPart["n.d."] & & 10.55 & XMS-CASPT2/AVTZ & N \\
58 & & $^3B_{1u}   (\pi \ra \pi^*)$ & V & 98 & & 4.16 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
59 & & $^3E_{1u}  (\pi \ra \pi^*)$ & V & 97 & & 4.85 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
60 & & $^3B_{2u}   (\pi \ra \pi^*)$ & V & 98 & & 5.81 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
61 & Benzoquinone & $^1B_{1g}   (n \ra \pi^*)$ & V & 85 & & 2.82 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
62 & & $^1A_u (n \ra \pi^*)$ & V & 84 & & 2.96 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
63 & & $^1A_g (\text{double})$ & V & 0 & & 4.57 & NEVPT2/AVTZ & N \\
64 & & $^1B_{3g}   (\pi \ra \pi^*)$ & V & 88 & & 4.58 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & N \\
65 & & $^1B_{1u}   (\pi \ra \pi^*)$ & V & 88 & 0.471 & 5.62 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & N \\
66 & & $^1B_{3u}   (n \ra \pi^*)$ & V & 79 & 0.001 & 5.79 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & N \\
67 & & $^1B_{2g}   (n \ra \pi^*)$ & V & 76 & & 5.95 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
68 & & $^1A_u (n \ra \pi^*)$ & V & 74 & & 6.35 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & N \\
69 & & $^1B_{1g}   (n \ra \pi^*)$ & V & 83 & & 6.38 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & N \\
70 & & $^1B_{2g}   (n \ra \pi^*)$ & V & 86 & & 7.22 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
71 & & $^3B_{1g}   (n \ra \pi^*)$ & V & 96 & & 2.58 & CCSDT/6-31+G(d) + [CC3/AVTZ - CC3/6-31+G(d)] & Y \\
72 & & $^3A_u (n \ra \pi^*)$ & V & 95 & & 2.72 & CCSDT/6-31+G(d) + [CC3/AVTZ - CC3/6-31+G(d)] & Y \\
73 & & $^3B_{1u}   (\pi \ra \pi^*)$ & V & 97 & & 3.12 & CCSDT/6-31+G(d) + [CC3/AVTZ - CC3/6-31+G(d)] & Y \\
74 & & $^3B_{3g}   (\pi \ra \pi^*)$ & V & 97 & & 3.46 & CCSDT/6-31+G(d) + [CC3/AVTZ - CC3/6-31+G(d)] & Y \\
75 & Butadiene & $^1B_u   (\pi \ra \pi^*)$ & V & 93 & 0.664 & 6.22 & CCSDTQ/6-31+G(d) + [CCSDT/AVTZ - CCSDT/6-31+G(d)] & Y \\
76 & & $^1B_g  (\pi \ra 3s)$ & R & 94 & & 6.33 & CCSDTQ/6-31+G(d) + [CCSDT/AVTZ - CCSDT/6-31+G(d)] & Y \\
77 & & $^1A_g   (\pi \ra \pi^*)$ & V & 75 & & 6.50 & exFCI/AVDZ + [CCSDT/AVTZ - CCSDT/AVDZ] & Y \\
78 & & $^1A_u  (\pi \ra 3p)$ & R & 94 & 0.001 & 6.64 & CCSDTQ/6-31+G(d) + [CCSDT/AVTZ - CCSDT/6-31+G(d)] & Y \\
79 & & $^1A_u  (\pi \ra 3p)$ & R & 94 & 0.049 & 6.80 & CCSDTQ/6-31+G(d) + [CCSDT/AVTZ - CCSDT/6-31+G(d)] & Y \\
80 & & $^1B_u  (\pi \ra 3p)$ & R & 93 & 0.055 & 7.68 & CCSDTQ/6-31+G(d) + [CC3/AVTZ - CC3/6-31+G(d)] & Y \\
81 & & $^3B_u  (\pi \ra \pi^*)$ & V & 98 & & 3.36 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
82 & & $^3A_g  (\pi \ra \pi^*)$ & V & 98 & & 5.20 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
83 & & $^3B_g  (\pi \ra 3s)$ & R & 97 & & 6.29 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
84 & Carbon Dimer & $^1\Delta_g (\text{double})$ & R & 0 & & 2.09 & exFCI/AVTZ & Y \\
85 & & $^1\Sigma^+_g  (\text{double})$ & R & 0 & & 2.42 & exFCI/AVTZ & Y \\
86 & Carbon monoxide & $^1\Pi  (n \ra \pi^*)$ & V & 93 & 0.168 & 8.49 & exFCI/AVTZ & Y \\
87 &                               & $^1\Sigma^-  (\pi \ra \pi^*)$ & V & 93 & & 9.92 & exFCI/AVTZ & Y \\
88 &                               & $^1\Delta  (\pi \ra \pi^*)$ & V & 91 & & 10.06 & exFCI/AVTZ & Y \\
89 &                               & $^1\Sigma^+  n.d.$ & R & 91 & 0.003 & 10.95 & exFCI/AVTZ & Y \\
90 &                               & $^1\Sigma^+  n.d.$ & R & 92 & 0.200 & 11.52 & exFCI/AVTZ & Y \\
91 &                               & $^1\Pi  n.d.$ & R & 92 & 0.106 & 11.72 & exFCI/AVTZ & Y \\
92 &                               & $^3\Pi  (n \ra \pi^*)$ & V & 98 & & 6.28 & exFCI/AVTZ & Y \\
93 &                               & $^3\Sigma^+  (\pi \ra \pi^*)$ & V & 98 & & 8.45 & exFCI/AVTZ & Y \\
94 &                               & $^3\Delta (\pi \ra \pi^*)$ & V & 98 & & 9.27 & exFCI/AVTZ & Y \\
95 &                               & $^3\Sigma^-  (\pi \ra \pi^*)$ & V & 97 & & 9.80 & exFCI/AVTZ & Y \\
96 &                               & $^3\Sigma^+   n.d.$ & R & 98 & & 10.47 & exFCI/AVTZ & Y \\
97 & Carbon Dimer & $^1\Delta_g (\text{double})$ & R & 1 & & 5.22 & exFCI/AVTZ & Y \\
98 & & $^1\Sigma^+_g  (\text{double})$ & R & 1 & & 5.91 & exFCI/AVTZ & Y \\
99 & Carbonylfluoride & $^1A_2 (n \ra \pi^*)$ & V & 91 & & 7.31 & exFCI/6-31+G(d) + [CCSDT/AVTZ - CCSDT/6-31+G(d)] & Y \\
100 & & $^3A_2 (n \ra \pi^*)$ & V & 97 & & 7.06 & exFCI/AVDZ + [CCSDT/AVTZ - CCSDT/AVDZ] & Y \\
101 & CCl2 & $^1B_1 (\si \ra \pi^*)$ & V & 93 & 0.002 & 2.59 & exFCI/AVDZ + [CCSDT/AVTZ - CCSDT/AVDZ] & Y \\
102 & & $^1A_2 n.d.$ & V & 88 & & 4.40 & exFCI/AVDZ + [CCSDT/AVTZ - CCSDT/AVDZ] & Y \\
103 & & $^3B_1 (\si \ra \pi^*)$ & V & 98 & & 1.22 & exFCI/AVDZ + [CCSDT/AVTZ - CCSDT/AVDZ] & Y \\
104 & & $^3A_2 n.d.$ & V & 96 & & 4.31 & exFCI/AVDZ + [CCSDT/AVTZ - CCSDT/AVDZ] & Y \\
105 & CClF & $^1A" (\si \ra \pi^*)$ & V & 93 & 0.007 & 3.57 & exFCI/AVDZ + [CCSDT/AVTZ - CCSDT/AVDZ] & Y \\
106 & CF2 & $^1B_1 (\si \ra \pi^*)$ & V & 94 & 0.034 & 5.09 & exFCI/AVTZ & Y \\
107 & & $^3B_1 (\si \ra \pi^*)$ & V & 99 & & 2.77 & exFCI/AVTZ & Y \\
108 & Cyanoacetylene & $^1\Sigma^-  (\pi \ra \pi^*)$ & V & 94 & & 5.80 & CCSDTQ/AVDZ + [CCSDT/AVTZ - CCSDT/AVDZ] & Y \\
109 & & $^1\Delta  (\pi \ra \pi^*)$ & V & 94 & & 6.07 & CCSDTQ/AVDZ + [CCSDT/AVTZ - CCSDT/AVDZ] & Y \\
110 & & $^3\Sigma^+ (\pi \ra \pi^*)$ & V & 98 & & 4.44 & CCSDT/AVTZ & Y \\
111 & & $^3\Delta  (\pi \ra \pi^*)$ & V & 98 & & 5.21 & CCSDT/AVTZ & Y \\
112 & & $^1A'' [F] (\pi \ra \pi^*)$ & V & 93 & 0.004 & 3.54 & CCSDTQ/AVDZ + [CCSDT/AVTZ - CCSDT/AVDZ] & Y \\
113 & Cyanoformaldehyde & $^1A''  (n \ra \pi^*)$ & V & 89 & 0.001 & 3.81 & CCSDT/AVTZ & Y \\
114 & & $^1A'' (\pi \ra \pi^*)$ & V & 91 & 0. & 6.46 & CCSDT/AVTZ & Y \\
115 & & $^3A''  (n \ra \pi^*)$ & V & 97 & & 3.44 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
116 & & $^3A'   (\pi \ra \pi^*)$ & V & 98 & & 5.01 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
117 & Cyanogen & $ ^1\Sigma_u^-  (\pi \ra \pi^*)$ & V & 94 & & 6.39 & CCSDTQ/AVDZ + [CCSDT/AVTZ - CCSDT/AVDZ] & Y \\
118 & & $ ^1\Delta_u  (\pi \ra \pi^*)$ & V & 93 & & 6.66 & CCSDTQ/AVDZ + [CCSDT/AVTZ - CCSDT/AVDZ] & Y \\
119 & & $ ^3\Sigma_u^+  (\pi \ra \pi^*)$ & V & 98 & & 4.91 & CCSDTQ/6-31+G(d) + [CCSDT/AVTZ - CCSDT/6-31+G(d)] & Y \\
120 & & $ ^1\Sigma_u^-  [F] (\pi \ra \pi^*)$ & V & 93 & & 5.05 & CCSDTQ/AVDZ + [CCSDT/AVTZ - CCSDT/AVDZ] & Y \\
121 & Cyclopentadiene & $^1B_2  (\pi \ra \pi^*)$ & V & 93 & 0.084 & 5.54 & exFCI/6-31+G(d) + [CCSDT/AVTZ - CCSDT/6-31+G(d)] & Y \\
122 & & $^1A_2  (\pi \ra 3s)$ & R & 94 & & 5.78 & CCSDT/AVTZ & Y \\
123 & & $^1B_1   (\pi \ra 3p)$ & R & 94 & 0.037 & 6.41 & CCSDT/AVTZ & Y \\
124 & & $^1A_2   (\pi \ra 3p)$ & R & 93 & & 6.46 & CCSDT/AVTZ & Y \\
125 & & $^1B_2   (\pi \ra 3p)$ & R & 94 & 0.046 & 6.56 & CCSDT/AVTZ & Y \\
126 & & $^1A_1 (\pi \ra \pi^*)$ & V & 78 & 0.010 & 6.52 & CCSDT/AVTZ & N \\
127 & & $^3B_2  (\pi \ra \pi^*)$ & V & 98 & & 3.31 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
128 & & $^3A_1  (\pi \ra \pi^*)$ & V & 98 & & 5.11 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
129 & & $^3A_2  (\pi \ra 3s)$ & R & 97 & & 5.73 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
130 & & $^3B_1  (\pi \ra 3p)$ & R & 97 & & 6.36 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
131 & Cyclopentadienone & $^1A_2 (n \ra \pi^*)$ & V & 88 & & 2.94 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
132 & & $^1B_2 (\pi \ra \pi^*)$ & V & 91 & 0.004 & 3.58 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
133 & & $^1B_1 (\text{double})$ & V & 3 & 0. & 5.02 & NEVPT2/AVTZ & N \\
134 & & $^1A_1 (\text{double})$ & V & 49 & 0.131 & 6.00 & NEVPT2/AVTZ & N \\
135 & & $^1A_1 (\pi \ra \pi^*)$ & V & 73 & 0.090 & 6.09 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & N \\
136 & & $^3B_2 (\pi \ra \pi^*)$ & V & 98 & & 2.29 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
137 & & $^3A_2 (n \ra \pi^*)$ & V & 96 & & 2.65 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
138 & & $^3A_1 (\pi \ra \pi^*)$ & V & 98 & & 4.19 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
139 & & $^3B_1 (\text{double})$ & V & 10 & & 4.91 & NEVPT2/AVTZ & N \\
140 & Cyclopentadienethione & $^1A_2 (n \ra \pi^*)$ & V & 87 & & 1.70 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
141 & & $^1B_2 (\pi \ra \pi^*)$ & V & 85 & 0. & 2.63 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
142 & & $^1B_1 (\text{double})$ & V & 1 & 0. & 3.16 & NEVPT2/AVTZ & N \\
143 & & $^1A_1 (\pi \ra \pi^*)$ & V & 89 & 0.378 & 4.96 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
144 & & $^1A_1 (\text{double})$ & V & 51 & 0.003 & 5.43 & NEVPT2/AVTZ & N \\
145 & & $^3A_2 (n \ra \pi^*)$ & V & 97 & & 1.47 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
146 & & $^3B_2 (\pi \ra \pi^*)$ & V & 97 & & 1.88 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
147 & & $^3A_1 (\pi \ra \pi^*)$ & V & 98 & & 2.51 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
148 & & $^3B_1 (\text{double})$ & V & 4 & & 3.13 & NEVPT2/AVTZ & N \\
149 & Cyclopropene & $^1B_1  (\si \ra \pi^*)$ & V & 92 & 0.001 & 6.68 & CCSDT/AVTZ & Y \\
150 &                               & $^1B_2  (\pi \ra \pi^*)$ & V & 95 & 0.071 & 6.79 & exFCI/AVDZ + [CCSDT/AVTZ - CCSDT/AVDZ] & Y \\
151 &                               & $^3B_2  (\pi \ra \pi^*)$ & V & 98 & & 4.38 & exFCI/AVTZ & Y \\
152 &                               & $^3B_1  (\si \ra \pi^*)$ & V & 98 & & 6.45 & exFCI/AVTZ & Y \\
153 & Cyclopropenone & $^1B_1  (n \ra \pi^*)$ & V & 87 & 0. & 4.26 & CCSDTQ/6-31+G(d) + [CCSDT/AVTZ - CCSDT/6-31+G(d)] & Y \\
154 & & $^1A_2  (n \ra \pi^*)$ & V & 91 & & 5.55 & CCSDTQ/6-31+G(d) + [CCSDT/AVTZ - CCSDT/6-31+G(d)] & Y \\
155 & & $^1B_2   (n \ra 3s)$ & R & 90 & 0.003 & 6.34 & CCSDTQ/6-31+G(d) + [CCSDT/AVTZ - CCSDT/6-31+G(d)] & Y \\
156 & & $^1B_2   (\pi \ra \pi^*)$ & V & 86 & 0.047 & 6.54 & CCSDTQ/6-31+G(d) + [CCSDT/AVTZ - CCSDT/6-31+G(d)] & Y \\
157 & & $^1B_2   (n \ra 3p)$ & R & 91 & 0.018 & 6.98 & CCSDTQ/6-31+G(d) + [CCSDT/AVTZ - CCSDT/6-31+G(d)] & Y \\
158 & & $^1A_1  (n \ra 3p)$ & R & 91 & 0.003 & 7.02 & CCSDTQ/6-31+G(d) + [CCSDT/AVTZ - CCSDT/6-31+G(d)] & Y \\
159 & & $^1A_1  (\pi \ra \pi^*)$ & V & 90 & 0.320 & 8.28 & CCSDTQ/6-31+G(d) + [CCSDT/AVTZ - CCSDT/6-31+G(d)] & Y \\
160 & & $^3B_1  (n \ra \pi^*)$ & V & 96 & & 3.93 & CCSDT/AVTZ & Y \\
161 & & $^3B_2  (\pi \ra \pi^*)$ & V & 97 & & 4.88 & CCSDT/AVTZ & Y \\
162 & & $^3A_2  (n \ra \pi^*)$ & V & 97 & & 5.35 & CCSDT/AVTZ & Y \\
163 & & $^3A_1  (\pi \ra \pi^*)$ & V & 98 & & 6.79 & CCSDT/AVTZ & Y \\
164 & Cyclopropenethione & $^1A_2  (n \ra \pi^*)$ & V & 89 & & 3.41 & CCSDTQ/6-31+G(d) + [CCSDT/AVTZ - CCSDT/6-31+G(d)] & Y \\
165 & & $^1B_1   (n \ra \pi^*)$ & V & 84 & 0. & 3.45 & CCSDTQ/6-31+G(d) + [CCSDT/AVTZ - CCSDT/6-31+G(d)] & Y \\
166 & & $^1B_2   (\pi \ra \pi^*)$ & V & 83 & 0.007 & 4.60 & CCSDTQ/6-31+G(d) + [CCSDT/AVTZ - CCSDT/6-31+G(d)] & Y \\
167 & & $^1B_2   (n \ra 3s)$ & R & 91 & 0.048 & 5.34 & CCSDTQ/6-31+G(d) + [CCSDT/AVTZ - CCSDT/6-31+G(d)] & Y \\
168 & & $^1A_1  (\pi \ra \pi^*)$ & V & 89 & 0.228 & 5.46 & CCSDTQ/6-31+G(d) + [CCSDT/AVTZ - CCSDT/6-31+G(d)] & Y \\
169 & & $^1B_2  (n \ra 3p)$ & R & 91 & 0.084 & 5.92 & CCSDTQ/6-31+G(d) + [CCSDT/AVTZ - CCSDT/6-31+G(d)] & Y \\
170 & & $^3A_2  (n \ra \pi^*)$ & V & 97 & & 3.28 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
171 & & $^3B_1  (n \ra \pi^*)$ & V & 94 & & 3.32 & CCSDT/AVTZ & Y \\
172 & & $^3B_2  (\pi \ra \pi^*)$ & V & 96 & & 4.01 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
173 & & $^3A_1  (\pi \ra \pi^*)$ & V & 98 & & 4.01 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
174 & Diacetylene & $^1\Sigma_u^-  (\pi \ra \pi^*)$ & V & 94 & & 5.33 & CCSDTQ/AVDZ + [CCSDT/AVTZ - CCSDT/AVDZ] & Y \\
175 & & $^1\Delta_u  (\pi \ra \pi^*)$ & V & 94 & & 5.61 & CCSDTQ/AVDZ + [CCSDT/AVTZ - CCSDT/AVDZ] & Y \\
176 & & $^3\Sigma_u^+  (\pi \ra \pi^*)$ & V & 98 & & 4.10 & CCSDTQ/6-31+G(d) + [CC3/AVTZ - CC3/6-31+G(d)] & Y \\
177 & & $^3\Delta_u  (\pi \ra \pi^*)$ & V & 98 & & 4.78 & CCSDTQ/AVDZ + [CCSDT/AVTZ - CCSDT/AVDZ] & Y \\
178 & Diazirine & $^1B_1   (n \ra \pi^*)$ & V & 92 & 0.002 & 4.09 & CCSDTQ/AVDZ + [CCSDT/AVTZ - CCSDT/AVDZ] & Y \\
179 & & $^1B_2   (\si \ra \pi^*)$ & V & 90 & & 7.27 & CCSDTQ/AVDZ + [CCSDT/AVTZ - CCSDT/AVDZ] & Y \\
180 & & $^1A_2  (n \ra 3s)$ & R & 93 & 0. & 7.44 & CCSDTQ/AVDZ + [CCSDT/AVTZ - CCSDT/AVDZ] & Y \\
181 & & $^1A_1  (n \ra 3p)$ & R & 93 & 0.132 & 8.03 & CCSDTQ/AVDZ + [CCSDT/AVTZ - CCSDT/AVDZ] & Y \\
182 & & $^3B_1  (n \ra \pi^*)$ & V & 98 & & 3.49 & CCSDTQ/6-31+G(d) + [CCSDT/AVTZ - CCSDT/6-31+G(d)] & Y \\
183 & & $^3B_2  (\pi \ra \pi^*)$ & V & 98 & & 5.06 & CCSDTQ/6-31+G(d) + [CCSDT/AVTZ - CCSDT/6-31+G(d)] & Y \\
184 & & $^3A_2  (n \ra \pi^*)$ & V & 98 & & 6.12 & CCSDTQ/6-31+G(d) + [CCSDT/AVTZ - CCSDT/6-31+G(d)] & Y \\
185 & & $^3A_1  (n \ra 3p)$ & R & 98 & & 6.81 & CCSDTQ/6-31+G(d) + [CCSDT/AVTZ - CCSDT/6-31+G(d)] & Y \\
186 & Diazomethane & $^1A_2  (\pi \ra \pi^*)$ & V & 90 & & 3.14 & exFCI/AVTZ & Y \\
187 &                               & $^1B_1  (\pi \ra 3s)$ & R & 93 & 0.016 & 5.54 & exFCI/AVTZ & Y \\
188 &                               & $^1A_1  (\pi \ra \pi^*)$ & V & 91 & 0.234 & 5.90 & exFCI/AVTZ & Y \\
189 &                               & $^3A_2  (\pi \ra \pi^*)$ & V & 97 & & 2.79 & exFCI/AVDZ + [CCSDT/AVTZ - CCSDT/AVDZ] & Y \\
190 &                               & $^3A_1  (\pi \ra \pi^*)$ & V & 98 & & 4.05 & exFCI/AVTZ & Y \\
191 &                               & $^3B_1  p3s $ & R & 98 & & 5.35 & exFCI/AVTZ & Y \\
192 &                               & $^3A_1  (\pi \ra 3p)$ & R & 98 & & 6.82 & exFCI/AVTZ & Y \\
193 &                               & $^1A'' [F] (\pi \ra \pi^*)$ & V & 87 & 0. & 0.71 & exFCI/AVTZ & Y \\
194 & Difluorodiazirine & $^1B_1 (n \ra \pi^*)$ & V & 93 & 0.002 & 3.74 & CCSDT/AVTZ & Y \\
195 & & $^1A_2 (\pi \ra \pi^*)$ & V & 91 & & 7.00 & CCSDT/AVTZ & Y \\
196 & & $^1B_2 (\pi \ra \pi^*)$ & V & 93 & 0.026 & 8.52 & CCSDT/AVTZ & Y \\
197 & & $^3B_1 (n \ra \pi^*)$ & V & 98 & & 3.03 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
198 & & $^3B_2  (\pi \ra \pi^*)$ & V & 98 & & 5.44 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
199 & & $^3A_2 (\pi \ra \pi^*)$ & V & 98 & & 5.80 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
200 & Dinitrogen & $^1\Pi_g   (n \ra \pi^*)$ & V & 92 & & 9.34 & exFCI/AVTZ & Y \\
201 &                               & $^1\Sigma_u^- (\pi \ra \pi^*)$ & V & 97 & & 9.88 & exFCI/AVTZ & Y \\
202 &                               & $^1\Delta_u   (\pi \ra \pi^*)$ & V & 95 & 0. & 10.29 & exFCI/AVTZ & Y \\
203 &                               & $^1\Sigma_g^+ n.d.$ & R & 92 & & 12.98 & exFCI/AVTZ & Y \\
204 &                               & $^1\Pi_u   n.d.$ & R & 82 & 0.458 & 13.03 & exFCI/AVTZ & Y \\
205 &                               & $^1\Sigma_u^+ n.d.$ & R & 92 & 0.296 & 13.09 & exFCI/AVTZ & Y \\
206 &                               & $^1\Pi_u  n.d.$ & R & 87 & 0. & 13.46 & exFCI/AVTZ & Y \\
207 &                               & $^3\Sigma_u^+  (\pi \ra \pi^*)$ & V & 99 & & 7.70 & exFCI/AVTZ & Y \\
208 &                               & $^3\Pi_g  (n \ra \pi^*)$ & V & 98 & & 8.01 & exFCI/AVTZ & Y \\
209 &                               & $^3\Delta_u  (\pi \ra \pi^*)$ & V & 99 & & 8.87 & exFCI/AVTZ & Y \\
210 &                               & $^3\Sigma_u^-  (\pi \ra \pi^*)$ & V & 98 & & 9.66 & exFCI/AVTZ & Y \\
211 & Ethylene & $^1B_{3u}   p3s $ & R & 95 & 0.078 & 7.39 & exFCI/AVTZ & Y \\
212 &                               & $^1B_{1u}   (\pi \ra \pi^*)$ & V & 95 & 0.346 & 7.93 & exFCI/AVTZ & Y \\
213 &                               & $^1B_{1g}   (\pi \ra 3p)$ & R & 95 & & 8.08 & exFCI/AVTZ & Y \\
214 & & $^1A_g (\text{double})$ & V & 20 & & 12.92 & exFCI/AVTZ & Y \\
215 &                               & $^3B_{1u}   (\pi \ra \pi^*)$ & V & 99 & & 4.54 & exFCI/AVTZ & Y \\
216 &                               & $^3B_{3u}   p3s $ & R & 98 & & 7.23 & exFCI/AVDZ + [CCSDT/AVTZ - CCSDT/AVDZ] & Y \\
217 &                               & $^3B_{1g}   (\pi \ra 3p)$ & R & 98 & & 7.98 & exFCI/AVDZ + [CCSDT/AVTZ - CCSDT/AVDZ] & Y \\
218 & Formaldehyde & $^1A_2  (n \ra \pi^*)$ & V & 91 & & 3.98 & exFCI/AVTZ & Y \\
219 &                               & $^1B_2  (n \ra 3s)$ & R & 91 & 0.021 & 7.23 & exFCI/AVTZ & Y \\
220 &                               & $^1B_2  (n \ra 3p)$ & R & 92 & 0.037 & 8.13 & exFCI/AVTZ & Y \\
221 &                               & $^1A_1  (n \ra 3p)$ & R & 91 & 0.052 & 8.23 & exFCI/AVTZ & Y \\
222 &                               & $^1A_2  (n \ra 3p)$ & R & 91 & & 8.67 & exFCI/AVTZ & Y \\
223 &                               & $^1B_1  n.d.$ & V & 90 & 0.001 & 9.22 & exFCI/AVTZ & Y \\
224 &                               & $^1A_1  (\pi \ra \pi^*)$ & V & 90 & 0.135 & 9.43 & exFCI/AVTZ & Y \\
225 & & $^1A_1  (\text{double})$ & V & 5 & n.d. & 10.35 & exFCI/AVTZ & Y \\
226 &                               & $^3A_2  (n \ra \pi^*)$ & V & 98 & & 3.58 & exFCI/AVTZ & Y \\
227 &                               & $^3A_1  (\pi \ra \pi^*)$ & V & 99 & & 6.06 & exFCI/AVTZ & Y \\
228 &                               & $^3B_2  (n \ra 3s)$ & R & 97 & & 7.06 & exFCI/AVTZ & Y \\
229 &                               & $^3B_2  (n \ra 3p)$ & R & 97 & & 7.94 & exFCI/AVTZ & Y \\
230 &                               & $^3A_1  (n \ra 3p)$ & R & 97 & & 8.10 & exFCI/AVTZ & Y \\
231 &                               & $^3B_1  n.d.$ & R & 97 & & 8.42 & exFCI/AVTZ & Y \\
232 &                               & $^1A^" [F] (n \ra \pi^*)$ & V & 87 & 0. & 2.80 & exFCI/AVTZ & Y \\
233 & Formamide & $^1A''  (n \ra \pi^*)$ & V & 90 & 0. & 5.65 & exFCI/AVDZ + [CCSDT/AVTZ - CCSDT/AVDZ] & Y \\
234 & & $^1A'   (n \ra 3s)$ & R & 88 & 0.001 & 6.77 & exFCI/AVDZ + [CCSDT/AVTZ - CCSDT/AVDZ] & N \\
235 & & $^1A'   (n \ra 3p)$ & R & 89 & 0.111 & 7.38 & CCSDT/AVTZ & N \\
236 & & $^1A'   (\pi \ra \pi^*)$ & V & 89 & 0.251 & 7.63 & exFCI/AVTZ & N \\
237 &                               & $^3A''  (n \ra \pi^*)$ & V & 97 & & 5.38 & exFCI/AVDZ + [CC3/AVTZ - CCS3/AVDZ] & Y \\
238 &                               & $^3A'  (\pi \ra \pi^*)$ & V & 98 & & 5.81 & exFCI/AVDZ + [CC3/AVTZ - CCS3/AVDZ] & Y \\
239 & Formylfluoride & $^1A''   (n \ra \pi^*)$ & V & 91 & & 5.96 & exFCI/AVDZ + [CCSDT/AVTZ - CCSDT/AVDZ] & Y \\
240 & & $^3A" (n \ra \pi^*)$ & V & 98 & 0.001 & 5.63 & exFCI/AVDZ + [CCSDT/AVTZ - CCSDT/AVDZ] & Y \\
241 & Furan & $^1A_2  (\pi \ra 3s)$ & R & 93 & & 6.09 & CCSDT/AVTZ & Y \\
242 & & $^1B_2  (\pi \ra \pi^*)$ & V & 93 & 0.163 & 6.37 & CCSDT/AVTZ & Y \\
243 & & $^1A_1   (\pi \ra \pi^*)$ & V & 92 & 0. & 6.56 & CCSDT/AVTZ & Y \\
244 & & $^1B_1   (\pi \ra 3p)$ & R & 93 & 0.038 & 6.64 & CCSDT/AVTZ & Y \\
245 & & $^1A_2   (\pi \ra 3p)$ & R & 93 & & 6.81 & CCSDT/AVTZ & Y \\
246 & & $^1B_2  (\pi \ra 3p)$ & R & 93 & 0.007 & 7.24 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
247 & & $^3B_2  (\pi \ra \pi^*)$ & V & 98 & & 4.20 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
248 & & $^3A_1  (\pi \ra \pi^*)$ & V & 98 & & 5.46 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
249 & & $^3A_2  (\pi \ra 3s)$ & R & 97 & & 6.02 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
250 & & $^3B_1  (\pi \ra 3p)$ & R & 97 & & 6.59 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
251 & Glyoxal & $^1A_u  (n \ra \pi^*)$ & V & 91 & 0. & 2.88 & CCSDTQ/6-31+G(d) + [CCSDT/AVTZ - CCSDT/6-31+G(d)] & Y \\
252 & & $^1B_g  (n \ra \pi^*)$ & V & 88 & & 4.24 & CCSDTQ/6-31+G(d) + [CCSDT/AVTZ - CCSDT/6-31+G(d)] & Y \\
253 & & $^1A_g (\text{double})$ & V & 0 & 0. & 5.61 & exFCI/AVDZ + [CCSDT/AVTZ - CCSDT/AVDZ] & Y \\
254 & & $^1B_g   (n \ra \pi^*)$ & V & 83 & & 6.57 & CCSDTQ/6-31+G(d) + [CCSDT/AVTZ - CCSDT/6-31+G(d)] & Y \\
255 & & $^1B_u   (n \ra 3p)$ & R & 91 & 0.095 & 7.71 & CCSDTQ/6-31+G(d) + [CCSDT/AVTZ - CCSDT/6-31+G(d)] & Y \\
256 & & $^3A_u  (n \ra \pi^*)$ & V & 97 & & 2.49 & CCSDT/AVTZ & Y \\
257 & & $^3B_g  (n \ra \pi^*)$ & V & 97 & & 3.89 & CCSDT/AVTZ & Y \\
258 & & $^3B_u  (\pi \ra \pi^*)$ & V & 98 & & 5.15 & CCSDT/AVTZ & Y \\
259 & & $^3A_g  (\pi \ra \pi^*)$ & V & 98 & & 6.30 & CCSDT/AVTZ & Y \\
260 & HCCl & $^1A" (\si \ra \pi^*)$ & V & 94 & 0.003 & 1.98 & exFCI/AVTZ & Y \\
261 & HCF & $^1A" (\si \ra \pi^*)$ & V & 95 & 0.006 & 2.49 & exFCI/AVTZ & Y \\
262 & HCP & $^1\Sigma^-  (\pi \ra \pi^*)$ & V & 94 & & 4.84 & exFCI/AVTZ & Y \\
263 & & $^1\Delta (\pi \ra \pi^*)$ & V & 94 & & 5.15 & exFCI/AVTZ & Y \\
264 & & $^3\Sigma^+  (\pi \ra \pi^*)$ & V & 98 & & 3.47 & exFCI/AVTZ & Y \\
265 & & $^3\Delta (\pi \ra \pi^*)$ & V & 98 & & 4.22 & exFCI/AVTZ & Y \\
266 & Hexatriene & $^1B_u   (\pi \ra \pi^*)$ & V & 92 & 1.115 & 5.37 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
267 & & $^1A_g (\pi \ra \pi^*)$ & V & 65 & & 5.62 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & N \\
268 & & $^1A_u   (\pi \ra 3s)$ & R & 93 & 0.009 & 5.79 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
269 & & $^1B_g (\pi \ra 3p)$ & R & 93 & & 5.94 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
270 & & $^3B_u   (\pi \ra \pi^*)$ & V & 97 & & 2.73 & CCSDT/6-31+G(d) + [CC3/AVTZ - CC3/6-31+G(d)] & Y \\
271 & & $^3A_g (\pi \ra \pi^*)$ & V & 98 & & 4.36 & CCSDT/6-31+G(d) + [CC3/AVTZ - CC3/6-31+G(d)] & Y \\
272 & HPO & $^1A'' (n \ra \pi^*)$ & V & 90 & 0.003 & 2.47 & exFCI/AVTZ & Y \\
273 & HPS & $^1A'' (n \ra \pi^*)$ & V & 90 & 0.001 & 1.59 & exFCI/AVTZ & Y \\
274 & HSiF & $^1A'' (\si \ra \pi^*)$ & V & 93 & 0.024 & 3.05 & exFCI/AVTZ & Y \\
275 & Hydrogen chloride & $^1\Pi  CT$ & CT & 94 & 0.056 & 7.84 & exFCI/AVTZ & Y \\
276 & Hydrogen sulfide  & $^1A_2  (n \ra 3p)$ & R & 94 & & 6.18 & exFCI/AVTZ & Y \\
277 &                               & $^1B_1  (n \ra 3p)$ & R & 94 & 0.063 & 6.24 & exFCI/AVTZ & Y \\
278 &                               & $^3A_2  (n \ra 3p)$ & R & 98 & & 5.81 & exFCI/AVTZ & Y \\
279 &                               & $^3B_1  (n \ra 3p)$ & R & 98 & & 5.88 & exFCI/AVTZ & Y \\
280 & Imidazole & $^1A''  (\pi \ra 3s)$ & R & 93 & 0.001 & 5.71 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
281 & & $^1A'  (\pi \ra \pi^*)$ & V & 89 & 0.124 & 6.41 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
282 & & $^1A''  (n \ra \pi^*)$ & V & 93 & 0.028 & 6.50 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
283 & & $^1A'  (\pi \ra 3p)$ & R & 88 & 0.035 & 6.83 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & N \\
284 & & $^3A'  (\pi \ra \pi^*)$ & V & 98 & & 4.73 & CCSDT/6-31+G(d) + [CC3/AVTZ - CC3/6-31+G(d)] & Y \\
285 & & $^3A''  (\pi \ra 3s)$ & R & 97 & & 5.66 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
286 & & $^3A'  (\pi \ra \pi^*)$ & V & 97 & & 5.74 & CCSDT/6-31+G(d) + [CC3/AVTZ - CC3/6-31+G(d)] & Y \\
287 & & $^3A''  (n \ra \pi^*)$ & V & 97 & & 6.31 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
288 & Isobutene & $^1B_1  (\pi \ra 3s)$ & R & 94 & 0.006 & 6.46 & CCSDT/AVTZ & Y \\
289 & & $^1A_1  (\pi \ra 3p)$ & R & 94 & 0.228 & 7.01 & CCSDT/AVTZ & Y \\
290 & & $^3A_1  (\pi \ra \pi^*)$ & V & 98 & & 4.53 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
291 & Ketene & $^1A_2  (\pi \ra \pi^*)$ & V & 91 & & 3.85 & exFCI/AVDZ + [CCSDT/AVTZ - CCSDT/AVDZ] & Y \\
292 &                               & $^1B_1  (n \ra 3s)$ & R & 93 & 0.035 & 6.01 & exFCI/AVTZ & Y \\
293 & & $^1A_1 (\pi \ra \pi^*)$ & V & 92 & 0.154 & 7.25 & CCSDTQ/AVDZ + [CCSDT/AVTZ - CCSDT/AVDZ] & Y \\
294 &                               & $^1A_2  (\pi \ra 3p)$ & R & 94 & & 7.18 & exFCI/AVTZ & Y \\
295 &                               & $^3A_2  (n \ra \pi^*)$ & V & 91 & & 3.77 & exFCI/AVTZ & Y \\
296 &                               & $^3A_1  (\pi \ra \pi^*)$ & V & 98 & & 5.61 & exFCI/AVTZ & Y \\
297 &                               & $^3B_1  (n \ra 3p)$ & R & 98 & & 5.79 & exFCI/AVTZ & Y \\
298 &                               & $^3A_2  (\pi \ra 3p)$ & R & 94 & & 7.12 & exFCI/AVTZ & Y \\
299 &                               & $^1A^" [F] (\pi \ra \pi^*)$ & V & 87 & 0. & 1.00 & exFCI/AVTZ & Y \\
300 & Maleimide & $^1B_1   (n \ra \pi^*)$ & V & 87 & 0. & 3.80 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
301 & & $^1A_2 (n \ra \pi^*)$ & V & 85 & & 4.52 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
302 & & $^1B_2   (\pi \ra \pi^*)$ & V & 88 & 0.025 & 4.89 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
303 & & $^1B_2   (\pi \ra \pi^*)$ & V & 89 & 0.373 & 6.21 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
304 & & $^1B_2   (n \ra 3s)$ & R & 89 & 0.034 & 7.20 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
305 & & $^3B_1   (n \ra \pi^*)$ & V & 96 & & 3.57 & CCSDT/6-31+G(d) + [CC3/AVTZ - CC3/6-31+G(d)] & Y \\
306 & & $^3B_2  (\pi \ra \pi^*)$ & V & 98 & & 3.74 & CCSDT/6-31+G(d) + [CC3/AVTZ - CC3/6-31+G(d)] & Y \\
307 & & $^3B_2  (\pi \ra \pi^*)$ & V & 96 & & 4.24 & CCSDT/6-31+G(d) + [CC3/AVTZ - CC3/6-31+G(d)] & Y \\
308 & & $^3A_2 (n \ra \pi^*)$ & V & 96 & & 4.32 & CCSDT/6-31+G(d) + [CC3/AVTZ - CC3/6-31+G(d)] & Y \\
309 & Methanimine & $^1A^"  (n \ra \pi^*)$ & V & 90 & 0.003 & 5.23 & exFCI/AVTZ & Y \\
310 &                               & $^3A^"  (n \ra \pi^*)$ & V & 98 & & 4.65 & exFCI/AVTZ & Y \\
311 & Methylenecyclopropene & $^1B_2  (\pi \ra \pi^*)$ & V & 85 & 0.011 & 4.28 & CCSDTQ/6-31+G(d) + [CCSDT/AVTZ - CCSDT/6-31+G(d)] & Y \\
312 & & $^1B_1  (\pi \ra 3s)$ & R & 93 & 0.005 & 5.44 & CCSDTQ/6-31+G(d) + [CCSDT/AVTZ - CCSDT/6-31+G(d)] & Y \\
313 & & $^1A_2  (\pi \ra 3p)$ & R & 93 & & 5.96 & CCSDTQ/6-31+G(d) + [CCSDT/AVTZ - CCSDT/6-31+G(d)] & Y \\
314 & & $^1A_1 (\pi \ra \pi^*)$ & V & 92 & 0.224 & 6.12 & CCSDTQ/6-31+G(d) + [CCSDT/AVTZ - CCSDT/6-31+G(d)] & N \\
315 & & $^3B_2  (\pi \ra \pi^*)$ & V & 97 & & 3.49 & CCSDT/AVTZ & Y \\
316 & & $^3A_1 (\pi \ra \pi^*)$ & V & 98 & & 4.74 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
317 & Naphthalene & $^1B_{3u}   (\pi \ra \pi^*)$ & V & 85 & 0. & 4.27 & CCSDT/6-31+G(d) + [CC3/AVTZ - CC3/6-31+G(d)] & Y \\
318 & & $^1B_{2u}   (\pi \ra \pi^*)$ & V & 90 & 0.067 & 4.90 & CCSDT/6-31+G(d) + [CC3/AVTZ - CC3/6-31+G(d)] & Y \\
319 & & $^1A_u (\pi \ra 3s)$ & R & 92 & & 5.65 & CCSDT/6-31+G(d) + [CC3/AVTZ - CC3/6-31+G(d)] & Y \\
320 & & $^1B_{1g}   (\pi \ra \pi^*)$ & V & 84 & & 5.84 & CCSDT/6-31+G(d) + [CC3/AVTZ - CC3/6-31+G(d)] & Y \\
321 & & $^1A_g (\pi \ra \pi^*)$ & V & 83 & & 5.89 & CCSDT/6-31+G(d) + [CC3/AVTZ - CC3/6-31+G(d)] & N \\
322 & & $^1B_{3g}   (\pi \ra 3p)$ & R & 92 & & 6.07 & CCSDT/6-31+G(d) + [CC3/AVTZ - CC3/6-31+G(d)] & Y \\
323 & & $^1B_{2g}   (\pi \ra 3p)$ & R & 92 & & 6.09 & CCSDT/6-31+G(d) + [CC3/AVTZ - CC3/6-31+G(d)] & Y \\
324 & & $^1B_{3u}   (\pi \ra \pi^*)$ & V & 90 & n.d. & 6.19 & CCSDT/6-31+G(d) + [CC3/AVTZ - CC3/6-31+G(d)] & N \\
325 & & $^1B_{1u}   (\pi \ra 3s)$ & R & 91 & n.d. & 6.33 & CCSDT/6-31+G(d) + [CC3/AVTZ - CC3/6-31+G(d)] & Y \\
326 & & $^1B_{2u}   (\pi \ra \pi^*)$ & V & 90 & n.d. & 6.42 & CCSDT/6-31+G(d) + [CC3/AVTZ - CC3/6-31+G(d)] & Y \\
327 & & $^1B_{1g}   (\pi \ra \pi^*)$ & V & 87 & & 6.48 & CCSDT/6-31+G(d) + [CC3/AVTZ - CC3/6-31+G(d)] & Y \\
328 & & $^1A_g (\pi \ra \pi^*)$ & V & 71 & & 6.87 & CCSDT/6-31+G(d) + [CC3/AVTZ - CC3/6-31+G(d)] & Y \\
329 & & $^3B_{2u}   (\pi \ra \pi^*)$ & V & 97 & & 3.17 & CC3/AVTZ & N \\
330 & & $^3B_{3u}   (\pi \ra \pi^*)$ & V & 96 & & 4.16 & CC3/AVTZ & N \\
331 & & $^3B_{1g}   (\pi \ra \pi^*)$ & V & 97 & & 4.48 & CC3/AVTZ & N \\
332 & & $^3B_{2u}   (\pi \ra \pi^*)$ & V & 96 & & 4.64 & CC3/AVTZ & N \\
333 & & $^3B_{3u}   (\pi \ra \pi^*)$ & V & 97 & & 4.95 & CC3/AVTZ & N \\
334 & & $^3A_g (\pi \ra \pi^*)$ & V & 97 & & 5.49 & CC3/AVTZ & N \\
335 & & $^3B_{1g}   (\pi \ra \pi^*)$ & V & 95 & & 6.17 & CC3/AVTZ & N \\
336 & & $^3A_g (\pi \ra \pi^*)$ & V & 95 & & 6.39 & CC3/AVTZ & N \\
337 & Nitrosomethane & $^1A''   (n \ra \pi^*)$ & V & 93 & 0. & 1.96 & exFCI/AVDZ + [CCSDT/AVTZ - CCSDT/AVDZ] & Y \\
338 & & $^1A'   (\text{double})$ & V & 2 & 0. & 4.76 & exFCI/AVTZ & Y \\
339 &                               & $^1A'   n.d.$ & R & 90 & 0.006 & 6.29 & CCSDTQ/AVDZ + [CCSDT/AVTZ - CCSDT/AVDZ] & Y \\
340 &                               & $^3A''   (n \ra \pi^*)$ & V & 98 & & 1.16 & exFCI/AVTZ & Y \\
341 &                               & $^3A'   (\pi \ra \pi^*)$ & V & 98 & & 5.60 & exFCI/AVTZ & Y \\
342 &                               & $^1A''  [F] (n \ra \pi^*)$ & V & 92 & 0. & 1.67 & exFCI/AVDZ + [CCSDT/AVTZ - CCSDT/AVDZ] & Y \\
343 & Nitroxyl (HNO) & $^1A''   (n \ra \pi^*)$ & V & 93 & 0. & 1.74 & exFCI/AVTZ & Y \\
344 & & $^1A'   (\text{double})$ & V & 0 & 0. & 4.33 & exFCI/AVTZ & Y \\
345 & & $^1A'   n.d.$ & R & 92 & 0.038 & 6.27 & CCSDTQ/AVDZ + [CCSDT/AVTZ - CCSDT/AVDZ] & Y \\
346 & & $^3A''   (n \ra \pi^*)$ & V & 99 & & 0.88 & exFCI/AVTZ & Y \\
347 & & $^3A'   (\pi \ra \pi^*)$ & V & 98 & & 5.61 & exFCI/AVTZ & Y \\
348 & Octatetraene & $^1B_u   (\pi \ra \pi^*)$ & V & 91 & n.d. & 4.78 & CCSDT/6-31+G(d) + [CC3/AVTZ - CC3/6-31+G(d)] & Y \\
349 & & $^1A_g (\pi \ra \pi^*)$ & V & 63 & & 4.90 & CCSDT/6-31+G(d) + [CC3/AVTZ - CC3/6-31+G(d)] & N \\
350 & & $^3B_u (\pi \ra \pi^*)$ & V & 97 & & 2.36 & CC3/AVTZ & N \\
351 & & $^3A_g (\pi \ra \pi^*)$ & V & 98 & & 3.73 & CC3/AVTZ & N \\
352 & Propynal & $ ^1A''  (n \ra \pi^*)$ & V & 89 & 0. & 3.80 & CCSDT/AVTZ & Y \\
353 & & $^1A''  (\pi \ra \pi^*)$ & V & 92 & 0. & 5.54 & CCSDT/AVTZ & Y \\
354 & & $^3A''  (n \ra \pi^*)$ & V & 97 & & 3.47 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
355 & & $^3A'  (\pi \ra \pi^*)$ & V & 98 & & 4.47 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
356 & Pyrazine & $^1B_{3u}   (n \ra \pi^*)$ & V & 90 & 0.006 & 4.15 & CCSDT/AVTZ & Y \\
357 & & $^1A_u   (n \ra \pi^*)$ & V & 88 & & 4.98 & CCSDT/AVTZ & Y \\
358 & & $^1B_{2u}   (\pi \ra \pi^*)$ & V & 86 & 0.078 & 5.02 & CCSDT/AVTZ & Y \\
359 & & $^1B_{2g}   (n \ra \pi^*)$ & V & 85 & & 5.71 & CCSDT/AVTZ & Y \\
360 & & $^1A_g   (n \ra 3s)$ & R & 91 & & 6.65 & CCSDT/AVTZ & Y \\
361 & & $^1B_{1g}   (n \ra \pi^*)$ & V & 84 & & 6.74 & CCSDT/AVTZ & Y \\
362 & & $^1B_{1u}   (\pi \ra \pi^*)$ & V & 92 & 0.063 & 6.88 & CCSDT/AVTZ & Y \\
363 & & $^1B_{1g}   (\pi \ra 3s)$ & R & 93 & & 7.21 & CCSDT/AVTZ & Y \\
364 & & $^1B_{2u}   (n \ra 3p)$ & R & 90 & 0.037 & 7.24 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
365 & & $^1B_{1u}   (n \ra 3p)$ & R & 91 & 0.128 & 7.44 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
366 & & $^1B_{1u}   (\pi \ra \pi^*)$ & V & 90 & 0.285 & 7.98 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & N \\
367 & & $^1A_g   (\text{double})$ & V & 12 & & 8.04 & NEVPT2/AVTZ & N \\
368 & & $^1A_g   (\pi \ra \pi^*)$ & V & 71 & & 8.69 & CC3/AVTZ & N \\
369 & & $^3B_{3u}   (n \ra \pi^*)$ & V & 97 & & 3.59 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
370 & & $^3B_{1u}   (\pi \ra \pi^*)$ & V & 98 & & 4.35 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
371 & & $^3B_{2u}   (\pi \ra \pi^*)$ & V & 97 & & 4.39 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
372 & & $^3A_u   (n \ra \pi^*)$ & V & 96 & & 4.93 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
373 & & $^3B_{2g}   (n \ra \pi^*)$ & V & 97 & & 5.08 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
374 & & $^3B_{1u}   (\pi \ra \pi^*)$ & V & 97 & & 5.28 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
375 & Pyridazine & $^1B_1  (n \ra \pi^*)$ & V & 89 & 0.005 & 3.83 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
376 & & $^1A_2  (n \ra \pi^*)$ & V & 86 & & 4.37 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
377 & & $^1A_1 (\pi \ra \pi^*)$ & V & 85 & 0.016 & 5.26 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
378 & & $^1A_2  (n \ra \pi^*)$ & V & 86 & & 5.72 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
379 & & $^1B_2   (n \ra 3s)$ & R & 88 & 0.001 & 6.17 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
380 & & $^1B_1  (n \ra \pi^*)$ & V & 87 & 0.004 & 6.37 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
381 & & $^1B_2  (\pi \ra \pi^*)$ & V & 90 & 0.010 & 6.75 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
382 & & $^3B_1   (n \ra \pi^*)$ & V & 97 & & 3.19 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
383 & & $^3A_2   (n \ra \pi^*)$ & V & 96 & & 4.11 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
384 & & $^3B_2  (\pi \ra \pi^*)$ & V & 98 & & 4.34 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & N \\
385 & & $^3A_1  (\pi \ra \pi^*)$ & V & 97 & & 4.82 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
386 & Pyridine & $^1B_1  (n \ra \pi^*)$ & V & 88 & 0.004 & 4.95 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
387 & & $^1B_2  (\pi \ra \pi^*)$ & V & 86 & 0.028 & 5.14 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
388 & & $^1A_2  (n \ra \pi^*)$ & V & 87 & & 5.40 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
389 & & $^1A_1  (\pi \ra \pi^*)$ & V & 92 & 0.010 & 6.62 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
390 & & $^1A_1  (n \ra 3s)$ & R & 89 & 0.011 & 6.76 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
391 & & $^1A_2  (\pi \ra 3s)$ & R & 93 & & 6.82 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
392 & & $^1B_1   (\pi \ra 3p)$ & R & 93 & 0.045 & 7.38 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
393 & & $^1A_1  (\pi \ra \pi^*)$ & V & 90 & 0.291 & 7.39 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
394 & & $^1B_2  (\pi \ra \pi^*)$ & V & 90 & 0.319 & 7.40 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & N \\
395 & & $^3A_1  (\pi \ra \pi^*)$ & V & 98 & & 4.30 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
396 & & $^3B_1  (n \ra \pi^*)$ & V & 97 & & 4.46 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
397 & & $^3B_2  (\pi \ra \pi^*)$ & V & 97 & & 4.79 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
398 & & $^3A_1  (\pi \ra \pi^*)$ & V & 97 & & 5.04 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
399 & & $^3A_2  (n \ra \pi^*)$ & V & 95 & & 5.36 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
400 & & $^3B_2  (\pi \ra \pi^*)$ & V & 97 & & 6.24 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
401 & Pyrimidine & $^1B_1  (n \ra \pi^*)$ & V & 88 & 0.005 & 4.44 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
402 & & $^1A_2   (n \ra \pi^*)$ & V & 88 & & 4.85 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
403 & & $^1B_2   (\pi \ra \pi^*)$ & V & 86 & 0.028 & 5.38 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
404 & & $^1A_2   (n \ra \pi^*)$ & V & 86 & & 5.92 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
405 & & $^1B_1  (n \ra \pi^*)$ & V & 86 & 0.005 & 6.26 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
406 & & $^1B_2  (n \ra 3s)$ & R & 90 & 0.005 & 6.70 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
407 & & $^1A_1  (\pi \ra \pi^*)$ & V & 91 & 0.036 & 6.88 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
408 & & $^3B_1  (n \ra \pi^*)$ & V & 96 & & 4.09 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
409 & & $^3A_1  (\pi \ra \pi^*)$ & V & 98 & & 4.51 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & N \\
410 & & $^3A_2  (n \ra \pi^*)$ & V & 96 & & 4.66 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
411 & & $^3B_2  (\pi \ra \pi^*)$ & V & 97 & & 4.96 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
412 & Pyrrole & $^1A_2  (\pi \ra 3s)$ & R & 92 & & 5.24 & CCSDT/AVTZ & Y \\
413 & & $^1B_1   (\pi \ra 3p)$ & R & 92 & 0.015 & 6.00 & CCSDT/AVTZ & Y \\
414 & & $^1A_2   (\pi \ra 3p)$ & R & 93 & & 6.00 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
415 & & $^1B_2   (\pi \ra \pi^*)$ & V & 92 & 0.164 & 6.26 & CCSDT/AVTZ & Y \\
416 & & $^1A_1  (\pi \ra \pi^*)$ & V & 86 & 0.001 & 6.30 & CCSDT/AVTZ & Y \\
417 & & $^1B_2  (\pi \ra 3p)$ & R & 92 & 0.003 & 6.83 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
418 & & $^3B_2  (\pi \ra \pi^*)$ & V & 98 & & 4.51 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
419 & & $^3A_2  (\pi \ra 3s)$ & R & 97 & & 5.21 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
420 & & $^3A_1  (\pi \ra \pi^*)$ & V & 97 & & 5.45 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
421 & & $^3B_1  (\pi \ra 3p)$ & R & 97 & & 5.91 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
422 & SiCl2 & $^1B_1 (\si \ra \pi^*)$ & V & 92 & 0.031 & 3.91 & exFCI/AVDZ + [CCSDT/AVTZ - CCSDT/AVDZ] & Y \\
423 & & $^3B_1 (\si \ra \pi^*)$ & V & 98 & & 2.48 & CCSDTQ/6-31+G(d) + [CCSDT/AVTZ - CCSDT/6-31+G(d)] & Y \\
424 & Silylidene & $^1A_2 n.d.$ & R & 92 & & 2.11 & exFCI/AVTZ & Y \\
425 & & $^1B_2   n.d.$ & R & 88 & 0.033 & 3.78 & exFCI/AVTZ & Y \\
426 & Streptocyanine-1 & $^1B_2   (\pi \ra \pi^*)$ & V & 88 & 0.347 & 7.13 & exFCI/AVDZ + [CCSDT/AVTZ - CCSDT/AVDZ] & Y \\
427 &                               & $^3B_2   (\pi \ra \pi^*)$ & V & 98 & & 5.52 & exFCI/AVTZ & Y \\
428 & Streptocyanine-3 & $^1B_2   (\pi \ra \pi^*)$ & V & 87 & 0.755 & 4.82 & exFCI/6-31+G(d) + [CC3/AVTZ - CC3/6-31+G(d)] & Y \\
429 & & $^3B_2   (\pi \ra \pi^*)$ & V & 98 & & 3.44 & exFCI/6-31+G(d) + [CC3/AVTZ - CC3/6-31+G(d)] & Y \\
430 & Streptocyanine-5 & $^1B_2   (\pi \ra \pi^*)$ & V & 85 & 1.182 & 3.64 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
431 & & $^3B_2   (\pi \ra \pi^*)$ & V & 97 & & 2.47 & CCSDT/6-31+G(d) + [CC3/AVTZ - CC3/6-31+G(d)] & Y \\
432 & Tetrazine & $^1B_{3u}   (n \ra \pi^*)$ & V & 89 & 0.006 & 2.47 & CCSDT/AVTZ & Y \\
433 & & $^1A_u   (n \ra \pi^*)$ & V & 87 & & 3.69 & CCSDT/AVTZ & Y \\
434 & & $^1A_g   (\text{double})$ & V & 0 & & 4.61 & NEVPT2/AVTZ & N \\
435 & & $^1B_{1g}   (n \ra \pi^*)$ & V & 83 & & 4.93 & CCSDT/AVTZ & Y \\
436 & & $^1B_{2u}   (\pi \ra \pi^*)$ & V & 85 & 0.055 & 5.21 & CCSDT/AVTZ & Y \\
437 & & $^1B_{2g}   (n \ra \pi^*)$ & V & 81 & & 5.45 & CCSDT/AVTZ & Y \\
438 & & $^1A_u   (n \ra \pi^*)$ & V & 87 & & 5.53 & CCSDT/AVTZ & Y \\
439 & & $^1B_{3g}   (\text{double})$ & V & 0 & & 6.15 & NEVPT2/AVTZ & N \\
440 & & $^1B_{2g}  (n \ra \pi^*)$ & V & 80 & & 6.12 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
441 & & $^1B_{1g}   (n \ra \pi^*)$ & V & 85 & & 6.91 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
442 & & $^3B_{3u}   (n \ra \pi^*)$ & V & 97 & & 1.85 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
443 & & $^3A_u   (n \ra \pi^*)$ & V & 96 & & 3.45 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
444 & & $^3B_{1g}   (n \ra \pi^*)$ & V & 97 & & 4.20 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
445 & & $^1B_{1u}   (\pi \ra \pi^*)$ & V & 98 & & 4.49 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & N \\
446 & & $^3B_{2u}   (\pi \ra \pi^*)$ & V & 97 & & 4.52 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
447 & & $^3B_{2g}   (n \ra \pi^*)$ & V & 96 & & 5.04 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
448 & & $^3A_u   (n \ra \pi^*)$ & V & 96 & & 5.11 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
449 & & $^3B_{3g}   (\text{double})$ & V & 5 & & 5.51 & NEVPT2/AVTZ & N \\
450 & & $^3B_{1u}   (\pi \ra \pi^*)$ & V & 96 & & 5.42 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
451 & Thioacetone & $^1A_2  (n \ra \pi^*)$ & V & 88 & & 2.53 & CCSDTQ/6-31+G(d) + [CCSDT/AVTZ - CCSDT/6-31+G(d)] & Y \\
452 & & $^1B_2  (n \ra 3s)$ & R & 91 & 0.052 & 5.56 & CCSDTQ/6-31+G(d) + [CCSDT/AVTZ - CCSDT/6-31+G(d)] & Y \\
453 & & $^1A_1   (\pi \ra \pi^*)$ & V & 90 & 0.242 & 5.88 & CCSDTQ/6-31+G(d) + [CCSDT/AVTZ - CCSDT/6-31+G(d)] & Y \\
454 & & $^1B_2   (n \ra 3p)$ & R & 92 & 0.028 & 6.51 & CCSDTQ/6-31+G(d) + [CC3/AVTZ - CC3/6-31+G(d)] & Y \\
455 & & $^1A_1   (n \ra 3p)$ & R & 91 & 0.023 & 6.61 & CCSDTQ/6-31+G(d) + [CCSDT/AVTZ - CCSDT/6-31+G(d)] & Y \\
456 & & $^3A_2  (n \ra \pi^*)$ & V & 97 & & 2.33 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
457 & & $^3A_1  (\pi \ra \pi^*)$ & V & 98 & & 3.45 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
458 & Thioacrolein & $^1A''   (n \ra \pi^*)$ & V & 86 & 0. & 2.11 & CCSDT/AVTZ & Y \\
459 & & $^3A''   (n \ra \pi^*)$ & V & 96 & & 1.91 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
460 & Thioformaldehyde & $^1A_2   (n \ra \pi^*)$ & V & 89 & & 2.22 & exFCI/AVTZ & Y \\
461 &                               & $^1B_2   (n \ra 3s)$ & R & 92 & 0.012 & 5.96 & exFCI/AVTZ & Y \\
462 &                               & $^1A_1   (\pi \ra \pi^*)$ & V & 90 & 0.178 & 6.38 & CCSDTQ/AVDZ + [CCSDT/AVTZ - CCSDT/AVDZ] & Y \\
463 &                               & $^3A_2   (n \ra \pi^*)$ & V & 97 & & 1.94 & exFCI/AVTZ & Y \\
464 &                               & $^3A_1   (\pi \ra \pi^*)$ & V & 98 & & 3.43 & exFCI/AVTZ & Y \\
465 &                               & $^3B_2   (n \ra 3s)$ & R & 97 & & 5.72 & exFCI/AVDZ + [CCSDT/AVTZ - CCSDT/AVDZ] & Y \\
466 &                               & $^1A_2 [F]   (n \ra \pi^*)$ & V & 87 & & 1.95 & exFCI/AVTZ & Y \\
467 & Thiophene & $^1A_1  (\pi \ra \pi^*)$ & V & 87 & 0.070 & 5.64 & CCSDT/AVTZ & Y \\
468 & & $^1B_2  (\pi \ra \pi^*)$ & V & 91 & 0.079 & 5.98 & CCSDT/AVTZ & Y \\
469 & & $^1A_2  (\pi \ra 3s)$ & R & 92 & & 6.14 & CCSDT/AVTZ & Y \\
470 & & $^1B_1  (\pi \ra 3p)$ & R & 90 & 0.010 & 6.14 & CCSDT/AVTZ & Y \\
471 & & $^1A_2  (\pi \ra 3p)$ & R & 91 & & 6.21 & CCSDT/AVTZ & Y \\
472 & & $^1B_1   (\pi \ra 3s)$ & R & 92 & 0. & 6.49 & CCSDT/AVTZ & Y \\
473 & & $^1B_2   (\pi \ra 3p)$ & R & 92 & 0.082 & 7.29 & CCSDT/AVTZ & Y \\
474 & & $^1A_1  (\pi \ra \pi^*)$ & V & 86 & 0.314 & 7.31 & CCSDT/6-31+G(d) + [CC3/AVTZ - CC3/6-31+G(d)] & N \\
475 & & $^3B_2  (\pi \ra \pi^*)$ & V & 98 & & 3.97 & exFCI/6-31+G(d) + [CC3/AVTZ - CC3/6-31+G(d)] & Y \\
476 & & $^3A_1  (\pi \ra \pi^*)$ & V & 97 & & 4.76 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
477 & & $^3B_1  (\pi \ra 3p)$ & R & 96 & & 5.93 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
478 & & $^3A_2  (\pi \ra 3s)$ & R & 97 & & 6.08 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
479 & Thiopropynal & $^1A''   (n \ra \pi^*)$ & V & 87 & 0. & 2.03 & CCSDT/AVTZ & Y \\
480 & & $^3A''    (n \ra \pi^*)$ & V & 97 & & 1.80 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
481 & Triazine & $^1A_1''  (n \ra \pi^*)$ & V & 88 & & 4.72 & CCSDT/AVTZ & Y \\
482 & & $^1A_2''  (n \ra \pi^*)$ & V & 88 & 0.014 & 4.75 & CCSDT/AVTZ & Y \\
483 & & $^1E''  (n \ra \pi^*)$ & V & 88 & & 4.78 & CCSDT/AVTZ & Y \\
484 & & $^1A_2'  (\pi \ra \pi^*)$ & V & 85 & & 5.75 & CCSDT/AVTZ & Y \\
485 & & $^1A_1'  (\pi \ra \pi^*)$ & V & 90 & & 7.24 & CCSDT/AVTZ & Y \\
486 & & $^1E'  (n \ra 3s)$ & R & 90 & 0.016 & 7.32 & CCSDT/AVTZ & Y \\
487 & & $^1E''  (n \ra \pi^*)$ & V & 82 & & 7.78 & CCSDT/AVTZ & Y \\
488 & & $^1E'  (\pi \ra \pi^*)$ & V & 90 & 0.451 & 7.94 & CCSDT/AVTZ & Y \\
489 & & $^3A_2''  (n \ra \pi^*)$ & V & 96 & & 4.33 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
490 & & $^3E''  (n \ra \pi^*)$ & V & 96 & & 4.51 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
491 & & $^3A_1''  (n \ra \pi^*)$ & V & 96 & & 4.73 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
492 & & $^3A_1'  (\pi \ra \pi^*)$ & V & 98 & & 4.85 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
493 & & $^3E'  (\pi \ra \pi^*)$ & V & 96 & & 5.59 & CCSDT/6-31+G(d) + [CC3/AVTZ - CC3/6-31+G(d)] & Y \\
494 & & $^3A_2'  (\pi \ra \pi^*)$ & V & 97 & & 6.62 & CCSDT/AVDZ + [CC3/AVTZ - CC3/AVDZ] & Y \\
495 & Water & $^1B_1   (n \ra 3s)$ & R & 93 & 0.054 & 7.62 & exFCI/AVTZ & Y \\
496 &                               & $^1A_2   (n \ra 3p)$ & R & 93 & & 9.41 & exFCI/AVTZ & Y \\
497 &                               & $^1A_1   (n \ra 3s)$ & R & 93 & 0.100 & 9.99 & exFCI/AVTZ & Y \\
498 &                               & $^3B_1   (n \ra 3s)$ & R & 98 & & 7.25 & exFCI/AVTZ & Y \\
499 &                               & $^3A_2   (n \ra 3p)$ & R & 98 & & 9.24 & exFCI/AVTZ & Y \\
500 & & $^3A_1   (n \ra 3s)$ & R & 98 & & 9.54 & exFCI/AVTZ & Y \\

View File

@ -0,0 +1,35 @@
3
11
1675
4578
12520
34208
79968
191660
484134
1279638
3362249
9094427
24480467
-152.94410318 -152.77583799 -152.66832658
-153.09921647 -152.93358051 -152.85090291
-153.18891327 -153.02156173 -152.91614073
-153.26224754 -153.09571699 -152.97878421
-153.30755083 -153.14155861 -153.03391259
-153.33981182 -153.17886410 -153.08064298
-153.36567399 -153.20612162 -153.11202005
-153.38686837 -153.22405254 -153.12944601
-153.39782228 -153.23644828 -153.13803232
-153.40481603 -153.24440017 -153.14431662
-153.41185072 -153.25099739 -153.15175250
-153.61467015 0.00000000 -153.46546481 0.00000000 -153.33354922 0.00000000
-153.50109898 0.00000000 -153.34081271 0.00001550 -153.23042776 0.00000000
-153.47346287 0.00000177 -153.31275679 0.00018350 -153.21224048 0.00000292
-153.46242635 0.00007063 -153.30163360 0.00018805 -153.20092541 0.00021017
-153.46045448 0.00015498 -153.29820184 0.00023317 -153.19767825 0.00025171
-153.45944013 0.00016744 -153.29780084 0.00016857 -153.19708614 0.00015473
-153.45952703 0.00008940 -153.29846681 0.00014035 -153.19791659 0.00012082
-153.45978124 0.00009805 -153.29868696 0.00012132 -153.19942129 0.00011103
-153.46010093 0.00010362 -153.29926493 0.00011344 -153.20025214 0.00011009
-153.46012445 0.00010175 -153.29960693 0.00009919 -153.20065063 0.00010860
-153.46019770 0.00009302 -153.29988000 0.00009314 -153.20164956 0.00009542

View File

@ -0,0 +1,29 @@
3
9
3925
10555
28841
78802
185338
449643
1103288
2770258
7089306
-152.98214702 -152.81177895 -152.70598358
-153.18713991 -153.01973621 -152.92531860
-153.29069121 -153.11568125 -153.00021547
-153.36612161 -153.18994645 -153.06405284
-153.40989516 -153.23707407 -153.11835725
-153.43911027 -153.27213915 -153.17219625
-153.46517195 -153.29963332 -153.20747882
-153.49205634 -153.32588691 -153.22740756
-153.51280897 -153.34781541 -153.23897960
-153.81813479 0.00000000 -153.65691756 0.00000524 -153.45524065 0.00000806
-153.67303712 0.00000000 -153.50699547 0.00000513 -153.38922747 0.00000000
-153.64061142 0.00000243 -153.47551674 0.00022954 -153.36550358 0.00001668
-153.62624072 0.00012265 -153.46011264 0.00038995 -153.35274230 0.00035617
-153.61923676 0.00033657 -153.45159058 0.00026716 -153.34356980 0.00026434
-153.61451830 0.00025850 -153.44511379 0.00034212 -153.33494340 0.00022862
-153.60935617 0.00014383 -153.44197671 0.00019918 -153.33054517 0.00019465
-153.60397300 0.00018759 -153.43849877 0.00021403 -153.32904862 0.00019291
-153.60050013 0.00017065 -153.43705032 0.00017372 -153.32864787 0.00016612

View File

@ -0,0 +1,41 @@
3
13
1675
3283
6847
10816
17125
27295
44060
102262
182330
431822
1025223
2499676
6471210
-152.94511313 -152.77385862 -152.67349381
-153.07552652 -152.91019056 -152.81102021
-153.16887315 -152.87506720 -152.72249413
-153.18575750 -152.91501049 -152.88313574
-153.19399920 -152.96008844 -152.93513712
-153.22407865 -152.66842118 -152.66779997
-153.24104770 -152.88545158 -152.64158791
-153.27267495 -153.00226380 -152.92240883
-153.31839156 -152.99580479 -152.70551836
-153.34767755 -153.01282471 -152.95006839
-153.38491266 -153.02847243 -153.02135933
-153.39704582 -153.08749276 -153.03843481
-153.40009319 -153.10785998 -153.04255764
-153.60674209 0.00000000 -153.45525567 0.00000000 -153.27828718 0.00000000
-153.50778461 0.00000000 -153.34435303 0.00000771 -153.22694702 0.00000000
-153.47580094 0.00000000 -153.20401763 0.00000000 -153.25961925 0.00001796
-153.47256846 0.00000184 -153.19864272 0.00004577 -153.18778586 0.00022412
-153.47134821 0.00001806 -153.18850170 0.00033393 -153.18308033 0.00030386
-153.46640222 0.00008272 -153.16282506 0.00005821 -153.14440338 0.00007472
-153.46468478 0.00022437 -153.11676304 0.00027507 -153.15741056 0.00000926
-153.46153081 0.00022654 -153.30215299 0.00037231 -153.11360326 0.00030215
-153.45963234 0.00020835 -153.12700187 0.00020792 -153.16571248 0.00012197
-153.45926998 0.00013436 -153.11874523 0.00017833 -153.11546040 0.00020064
-153.45999474 0.00010483 -153.11234695 0.00013685 -153.11261216 0.00014867
-153.46042237 0.00010761 -153.18900426 0.00014766 -153.11262452 0.00012076
-153.46044161 0.00011166 -153.19075688 0.00014117 -153.11501611 0.00014119

View File

@ -0,0 +1,29 @@
3
9
3925
10555
28841
78802
185338
449643
1103288
2770258
7089306
-152.98214702 -152.81177895 -152.70598358
-153.18713991 -153.01973621 -152.92531860
-153.29069121 -153.11568125 -153.00021547
-153.36612161 -153.18994645 -153.06405284
-153.40989516 -153.23707407 -153.11835725
-153.43911027 -153.27213915 -153.17219625
-153.46517195 -153.29963332 -153.20747882
-153.49205634 -153.32588691 -153.22740756
-153.51280897 -153.34781541 -153.23897960
-153.81813479 0.00000000 -153.65691756 0.00000524 -153.45524065 0.00000806
-153.67303712 0.00000000 -153.50699547 0.00000513 -153.38922747 0.00000000
-153.64061142 0.00000243 -153.47551674 0.00022954 -153.36550358 0.00001668
-153.62624072 0.00012265 -153.46011264 0.00038995 -153.35274230 0.00035617
-153.61923676 0.00033657 -153.45159058 0.00026716 -153.34356980 0.00026434
-153.61451830 0.00025850 -153.44511379 0.00034212 -153.33494340 0.00022862
-153.60935617 0.00014383 -153.44197671 0.00019918 -153.33054517 0.00019465
-153.60397300 0.00018759 -153.43849877 0.00021403 -153.32904862 0.00019291
-153.60050013 0.00017065 -153.43705032 0.00017372 -153.32864787 0.00016612

41
Data/cyanine_1_AVDZ.dat Normal file
View File

@ -0,0 +1,41 @@
2
13
1837
4452
10750
25989
62745
151485
365720
882995
2131743
5146547
12402579
29942536
72287685
-149.49666208 -149.20174897
-149.67824923 -149.41017884
-149.76331223 -149.49587951
-149.83954698 -149.56387420
-149.88732015 -149.61386287
-149.91876595 -149.65004378
-149.93704940 -149.67074327
-149.94814099 -149.68256761
-149.95716939 -149.68957417
-149.96429450 -149.69451101
-149.96764586 -149.70045261
-149.97194785 -149.70823202
-149.97853512 -149.71784007
-150.13878162 0.00000000 -149.91567583 0.00000000
-150.04258376 0.00000000 -149.77690121 0.00007368
-150.02238159 0.00000000 -149.75824316 0.00014703
-150.01366912 0.00001062 -149.74956583 0.00027606
-150.01228528 0.00013296 -149.74823965 0.00021367
-150.01256228 0.00023623 -149.74814778 0.00015794
-150.01375823 0.00011397 -149.74912797 0.00012172
-150.01428760 0.00011064 -149.74975084 0.00010024
-150.01502445 0.00009190 -149.75044461 0.00010290
-150.01530699 0.00040687 -149.75073637 0.00010095
-150.01561706 0.00008671 -149.75094438 0.00009718
-150.01577496 0.00008000 -149.75176574 0.00008494
-150.01596149 0.00007094 -149.75271889 0.00006924

32
Data/cyanine_1_AVTZ.dat Normal file
View File

@ -0,0 +1,32 @@
2
10
4339
10480
25302
61102
147520
356155
859891
2075969
5011842
12099711
-149.53418004 -149.23785789
-149.77321450 -149.50078140
-149.87956261 -149.59317530
-149.94543038 -149.66416877
-149.99106396 -149.71860860
-150.02378226 -149.75622842
-150.04667732 -149.78055837
-150.06430769 -149.79619965
-150.07744982 -149.80783491
-150.08696904 -149.81813112
-150.31168212 0.00000000 -150.08285495 0.00000301
-150.18897469 0.00000000 -149.92131364 0.00009746
-150.16836980 0.00000000 -149.90188683 0.00031717
-150.16110966 0.00002647 -149.89371071 0.00032557
-150.15649180 0.00016989 -149.88827403 0.00025870
-150.15352215 0.00023752 -149.88506169 0.00023029
-150.15208747 0.00014988 -149.88434865 0.00017625
-150.15132812 0.00014477 -149.88434247 0.00015767
-150.15069546 0.00014038 -149.88508648 0.00015161
-150.15101065 0.00012339 -149.88581518 0.00013074

41
Data/cyanine_3_AVDZ.dat Normal file
View File

@ -0,0 +1,41 @@
2
13
1837
4433
10702
25836
62373
150581
363534
867361
2077646
4984962
12011412
28941192
69490507
-149.49611299 -149.19940909
-149.71602454 -149.44367523
-149.81151676 -149.53575423
-149.87147271 -149.59821267
-149.90835161 -149.64031400
-149.93387210 -149.66560085
-149.95069841 -149.67759727
-149.95906375 -149.68207205
-149.96171177 -149.68432004
-149.96298011 -149.68516895
-149.96386122 -149.68614934
-149.96497814 -149.68771483
-149.96708692 -149.69050086
-150.13820232 0.00000000 -149.90863877 0.00000000
-150.02905672 0.00000000 -149.76265135 0.00015721
-150.01394572 0.00000000 -149.74762691 0.00024098
-150.01168451 0.00003468 -149.74496879 0.00029759
-150.01189786 0.00012704 -149.74497803 0.00014416
-150.01307351 0.00013809 -149.74647103 0.00015737
-150.01455303 0.00010459 -149.74726013 0.00010537
-150.01570003 0.00040189 -149.74792326 0.00010032
-150.01545782 0.00008429 -149.74814174 0.00011025
-150.01552076 0.00008896 -149.74802381 0.00010756
-150.01535730 0.00009529 -149.74817968 0.00011542
-150.01568074 0.00009523 -149.74823400 0.00011183
-150.01558698 0.00009869 -149.74855043 0.00011191

32
Data/cyanine_3_AVTZ.dat Normal file
View File

@ -0,0 +1,32 @@
2
10
4339
10473
25284
61040
147363
355765
858892
2073548
4954813
11960692
-149.53416679 -149.23776655
-149.82657499 -149.54811226
-149.92162231 -149.64348985
-149.97807904 -149.70579104
-150.01735206 -149.74902727
-150.04550166 -149.77615153
-150.06457149 -149.79259735
-150.07645267 -149.80299282
-150.08399940 -149.81072866
-150.09024369 -149.81657047
-150.30767415 0.00000000 -150.07692066 0.00000172
-150.17250848 0.00000000 -149.90555580 0.00014707
-150.16085001 0.00000000 -149.89298766 0.00011500
-150.15602387 0.00004260 -149.88613030 0.00033809
-150.15273197 0.00022476 -149.88356291 0.00018969
-150.15132328 0.00017240 -149.88251838 0.00017083
-150.15074599 0.00015000 -149.88271825 0.00016285
-150.15117776 0.00013431 -149.88313702 0.00014176
-150.15063483 0.00012349 -149.88357359 0.00013688
-150.15083395 0.00011600 -149.88381559 0.00012997

View File

@ -0,0 +1,29 @@
8
9
1505
3751
10533
33602
98352
299711
977854
3354890
12438005
-115.84008538 -115.60634841 -115.59512233 -115.58914540 -115.58844094 -115.57951300 -115.57214338 -115.54614582
-115.92118832 -115.69893899 -115.67740311 -115.67457453 -115.66538816 -115.66532196 -115.65815803 -115.63328146
-115.99498715 -115.74899867 -115.74279718 -115.73762315 -115.73534546 -115.72583423 -115.72149619 -115.71102280
-116.06377442 -115.83690096 -115.82919529 -115.80710041 -115.80483329 -115.79700830 -115.77536873 -115.77239706
-116.14618508 -115.89012714 -115.87348074 -115.86983187 -115.86303711 -115.86236242 -115.86114014 -115.85090936
-116.19370509 -115.93712039 -115.93663758 -115.92621000 -115.91732578 -115.91206752 -115.90381550 -115.88596234
-116.21771319 -115.97298701 -115.95564053 -115.95201591 -115.94913372 -115.94695075 -115.93496343 -115.92312484
-116.23259563 -115.98030717 -115.97547231 -115.97071007 -115.96515426 -115.96050338 -115.94914595 -115.94301355
-116.24291786 -115.98870538 -115.98712254 -115.98439216 -115.97261000 -115.96980350 -115.95866582 -115.95217477
-116.41632799 0.00000000 -116.14439138 0.00000000 -116.16097877 0.00000000 -116.12368837 0.00000000 -116.12493450 0.00000000 -116.11998011 0.00000000 -116.19870916 0.00000000 -116.12943389 0.00000000
-116.34961032 0.00000000 -116.08194612 0.00001717 -116.06489796 0.00001369 -116.10050559 0.00000000 -116.06921763 0.00000715 -116.10412477 0.00001280 -116.06169572 0.00000442 -116.05366695 0.00000000
-116.31875287 0.00000119 -116.06021800 0.00018788 -116.02879810 0.00005820 -116.05926262 0.00014516 -116.05403061 0.00037373 -116.04340543 0.00015452 -116.07352365 0.00010163 -116.02740056 0.00027345
-116.30523687 0.00000139 -116.05178370 0.00032112 -116.02575732 0.00020530 -116.04449796 0.00022697 -116.05606824 0.00024209 -116.02605387 0.00013928 -116.00747399 0.00011580 -116.02251281 0.00005149
-116.29643142 0.00017161 -116.03829181 0.00027993 -116.01858352 0.00018889 -116.03869123 0.00028821 -116.04783291 0.00025635 -116.01148366 0.00022482 -116.00782839 0.00025436 -116.02107700 0.00018190
-116.29562633 0.00045570 -116.04385908 0.00016144 -116.04474598 0.00013635 -116.03015887 0.00015382 -116.02493561 0.00011864 -116.00975686 0.00012771 -115.99850696 0.00013787 -116.01815693 0.00021861
-116.29508369 0.00008713 -116.03620054 0.00009915 -116.01834071 0.00009558 -116.04411445 0.00011795 -116.01645862 0.00008826 -116.04414879 0.00011072 -116.01019186 0.00008095 -115.99879499 0.00010779
-116.29475907 0.00008414 -116.03709185 0.00008196 -116.04357149 0.00010131 -116.04442780 0.00008114 -116.01737068 0.00007145 -116.01833163 0.00008979 -116.00988796 0.00007621 -115.99908246 0.00008409
-116.29467670 0.00008940 -116.04305668 0.00010492 -116.04017243 0.00009366 -116.04406192 0.00010645 -116.01819317 0.00007699 -116.01938066 0.00009114 -116.01065328 0.00008083 -116.00004049 0.00008039

View File

@ -0,0 +1 @@
0

View File

@ -0,0 +1,41 @@
4
13
1505
3236
5585
9709
16056
31088
57709
133585
255008
571143
1294976
3300419
9262490
-115.83763416 -115.59704576 -115.59493395 -115.58028645
-115.96596966 -115.71041754 -115.66976269 -115.65761346
-116.02288990 -115.73169363 -115.71386352 -115.69712754
-116.09523177 -115.81711926 -115.71072237 -115.61603746
-116.11985447 -115.82471419 -115.81727651 -115.57954339
-116.11985447 -115.83602743 -115.82479729 -115.79216227
-116.11995998 -115.91165876 -115.83663194 -115.71617874
-116.12053119 -115.91774299 -115.91255147 -115.61679116
-116.18287191 -115.96814983 -115.93336081 -115.90892479
-116.22870483 -115.97508069 -115.97443602 -115.93090522
-116.24412100 -115.98249383 -115.98165747 -115.94043602
-116.24812918 -115.98929143 -115.98403817 -115.94264773
-116.24929454 -115.99088741 -115.98543224 -115.94406290
-116.42845645 0.00000000 -116.00855759 0.00000000 -116.16438807 0.00000000 -116.02543962 0.00000000
-116.33130879 0.00000000 -116.08474239 0.00000000 -116.00259552 0.00003198 -116.00316208 0.00001120
-116.31435096 0.00000000 -115.98204957 0.00014401 -116.08312921 0.00000000 -115.98910633 0.00009633
-116.30115566 0.00000000 -116.05375841 0.00012181 -115.98426878 0.00018101 -116.14194412 0.00000604
-116.29884270 0.00000042 -116.05439373 0.00046550 -116.05357064 0.00018086 -115.98576114 0.00029671
-116.29884269 0.00000047 -116.05079554 0.00030154 -116.05421204 0.00022958 -115.97684021 0.00024688
-116.29874757 0.00004917 -116.04667875 0.00020014 -116.05072445 0.00027388 -115.93886673 0.00039180
-116.29895350 0.00010198 -116.04374338 0.00015287 -116.04656410 0.00017671 -116.05769445 0.00001552
-116.29585944 0.00008801 -116.04582000 0.00012373 -116.04316686 0.00016031 -116.00258333 0.00012730
-116.29538455 0.00009002 -116.04622708 0.00008336 -116.04398941 0.00009711 -116.00166116 0.00008499
-116.29553282 0.00007787 -116.04668317 0.00008088 -116.04453178 0.00010778 -116.00094514 0.00009310
-116.29561491 0.00006992 -116.04723370 0.00008348 -116.04460178 0.00009897 -116.00100485 0.00008210
-116.29571139 0.00007397 -116.04714475 0.00009228 -116.04475874 0.00010982 -116.00127085 0.00010121

View File

@ -0,0 +1 @@
0

View File

@ -0,0 +1,35 @@
4
11
1217
3668
9562
24413
54216
122319
288169
733822
2051210
6015252
17748688
-147.86894079 -147.76031595 -147.67422254 -147.65176450
-148.03845990 -147.92214895 -147.83510563 -147.82189989
-148.12763995 -147.99186130 -147.91052621 -147.90025755
-148.19395552 -148.07271593 -147.97718742 -147.97158655
-148.23593244 -148.12624257 -148.02797502 -148.01583954
-148.26767680 -148.16206284 -148.06797971 -148.04947984
-148.29442459 -148.18527553 -148.09477133 -148.07519611
-148.31617186 -148.19893928 -148.11183853 -148.09614650
-148.32823839 -148.20954415 -148.12191618 -148.10962206
-148.33742361 -148.21942090 -148.12963539 -148.12044893
-148.34349936 -148.22634295 -148.13550154 -148.12774121
-148.55992091 0.00000000 -148.45876170 0.00000000 -148.33119403 0.00000000 -148.36553281 0.00000000
-148.41941532 0.00000000 -148.31091143 0.00000000 -148.21443122 0.00000000 -148.20741422 0.00000222
-148.39521621 0.00000292 -148.28812546 0.00009005 -148.19260188 0.00012144 -148.18194899 0.00008950
-148.38690138 0.00014162 -148.27445884 0.00015997 -148.18105045 0.00008961 -148.17018086 0.00020916
-148.38382524 0.00012738 -148.26976076 0.00021172 -148.17766583 0.00015614 -148.16627405 0.00019977
-148.38278611 0.00010101 -148.26844231 0.00011930 -148.17660641 0.00017488 -148.16490202 0.00019871
-148.38199556 0.00011728 -148.26858268 0.00011398 -148.17668586 0.00015563 -148.16471272 0.00010274
-148.38194066 0.00008971 -148.26869828 0.00010264 -148.17744547 0.00011170 -148.16536712 0.00010373
-148.38200447 0.00007333 -148.26842649 0.00009923 -148.17808238 0.00008434 -148.16618841 0.00008886
-148.38237092 0.00006758 -148.26865496 0.00008050 -148.17888481 0.00008072 -148.16756415 0.00008241
-148.38253529 0.00006992 -148.26888851 0.00008004 -148.17913799 0.00007799 -148.16779302 0.00007425

View File

@ -0,0 +1,32 @@
4
10
2769
8299
21675
59522
153607
407216
1112006
3073096
8799257
24796662
-147.90410717 -147.79097158 -147.71230371 -147.68796181
-148.12482142 -148.01112564 -147.92935626 -147.91199094
-148.22508257 -148.10858208 -148.00265702 -147.99422461
-148.30287110 -148.18689793 -148.07361919 -148.06253363
-148.35382313 -148.23466119 -148.12516919 -148.11739295
-148.38625126 -148.27085312 -148.17102862 -148.15547422
-148.41084335 -148.29432177 -148.20133223 -148.18443320
-148.42851177 -148.31273766 -148.21825850 -148.20256117
-148.44370362 -148.32779466 -148.22878476 -148.21682403
-148.45497871 -148.34086280 -148.23722096 -148.22885885
-148.72520322 0.00000000 -148.63083204 0.00000000 -148.45203761 0.00000000 -148.51056037 0.00000000
-148.56298613 0.00000000 -148.45383477 0.00000269 -148.34097022 0.00000378 -148.33106193 0.00001946
-148.53713127 0.00000108 -148.42619605 0.00005149 -148.32158787 0.00002193 -148.30928077 0.00006327
-148.52653108 0.00009866 -148.41337424 0.00022403 -148.30944668 0.00038579 -148.29709812 0.00022047
-148.52010428 0.00019260 -148.40677981 0.00022763 -148.30226337 0.00079768 -148.29016564 0.00022564
-148.51575358 0.00012233 -148.40143804 0.00012577 -148.29700437 0.00015010 -148.28596990 0.00019155
-148.51303797 0.00013743 -148.39873344 0.00015529 -148.29427347 0.00013346 -148.28376691 0.00016327
-148.51126071 0.00012295 -148.39676061 0.00013813 -148.29400142 0.00012615 -148.28370354 0.00013364
-148.51024063 0.00012011 -148.39651833 0.00012931 -148.29432413 0.00011893 -148.28557790 0.00013130
-148.51026745 0.00010501 -148.39705936 0.00010920 -148.29544149 0.00011545 -148.28817642 0.00011640

View File

@ -0,0 +1,44 @@
6
14
1217
2649
5540
12374
22525
37346
57008
93337
176860
302681
622121
1645610
5427199
18272719
-147.86871768 -147.76125814 -147.67177381 -147.64979276 -147.63310485 -147.62731885
-147.98616268 -147.87093597 -147.76093922 -147.75959997 -147.70971003 -147.68674391
-148.08592187 -147.96188485 -147.84712578 -147.74366354 -147.73494495 -147.69963459
-148.14758746 -148.02962121 -147.87283089 -147.78313649 -147.64681741 -147.62086081
-148.16161300 -148.04090722 -147.94271699 -147.86257389 -147.73296837 -147.66729177
-148.18689793 -148.05016454 -147.98714218 -147.91210040 -147.81028066 -147.70458853
-148.21018161 -148.05016454 -148.00259561 -147.92436329 -147.86722753 -147.81928352
-148.22973614 -148.05412113 -148.02456143 -147.94474550 -147.92246217 -147.89625980
-148.29017182 -148.05747033 -147.98168603 -147.96569271 -147.93809601 -147.89812356
-148.30952431 -148.09340155 -148.00412979 -147.97283813 -147.94708481 -147.92385563
-148.32452753 -148.10615257 -148.02001454 -147.98038350 -147.96739188 -147.93960932
-148.33161147 -148.11157855 -148.02730659 -147.99243317 -147.98467111 -147.94741414
-148.33424727 -148.11421871 -148.03020592 -147.99575704 -147.98799714 -147.95047013
-148.33798316 -148.11803553 -148.03429041 -148.00007490 -147.99244172 -147.95455427
-148.57093029 0.00000000 -148.46475091 0.00000000 -148.15860557 0.00000000 -148.36427635 0.00000000 -148.10906524 0.00000000 -148.14594682 0.00000000
-148.44508572 0.00000000 -148.33816443 0.00000000 -148.15479722 0.00015913 -148.23563488 0.00000000 -148.10888832 0.00001530 -148.09644513 0.00000000
-148.40653613 0.00000000 -148.29910495 0.00006656 -148.19577193 0.00000295 -148.10609365 0.00005643 -148.08784877 0.00014679 -148.14669961 0.00000991
-148.39328766 0.00000453 -148.28164800 0.00023499 -148.18590345 0.00018125 -148.11366781 0.00015892 -148.10337347 0.00004951 -148.05236079 0.00007386
-148.39130800 0.00001617 -148.28229328 0.00015234 -148.16811053 0.00029931 -148.09978955 0.00032914 -148.09539421 0.00015108 -148.05775273 0.00014047
-148.38796909 0.00017647 -148.27903020 0.00017635 -148.16983235 0.00031563 -148.08889948 0.00029072 -148.01522209 0.00035840 -148.01403512 0.00024314
-148.38592851 0.00022419 -148.27903024 0.00017634 -148.16868249 0.00027105 -148.08705072 0.00027348 -148.01481681 0.00026309 -148.01200651 0.00028524
-148.38398380 0.00018692 -148.28014956 0.00028705 -148.16718928 0.00022601 -148.08620362 0.00023834 -148.05344752 0.00022493 -148.04573006 0.00017698
-148.38272854 0.00011670 -148.16736940 0.00015355 -148.08037819 0.00015368 -148.06288527 0.00017553 -148.05228725 0.00014884 -148.00492899 0.00015909
-148.38258078 0.00009922 -148.16728571 0.00012194 -148.08831116 0.00013939 -148.05486040 0.00013160 -148.05139822 0.00014655 -148.00658410 0.00014554
-148.38268569 0.00008424 -148.16763721 0.00010534 -148.08866446 0.00010410 -148.05560289 0.00010075 -148.05140069 0.00010542 -148.00803068 0.00010107
-148.38292728 0.00008381 -148.16791862 0.00010011 -148.08884510 0.00011439 -148.05662910 0.00010854 -148.04997373 0.00010731 -148.00894231 0.00010103
-148.38297708 0.00007693 -148.16809755 0.00009384 -148.08932594 0.00010884 -148.05652422 0.00010853 -148.04991007 0.00010986 -148.00928613 0.00010589
-148.38264886 0.00008442 -148.16812518 0.00009529 -148.08884487 0.00010478 -148.05681916 0.00011086 -148.04993372 0.00010923 -148.00943544 0.00010746

View File

@ -0,0 +1 @@
0

View File

@ -0,0 +1,41 @@
2
13
1217
2940
7098
17153
41413
99998
241422
582846
1407240
3397379
8053108
19409447
46497488
-147.81401838 -147.80122139
-148.00682696 -147.99030284
-148.08631207 -148.05916843
-148.14790725 -148.11726954
-148.19457079 -148.16987272
-148.22791749 -148.21006830
-148.25338562 -148.23561452
-148.27192462 -148.25029081
-148.28368421 -148.25931740
-148.29150171 -148.26580839
-148.29518544 -148.27061448
-148.29873590 -148.27637488
-148.30423177 -148.28412353
-148.52067166 0.00000000 -148.51201565 0.00000000
-148.36643990 0.00000000 -148.34748699 0.00000963
-148.34951579 0.00000000 -148.32895147 0.00006155
-148.34156407 0.00000066 -148.31951408 0.00014972
-148.33813695 0.00010056 -148.31481187 0.00017542
-148.33690454 0.00013586 -148.31363620 0.00015352
-148.33747359 0.00014525 -148.31402829 0.00011685
-148.33746770 0.00011518 -148.31434857 0.00011883
-148.33791813 0.00008552 -148.31452664 0.00008967
-148.33843648 0.00008326 -148.31479332 0.00008677
-148.33869380 0.00007933 -148.31483915 0.00008362
-148.33883470 0.00007173 -148.31488114 0.00007395
-148.33906518 0.00006864 -148.31525751 0.00006149

View File

@ -0,0 +1,35 @@
2
11
2769
6685
16140
38967
94083
227142
548375
1323903
3196218
7716422
18629095
-147.84500003 -147.82967604
-148.08391028 -148.06284036
-148.17181488 -148.14124202
-148.23582541 -148.20435250
-148.28413660 -148.25855471
-148.31901487 -148.30033202
-148.34757593 -148.32901263
-148.37019548 -148.34765642
-148.38567413 -148.36021876
-148.39590902 -148.37017661
-148.40341430 -148.38015923
-148.68749633 0.00000000 -148.67945726 0.00000000
-148.51126647 0.00000000 -148.48884020 0.00000261
-148.48821181 0.00000000 -148.46776348 0.00026405
-148.47751268 0.00000489 -148.45550383 0.00031882
-148.47112487 0.00007968 -148.44767041 0.00037043
-148.46694946 0.00036640 -148.44285017 0.00021098
-148.46382673 0.00016224 -148.43929310 0.00018321
-148.46183758 0.00014669 -148.43784033 0.00014780
-148.46082795 0.00012683 -148.43722862 0.00013890
-148.46110355 0.00012048 -148.43703977 0.00012363
-148.46110540 0.00010958 -148.43711491 0.00011022

BIN
Data/errors.pdf Normal file

Binary file not shown.

32
Data/formamide_1_AVDZ.dat Normal file
View File

@ -0,0 +1,32 @@
6
10
1513
3803
13060
36123
94421
245783
696431
2104566
6834188
22931204
-168.97041407 -168.74326216 -168.70500433 -168.68971535 -168.67284635 -168.66905293
-169.06257156 -168.84170818 -168.82121847 -168.81643760 -168.80220099 -168.78881795
-169.15315649 -168.93062298 -168.90369411 -168.89043724 -168.87113619 -168.86914137
-169.23859103 -169.00678298 -168.96998457 -168.96103232 -168.93511301 -168.93387573
-169.30512845 -169.08334310 -169.03297184 -169.03077158 -169.00939228 -169.00047703
-169.35433306 -169.13545921 -169.09156638 -169.08752774 -169.06827363 -169.06488320
-169.39151015 -169.17269513 -169.13804718 -169.13279622 -169.11481133 -169.10938821
-169.41846998 -169.19951090 -169.16375314 -169.16347047 -169.14294941 -169.13480207
-169.43295437 -169.21461725 -169.17804559 -169.17789755 -169.15653025 -169.14767975
-169.44298229 -169.22573636 -169.18799718 -169.18757080 -169.16595042 -169.15589594
-169.67282552 0.00000000 -169.46021685 0.00000000 -169.42014321 0.00000000 -169.40439540 0.00000000 -169.37480812 0.00000000 -169.40395121 0.00000000
-169.59282823 0.00000000 -169.37341607 0.00000569 -169.32726396 0.00001459 -169.32085593 0.00000000 -169.29670221 0.00001111 -169.29598410 0.00001323
-169.54903187 0.00000173 -169.33017155 0.00007288 -169.28742559 0.00009898 -169.28671556 0.00001438 -169.26544234 0.00010037 -169.25788723 0.00015972
-169.52437283 0.00004846 -169.30684905 0.00042548 -169.26770946 0.00019878 -169.26550182 0.00018127 -169.23783549 0.00018728 -169.24617402 0.00035548
-169.51377103 0.00028744 -169.29550614 0.00030080 -169.25534991 0.00027466 -169.25346075 0.00053970 -169.23258868 0.00027125 -169.22454204 0.00036623
-169.50834417 0.00023213 -169.29062031 0.00015263 -169.24763167 0.00027442 -169.24949681 0.00022209 -169.22682478 0.00018259 -169.21825724 0.00045316
-169.50785264 0.00012791 -169.28973189 0.00008937 -169.24767297 0.00046154 -169.24635064 0.00014689 -169.22571825 0.00016315 -169.21723871 0.00017050
-169.50761645 0.00009159 -169.29119843 0.00010416 -169.24884488 0.00011990 -169.24708282 0.00012176 -169.22656743 0.00013018 -169.21822914 0.00011892
-169.50761249 0.00013058 -169.29281829 0.00013001 -169.24927570 0.00013411 -169.25012818 0.00012960 -169.22753534 0.00012474 -169.21865400 0.00086548
-169.50733290 0.00011938 -169.29389546 0.00012635 -169.25039062 0.00011940 -169.25097090 0.00012081 -169.22851653 0.00011920 -169.22010394 0.00012365

View File

@ -0,0 +1 @@
0

View File

@ -0,0 +1 @@
0

View File

@ -0,0 +1 @@
0

BIN
Data/histograms.pdf Normal file

Binary file not shown.

BIN
Data/histograms13.pdf Normal file

Binary file not shown.

BIN
Data/histograms4.pdf Normal file

Binary file not shown.

BIN
Data/histograms56.pdf Normal file

Binary file not shown.

BIN
Data/histograms710.pdf Normal file

Binary file not shown.

BIN
Data/histogramsR.pdf Normal file

Binary file not shown.

BIN
Data/histogramsS.pdf Normal file

Binary file not shown.

BIN
Data/histogramsT.pdf Normal file

Binary file not shown.

BIN
Data/histogramsV.pdf Normal file

Binary file not shown.

BIN
Data/histogramsnpi.pdf Normal file

Binary file not shown.

BIN
Data/histogramsppi.pdf Normal file

Binary file not shown.

35
Data/ketene_1_AVDZ.dat Normal file
View File

@ -0,0 +1,35 @@
5
11
1217
3841
10163
24975
62417
162024
444811
1311268
4120127
13219361
42174792
-151.75292489 -151.59663134 -151.53522248 -151.49697512 -151.48750312
-151.89350991 -151.75279318 -151.70610768 -151.65916304 -151.65611794
-151.96988198 -151.84442226 -151.77850394 -151.72944909 -151.72686839
-152.05601292 -151.91745694 -151.83025976 -151.78740141 -151.78462196
-152.11829221 -151.96932574 -151.87768376 -151.83724037 -151.83412533
-152.15143390 -152.00200080 -151.92010666 -151.87637105 -151.87526528
-152.16586753 -152.02049455 -151.94928179 -151.90786096 -151.90247443
-152.17565200 -152.03349353 -151.96478598 -151.92142145 -151.91751818
-152.18667478 -152.04582001 -151.97388355 -151.93081951 -151.92590412
-152.19899872 -152.05404827 -151.98032707 -151.93677233 -151.93215113
-152.20572345 -152.06377112 -151.98703278 -151.94337607 -151.93875163
-152.38003184 0.00000000 -152.27022085 0.00000000 -152.17877893 0.00000000 -152.13939030 0.00000000 -152.13815047 0.00000000
-152.27889924 0.00000000 -152.13663620 0.00001318 -152.04665101 0.00007141 -152.00066605 0.00000780 -152.01068235 0.00001947
-152.25330341 0.00000000 -152.10807164 0.00012154 -152.02553392 0.00013679 -151.98684930 0.00003963 -151.98038001 0.00015822
-152.23845686 0.00000075 -152.09583524 0.00021393 -152.01794802 0.00022179 -151.97059352 0.00027389 -151.97865584 0.00010122
-152.23551284 0.00002705 -152.09287740 0.00010883 -152.01474190 0.00017882 -151.97404808 0.00015035 -151.96762948 0.00021618
-152.23607838 0.00010253 -152.09335546 0.00011699 -152.01449644 0.00016137 -151.96675155 0.00016533 -151.97313805 0.00016456
-152.23635968 0.00009956 -152.09373238 0.00010551 -152.01563672 0.00012053 -151.97348874 0.00007970 -151.96732073 0.00009720
-152.23665796 0.00010126 -152.09397411 0.00009201 -152.01641588 0.00007803 -151.97387888 0.00007701 -151.96780304 0.00007994
-152.23693432 0.00008112 -152.09435215 0.00007099 -152.01719549 0.00007416 -151.97491422 0.00036691 -151.96861273 0.00007382
-152.23698855 0.00006258 -152.09482068 0.00007208 -152.01803491 0.00006957 -151.97508871 0.00006008 -151.96899906 0.00006585
-152.23732754 0.00005638 -152.09517952 0.00005973 -152.01859973 0.00006090 -151.97554543 0.00006117 -151.96976164 0.00005960

1
Data/ketene_1_AVTZ.dat Normal file
View File

@ -0,0 +1 @@
0

1
Data/ketene_3_AVDZ.dat Normal file
View File

@ -0,0 +1 @@
0

1
Data/ketene_3_AVTZ.dat Normal file
View File

@ -0,0 +1 @@
0

41
Data/ketene_Fl_AVDZ.dat Normal file
View File

@ -0,0 +1,41 @@
2
13
1217
2952
7131
17235
41610
100464
242543
585556
1413675
3412933
8239584
19892184
48023994
-151.67269667 -151.64443590
-151.85314167 -151.82236297
-151.93207771 -151.89691771
-151.99957546 -151.95676374
-152.04836483 -152.00994652
-152.08183789 -152.04945519
-152.10489358 -152.07296671
-152.12093197 -152.08613007
-152.13188654 -152.09417264
-152.13867290 -152.10035832
-152.14273052 -152.10450643
-152.14612453 -152.11038650
-152.15094449 -152.11835363
-152.36166843 0.00000000 -152.33947519 0.00000000
-152.21970664 0.00000000 -152.18715558 0.00000215
-152.19875846 0.00000000 -152.16483636 0.00010187
-152.18707336 0.00000066 -152.15360122 0.00018281
-152.18300426 0.00007488 -152.14798367 0.00019548
-152.18237541 0.00014419 -152.14638447 0.00015894
-152.18251985 0.00013207 -152.14665179 0.00010781
-152.18302198 0.00010188 -152.14715346 0.00009819
-152.18322949 0.00008447 -152.14752413 0.00008606
-152.18362150 0.00007960 -152.14755663 0.00007961
-152.18374097 0.00007446 -152.14761173 0.00007785
-152.18370749 0.00007026 -152.14771174 0.00007252
-152.18381192 0.00006283 -152.14818920 0.00005879

35
Data/ketene_Fl_AVTZ.dat Normal file
View File

@ -0,0 +1,35 @@
2
11
2769
6688
16147
38988
94140
227288
548729
1324755
3198242
7721242
18640730
-151.70724240 -151.67627828
-151.93227501 -151.89399029
-152.02675305 -151.98343323
-152.09304085 -152.05051473
-152.14042879 -152.10510240
-152.17609906 -152.14459273
-152.20479579 -152.17070177
-152.22673453 -152.18779502
-152.24046514 -152.19952234
-152.24916208 -152.20918692
-152.25568457 -152.21894992
-152.53576090 0.00000000 -152.51611647 0.00000000
-152.36849839 0.00000000 -152.33564376 0.00000251
-152.34007724 0.00000000 -152.30805568 0.00020725
-152.32802296 0.00000284 -152.29257813 0.00043246
-152.32128068 0.00008964 -152.28406778 0.00025819
-152.31712637 0.00021500 -152.27882352 0.00021730
-152.31354667 0.00014185 -152.27596493 0.00017926
-152.31182500 0.00014524 -152.27448513 0.00013802
-152.31118627 0.00013439 -152.27412964 0.00013135
-152.31080579 0.00011643 -152.27366631 0.00011839
-152.31116816 0.00010768 -152.27433878 0.00010720

View File

@ -0,0 +1,32 @@
5
10
1513
4183
12971
39674
127324
388874
1157555
3569031
11328319
35990294
-168.85937170 -168.78034175 -168.58881625 -168.57914706 -168.55766001
-168.99090821 -168.92062676 -168.77452972 -168.74292139 -168.73909395
-169.07692483 -169.01413950 -168.86477160 -168.82952649 -168.81790438
-169.17207011 -169.10677090 -168.92429461 -168.92016192 -168.88147664
-169.25412053 -169.17439013 -169.01017582 -168.97706078 -168.94211863
-169.29548105 -169.21596442 -169.05470316 -169.04824867 -169.01605839
-169.31821068 -169.23614511 -169.08943591 -169.06659384 -169.05805823
-169.33562851 -169.25631746 -169.10584655 -169.09029984 -169.07459573
-169.34845627 -169.27571470 -169.11523605 -169.10917501 -169.08394759
-169.35790881 -169.28942138 -169.12348568 -169.12318338 -169.09212793
-169.59406910 0.00000000 -169.54889062 0.00000000 -169.41189010 0.00000000 -169.37846049 0.00000000 -169.24549769 0.00000000
-169.47281612 0.00000000 -169.39804612 0.00000643 -169.21947060 0.00000000 -169.19190354 0.00007840 -169.23354849 0.00001171
-169.43817767 0.00000241 -169.36101058 0.00005307 -169.18844088 0.00005476 -169.16027817 0.00004687 -169.19822095 0.00011849
-169.41793359 0.00008299 -169.34274720 0.00024618 -169.17688014 0.00023589 -169.17452910 0.00054419 -169.15151716 0.00018260
-169.41152233 0.00017911 -169.33724412 0.00028047 -169.17004684 0.00027773 -169.14493463 0.00030400 -169.17171967 0.00024636
-169.41132892 0.00012383 -169.33645405 0.00014603 -169.16991131 0.00018698 -169.17319456 0.00018217 -169.14174354 0.00016814
-169.41156281 0.00009840 -169.33671646 0.00015878 -169.17410708 0.00014570 -169.17092158 0.00015433 -169.14245706 0.00011758
-169.41124990 0.00011731 -169.33700772 0.00012441 -169.17507735 0.00012804 -169.17158700 0.00013490 -169.14423980 0.00013332
-169.41197325 0.00011264 -169.33751582 0.00011985 -169.17631578 0.00011925 -169.17287358 0.00012627 -169.14467523 0.00011694
-169.41181174 0.00010346 -169.33809806 0.00009500 -169.17751245 0.00010636 -169.17403152 0.00010131 -169.14586275 0.00010554

View File

@ -0,0 +1 @@
0

View File

@ -0,0 +1,47 @@
5
15
1513
2671
4979
9936
16581
26586
44664
76200
129504
221216
384058
732614
1608497
4253023
13044397
-168.85893473 -168.78904641 -168.58535390 -168.56027396 -168.53182299
-168.96580839 -168.87476436 -168.69998771 -168.64931446 -168.64615089
-169.03882028 -168.96462888 -168.85410464 -168.76898301 -168.68578839
-169.09352646 -169.02325723 -168.88658201 -168.86440488 -168.63922226
-169.11728954 -169.05413656 -168.89595925 -168.89585064 -168.74945933
-169.12652369 -169.07335228 -168.96296940 -168.92769189 -168.70687314
-169.15079223 -169.09168026 -169.01128670 -168.94764634 -168.86687789
-169.23052788 -169.14133041 -169.06458094 -168.95655907 -168.89790327
-169.28983603 -169.18271386 -169.08833338 -168.99636519 -168.93214210
-169.31190497 -169.21587529 -169.09291580 -169.03807536 -168.94438075
-169.31339257 -169.24672945 -169.11729425 -169.06212484 -168.95860711
-169.31429824 -169.26041292 -169.14479380 -169.08795185 -168.97817144
-169.33265710 -169.26700043 -169.16214361 -169.09815034 -168.99527993
-169.34470406 -169.27070402 -169.16749019 -169.10185816 -169.00033564
-169.34679912 -169.27353380 -169.16916853 -169.10471205 -169.00367020
-169.58649965 0.00000000 -169.52664346 0.00000000 -169.36065807 0.00000000 -169.18278026 0.00000000 -169.18703643 0.00000000
-169.48124516 0.00000000 -169.42275195 0.00000000 -169.25668746 0.00000000 -169.43417411 0.00000000 -169.18845606 0.00003221
-169.44801660 0.00000000 -169.37565083 0.00007086 -169.26546814 0.00000000 -169.21454373 0.00009385 -169.13738578 0.00005694
-169.43014773 0.00000000 -169.36076675 0.00018501 -169.25529052 0.00000296 -169.18245297 0.00019095 -169.12822501 0.00010867
-169.42580926 0.00000336 -169.35117046 0.00065455 -169.25355023 0.00000623 -169.18300054 0.00026355 -169.10017497 0.00033196
-169.42375717 0.00000580 -169.34847294 0.00037822 -169.23791953 0.00000626 -169.17670788 0.00024616 -169.03462580 0.00032187
-169.41915336 0.00000960 -169.34249674 0.00041373 -169.23307307 0.00003548 -169.17234131 0.00036359 -169.07741411 0.00032316
-169.41101103 0.00025025 -169.33889575 0.00029561 -169.22912465 0.00025968 -169.16782082 0.00033638 -169.07873282 0.00035414
-169.41014966 0.00016371 -169.33970767 0.00025507 -169.22958523 0.00020019 -169.16888637 0.00024365 -169.06947408 0.00024918
-169.41006152 0.00016356 -169.34000182 0.00021833 -169.22937391 0.00012049 -169.17090035 0.00022333 -169.07266122 0.00021754
-169.41023069 0.00015285 -169.33750346 0.00015558 -169.22955874 0.00014714 -169.17250825 0.00018301 -169.07412840 0.00019296
-169.41053428 0.00013853 -169.33712251 0.00012071 -169.23068532 0.00012718 -169.17196993 0.00013397 -169.07687540 0.00015531
-169.41150569 0.00009527 -169.33731361 0.00012421 -169.23227779 0.00011239 -169.17210798 0.00012901 -169.07682975 0.00013718
-169.41254604 0.00011246 -169.33768200 0.00012717 -169.23297149 0.00011875 -169.17266786 0.00013725 -169.07735639 0.00014547
-169.41243231 0.00012737 -169.33798265 0.00012763 -169.23274016 0.00011233 -169.17279741 0.00013413 -169.07781408 0.00014447

View File

@ -0,0 +1 @@
0

View File

@ -0,0 +1,41 @@
2
13
1513
3658
8837
21340
51525
124396
300327
724906
1750083
4225079
10200257
24625609
59451490
-168.84773524 -168.78791759
-169.06109755 -168.99747273
-169.14147787 -169.07891598
-169.20649690 -169.14154334
-169.25986369 -169.19423017
-169.29983021 -169.23493463
-169.32475146 -169.26086391
-169.33998606 -169.27591761
-169.34987918 -169.28500749
-169.35668640 -169.29059361
-169.36048541 -169.29548553
-169.36392742 -169.30212876
-169.36666690 -169.31128326
-169.59885176 0.00000000 -169.55030561 0.00000000
-169.43499030 0.00000000 -169.37504335 0.00003956
-169.41444196 0.00000000 -169.35300915 0.00009418
-169.40625060 0.00000082 -169.34444680 0.00048038
-169.40460484 0.00008018 -169.34250067 0.00033480
-169.40511354 0.00014147 -169.34295454 0.00015079
-169.40581016 0.00013227 -169.34322637 0.00012314
-169.40640981 0.00010200 -169.34373602 0.00009322
-169.40698538 0.00009602 -169.34413217 0.00010013
-169.40723832 0.00008355 -169.34458636 0.00009743
-169.40744576 0.00008085 -169.34464140 0.00009582
-169.40813086 0.00066600 -169.34517038 0.00008406
-169.40779542 0.00007794 -169.34585668 0.00006810

View File

@ -0,0 +1 @@
0

View File

@ -0,0 +1,41 @@
2
13
1513
3658
8837
21340
51525
124396
300327
724906
1750083
4225079
10200257
24625609
59451490
-168.84773524 -168.78791759
-169.06109755 -168.99747273
-169.14147787 -169.07891598
-169.20649690 -169.14154334
-169.25986369 -169.19423017
-169.29983021 -169.23493463
-169.32475146 -169.26086391
-169.33998606 -169.27591761
-169.34987918 -169.28500749
-169.35668640 -169.29059361
-169.36048541 -169.29548553
-169.36392742 -169.30212876
-169.36666690 -169.31128326
-169.59885176 0.00000000 -169.55030561 0.00000000
-169.43499030 0.00000000 -169.37504335 0.00003956
-169.41444196 0.00000000 -169.35300915 0.00009418
-169.40625060 0.00000082 -169.34444680 0.00048038
-169.40460484 0.00008018 -169.34250067 0.00033480
-169.40511354 0.00014147 -169.34295454 0.00015079
-169.40581016 0.00013227 -169.34322637 0.00012314
-169.40640981 0.00010200 -169.34373602 0.00009322
-169.40698538 0.00009602 -169.34413217 0.00010013
-169.40723832 0.00008355 -169.34458636 0.00009743
-169.40744576 0.00008085 -169.34464140 0.00009582
-169.40813086 0.00066600 -169.34517038 0.00008406
-169.40779542 0.00007794 -169.34585668 0.00006810

View File

@ -1,25 +1,45 @@
%% This BibTeX bibliography file was created using BibDesk. %% This BibTeX bibliography file was created using BibDesk.
%% http://bibdesk.sourceforge.net/ %% http://bibdesk.sourceforge.net/
%% Created for Pierre-Francois Loos at 2020-11-21 14:02:40 +0100
%% Created for Denis Jacquemin at 2020-11-20 15:32:53 +0100
%% Saved with string encoding Unicode (UTF-8) %% Saved with string encoding Unicode (UTF-8)
@article{Hodecker_2019,
author = {Hodecker,Manuel and Rehn,Dirk R. and Dreuw,Andreas and H{\"o}fener,Sebastian},
date-added = {2020-11-21 14:02:13 +0100},
date-modified = {2020-11-21 14:02:18 +0100},
doi = {10.1063/1.5093606},
journal = {J. Chem. Phys.},
pages = {164125},
title = {Similarities and Differences of the Lagrange Formalism and the Intermediate State Representation in the Treatment of Molecular Properties},
volume = {150},
year = {2019},
Bdsk-Url-1 = {https://doi.org/10.1063/1.5093606}}
@article{Eriksen_2020b,
author = {Eriksen,Janus J. and Gauss,J{\"u}rgen},
date-added = {2020-11-21 14:00:05 +0100},
date-modified = {2020-11-21 14:00:19 +0100},
doi = {10.1063/5.0024791},
journal = {J. Chem. Phys.},
pages = {154107},
title = {Ground and excited state first-order properties in many-body expanded full configuration interaction theory},
volume = {153},
year = {2020},
Bdsk-Url-1 = {https://doi.org/10.1063/5.0024791}}
@article{Kannar_2017, @article{Kannar_2017,
author = {K{\'a}nn{\'a}r, D{\'a}niel and Tajti, Attila and Szalay, P{\'e}ter G.}, author = {K{\'a}nn{\'a}r, D{\'a}niel and Tajti, Attila and Szalay, P{\'e}ter G.},
date-added = {2020-11-20 15:16:30 +0100}, date-added = {2020-11-20 15:16:30 +0100},
date-modified = {2020-11-20 15:16:44 +0100}, date-modified = {2020-11-20 15:16:44 +0100},
doi = {10.1021/acs.jctc.6b00875}, doi = {10.1021/acs.jctc.6b00875},
eprint = {http://dx.doi.org/10.1021/acs.jctc.6b00875},
journal = {J. Chem. Theory Comput.}, journal = {J. Chem. Theory Comput.},
number = {1},
pages = {202--209}, pages = {202--209},
title = {Accuracy of Coupled Cluster Excitation Energies in Diffuse Basis Sets}, title = {Accuracy of Coupled Cluster Excitation Energies in Diffuse Basis Sets},
url = {http://dx.doi.org/10.1021/acs.jctc.6b00875},
volume = {13}, volume = {13},
year = {2017}, year = {2017},
Bdsk-Url-1 = {http://dx.doi.org/10.1021/acs.jctc.6b00875}} Bdsk-Url-1 = {http://dx.doi.org/10.1021/acs.jctc.6b00875}}
@ -29,12 +49,9 @@
date-added = {2020-11-20 15:15:46 +0100}, date-added = {2020-11-20 15:15:46 +0100},
date-modified = {2020-11-20 15:15:57 +0100}, date-modified = {2020-11-20 15:15:57 +0100},
doi = {10.1021/jp308634q}, doi = {10.1021/jp308634q},
eprint = {http://dx.doi.org/10.1021/jp308634q},
journal = {J. Phys. Chem. A}, journal = {J. Phys. Chem. A},
number = {12},
pages = {2569-2579}, pages = {2569-2579},
title = {Benchmarking for Perturbative Triple-Excitations in EE-EOM-CC Methods}, title = {Benchmarking for Perturbative Triple-Excitations in EE-EOM-CC Methods},
url = {http://dx.doi.org/10.1021/jp308634q},
volume = {117}, volume = {117},
year = {2013}, year = {2013},
Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp308634q}} Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp308634q}}
@ -54,12 +71,9 @@
date-added = {2020-11-20 11:09:10 +0100}, date-added = {2020-11-20 11:09:10 +0100},
date-modified = {2020-11-20 11:15:29 +0100}, date-modified = {2020-11-20 11:15:29 +0100},
doi = {10.1080/00268976.2016.1235736}, doi = {10.1080/00268976.2016.1235736},
eprint = {http://dx.doi.org/10.1080/00268976.2016.1235736},
journal = {Mol. Phys.}, journal = {Mol. Phys.},
number = {23},
pages = {3448-3463}, pages = {3448-3463},
title = {Assessment of a Composite CC2/DFT Procedure for Calculating 0--0 Excitation Energies of Organic Molecules}, title = {Assessment of a Composite CC2/DFT Procedure for Calculating 0--0 Excitation Energies of Organic Molecules},
url = {http://dx.doi.org/10.1080/00268976.2016.1235736},
volume = {114}, volume = {114},
year = {2016}, year = {2016},
Bdsk-Url-1 = {http://dx.doi.org/10.1080/00268976.2016.1235736}} Bdsk-Url-1 = {http://dx.doi.org/10.1080/00268976.2016.1235736}}
@ -79,12 +93,9 @@
date-added = {2020-11-20 10:59:15 +0100}, date-added = {2020-11-20 10:59:15 +0100},
date-modified = {2020-11-20 10:59:30 +0100}, date-modified = {2020-11-20 10:59:30 +0100},
doi = {10.1021/acs.chemrev.7b00577}, doi = {10.1021/acs.chemrev.7b00577},
eprint = {https://doi.org/10.1021/acs.chemrev.7b00577},
journal = {Chem. Rev.}, journal = {Chem. Rev.},
number = {15},
pages = {7026--7068}, pages = {7026--7068},
title = {Recent Advances and Perspectives on Nonadiabatic Mixed Quantum--Classical Dynamics}, title = {Recent Advances and Perspectives on Nonadiabatic Mixed Quantum--Classical Dynamics},
url = {https://doi.org/10.1021/acs.chemrev.7b00577},
volume = {118}, volume = {118},
year = {2018}, year = {2018},
Bdsk-Url-1 = {https://doi.org/10.1021/acs.chemrev.7b00577}} Bdsk-Url-1 = {https://doi.org/10.1021/acs.chemrev.7b00577}}

View File

@ -87,14 +87,14 @@
We describe our efforts of the past few years to create a large set of more than 500 highly-accurate vertical excitation energies of various natures ($\pi \to \pis$, $n \to \pis$, double excitation, We describe our efforts of the past few years to create a large set of more than 500 highly-accurate vertical excitation energies of various natures ($\pi \to \pis$, $n \to \pis$, double excitation,
Rydberg, singlet, doublet, triplet, etc) in small- and medium-sized molecules. These values have been obtained using an incremental strategy which consists in combining high-order coupled Rydberg, singlet, doublet, triplet, etc) in small- and medium-sized molecules. These values have been obtained using an incremental strategy which consists in combining high-order coupled
cluster and selected configuration interaction calculations using increasingly large diffuse basis sets in order to reach high accuracy. One of the key aspect of the so-called QUEST database cluster and selected configuration interaction calculations using increasingly large diffuse basis sets in order to reach high accuracy. One of the key aspect of the so-called QUEST database
of vertical excitations is that it does not rely on any experimental values, avoiding potential biases inherently linked to experiments and facilitating theoretical cross comparisons. Following a of vertical excitations is that it does not rely on any experimental values, avoiding potential biases inherently linked to experiments and facilitating theoretical cross comparisons. Following this
composite protocol, we have been able to produce theoretical best estimate (TBEs) with the aug-cc-pVTZ basis set for each of these transitions, as well as basis set corrected TBEs (i.e., near composite protocol, we have been able to produce theoretical best estimate (TBEs) with the aug-cc-pVTZ basis set for each of these transitions, as well as basis set corrected TBEs (i.e., near
the complete basis set limit) for some of them. The TBEs/aug-cc-pVTZ have been employed to benchmark a large number of (lower-order) wave function methods such as CIS(D), ADC(2), CC2, the complete basis set limit) for some of them. The TBEs/aug-cc-pVTZ have been employed to benchmark a large number of (lower-order) wave function methods such as CIS(D), ADC(2), CC2,
STEOM-CCSD, CCSD, CCSDR(3), CCSDT-3, ADC(3), CC3, NEVPT2, and others, including spin-scaled variants. In order to gather the huge number of data produced during the QUEST STEOM-CCSD, CCSD, CCSDR(3), CCSDT-3, ADC(3), CC3, NEVPT2, and others (including spin-scaled variants). In order to gather the huge number of data produced during the QUEST
project, we have created a website [\url{https://github.com/mveril/QUESTDB_website}] where one can easily test and compare the accuracy of a given method with respect to various variables project, we have created a website [\url{https://github.com/mveril/QUESTDB_website}] where one can easily test and compare the accuracy of a given method with respect to various variables
such as the molecule size or its family, the nature of the excited states, the type of basis set, etc. such as the molecule size or its family, the nature of the excited states, the type of basis set, etc.
%Add website address here %Add website address here
We hope that the present review will provide a useful summary of our works so far and foster new developments around excited-state methods. We hope that the present review will provide a useful summary of our effort so far and foster new developments around excited-state methods.
% Please include a maximum of seven keywords % Please include a maximum of seven keywords
\keywords{excited states, benchmark, database, full configuration interaction, coupled cluster theory, excitation energies} \keywords{excited states, benchmark, database, full configuration interaction, coupled cluster theory, excitation energies}
\end{abstract} \end{abstract}
@ -204,8 +204,7 @@ of the excited states, the size of the basis set, etc. Finally, we draw our conc
The ground-state structures of the molecules included in the QUEST dataset have been systematically optimized at the CC3/aug-cc-pVTZ level of theory, except for a very few cases. The ground-state structures of the molecules included in the QUEST dataset have been systematically optimized at the CC3/aug-cc-pVTZ level of theory, except for a very few cases.
As shown in Refs.~\cite{Hattig_2005c,Budzak_2017}, CC3 provides extremely accurate ground- and excited-state geometries. These optimizations have been performed using DALTON 2017 As shown in Refs.~\cite{Hattig_2005c,Budzak_2017}, CC3 provides extremely accurate ground- and excited-state geometries. These optimizations have been performed using DALTON 2017
\cite{dalton} and CFOUR 2.1 \cite{cfour} applying default parameters. For the open-shell derivatives belonging to QUEST\#4 \cite{Loos_2020c}, the geometries are optimized at the UCCSD(T)/aug-cc-pVTZ \cite{dalton} and CFOUR 2.1 \cite{cfour} applying default parameters. For the open-shell derivatives belonging to QUEST\#4 \cite{Loos_2020c}, the geometries are optimized at the UCCSD(T)/aug-cc-pVTZ
level using the GAUSSIAN16 program \cite{Gaussian16} and applying the ``tight'' convergence threshold. For the purpose of the present review article, we have gathered all the geometries in the {\SupInf}.%DJ= DŽfinir SI ici ? level using the GAUSSIAN16 program \cite{Gaussian16} and applying the ``tight'' convergence threshold. For the purpose of the present review article, we have gathered all the geometries in the {\SupInf}.
%\footnote{These geometries can be found at...}
%======================= %=======================
\subsection{Basis sets} \subsection{Basis sets}
@ -490,87 +489,20 @@ demonstrated in a recent study by two of the present authors \cite{Loos_2020d}.
%======================= %=======================
The QUEST\#4 benchmark set \cite{Loos_2020c} consists of two subsets of excitations and oscillator strengths. An ``exotic'' subset of 30 excited states for closed-shell molecules containing F, Cl, P, and Si atoms The QUEST\#4 benchmark set \cite{Loos_2020c} consists of two subsets of excitations and oscillator strengths. An ``exotic'' subset of 30 excited states for closed-shell molecules containing F, Cl, P, and Si atoms
(carbonyl fluoride, \ce{CCl2}, \ce{CClF}, \ce{CF2}, difluorodiazirine, formyl fluoride, \ce{HCCl}, \ce{HCF}, \ce{HCP}, \ce{HPO}, \ce{HPS}, \ce{HSiF}, \ce{SiCl2}, and silylidene) and a ``radical'' subset of 51 doublet-doublet (carbonyl fluoride, \ce{CCl2}, \ce{CClF}, \ce{CF2}, difluorodiazirine, formyl fluoride, \ce{HCCl}, \ce{HCF}, \ce{HCP}, \ce{HPO}, \ce{HPS}, \ce{HSiF}, \ce{SiCl2}, and silylidene) and a ``radical'' subset of 51 doublet-doublet
transitions in small radicals (allyl, \ce{BeF}, \ce{BeH}, \ce{BH2}, \ce{CH}, \ce{CH3}, \ce{CN}, \ce{CNO}, \ce{CON}, \ce{CO+}, \ce{F2BO}, \ce{F2BS}, \ce{H2BO}, \ce{HCO}, \ce{HOC}, \ce{H2PO}, \ce{H2PS}, \ce{NCO}, transitions in 24 small radicals (allyl, \ce{BeF}, \ce{BeH}, \ce{BH2}, \ce{CH}, \ce{CH3}, \ce{CN}, \ce{CNO}, \ce{CON}, \ce{CO+}, \ce{F2BO}, \ce{F2BS}, \ce{H2BO}, \ce{HCO}, \ce{HOC}, \ce{H2PO}, \ce{H2PS}, \ce{NCO},
\ce{NH2}, nitromethyl, \ce{NO}, \ce{OH}, \ce{PH2}, and vinyl) characterized by open-shell electronic configurations and an unpaired electron. This represents a total of 81 high-quality TBEs, the vast majority being obtained \ce{NH2}, nitromethyl, \ce{NO}, \ce{OH}, \ce{PH2}, and vinyl) characterized by open-shell electronic configurations and an unpaired electron. This represents a total of 81 high-quality TBEs, the vast majority being obtained
at the FCI level with at least the aug-cc-pVTZ basis set. We additionnaly performed high-order CC calculations to ascertain these estimates. For the exotic set, these TBEs have been used to assess the performances of at the FCI level with at least the aug-cc-pVTZ basis set. We additionnaly performed high-order CC calculations to ascertain these estimates. For the exotic set, these TBEs have been used to assess the performances of
15 ``lower-order'' wave function approaches, including several CC and ADC variants. Consistent with our previous works, we found that CC3 is very accurate, whereas the trends for the other methods are similar to that 15 ``lower-order'' wave function approaches, including several CC and ADC variants. Consistent with our previous works, we found that CC3 is very accurate, whereas the trends for the other methods are similar to that
obtained on more standard CNOSH organic compounds. In contrast, for the radical set, even the refined ROCC3 method yields a comparatively large MAE of $0.05$ eV. Likewise, the excitation energies obtained with CCSD obtained on more standard CNOSH organic compounds. In contrast, for the radical set, even the refined ROCC3 method yields a comparatively large MAE of $0.05$ eV. Likewise, the excitation energies obtained with CCSD
are much less satisfying for open-shell derivatives (MAE of $0.20$ eV with UCCSD and $0.15$ eV with ROCCSD) than for closed-shell systems of similar size (MAE of $0.07$ eV). are much less satisfying for open-shell derivatives (MAE of $0.20$ eV with UCCSD and $0.15$ eV with ROCCSD) than for closed-shell systems of similar size (MAE of $0.07$ eV).
%%% TABLE 3 %%%
\begin{table}[htp]
\centering
\scriptsize
\caption{TBEs/aug-cc-pVTZ for various doublet transitions.}
\label{tab:rad}
\begin{threeparttable}
\begin{tabular}{llcl}
\headrow
\thead{Molecule} & \thead{Transition} & \thead{TBE/aug-cc-pVTZ} & \thead{Method} \\
Allyl &$^2B_1$ &3.39 & FCI/6-31+G(d) + [CCSDT/aug-cc-pVTZ - CCSDT/6-31+G(d)] \\
&$^2A_1$ &4.99 & FCI/6-31+G(d) + [CCSDT/aug-cc-pVTZ - CCSDT/6-31+G(d)] \\
\ce{BeF} &$^2\Pi$ &4.14 & FCI/aug-cc-pVTZ \\
&$^2\Sigma^+$ &6.21 & FCI/aug-cc-pVTZ \\
\ce{BeH} &$^2\Pi$ &2.49 & FCI/aug-cc-pVTZ \\
&$^2\Pi$ &6.46 & FCI/aug-cc-pVTZ \\
\ce{BH2} &$^2B_1$ &1.18 & FCI/aug-cc-pVTZ \\
\ce{CH} &$^2\Delta$ &2.91 & FCI/aug-cc-pVTZ \\
&$^2\Sigma^-$ &3.29 & FCI/aug-cc-pVTZ \\
&$^2\Sigma^+$ &3.98 & FCI/aug-cc-pVTZ \\
\ce{CH3} &$^2A_1'$ &5.85 & FCI/aug-cc-pVTZ \\
&$^2E'$ &6.96 & FCI/aug-cc-pVTZ \\
&$^2E'$ &7.18 & FCI/aug-cc-pVTZ \\
&$^2A_2''$ &7.65 & FCI/aug-cc-pVTZ \\
\ce{CN} &$^2\Pi$ &1.34 & FCI/aug-cc-pVTZ \\
&$^2\Sigma^+$ &3.22 & FCI/aug-cc-pVTZ \\
\ce{CNO} &$^2\Sigma^+$ &1.61 & FCI/aug-cc-pVTZ \\
&$^2\Pi$ &5.49 & FCI/6-31+G(d) + [CCSDT/aug-cc-pVTZ - CCSDT/6-31+G(d)] \\
\ce{CON} &$^2\Pi$ &3.53 & FCI/aug-cc-pVDZ + [CCSDT/aug-cc-pVTZ - CCSDT/aug-cc-pVDZ] \\
&$^2\Sigma^+$ &3.86 & CCSDTQ/6-31+G(d) + [CCSDT/aug-cc-pVTZ - CCSDT/6-31+G(d)] \\
\ce{CO+} &$^2\Pi$ &3.28 & FCI/aug-cc-pVTZ \\
&$^2\Sigma^+$ &5.81 & FCI/aug-cc-pVTZ \\
\ce{F2BO} &$^2B_1$ &0.73 & FCI/aug-cc-pVDZ + [CCSDT/aug-cc-pVTZ - CCSDT/aug-cc-pVDZ] \\
&$^2A_1$ &2.80 & FCI/aug-cc-pVDZ + [CCSDT/aug-cc-pVTZ - CCSDT/aug-cc-pVDZ] \\
\ce{F2BS} &$^2B_1$ &0.51 & FCI/aug-cc-pVDZ + [CCSDT/aug-cc-pVTZ - CCSDT/aug-cc-pVDZ] \\
&$^2A_1$ &2.99 & FCI/aug-cc-pVDZ + [CCSDT/aug-cc-pVTZ - CCSDT/aug-cc-pVDZ] \\
\ce{H2BO} &$^2B_1$ &2.15 & FCI/aug-cc-pVTZ \\
&$^2A_1$ &3.49 & FCI/aug-cc-pVTZ \\
\ce{HCO} &$^2A''$ &2.09 & FCI/aug-cc-pVTZ \\
&$^2A'$ &5.45 & FCI/aug-cc-pVDZ + [CCSDT/aug-cc-pVTZ - CCSDT/aug-cc-pVDZ] \\
\ce{HOC} &$^2A''$ &0.92 & FCI/aug-cc-pVTZ \\
\ce{H2PO} &$^2A''$ &2.80 & FCI/aug-cc-pVTZ \\
&$^2A'$ &4.21 & FCI/aug-cc-pVDZ + [CCSDT/aug-cc-pVTZ - CCSDT/aug-cc-pVDZ] \\
\ce{H2PS} &$^2A''$ &1.16 & FCI/aug-cc-pVTZ \\
&$^2A'$ &2.72 & FCI/aug-cc-pVTZ \\
\ce{NCO} &$^2\Sigma^+$ &2.89 & FCI/aug-cc-pVDZ + [CCSDT/aug-cc-pVTZ - CCSDT/aug-cc-pVDZ] \\
&$^2\Pi$ &4.73 & FCI/aug-cc-pVDZ + [CCSDT/aug-cc-pVTZ - CCSDT/aug-cc-pVDZ] \\
\ce{NH2} &$^2A_1$ &2.12 & FCI/aug-cc-pVTZ \\
Nitromethyl &$^2B_2$ &2.05 & CCSDT/aug-cc-pVTZ \\
&$^2A_2$ &2.38 & CCSDT/aug-cc-pVTZ \\
&$^2A_1$ &2.56 & CCSDT/aug-cc-pVTZ \\
&$^2B_1$ &5.35 & CCSDT/aug-cc-pVTZ \\
\ce{NO} &$^2\Sigma^+$ &6.13 & FCI/aug-cc-pVTZ \\
&$^2\Sigma^+$ &7.29 & CCSDTQ/aug-cc-pVTZ \\
\ce{OH} &$^2\Sigma^+$ &4.10 & FCI/aug-cc-pVTZ \\
&$^2\Sigma^-$ &8.02 & FCI/aug-cc-pVTZ \\
\ce{PH2} &$^2A_1$ &2.77 & FCI/aug-cc-pVTZ \\
Vinyl &$^2A''$ &3.26 & FCI/aug-cc-pVTZ \\
&$^2A''$ &4.69 & FCI/aug-cc-pVTZ \\
&$^2A'$ &5.60 & FCI/aug-cc-pVTZ \\
&$^2A'$ &6.20 & FCI/6-31+G(d) + [CCSDT/aug-cc-pVTZ - CCSDT/6-31+G(d)] \\
\hline
\end{tabular}
\end{threeparttable}
\end{table}
%%% %%% %%% %%%
%======================= %=======================
\subsection{QUEST\#5} \subsection{QUEST\#5}
%======================= %=======================
The QUEST\#5 subset is composed by additional accurate excitation energies that we have produced for the present article. This new set gathers 13 new systems composed by small molecules as well as larger molecules The QUEST\#5 subset is composed by additional accurate excitation energies that we have produced for the present article. This new set gathers 13 new systems composed by small molecules as well as larger molecules
(see blue molecules in Fig.~\ref{fig:molecules}): aza-naphthalene, benzoquinone, cyclopentadienone, cyclopentadienethione, diazirine, hexatriene, maleimide, naphthalene, nitroxyl, octatetraene, streptocyanine-C3, streptocyanine-C5, (see blue molecules in Fig.~\ref{fig:molecules}): aza-naphthalene, benzoquinone, cyclopentadienone, cyclopentadienethione, diazirine, hexatriene, maleimide, naphthalene, nitroxyl, octatetraene, streptocyanine-C3, streptocyanine-C5,
and thioacrolein. For these new transitions, we report again quality vertical energies the vast majority being of CCSDT quality, and we consider that, out of these \alert{80} new transitions, \alert{55} of them can be labeled and thioacrolein. For these new transitions, we report again quality vertical energies, the vast majority being of CCSDT quality, and we consider that, out of these \alert{80} new transitions, \alert{55} of them can be labeled
as ``safe'', \ie, considered as chemically accurate or within 0.05 eV of the FCI limit for the given geometry and basis set. We refer the interested reader to the {\SupInf} for a detailed discussion of each molecule for which comparisons as ``safe'', \ie, considered as chemically accurate or within 0.05 eV of the FCI limit for the given geometry and basis set. We refer the interested reader to the {\SupInf} for a detailed discussion of each molecule for which comparisons
are made with literature data. are made with literature data.
%Statistical quantities related to the benchmark of various methods for the QUEST5 subset are reported in Table \ref{tab:QUEST5} and depicted in Fig.~\ref{fig:QUEST5_stat}. %Statistical quantities related to the benchmark of various methods for the QUEST5 subset are reported in Table \ref{tab:QUEST5} and depicted in Fig.~\ref{fig:QUEST5_stat}.
@ -629,24 +561,28 @@ are made with literature data.
\label{sec:TBE} \label{sec:TBE}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
We discuss in this section the generation of the TBEs obtained with the aug-cc-pVTZ basis. We discuss in this section the generation of the TBEs obtained with the aug-cc-pVTZ basis.
The exhaustive list of TBEs can be found in Table \ref{tab:TBE} alongside various specifications: the molecule's name, the excitation, its nature (valence, Rydberg, or charge transfer), its oscillator strength (when spatially- and spin-allowed), For the closed-shell compounds, the exhaustive list of TBEs can be found in Table \ref{tab:TBE} alongside various specifications: the molecule's name, the excitation, its nature (valence, Rydberg, or charge transfer), its oscillator strength (when spatially- and spin-allowed),
and its percentage of single excitations $\%T_1$ (computed at the LR-CC3 level). All these quantities are computed with the same aug-cc-pVTZ basis. Importantly, we also report the composite approach considered to compute the TBEs and its percentage of single excitations $\%T_1$ (computed at the LR-CC3 level). All these quantities are computed with the same aug-cc-pVTZ basis.
(see column ``Method''). Following an ONIOM-like strategy \cite{Svensson_1996a,Svensson_1996b}, the TBEs are computed as ``A/SB + [B/TB - B/SB]'', where A/SB is the excitation energy computed with a method A in a smaller basis (SB), Importantly, we also report the composite approach considered to compute the TBEs (see column ``Method'').
and B/SB and B/TB are excitation energies computed with a method B in the small basis and target basis TB = aug-cc-pVTZ, respectively. Following an ONIOM-like strategy \cite{Svensson_1996a,Svensson_1996b}, the TBEs are computed as ``A/SB + [B/TB - B/SB]'', where A/SB is the excitation energy computed with a method A in a smaller basis (SB), and B/SB and B/TB are excitation energies computed with a method B in the small basis and target basis TB = aug-cc-pVTZ, respectively.
Table \ref{tab:rad} reports the TBEs for the open-shell molecules belonging to the QUEST\#4 subset.
Talking about numbers, the QUEST database is composed by \hl{500+radical} excitation energies, including {302} singlet, {197} triplet, \hl{xxx} doublet, \hl{361+radical} valence, and \hl{125+radical} Rydberg excited states. Talking about numbers, the QUEST database is composed by 551 excitation energies, including 302 singlet, 197 triplet, 51 doublet, 412 valence, and 176 Rydberg excited states.
Amongst the valence transitions on closed-shell compounds, 135 transitions correspond to $n \ra \pis$ excitations, 200 to $\pi \ra \pis$, and 23 are doubly-excited states. In terms of molecular sizes, 146 excitations are obtained Amongst the valence transitions on closed-shell compounds, 135 transitions correspond to $n \ra \pis$ excitations, 200 to $\pi \ra \pis$, and 23 are doubly-excited states. In terms of molecular sizes, 146 excitations are obtained
in molecules having in-between 1 and 3 non-hydrogen atoms, 97 excitations from 4 non-hydrogen atom compounds, 177 from molecules composed by 5 and 6 non-hydrogen atoms, and, finally, 68 excitations are obtained from in molecules having in-between 1 and 3 non-hydrogen atoms, 97 excitations from 4 non-hydrogen atom compounds, 177 from molecules composed by 5 and 6 non-hydrogen atoms, and, finally, 68 excitations are obtained from systems with 7 to 10 non-hydrogen atoms.
systems with 7 to 10 non-hydrogen atoms. In addition we considered \hl{xxxx} open-shell molecules. Amongst these excited-states, \hl{434+radical} of them being considered as ``safe'', \ie, chemically-accurate for the considered In addition, QUEST is composed by 24 open-shell molecules with a single unpaired electron.
basis set and geometry. We have considered as ``safe'' all transition energies that are either: i) computed with FCI or CCSDTQ; ii) in which the difference between CC3 and CCSDT values is $\leq$ 0.03 eV with a large $\%T_1$. Amongst these excited states, 485 of them being considered as ``safe'', \ie, chemically-accurate for the considered basis set and geometry.
Besides this energetic criterion, we consider as ``safe'' transitions that are either: i) computed with FCI or CCSDTQ, or ii) in which the difference between CC3 and CCSDT excitation energies is below $0.03$ eV with a large $\%T_1$ value.
\begin{ThreePartTable} \begin{ThreePartTable}
\scriptsize \scriptsize
\centering \centering
\begin{longtable}{clccccclc} \begin{longtable}{clccccclc}
\caption{Theoretical best estimates TBE/AVTZ (in eV), oscillator strengths $f$, percentage of single excitations $\%T_1$ involved in the transition (computed at the CC3 level) for the full set of closed-shell compounds \caption{Theoretical best estimates TBEs (in eV), oscillator strengths $f$, percentage of single excitations $\%T_1$ involved in the transition (computed at the CC3 level) for the full set of closed-shell compounds of the QUEST database.
of the QUEST database. ``Method'' provides the protocol employed to compute the TBEs. The nature of the excitation is also provided: V, R, and CT stands for valence, Rydberg, and charge transfer, respectively. [F] ``Method'' provides the protocol employed to compute the TBEs.
indicates fluorescence, that is a transition energy computed from an excited state geometry. AVXZ stands for aug-cc-pVXZ). The nature of the excitation is also provided: V, R, and CT stands for valence, Rydberg, and charge transfer, respectively.
[F] indicates a fluorescence transition, \ie, a transition energy computed from an excited-state geometry.
AVXZ stands for aug-cc-pVXZ.
\label{tab:TBE}} \label{tab:TBE}}
\\ \\
\hline \hline
@ -707,7 +643,7 @@ indicates fluorescence, that is a transition energy computed from an excited sta
43 & & $^3B_{2u} (\pi \ra \pi^*)$ & V & 97 & & 3.67 & CC3/AVTZ & N \\ 43 & & $^3B_{2u} (\pi \ra \pi^*)$ & V & 97 & & 3.67 & CC3/AVTZ & N \\
44 & & $^3B_{3u} (\pi \ra \pi^*)$ & V & 97 & & 3.75 & CC3/AVTZ & N \\ 44 & & $^3B_{3u} (\pi \ra \pi^*)$ & V & 97 & & 3.75 & CC3/AVTZ & N \\
45 & & $^3B_{1u} (n \ra \pi^*)$ & V & 97 & & 3.77 & CC3/AVTZ & N \\ 45 & & $^3B_{1u} (n \ra \pi^*)$ & V & 97 & & 3.77 & CC3/AVTZ & N \\
46 & & $^3B_{2g} (n \ra \pi^*)$ & V & 48 & & 4.34 & CC3/AVTZ & N \\ 46 & & $^3B_{2g} (n \ra \pi^*)$ & V & 96 & & 4.34 & CC3/AVTZ & N \\
47 & & $^3B_{2g} (n \ra \pi^*)$ & V & 95 & & 4.61 & CC3/AVTZ & N \\ 47 & & $^3B_{2g} (n \ra \pi^*)$ & V & 95 & & 4.61 & CC3/AVTZ & N \\
48 & & $^3B_{3u} (\pi \ra \pi^*)$ & V & 96 & & 4.75 & CC3/AVTZ & N \\ 48 & & $^3B_{3u} (\pi \ra \pi^*)$ & V & 96 & & 4.75 & CC3/AVTZ & N \\
49 & & $^3A_u (n \ra \pi^*)$ & V & 96 & & 4.87 & CC3/AVTZ & N \\ 49 & & $^3A_u (n \ra \pi^*)$ & V & 96 & & 4.87 & CC3/AVTZ & N \\
@ -1165,26 +1101,95 @@ indicates fluorescence, that is a transition energy computed from an excited sta
\end{longtable} \end{longtable}
\end{ThreePartTable} \end{ThreePartTable}
%%% TABLE III %%%
\hl{Ajouter la tables des TBEs radicaux} \begin{table}[htp]
\centering
\scriptsize
\caption{Theoretical best estimates TBEs (in eV) for the doublet-doublet transitions for the open-shell molecules belonging to QUEST\#4 obtained with the aug-cc-pVTZ basis set.
``Method'' indicates the protocol employed to compute the TBEs.}
\label{tab:rad}
\begin{threeparttable}
\begin{tabular}{cllcl}
\headrow
\thead{\#} & \thead{Molecule} & \thead{Transition} & \thead{TBE/aug-cc-pVTZ} & \thead{Method} \\
1 & Allyl &$^2B_1$ &3.39 & FCI/6-31+G(d) + [CCSDT/aug-cc-pVTZ - CCSDT/6-31+G(d)] \\
2 & &$^2A_1$ &4.99 & FCI/6-31+G(d) + [CCSDT/aug-cc-pVTZ - CCSDT/6-31+G(d)] \\
3 & \ce{BeF} &$^2\Pi$ &4.14 & FCI/aug-cc-pVTZ \\
4 & &$^2\Sigma^+$ &6.21 & FCI/aug-cc-pVTZ \\
5 & \ce{BeH} &$^2\Pi$ &2.49 & FCI/aug-cc-pVTZ \\
6 & &$^2\Pi$ &6.46 & FCI/aug-cc-pVTZ \\
7 & \ce{BH2} &$^2B_1$ &1.18 & FCI/aug-cc-pVTZ \\
8 & \ce{CH} &$^2\Delta$ &2.91 & FCI/aug-cc-pVTZ \\
9 & &$^2\Sigma^-$ &3.29 & FCI/aug-cc-pVTZ \\
10 & &$^2\Sigma^+$ &3.98 & FCI/aug-cc-pVTZ \\
11 & \ce{CH3} &$^2A_1'$ &5.85 & FCI/aug-cc-pVTZ \\
12 & &$^2E'$ &6.96 & FCI/aug-cc-pVTZ \\
13 & &$^2E'$ &7.18 & FCI/aug-cc-pVTZ \\
14 & &$^2A_2''$ &7.65 & FCI/aug-cc-pVTZ \\
15 & \ce{CN} &$^2\Pi$ &1.34 & FCI/aug-cc-pVTZ \\
16 & &$^2\Sigma^+$ &3.22 & FCI/aug-cc-pVTZ \\
17 & \ce{CNO} &$^2\Sigma^+$ &1.61 & FCI/aug-cc-pVTZ \\
18 & &$^2\Pi$ &5.49 & FCI/6-31+G(d) + [CCSDT/aug-cc-pVTZ - CCSDT/6-31+G(d)] \\
19 & \ce{CON} &$^2\Pi$ &3.53 & FCI/aug-cc-pVDZ + [CCSDT/aug-cc-pVTZ - CCSDT/aug-cc-pVDZ] \\
20 & &$^2\Sigma^+$ &3.86 & CCSDTQ/6-31+G(d) + [CCSDT/aug-cc-pVTZ - CCSDT/6-31+G(d)] \\
21 & \ce{CO+} &$^2\Pi$ &3.28 & FCI/aug-cc-pVTZ \\
22 & &$^2\Sigma^+$ &5.81 & FCI/aug-cc-pVTZ \\
23 & \ce{F2BO} &$^2B_1$ &0.73 & FCI/aug-cc-pVDZ + [CCSDT/aug-cc-pVTZ - CCSDT/aug-cc-pVDZ] \\
24 & &$^2A_1$ &2.80 & FCI/aug-cc-pVDZ + [CCSDT/aug-cc-pVTZ - CCSDT/aug-cc-pVDZ] \\
25 & \ce{F2BS} &$^2B_1$ &0.51 & FCI/aug-cc-pVDZ + [CCSDT/aug-cc-pVTZ - CCSDT/aug-cc-pVDZ] \\
26 & &$^2A_1$ &2.99 & FCI/aug-cc-pVDZ + [CCSDT/aug-cc-pVTZ - CCSDT/aug-cc-pVDZ] \\
27 & \ce{H2BO} &$^2B_1$ &2.15 & FCI/aug-cc-pVTZ \\
28 & &$^2A_1$ &3.49 & FCI/aug-cc-pVTZ \\
29 & \ce{HCO} &$^2A''$ &2.09 & FCI/aug-cc-pVTZ \\
30 & &$^2A'$ &5.45 & FCI/aug-cc-pVDZ + [CCSDT/aug-cc-pVTZ - CCSDT/aug-cc-pVDZ] \\
31 & \ce{HOC} &$^2A''$ &0.92 & FCI/aug-cc-pVTZ \\
32 & \ce{H2PO} &$^2A''$ &2.80 & FCI/aug-cc-pVTZ \\
33 & &$^2A'$ &4.21 & FCI/aug-cc-pVDZ + [CCSDT/aug-cc-pVTZ - CCSDT/aug-cc-pVDZ] \\
34 & \ce{H2PS} &$^2A''$ &1.16 & FCI/aug-cc-pVTZ \\
35 & &$^2A'$ &2.72 & FCI/aug-cc-pVTZ \\
36 & \ce{NCO} &$^2\Sigma^+$ &2.89 & FCI/aug-cc-pVDZ + [CCSDT/aug-cc-pVTZ - CCSDT/aug-cc-pVDZ] \\
37 & &$^2\Pi$ &4.73 & FCI/aug-cc-pVDZ + [CCSDT/aug-cc-pVTZ - CCSDT/aug-cc-pVDZ] \\
38 & \ce{NH2} &$^2A_1$ &2.12 & FCI/aug-cc-pVTZ \\
39 & Nitromethyl &$^2B_2$ &2.05 & CCSDT/aug-cc-pVTZ \\
40 & &$^2A_2$ &2.38 & CCSDT/aug-cc-pVTZ \\
41 & &$^2A_1$ &2.56 & CCSDT/aug-cc-pVTZ \\
42 & &$^2B_1$ &5.35 & CCSDT/aug-cc-pVTZ \\
43 & \ce{NO} &$^2\Sigma^+$ &6.13 & FCI/aug-cc-pVTZ \\
44 & &$^2\Sigma^+$ &7.29 & CCSDTQ/aug-cc-pVTZ \\
45 & \ce{OH} &$^2\Sigma^+$ &4.10 & FCI/aug-cc-pVTZ \\
46 & &$^2\Sigma^-$ &8.02 & FCI/aug-cc-pVTZ \\
47 & \ce{PH2} &$^2A_1$ &2.77 & FCI/aug-cc-pVTZ \\
48 & Vinyl &$^2A''$ &3.26 & FCI/aug-cc-pVTZ \\
49 & &$^2A''$ &4.69 & FCI/aug-cc-pVTZ \\
50 & &$^2A'$ &5.60 & FCI/aug-cc-pVTZ \\
51 & &$^2A'$ &6.20 & FCI/6-31+G(d) + [CCSDT/aug-cc-pVTZ - CCSDT/6-31+G(d)] \\
\hline
\end{tabular}
\end{threeparttable}
\end{table}
%%% %%% %%% %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Benchmarks} \section{Benchmarks}
\label{sec:bench} \label{sec:bench}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
In this section, we report a comprehensive benchmark of various lower-order methods on the entire QUEST dataset for closed-shell compounds. Statistical quantities are reported in Table \ref{tab:stat}, whereas full data are given in the {\SupInf}. In this section, we report a comprehensive benchmark of various lower-order methods on the entire QUEST dataset for closed-shell compounds.
Additionally, we also provide a specific analysis for each type of excited states. Hence, the statistical values are reported for various types of excited states and molecular sizes for the MSE and MAE. The distribution of the errors in vertical excitation energies Statistical quantities are reported in Table \ref{tab:stat}, whereas the entire set of data are given in the {\SupInf}.
(with respect to the TBE/aug-cc-pVTZ reference values) are represented in Fig.~\ref{fig:QUEST_stat} for all the safe excitations not having a dominant double excitation character. Additionally, we also provide a specific analysis for each type of excited states.
Hence, the statistical values are reported for various types of excited states and molecular sizes for the MSE and MAE.
\hl{T2: updater la Table avec le nouvel .xls + generer graphe en SI idem Fig 4 pour les subset S/T V/R npi/pp 1-3 / 4 / 5-6 / 7-10} The distribution of the errors in vertical excitation energies (with respect to the TBE/aug-cc-pVTZ reference values) are represented in Fig.~\ref{fig:QUEST_stat} for all the ``safe'' excitations having a dominant single excitation character (\ie, the double excitations are discarded).
\alert{Similar graphs are reported in the {\SupInf} for specific sets of transitions and molecules.}
%\hl{generer graphe en SI idem Fig 4 pour les subset S/T V/R npi/pp 1-3 / 4 / 5-6 / 7-10}
%%% TABLE IV %%%
\begin{sidewaystable} \begin{sidewaystable}
\scriptsize \scriptsize
\centering \centering
\caption{Mean signed error (MSE), mean absolute error (MAE), root-mean-square error (RMSE), standard deviation of the errors (SDE), as well as the maximum positive [Max(+)] and negative [Max($-$)] errors with respect to the TBE/aug-cc-pVTZ for the entire QUEST database. \caption{Mean signed error (MSE), mean absolute error (MAE), root-mean-square error (RMSE), standard deviation of the errors (SDE), as well as the maximum positive [Max(+)] and negative [Max($-$)] errors with respect to the TBE/aug-cc-pVTZ for the entire QUEST database.
Only the ``safe'' TBEs are considered (see Table \ref{tab:TBE}). Only the ``safe'' TBEs are considered (see Table \ref{tab:TBE}).
For the MSE and MAE, the statistical values are reported for various types of excited states and molecular sizes. For the MSE and MAE, the statistical values are reported for various types of excited states and molecular sizes.
All quantities are given in eV. ``Count'' refers to the number of transitions considered for each method.} All quantities are given in eV.
``Count'' refers to the number of transitions considered for each method.}
\label{tab:stat} \label{tab:stat}
\begin{threeparttable} \begin{threeparttable}
\begin{tabular}{llccccccccccccccc} \begin{tabular}{llccccccccccccccc}
@ -1237,22 +1242,26 @@ MAE & & 0.22 & 0.16 & 0.22 & 0.11 & 0.12 & 0.05 & 0.04 & 0.02 & 0.20 & 0.22
\label{fig:QUEST_stat}} \label{fig:QUEST_stat}}
\end{figure} \end{figure}
The most striking feature from the statistical indicators gathered in Table \ref{tab:stat} is the overall accuracy of CC3 with MAEs and MSEs systematically below the chemical accuracy threshold (errors $<$ 0.043 eV), irrespectively of the nature of the transition and the size of the molecule. The most striking feature from the statistical indicators gathered in Table \ref{tab:stat} is the overall accuracy of CC3 with MAEs and MSEs systematically below the chemical accuracy threshold (errors $<$ 0.043 eV or 1 kcal/mol), irrespectively of the nature of the transition and the size of the molecule.
CCSDR(3) are CCCSDT-3 can also be regarded as excellent performers with overall MAEs below $0.05$ eV, though one would notice a slight degradation of their performances for the $n \ra \pis$ excitations and the largest molecules of the database. CCSDR(3) are CCCSDT-3 can also be regarded as excellent performers with overall MAEs below $0.05$ eV, though one would notice a slight degradation of their performances for the $n \ra \pis$ excitations and the largest molecules of the database.
The other third-order method, ADC(3), which enjoys a lower computational cost, is significantly less accuracy and does not really improve upon its second-order analog, even for the largest systems considered here, observation in line with a previous analysis by some of the authors \cite{Loos_2020d}. The other third-order method, ADC(3), which enjoys a lower computational cost, is significantly less accuracy and does not really improve upon its second-order analog, even for the largest systems considered here, observation in line with a previous analysis by some of the authors \cite{Loos_2020d}.
Nonetheless, ADC(3)'s accuracy improves in larger compounds, with a MAE of 0.24 eV (0.16 eV) for the subsets of the most compact (extended) compounds considered herein. The ADC(2.5) composite method introduced in Ref.~\cite{Loos_2020d}, which corresponds to grossly average the ADC(2) and ADC(3) Nonetheless, ADC(3)'s accuracy improves in larger compounds, with a MAE of 0.24 eV (0.16 eV) for the subsets of the most compact (extended) compounds considered herein. The ADC(2.5) composite method introduced in Ref.~\cite{Loos_2020d}, which corresponds to grossly average the ADC(2) and ADC(3)
values, yield an appreciable accuracy improvement, as shown in Fig.~\ref{fig:QUEST_stat}. We indeed note that the MAE of 0.07 eV obtained for ``large'' compounds is comparable to the one obtained with CCSDR(3) and CCSDT-3 for these molecules. All these third-order methods values, yield an appreciable accuracy improvement, as shown in Fig.~\ref{fig:QUEST_stat}. Indeed, we note that the MAE of 0.07 eV obtained for ``large'' compounds is comparable to the one obtained with CCSDR(3) and CCSDT-3 for these molecules. All these third-order methods
are rather equally efficient for valence and Rydberg transitions. are rather equally efficient for valence and Rydberg transitions.
Concerning the second-order methods, the only ones that one can apply on larger compounds, in terms of MAEs, we have the following ranking: EOM-MP2 $\approx$ CIS(D) $<$ CC2 $\approx$ ADC(2) $<$ CCSD $\approx$ STEOM-CCSD which fits our previous conclusions on the specific Concerning the second-order methods (which can be applied to larger molecules than the ones considered here), in terms of MAEs, we have the following ranking: EOM-MP2 $\approx$ CIS(D) $<$ CC2 $\approx$ ADC(2) $<$ CCSD $\approx$ STEOM-CCSD which fits our previous conclusions on the specific subsets \cite{Loos_2018a,Loos_2019,Loos_2020b,Loos_2020c,Loos_2020d}.
subsets. \cite{Loos_2018a,Loos_2019,Loos_2020b,Loos_2020c,Loos_2020d} A very similar ranking is obtained when one looks at the MSEs. It is noteworthy that the performances of EOM-MP2 and CCSD are getting notably worse when the system size increases, while CIS(D) and STEOM-CCSD A very similar ranking is obtained when one looks at the MSEs.
have a very stable behavior with respect to system size. Indeed, the EOM-MP2 MAE attains 0.42 eV for the 7--10 (non H) molecules, whereas the CCSD tendency to overshoot the transition energies yield a MSE of 0.22 eV for the same set, a rather large error. For CCSD, this conclusion It is noteworthy that the performances of EOM-MP2 and CCSD are getting notably worse when the system size increases, while CIS(D) and STEOM-CCSD have a very stable behavior with respect to system size.
fits well benchmarks presented previously by other groups as well \cite{Schreiber_2008,Caricato_2010,Watson_2013,Kannar_2014,Kannar_2017,Dutta_2018}. For instance K\'ann\'ar and Szalay obtained a MAE of 0.18 eV on Thiel's set for the states showing a largely dominant single excitation character. Indeed, the EOM-MP2 MAE attains 0.42 eV for molecules containing between 7 and 10 non-hydrogen atoms, whereas the CCSD tendency to overshoot the transition energies yield a MSE of 0.22 eV for the same set (a rather large error).
The degradation of the accuracy of CCSD with system size might partially explain the similar (though less pronounced) trend obtained for CCSDR(3). Regarding the apparently better performances of STEOM-CCSD as compared to CCSD, we recall that several challenging states have been naturally For CCSD, this conclusion fits benchmark studies published by other groups \cite{Schreiber_2008,Caricato_2010,Watson_2013,Kannar_2014,Kannar_2017,Dutta_2018}.
removed from the STEOM-CCSD statistics because the active character percentage was lower than $98\%$ (see above). In contrast to EOM-MP2 and CCSD, the overall accuracy of CC2 and ADC(2) does significantly improve for larger molecules, the performances of For example, K\'ann\'ar and Szalay obtained a MAE of 0.18 eV on Thiel's set for the states exhibiting a dominant single excitation character.
the two methods being similar, as expected \cite{Harbach_2014}. It is noteworthy that these two methods show similar accuracies for singlet and triplet transitions, but are significantly less accurate for the Rydberg transitions, as already pointed out previously \cite{Kannar_2017} Both CC2 and ADC(2) therefore The CCSD degradation with system size might partially explain the similar (though less pronounced) trend obtained for CCSDR(3).
offer very good cost-to-accuracy ratio for large compounds, which explains their popularity \cite{Hattig_2005c,Goerigk_2010a,Send_2011a,Winter_2013,Jacquemin_2015b,Oruganti_2016} For the scaled methods [SOS-ADC(2), SOS-CC2, and SCS-CC2], the TURBOMOLE scaling factors do not seem to Regarding the apparently better performances of STEOM-CCSD as compared to CCSD, we recall that several challenging states have been naturally removed from the STEOM-CCSD statistics because the active character percentage was lower than $98\%$ (see above).
improve things upon the unscaled versions, while the Q-CHEM scaling factors for ADC(2) provide a small, yet significant improvement for this set of molecules. Of course, one of the remaining open questions regarding all these methods is their accuracy for even larger systems. In contrast to EOM-MP2 and CCSD, the overall accuracy of CC2 and ADC(2) does significantly improve for larger molecules, the performances of the two methods being, as expected, similar \cite{Harbach_2014}.
Let us note that these two methods show similar accuracies for singlet and triplet transitions, but are significantly less accurate for Rydberg transitions, as already pointed out previously \cite{Kannar_2017}.
Therefore, both CC2 and ADC(2) offer an appealing cost-to-accuracy ratio for large compounds, which explains their popularity in realistic chemical scenarios \cite{Hattig_2005c,Goerigk_2010a,Send_2011a,Winter_2013,Jacquemin_2015b,Oruganti_2016}.
For the scaled methods [SOS-ADC(2), SOS-CC2, and SCS-CC2], the TURBOMOLE scaling factors do not seem to improve things upon the unscaled versions, while the Q-CHEM scaling factors for ADC(2) provide a small, yet significant improvement for this set of molecules.
Of course, one of the remaining open questions regarding all these methods is their accuracy for even larger systems.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{The QUESTDB website} \section{The QUESTDB website}
@ -1383,23 +1392,21 @@ and the value is considered as not safe when one or more value as not safe
\label{sec:ccl} \label{sec:ccl}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
In the present review article, we have presented and extended the QUEST database of highly-accurate excitation energies for molecules systems \cite{Loos_2020a,Loos_2018a,Loos_2019,Loos_2020b,Loos_2020c} that we started building In the present review article, we have presented and extended the QUEST database of highly-accurate excitation energies for molecules systems \cite{Loos_2020a,Loos_2018a,Loos_2019,Loos_2020b,Loos_2020c} that we started building
in 2018 and that is now composed by more than 500 vertical excitations, many of which can be reasonably considered as within a few hundredths of the FCI limit for the considered (accurate) geometry and basis set (\emph{aug}-cc-pVTZ). in 2018 and that is now composed by more than 500 vertical excitations, many of which can be reasonably considered as within 1 kcal/mol (or less) of the FCI limit for the considered (accurate) geometry and basis set (\emph{aug}-cc-pVTZ).
In particular, we have detailed the specificities of our protocol by providing computational details regarding geometries, basis sets, as well as reference and benchmarked computational methods. The content of our five QUEST subsets has In particular, we have detailed the specificities of our protocol by providing computational details regarding geometries, basis sets, as well as reference and benchmarked computational methods. The content of our five QUEST subsets has
been presented in details, and for each of the them, we have provided the number of reference excitation energies, the nature and size of the molecules, the list of benchmarked methods, as well as other specificities. Importantly, we have been presented in details, and for each of them, we have provided the number of reference excitation energies, the nature and size of the molecules, the list of benchmarked methods, as well as other specificities. Importantly, we have
proposed a new method to faithfully estimate the extrapolation error in SCI calculations. This new method based on Gaussian random variables has been tested by computing additional FCI values for five- and six-membered rings. proposed a new method to faithfully estimate the extrapolation error in SCI calculations. This new method based on Gaussian random variables has been tested by computing additional FCI values for five- and six-membered rings.
After having discussed the generation of our TBEs, we have reported a comprehensive benchmark of a significant number of methods on the entire QUEST set with, in addition, a specific analysis for each type of excited states. After having discussed the generation of our TBEs, we have reported a comprehensive benchmark for a significant number of methods on the entire QUEST set with, in addition, a specific analysis for each type of excited states.
Finally, the main features of the website specifically designed to gather the entire data generated during these last few years have been presented and discussed. Finally, the main features of the website specifically designed to gather the entire data generated during these past few years have been presented and discussed.
Paraphrasing Thiel's conclusions \cite{Schreiber_2008}, it is our hope that not only the QUEST database will be used for further benchmarking and testing, but that other research groups will also improve it, providing not only corrections Paraphrasing Thiel's conclusions \cite{Schreiber_2008}, we hope that not only the QUEST database will be used for further benchmarking and testing, but that other research groups will also improve it, providing not only corrections
(inevitable in such large set of data), but more importantly extensions with both improved estimates for some compounds and states, or new molecules. In that framework, we provide beyond the website, a file with all our benchmark (inevitable in such a large data set), but more importantly extensions with both improved estimates for some compounds and states, or new molecules.
data in the {\SupInf}. In that framework, we provide in the {\SupInf} a file with all our benchmark data.
Regarding future improvements and extensions, we would like to mention that although our present goal is to produce chemically accurate vertical excitation energies, we are currently devoting great efforts to obtain highly-accurate Regarding future improvements and extensions, we would like to mention that although our present goal is to produce chemically accurate vertical excitation energies, we are currently devoting great efforts to obtain highly-accurate excited-state properties \cite{Hodecker_2019,Eriksen_2020b} as such dipoles and oscillator strengths for molecules of small and medium sizes \cite{Chrayteh_2021,Sarkar_2021}, so as to complete previous efforts aiming at determining accurate excited-state geometries \cite{Budzak_2017,Jacquemin_2018}.
excited-state properties as such dipoles and oscillator strengths for molecules of small and medium sizes \cite{Chrayteh_2021,Sarkar_2021}, so as to complete previous efforts aiming at determining accurate excited state geometries Reference ground-state properties (such as correlation energies and atomization energies) are also being currently produced \cite{Scemama_2020,Loos_2020f}.
\cite{Budzak_2017,Jacquemin_2018}. Reference ground-state properties (such as correlation energies and atomization energies) are also being currently produced \cite{Scemama_2020,Loos_2020f}. Besides this, because computing 500 (or so) excitation energies can be a costly exercise even with effective computational approaches, we are planning on developing a ``diet set'' following the philosophy of the ``diet GMTKN55'' set proposed recently by Gould \cite{Gould_2018b}.
%DJ aussi Žnergie de correlation ? Bien de les citer non ? Plus fondamental ? We hope to report on this in the new future.
Besides this, because computing 500 (or so) excitation energies can be a costly exercise even with effective computational approaches, we are planning on developing a ``diet set'' following the philosophy of the ``diet GMTKN55'' set
proposed recently by Gould \cite{Gould_2018b}. We hope to report on this in the new future.
%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{acknowledgements} \section*{acknowledgements}
@ -1409,13 +1416,17 @@ AS, MC, and PFL thank the European Research Council (ERC) under the European Uni
Funding from the \textit{``Centre National de la Recherche Scientifique''} is also acknowledged. Funding from the \textit{``Centre National de la Recherche Scientifique''} is also acknowledged.
DJ acknowledges the \textit{R\'egion des Pays de la Loire} for financial support and the CCIPL computational center for ultra-generous allocation of computational time. DJ acknowledges the \textit{R\'egion des Pays de la Loire} for financial support and the CCIPL computational center for ultra-generous allocation of computational time.
\hl{DECRIRE LES SI}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{conflict of interest} \section*{conflict of interest}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
The authors have declared no conflicts of interest for this article. The authors have declared no conflicts of interest for this article.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Supporting Information}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Cartesian coordinates of each molecules (in bohr), Python code associated with the procedure to compute the extrapolated FCI excitation energies and their associated error bars (as well as additional examples for smaller systems), a detailed discussion of each molecule of the QUEST\#5 subset including comparisons with literature data, Excel spreadsheet gathering all benchmark data and additional statistical analyses for various molecule and excitation subsets.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\bibliography{QUESTDB} \bibliography{QUESTDB}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Binary file not shown.