add errors fig

This commit is contained in:
Pierre-Francois Loos 2020-10-27 09:32:38 +01:00
parent afd1da050f
commit 3251dd129d
3 changed files with 276 additions and 261 deletions

View File

@ -10,10 +10,10 @@
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 2472320, 56130]
NotebookOptionsPosition[ 2424417, 55417]
NotebookOutlinePosition[ 2424882, 55436]
CellTagsIndexPosition[ 2424839, 55433]
NotebookDataLength[ 2472734, 56136]
NotebookOptionsPosition[ 2424832, 55423]
NotebookOutlinePosition[ 2425296, 55442]
CellTagsIndexPosition[ 2425253, 55439]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
@ -45862,7 +45862,7 @@ Cell[BoxData[{
RowBox[{"None", ",",
RowBox[{"MaTeX", "[",
RowBox[{
"\"\<\\\\Delta E^\\\\text{FCI} - \\\\Delta E^\\\\text{CCSDT} \\\\text{ \
"\"\<\\\\Delta E_\\\\text{FCI} - \\\\Delta E_\\\\text{CCSDT} \\\\text{ \
(eV)}\>\"", ",",
RowBox[{"FontSize", "\[Rule]", "18"}]}], "]"}]}], "}"}]}]}],
"]"}], "\[IndentingNewLine]",
@ -45874,9 +45874,10 @@ Cell[BoxData[{
3.812730846723929*^9, 3.8127310091055927`*^9}, {3.81273108401068*^9,
3.8127311251773577`*^9}, {3.812731193860486*^9, 3.8127312177894487`*^9},
3.812731269642071*^9, {3.812731398686214*^9, 3.812731536996726*^9}, {
3.8127318410005836`*^9, 3.812731922956018*^9}},
3.8127318410005836`*^9, 3.812731922956018*^9}, {3.812732131434629*^9,
3.812732132062683*^9}, {3.812733836877491*^9, 3.812733839221058*^9}},
CellLabel->
"In[116]:=",ExpressionUUID->"24f36136-6c9f-440e-9cf6-f53b12fa630d"],
"In[128]:=",ExpressionUUID->"24f36136-6c9f-440e-9cf6-f53b12fa630d"],
Cell[BoxData[
GraphicsBox[{{{{
@ -46986,7 +46987,7 @@ ItQ8KwcFUHDJXbUHAJsXdJA=
FrameLabel->{{
FormBox[
GraphicsBox[{
Thickness[0.0055987906612171776`],
Thickness[0.005627145349164369],
StyleBox[{
FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1,
@ -47038,134 +47039,137 @@ G/C8Yni1XgMsvU//AVDTbD8=
1:eJxTTMoPymNmYGBgBGIVIIaxWZDYzFDMAOUz4GEjqydGLy71uPSSqp5Ut1Fi
JjHitLALAM7SAnU=
"], CompressedData["
1:eJxTTMoPSmVmYGBgBGJvIGYCYhNjIFC2cdB4y7vPINLYQV9rpfCFFhsHBhBI
MHawqYxYYfrWxmHJ/X18c5KNHTjcVEuZumzhfPumR8dndNvB+TNmAsFLO7h5
PP7rp6Rq2DuAhGdaGjv4XpwY88/Z3uFw2/LwU4+MHHxOsNvODrV3uC1dk2gk
auQQLr79IsM+BB9s7mZ7uHm4+F82BGTPmo7g9weXqEw/j8mHme8Acre2Kdx+
GB/mvjQQKDNxkJgXp3nawd6hkeVov2G4iUMqSNzM3iEl9o4bs4UJ3H8b9fIW
M8qYwP0PDj8GE4i6DjuIPV+NHSSmXuHMWGQL5/8HAX4EH6x/JjQ+fho7wOIH
Zh6Mv+KFh97/hebQ8Ldx2GL+41DKLnMIfcrG4UWW9rfpe80dEkD2z7CF858k
LrxmYm8H5y8FmcNo71D326rg3ApzSPjk2TucAYEec4c/30ofzDkI9W+FucMG
kD/P2DvcEPrkeD4NwQeHlxiCf6BW1iLdxMzhd0zu0X9KDhj8m6D4ZYW6X9vB
IUbB8WPyGnOH4q2iv0/bOTh4gcLD1cLhACidXLJ3iAbJ+1hA/JdlDwk3fwtI
er1iB+eD6XhbuHpwuG61gZsHts8awQfrf2IN54PTST1uPtj8ektU+4D8T6D0
99zc4TooXNSsHGxB+eauuUM9KN0ct4LE+yVzSHq5YQUJv20IPjidLjaD8/lB
dIcBnA/29ys9uHkBt4ABuEkPbt9zUHzO1YO7pxYUnx0IPjj+duhC8rOvlUML
L9Dgo7pw88DxfUbXYQso/mqs4fwer1csJoY2cP6Jw05rM9fZwPVD1NvCzYfx
YfZD4scG7j4w38QG7n5Yeob5D8aH+R+9fAIAbREHWQ==
1:eJxTTMoPSmVmYGBgBGJvIGYC4jMgsMfaYW9+zduZTxUcThx2WpspZ+NgDAKf
FRyuCn1yPN9m4+A8oVko7ZeCw5L7+/jmKNvC+TekaxKNVO3gfBOQvmY7uHlL
X3jo/T9o55CeBgTLFByeZ2l/m37XzuG+a7zjrI/yDk8TF14zeW/n8KYtt9to
t4zDhw0B2bPC7eF8m8qIFaa+9nDzcPG7bTx3pSUpwvmdIP4lTD7M/C3mPw6l
dKnA7YfxYe77DwLyyhDxW3YOD0DufagEET9vBwmfxUpw/1Xf/3HLOFsJ7n+w
vLGSw59vpQ/mKNo5rBXS4UuXU3LYope3mNHGFs6fMRMIVtrA+WD9xjYQ/6kq
OcDiB2YejN/AcrTfsFwTGv42DnMWKe/8s1zTwefixJh/yTYOLJxd8snrNCH2
G9rC+bW/rQrO3UDw7ZseHZ8x287BQGul8IUWTUj4sNtD7PHRdJg6gb/KLNre
4efb1wcslYHmn2C3nZ1q7/AoQnz7RQYEHxwu8Rpw/iaQP+eoOfQGl6hMv4/J
B4ezrYaDxLw4zdMf7B1eF28V/d0NdQ+3g8NxUDrcp+UQo+D4MTkHmB5A8qe1
HHxB/mO2h4TTZS1Ies2zg/PB4fnTBq7+CSh+/W3g5oHD66o1nA+m6xB89be8
+wwkcfNBxs+UtITbB+OLT73CmcGk5ZC/pvt2xgFLh/WqT5rnvdWE+C/ByiEh
9o4b8w1Nh+Wg9FJo5fAAFH4LEPyaT8CAr1KH83cGW0X8bxeD88H5wVoIbl4l
KL2dFoTbF/z28scZCwXh7nFfc3Q5QwWC/6L2cfb5NfwO10H5+Zmlw/7ufU0m
j/nh5oHj7z8/JP5EreF8FaA3zp5C8FNA/vCwgeuHqLeFmw/jw+yHxI8N3H1g
/jlruPth6RnmPxgf5n/08gkAp1MiXA==
"]],
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJlIGYC4jMg8MXFQf1J87yzXAYON6VrEo2eujg8z9L+
Nl3XwKHH6xWLSaWLg77WSuELLvoQPqOLw4yZQLBTzwGsv8YZzk84fFk7VdMJ
zl/TfTuDwd3R4c+30gdzFA3h/P7gEpXp543hfAYQCDBzEP7keD6N18mh9rdV
wbkf5g4hQGX/LZzhfIemR8dnPEbwczh/Lkif7OLwAuTeXAT/685bXX+fmsH5
MybwV5m9NoW47ySC/ycm9+i/Uy4OGm959xnMNHNY9sJD7/9FF4c0EBAzd5CY
eoUz45WLQ4yC48fkP+YQ8TAXhwjx7RcZ4iwcQNakXnd2mA4yr9vCweLa0VyT
CAS/HuTOA05wvjlI3sDJYTnIHkcLiH92OzpsMf9xKGWXucNtUPh/dXCQmRen
efqCGSR8exwcTIyBINkUzretjFhh2muMyp9r4HBc02rS6fmODqY2e4OmOerC
ww/Gh/gfwd+gl7eY0cfFQQbkoP26Dm3Lw08ZHUGLX6T0AQA5Ov48
1:eJxTTMoPSmVmYGBgBGJlIGYC4pkgcNDF4YFrvOOsiSIOy1546P3f6OIQoxoh
c05G1CFCfPtFBjcXh96Ibn/GD0IQ/jlnh9kgfTcFHcD6PRF83QkLfhh+c4Tz
KyNWmJ4VdnQ4AwJvJOD8ThvPXWmXFOF8I2MguKzmcH8f3xzjW44O+lorhS+o
aDnIO35MPsPqDOfz+K+fkroBwbe4djTXJMHFgZmzSz6ZTxPOl1sO8og6nJ8Q
EqS+gFMN4r5pCP4JTatJp6e7OLTwggxWdyjZKvr79DwXh/8gEK/h8CRx4TWT
7S4Ob4qBEtpaDiYgdyq7QMTfazm0Lw8/ZbTEGWKep7YDy+JJVoyqCL73CXbb
2b1OqPJ/HR0aWI72G27XcgBb2+HoMGeR8s4/yzUdwM4+6OCQkf+h9eQVdUj4
Rjo4zADRP1Xg/PLD21xn+irC+W/acruNbos5TP7GFj8jx9HB/4nnJdPLvPDw
g/Eh/kfwa39bFZyTcHFQ/6TyctZJfoeQEpXp/ye4oMYvUvoAADXG8QQ=
"]],
FilledCurveBox[{{{1, 4, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3,
3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJlIGZigIIdbg5L7u/jm7PYzAHGvyH0yfH8NnOHut9W
BecOuDlITL3CmXEJyhdwd7CtjFhhetfc4UCtrEV6irvDpw0B2bOeI/j/QcDf
wgFkTNpTNwevE+y2s10tHNZ0385g2I/gQ9Qj+CIg9bwIvkPTo+MzHrtC7PWw
cEgDA1e4+TA+zP6L+fHs53a6wt237IWH3n9OhPvf8O4zmCmE8B+MD/M/jM/v
v35KaocBnL/F/MehlFd6cPMCbknXJG7Sg9v3PEv72/S5enD31ILc24Hgp8Te
cWPeoevAsniSFeNZV4cWXqAFR3Xh5p0BA114eMD4sPCC8X1A4fLXDa4fFt4w
82F8mP2w+IK5DxafMPfD4hvmPxgf5n/09AEAEgjxcg==
1:eJxTTMoPSmVmYGBgBGJlIGZigIIKN4eaTxsCsqvUHWD8BxHi2y8u0HSo+21V
cK7BzSEh9o4b8w0o/4Kbw3rVJ83z3mo6HKiVtUhXcXcQn3qFM4NJC843MQaC
y1oOQp8cz6ctdXM4fthpbeY+LYc13bczGOoRfIh6BF8EpP6sK5zv0PTo+IzF
rg76WiuFLxzRckgDATVXuPkwPsz+i/nx7OcqXeHuW/bCQ+//SVe4+9/w7jOY
eckV7j8YH+Z/GH9nsFXE/3YxOP9NW263kbUQ3LzK+z9uGZ8WhNsX/PbyxxkL
BeHucV9zdDlDBYL/ovZx9vk1/A4siydZMfa6Ouzv3tdk8pgfbt5/MOCHhweM
DwsvGN/nBLvt7L1ucP2w8IaZD+PD7IfFF8x9sPiEuR8W3zD/wfgw/6OnDwCG
+PSk
"]],
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}}}, {{{63.587500000000006`, 11.7891}, {
63.90309999999999, 11.7891}, {64.2391, 11.7891}, {64.2391,
12.160899999999998`}, {64.2391, 12.5344}, {63.90309999999999,
12.5344}, {63.587500000000006`, 12.5344}, {53.49999999999999,
12.5344}, {53.182799999999986`, 12.5344}, {52.8469, 12.5344}, {
52.8469, 12.160899999999998`}, {52.8469, 11.7891}, {
53.182799999999986`, 11.7891}, {53.49999999999999, 11.7891}, {
63.587500000000006`, 11.7891}}}],
3}, {0, 1, 0}}}, {{{63.087500000000006`, 11.7891}, {
63.40309999999999, 11.7891}, {63.739099999999986`, 11.7891}, {
63.739099999999986`, 12.160899999999998`}, {63.739099999999986`,
12.5344}, {63.40309999999999, 12.5344}, {63.087500000000006`,
12.5344}, {52.99999999999999, 12.5344}, {52.682799999999986`,
12.5344}, {52.3469, 12.5344}, {52.3469, 12.160899999999998`}, {
52.3469, 11.7891}, {52.682799999999986`, 11.7891}, {
52.99999999999999, 11.7891}, {63.087500000000006`, 11.7891}}}],
FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}}, {{0, 2, 0}, {1, 3, 3}, {1,
3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}}, {{{
75.40469999999998, 19.6594}, {70.2359, 7.893750000000001}, {
70.2719, 7.446879999999999}, {71.89999999999999,
7.499999999999999}, {73.09689999999999, 7.499999999999999}, {
74.79529999999998, 7.499999999999999}, {76.4766,
7.499999999999999}, {78.6219, 7.499999999999999}, {
80.05309999999999, 7.446879999999999}, {81.1609,
8.071879999999998}, {81.1609, 8.232809999999999}, {76.0828,
20.017200000000003`}, {75.40469999999998, 19.6594}}, {{
75.35000000000001, 17.6391}, {78.7656, 9.556249999999999}, {
78.92660000000001, 9.181249999999999}, {79.1234, 8.7875}, {
79.1234, 8.57344}, {79.1234, 8.37656}, {78.83749999999999,
8.268749999999999}, {78.3906, 8.232809999999999}, {
72.45309999999999, 8.232809999999999}, {71.8641, 8.2875}, {
71.6484, 8.4125}, {71.6484, 8.69844}, {71.6484,
8.929689999999999}, {72.04219999999998, 9.86094}, {
72.27499999999999, 10.396900000000002`}, {75.35000000000001,
3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}}, {{{75.0047,
19.6594}, {69.83589999999998, 7.893750000000001}, {69.8719,
7.446879999999999}, {71.49999999999999, 7.499999999999999}, {
72.69689999999999, 7.499999999999999}, {74.3953,
7.499999999999999}, {76.07659999999998, 7.499999999999999}, {
78.2219, 7.499999999999999}, {79.6531, 7.446879999999999}, {
80.76089999999999, 8.071879999999998}, {80.76089999999999,
8.232809999999999}, {75.68279999999999, 20.017200000000003`}, {
75.0047, 19.6594}}, {{74.94999999999999, 17.6391}, {
78.36559999999999, 9.556249999999999}, {78.52659999999999,
9.181249999999999}, {78.72340000000001, 8.7875}, {
78.72340000000001, 8.57344}, {78.72340000000001, 8.37656}, {
78.4375, 8.268749999999999}, {77.99059999999999,
8.232809999999999}, {72.05309999999999, 8.232809999999999}, {
71.46409999999999, 8.2875}, {71.24839999999999, 8.4125}, {
71.24839999999999, 8.69844}, {71.24839999999999,
8.929689999999999}, {71.64219999999999, 9.86094}, {
71.87499999999999, 10.396900000000002`}, {74.94999999999999,
17.6391}}}],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGJdIAaxQYAJSjNCxZiR+Ax42MSox6UGWZxUc4jRS6r5
pOqlxO+0UEOM+0n1CwDTMQKN
"], CompressedData["
1:eJxdlAtIFEEYx7eMHoQKnpqZq3tphddluWsWYvQJFV4gPnLmDJLIvFMyU8zC
RDNKolTI7GFeFpaCRZL2MEtQepP5SJMuUMnTzLQySkwNq2t3Z5kFPxiWH9/M
95r/rDYhLcbkwDDMHHFhcc0VV5S3+76ISgR/Jg/Zyn/qoGj7l3lB/piy19fB
YM9wlcfrolIsKRjyZkLSO0Z0cDzacOXYdQxrtT4T+606uF4SMifiMYY22XQQ
t6Shi7FiyJX2J+vBdTzsjblL4Rt6qBsYvXA3Uzyvu6npzNeTfOswRPYsy9mT
oYcVQyeutlsRZf+Qkta8mlnch+D+humnidk8MJLZEFT2NzuVP+PBJn6EQQSO
kbXnTSM8iTeMYNORuBvrHQXYuuLQXIsXhl+Pegr+ugmk/zBM9nkKwIX93Ntm
wvBxzzVrkI8ANYW9yUyeynJ/L1Ueaah1+DyBYUKK94sn/kkMf6X53eEhSBDN
jmHxNjGxZyAs+l2RdM/TSPl592rTUm8jDEnxNvOEVxohsuvsrn++AiyU9vNG
qB4JD7B3CfR8abFzdnCvAFXS/KcxnNmR6VfaL0B86ot/dz+qLN+PbZa/W+VT
1cbX/ENM4xVXTAcOB2BIMotmFUAq0+KHaf703Qs6lg4gyvX5OZ333qks6+uW
yo9z2Y1JRSrL/cUgmm/MsXldmTei9XiER/3xWKbwbmW+cYjUg5V4mYjMN1qA
WHGb/Zhyv2tUlu+zh6cs68XCk/M5CPbG921zWMiT+R5GcLDebab1aCDJr0Hg
HB/Vz09xRO9OCE6HGhrNMRzROaOwi+LviAXXIyWZ7VU+RN+vYmHVuN+opYWF
Cen9TMXCt5OphXwvS/tjGyuaTd9ZMo8EBHbZWFJvlsqy/tIwjSeNwZytspy/
QGU5fjWm+ci7xDTfN2ne45jGl/U5heFymWgGDnJvP0jI+43h5uRoVhujpfqV
PoJmOfEvMkKfP1tj7/YlfmcjBIc2xVx84kf09gNT3im9hw/K/6F8Ocn/Vom3
Q0v0+wpDU1rOWNknDtyl+msxmX8DR/R5Sdl/jiPz3YJBI807kSN6na/ykCvb
8uk9oizroBlBjYveKekAB1miTNrTFH+VynL/LbPYoCX3kY6U/FpyXxlIqVcL
s/+n/wEynWcw
1:eJxdlAtIFFEUhtcHZYQaapbW5mwq1bY9nDETKToFShax6zr3aqGY5gvTijLQ
0IyMXgaZPczNwkpSYbHSVIoU7QWWmlZYqaCV1lppaNrLVzNzh7nggcvwce6c
c+5//xlNzF5jnI1KpbISFhaWtbAMi1yTtmUjGP91sKdwSAtntny19Z2FFV74
7aOf+1LKw3cMu01bMWSNBexrsWjhaEjw1SNHMazSeIwkt2vhRl6A1bYiDE1S
aCF8Xk2bqhpDprg/UQcuwxtfxt+VuVQHdz70X6zghfe1Zc6tx3Sk3xwM+o4F
GdH7deDdm32tuRopvCwg70XWmWn8EMG9tX8exR5iQSVGPYKb3XUOhY9Z6BEe
3CME9vrbF+IsLKn3DMH69PDSNfYcBHoftDaNIxi933F6Yi5Hzq/BZJ87B8zG
oV1NgRg+RV9v9/XgwJzTmaiKoiyd7xZlS81tmy9vMIyI9UZZkm/HMCHqd5cF
X06Ibgyzg4TG7j4w629RQuU/yk9eL49zm8TQK9bbwBKeEQb6tnMRk54c2In7
ncKgxLJ55VQbp7yfn+t4yK+Tg2JR/3cYzoameuV3cxCZ8nSy4jFl6X7qp+Ur
KZ8sCXvOXqb1cov++Hx2wJAQL0Q7B+KYJlus9N8XNbPFrQEpXHUso7WyirLk
rxzK9Zlq/4RkytL5WKT0G7CvW10wySvzzN9sGJ8/JnOUrK8/IvNguR6PiL4h
HPDCtqmd8v2uoCzdZwersOQXE0vej0CwK7IryMaOJfpiBAeq5o69OOxD+v/k
wTHS0M3+ZojfB3k4tS74QbyRIT7vkdlJzpfz4JKel9pc7EH8XcrDkmGvflOj
GkbE7+ctD9+Pp+SwnWrlfOoHRXVxg2qixyYEU1KoybzhlCX/6bFST5Qhfgdl
qX8SZan+Caz0k+Y1Y6Xfd1HvV1ipL/nzLYYrBUIEM5BZXh2T9R5D2a/+tCaV
RvGv+OCcF5N8P4auZWrz1GtPkv+BwW9drfFSgxfxWyvl7eL3UCf/HwoXk/4V
cr1QDfFvKYbavRkDBX0MuIrzn8VE/xqG+DNN3n+eIfp6YXAW9Y5liF8/I4V7
XdSNfTWUJR9cQ2B20jkk7GEgTbBJs17OF1OWzt84jYM15D4MSO6vIfdlRPK8
Gpj+P/0PPWhpYw==
"]],
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJlIGYC4vv+vdPzdkU6qD9pnneWy8Bhy4myffM3RTo8
z9L+Nl3XwOF78OOls2siHfS1VgpfcNF3qM/aUzLZIdJhxkwg2KnnkAYC/yLg
/A0PX07dFILgXz2aa9LwONzhz7fSB3MUDeH8/uASlennjeF8BhAIMHPg+Lkg
fbNbhEPtb6uCcz/MHTStJp2uv4Pg5ws1HzhlGAnn19ibxu3qjHR4AXJvLoL/
deetrr9PzeD8GRP4q8xemzq8UDPkWLMEwde/q8LWuDTSQeMt7z6DmWYOMiCB
lZEQf4mZO5Tvmy+lvzXSIUbB8WPyH3MHYxDIjnSIEN9+kSHOwmH/qYWu27Qj
HaaDzOu2cJB+/chM6k0EnL+/VtYifUEEqnxEhMPyFx56/x0tHOSBxp6RjXDY
Yv7jUMouc4c3IGfsCneQmRenefqCGcQdbeEOJiB7k03hfNvKiBWmvcao/LkG
Do9FZE8+5Y9wMLXZGzTNURcefjD+S5D/VSLh/N0lkyVY0iIdZEAO2q/roA6U
llmEiF/09AEAirjxuA==
1:eJxTTMoPSmVmYGBgBGJlIGYCYtdtn/9eaYh0eOAa7zhrooiDlP5dFbbKSIcY
1QiZczKiDnG7PHmYnCMdeiO6/Rk/CDk8vaB0+ydbpMPsmUBwU9DhDAgciYDz
xT0C/khII/g2OldmPVsZDlH3RgLO77Tx3JV2SRHONzIGgstqDvnx7OckeSMc
9LVWCl9Q0XLoX/DD8NkiBL99efgpox8I/uOls48oBEQ6MHN2ySfzacL5cstf
eOj9V4fzE0KC1Bdwqjn4907PE8pG8Kc4d+c8B/JbeP3XT0lVd2iYChTIj3T4
DwLxGg53VNgap1ZHOrwp3ir6W1vLAeStmYaRDk8SF14zea/lcPiydqrkpwiI
eZ7aDk2BnnMbNiH4qk+a551NQ5OXi3BoYDnab7hdy6EN5J8n4Q5zFinv/LNc
0yGkRGX6/4Zwh4z8D60nr6hDws0n3GEGyN6fKnB++eFtrjN9FeH8N2253Ua3
xRy8qpv1fa6FO/g/8bxkepkXHn4wPjh+XiP4wNisy9KJdFD/pPJy1kl+hx5g
8DRnIOIXPX0AAMKP/Gk=
"]],
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJlIGYCYpdtn/9eUYhxUH/SPO8sl4GDjP5dFTbJGIfn
WdrfpusaOMTv8uRhehztoK+1UviCi77DkwtKt38ui3aYMRMIduo5nAGBFATf
v3d6ntDuKDg/YIdc62vPKIc/30ofzFE0hPP7g0tUpp83hvMZQCDAzKHldeAO
ubVRDrW/rQrO/TB3qBFZ5/7QKRrOv1LxUs1wBoL/ZOnsIwofoh1egNybi+B/
3Xmr6+9TMzh/xgT+KrPXphD3ccfA+VOcu3OeA/kab3n3Gcw0c2iYChTgj3FI
AwExc4c7KmyNU6VjHGIUHD8m/zGH+OtitEOE+PaLDHEWDuqGHGtkJkU7TAeZ
123hcB4YPHVBCD5/hOWWE2wIvgcPk3b7viiH5S889P47Wjj4JAlEWLZEOWwx
/3EoZZe5gwQo/BWjHGTmxWmevmAGCd83kQ4mxkCQbArn21ZGrDDtNUblzzVw
aDlwaqFrWZSDqc3eoGmOuvDwg/HB/u9G8FWAzs06E+0gA3LQfl2HHqB0M0cM
PP7Q0wcARRj4uA==
1:eJxTTMoPSmVmYGBgBGJlIGYC4jUyUSnWz6MdHrjGO86aKOLQMNW5O+d+tEOM
aoTMORlRhyMKG4oyVkY79EZ0+zN+EHLwMe90TMiNdpg9EwhuCjqYGAOBNoK/
/fPfKxWNUQi+XOvrQIEohzMg8EYCzu+08dyVdkkRzjcCmXNZzeFN4A651uIo
B32tlcIXVLQcHlSJrHPnjIbzbe77906PQ/A9eJi027dFOzBzdskn82nC+XLL
X3jo/VeH8xNCgtQXcKpB3HcRwf+z8uMl30vRDi28/uunpKo7PP8NFLga7fAf
BOI1HFy6c57/fhjt8KZ4q+hvbS2I+PRohyeJC6+ZvNdy6JmeJ9QcATXPU9sB
FDxPJRD88n3zpfTPRsH564syJr5tiXJoYDnab7hdy2HLibJ9872iHOYsUt75
Z7mmQz0o/J9HOmTkf2g9eUUdEr6bIx1mgMLzpwqcX354m+tMX0U4/01bbrfR
bTGHF2qGHGtsohz8n3heMr3MCw8/GB/s/0AEvwPo3AuToh3UP6m8nHWS3+EL
UPrlOUR8oqcPAMpm9qU=
"]],
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
@ -47173,23 +47177,23 @@ PP7Q0wcARRj4uA==
0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGI7IGYC4jeBO+RaT8c6RIhvv8jAZ+YA46eBwDEzhycX
lG7/PBfrcAYEbMwd3B9Wiay7HutQ+9uq4NwPcwdVQ441MpNiHXj9109JzbBw
qBFZ5/4wK9Zh+gT+KrNuC4fYXZ48TNYI/gOgdvedMXC+6M1z34OjYxz8Lk6M
+edsDuc7Nj06PqPaFM7v8XrFYnLRxMHmvn/v9LQYhyX39/HNCTZxkIlKsb5f
H+Pgc4LddvZXYwcf807HhLkxDjNBoNPYQfeuClvj0RiH5S889P4HGjsEAL33
WjLWwUBrpfAFFWOHBa7bPv+NiXU4fdhpbeY/Iwf2NUATq2MdkmPvuDHfMIL7
D8zvMHJIEIiw3LIi1qF4q+jv03ZGDkDX5AltjnXgdlMtZbplCOd7g9wTiuBH
Kzh+TJYxgNhfGOsgAvJQiZ7DnPfLj3mLI/g19qZxuy7GwPlPf6/8eKk3xuHH
29cHLJv1HY4obCjK6IxxKFjTfTsjwMDhPDB66ppiIPZbGcLDB8YvyJj4tiYd
Gt6/DeD8xaDwO4zgnwT5fx0an8/AgSWMT3dTKsL+HqB3mhNiHLaY/ziU4qUH
DZ8Yhw16eYsZ5+g6fA9+vHT2kRgHU5u9QdMcdR2Ol+2bL/UdwQe7ry8Wzgd5
1/NPLNw+GL+R5Wi/IbsRnK/6pHne2VVGDqbA6H36AZpe5YwdarP2lEy+EevA
A0p/FcYQ9+yKdZgB8u9raPxPhaZPCROH8pdqhhwm0PTsY+KQK9R84NTJGIcD
tbIW6S0mDgrA4MxaEgOx/zuCD05vzGZwfgooPWhA0+vtGHh+AKdHdUT+AJvv
ieC7dOc8/50Z62BbGbHC9K65w9bPf69UNMY61IHkV5g7THgLTAHzYh1eZGl/
m55r7qDTLnbz3PJYB423vPsMLM0d7oIS1KpYiHuvmEHy43rM/AvjAwBHRK5K
1:eJxTTMoPSmVmYGBgBGI7IGYC4oAdcq2vJ8Y6PE1ceM3EX80BxmcAgQPqDj7m
nY4JU2MdTp8BgjUaDmvdH1aJzIt10NdaKXxBRcuhZ3qeUHNErIP/xYkx/5i1
HR5UiaxzN4x1SAgJUl/gqe1wRGFDUQYjgg/Svq4+Bs6vsTeN26UY43D+atgb
/d0acP4W8x+HUrRU4fw9+TVvZ15Vdljguu3zX50YB+cJzUJpt5QcWg6cWujq
FuOwVkiHL11OyWHD3PfLjyXHOKSmAYGbosMU5+6c590xDvyxAfeNris4bAd6
L/BBjMNZkH9qFBzY18hEpShD/Wug4JAr1HzglGOsQzpI/zF5uP/A5rXJORwv
2zdfKj/WIeTt5Y8zEmUdtn7+e6WiMtZBfteCfannpOH8GNUImXN7JOF8jzVH
lzPcEIHYbwFV7yfowBLGp7vpbgyc/2Tp7CMKMxB8nySBCMsQqHtzhB102sVu
nvOPcdgRbBXxf7mogykwep56wNRLwsMHxr9+7nvwY90YB2MQCJaA81sV2FXP
lIjD+WD/K6DxF4g4ZOwpmSyhg7D/C9A7L9ViHF635XYb/RaAhk8MxL82/A6x
uzx5mIDh7f/E85LpZV4H3bsqbI17EXyw+0Ji4XyQdzccioXbB+Mf6N7XZNIs
A+ffd413nCUo7zAHGL3e22MdwjnF2o3zFRyeXFC6/ROYHu9oyq75r6wIcU9D
rMNMEOBUgsR/NFQ+Wcnhrn/v9LxfMQ5nwEDJAeQbwwkxDirXHgUz2Cg7tAOD
80JWjIOpzd6gaYoqcH7Npw0B2VZqcP6vt68PWDZD0+vCGHh+AKfHdwg+2HwB
RH5Z8fGSb5JBrMN61SfN895qOgBTn/V991gHA5B8i6YDMPSXzk6JdWDm7JJP
5tN0mPAWaENerEMLr//6KUs1HFyAwXelINZhk17eYsY76pD8WIaZf2F8APsJ
qu4=
"]],
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
@ -47197,54 +47201,54 @@ m55r7qDTLnbz3PJYB423vPsMLM0d7oIS1KpYiHuvmEHy43rM/AvjAwBHRK5K
0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}}, {{1,
4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
3, 3}, {0, 1, 0}}}, {CompressedData["
1:eJxTTMoPSmViYGBQB2IQnZoGBHZxDgmxd9yYI/QcYPwUEH+HrgP7GpmolMVx
DmfAAJNfP9W5O2c7gn+8bN98qeMI/gLXbZ//XkHwX6gZcqx5EufQwuu/fspR
XYetQNkKzXi4feh8geYDpxaaIvgtrwN3yC1F8Guz9pRM/hHv8DxL+9v0uXoO
HY4JTy9IJTg8SVx4zcTewEEdaJ2MVYJDOshfZoYO6RPf1tj7JjicPOy0NnOd
EZx/qG15+CklEzhf9UnzvLOrzBzeLz/mbS6Y4PAfBPwtHJbMPqKwISsezv8e
/Hjp7BQE/0GVyDr3SAS/xt40bpdnvEO0guPHZB8Lh7XuD6tE5OId6n5bFZzz
sHBIEIiw3PIjzsHrBLvtbFcLB9Gb574HX0bw/Xun5wltRvBNjIGgOQ6uH2yP
fBzcPhj/04aA7FnPzSHh4RTnYFsZscL0rrlDO4ifFecgMfUKZ8YlcwdQdFrn
x0HM3YzgL7m/j2/OYjM4v8frFYuJoQGcv92h6dHxGfoOc0ABlB7nILv8hYfe
fz0HYOgUZUTGOXjsr5W1OI5IT7D0BQA/HSNj
1:eJxTTMoPSmViYGBQB2IQfQYEWOIcvuz7uDVdTNABxn9R+zj7/Bp+h1yh5gOn
MuMc/oMBJv/p75UfL9Ui+Lp3VdgaexF89jUyUSmzEXz/3ul5QqvjHPZ372sy
eczvAJS1vv8eYR86v/ylmiHHHwT/TeAOudbseDj/yQWl2z/3xTsEv738ccZC
Qaj6eIeDIPOTRR0igcb5yyY4MICAg6TD7CMKG4oMEiDukZeH898vWq9wtkIJ
zq/9bVVwrkPdwWXb579XXsQ7mBgDwWUtBx4m7XYxQwQ/dpcnUAjBd39YJbJO
HsF/shRookC8w5viraK/T2s5iKwDqngS56CvtVL4whEth+Nl++ZL7Y9zOH7Y
aW3mPi2HGnvTuF0zEfytQOsrKhH8GTOBwBOhPzUNCJ7Fwu2D8cWnXuHMYNJy
eL/8mLc5Z5zDetUnzfPeajq8BfEN4xwSYu+4Md/QdBAARudC0ziHmWCA4Nd8
2hCQXaUO51fd/3HLWFsUzndfc3Q5wwxhB5YwPt1NunEOwpWTSs6mCDnotIvd
PCcf59CqwK565gsiPcHSFwASnyb+
"], CompressedData["
1:eJxTTMoPSmViYGAQB2IQHbBDrvX1wTiHut9WBedWmDv0TM8Tar4R57DF/Meh
lF3mDk8uKN3++S3OwUBrpfCFI+YO54HcOqV4ON+lO+f570QE3/1hlci65fEO
jSxH+w2nmzv4JglEWJ6Jd7gjXZNoFGru0DDVuTvnfrzDl523uv6amjvIRKVY
338f73ATJM9q7hDKp7tp7v94hzQQOGbmkAzUvkUkweFJ4sJrJvJmDktnH1HY
IJcAsU/FFM7n918/JfWEMZwvPvUKZ4aTkQPIuuf8CRD3iBs6pILMfRbvoPqk
ed7ZKAMHVUOONTKb4h2eRIhvv5ig73D93Pfgx7XxEP+/0nN4EwgMIGk0/uc4
OB8WXimxd9yYf+g5wMITbL+SvgN6+AIAxpmlRw==
1:eJxTTMoPSmViYGAQB2IQvV2u9XVgR5yDgdZK4Qstmg5f/l6peDkvzmHOIuWd
f5ZrOviYdzom7I1zmNLeGnV5j6aDKZD79AWCv+LjJd8kjXg4f637wyqRvHgH
M5u9QdMSNR22nCjbN39SvMPzLO1v0+9qODz/vfLjpaXxDrLLX3jozddwaDlw
aqHrNqi8rYbDnpLJEizH4h0YQOCAuoNOu9jNc+/jHf5+K30wp1DN4ca578GP
GRMg9tWowPm3NWXX/D+sCOf3RnT7MxbIOkx4W2Nv+ize4WD3viaTwxIOZ0Bg
TbzDA9d4x1kXRR16pucJNVfEO+wItor4ry7sYGsat8vTJd7hTVtut5G1kEPA
DmAAPYxD5e9E8GHh9Xnfx63pYUIOsPCsvv/jlvFqBB8WvgCtbbBu
"]}],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGJpIIaxWaBsBigfRjNjEcelhlT1lIgT4wZa24UsDgC4
FwI/
"], CompressedData["
1:eJxTTMoPSmVmYGBgBGIzIGYC4u/Bj5fOPpHgcEu6JtFoqbnDjXNAkZMJDiVb
RX+f1jN3KJkswRJ2Csq/Zwbna7zl3WfgieDz+6+fktphAOdvMf9xKOWVnkN0
/6GvGkDzA0AWbILytyQ4PM/S/jZ9rp6DClvjVOf5CQ61v60KznUg+Cmxd9yY
d+g6mHc6JjzdkeDQwgu04Kgu3LwzYKDr0AGUvnAPwT+ssKEo4yuCz82k3S7G
mgjXPz1PqPmAXCLcfBgfZj/Y/5yJcPfFP72gdPsrwv37Ty103fYZ4T8YH+Z/
GB8WPjD+1523uv4+NXPI3gMMoS8JDhJTr3BmGJnD3QsLf7B/LRLhfFBw8rki
+GD3eCY6fAGZ12ru8Hvlx0u+Xolw84C8JAGfRIcniQuvmcibOSw/5m3eGYnJ
//Ot9MEcRnOH9DQgiEp0mAkCneYO7MDg745JdPgPAv4WDukT39bY2yY6RCs4
fkz2sXBgBAbnTT0Ef+nsIwoblBId6kDh52HhwBzGp7tJMNHB6wS77WxXC3j4
w/iHv2rE9P9LgPPzgcF/aieCb8t1fXHBVgT/NCj45ibAzQfK2nLVJ8DtB6tP
TIC7NxRo/dzkBLh/ekERnJIA9y+MDwsPsPmFCD44vooR8QNObyUJ8PAGuv7Q
1wpEfIH914rgo+cnAI7fh0Q=
1:eJxTTMoPSmVmYGBgBGIzIGYCYu12sZvnVic4PM/S/ja9VtOBmwkosjbBQWpe
nObpCRoOy495m3cC+TIg/gd1OL+F13/9lKNqcP7OYKuI/+1icP6bttxuI2sh
h/5DXzVigOZX3v9xy/i0IIQ/PcEh+O3ljzMWCjqEW245UdaU4OC+5uhyhgoE
/0Xt4+zza/gdsveUTJaYk+Cwv3tfk8ljfrh5/8GA32E3UJrlEIL/Pfjx0tk3
EHx707hdni8Q+k8vdN32mTERbj6MD7Mf7P+3CPcBTQ/ju4lw/+e/VypeXkP4
D8aH+R/Gh4UPjC+3/IWH3n91h7nvgSF0PcEhOfaOG/MMDbh7YeEP9q9MIpx/
HBicjhoIPtg9uokQ8+w1HfTvqrA1Avkw84C8qc76iQ5/v5U+mFOo5nD7Z13W
HhtMvq6i/JccMw2HmSBgm+iQmgYEbpoOoODfZ5/oYGIMBJe1HGYfUdhQpJDo
8KZ4q+jv01oOJsDg5BFC8G+cA/qANdFBX2ul8IUjWg5A1yY8/ZLgcPyw09rM
fVrw8IfxgbHXf+ghgg8K/r9zEPwCW67ri2cg+KDgU2tMgJvPfX1xgW1SAtx+
sHqXBLh7O4DWX3BLgPvnwCmgDe4JcP/C+LDwAJsfiuCD4ysMET/g9BaeAA/v
aLAAIr7A/stA8NHzEwBsbZvj
"]],
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJpIGYC4p91WXtK1ic5/AcBeQEH7uuLC2zbkhxiVCNk
ztWIOfQf+qoRU57kcAYE3kg69EzPE2rOSHJYK6TDl66n4DD7iMKGopgkhweu
8Y6zDio5gKQPhCU57HBoenS8QhXO//X29QHLZg04//zVsDf61dpw/fpaK4Uv
sOhB7EtPctigl7eYUcfAYeLbGnvTsiSH5Ng7bswrDB26c57/Xtma5PAkceE1
k3ojB5j7D9TKWqSzmDiwN0517l6S5DBtAn+VWbWJw2QJljC+zCSHv99KH8y5
aOQwEwQCkxy8T7Dbzr5q6AD0Ldd16ySH29I1iUaiBg4aMUAX6EDdc0TXYfkx
b/NOVah7rbXhfJh/YPwTu3b0sm1QgZhnnORgDALCig5z3wNV+Cc5fNn3cWv6
NmmI/5KTHGru/7hl/FoM4p/SJIeQt5c/zlAUgbufAQQceB3Q4wcAH27CsA==
1:eJxTTMoPSmVmYGBgBGJpIGYCYp1Nc98vn5Tk8B8E5AUcbLmuLy7ITHKIUY2Q
OVcj5nD4q0ZMf1SSwxkQeCPpsP/UQtdt3kkOa4V0+NL1FBzOfw9+vNQ+yeGB
a7zjrINKDqeB0p8tkxx2ODQ9Ol6hCuf/evv6gGWzBpx//mrYG/1qbbh+fa2V
whdY9CD2eSU5bNDLW8yoY+BwRGFDUUZkkkNy7B035hWGDvvnS+nfzUhyeJK4
8JpJvZEDzP0HamUt0llMHCy3nCjb157kMG0Cf5VZtYnDcW/zTkefJIe/30of
zLloBPGHSZKD9wl229lXDR2AvrXlkk9yuC1dk2gkauAQ3X/oq4YA1D1HdB1u
/6zL2sMBda+1NpwP8w+Mf2LXjl62DSoQ88STHIxBQFjR4YISUIVRksOXfR+3
pm+ThvjPLcmh5v6PW8avxSD+iUhyCHl7+eMMRRG4+xlAwIHXAT1+AFuYyqM=
"]],
@ -47253,62 +47257,62 @@ NmmI/5KTHGru/7hl/FoM4p/SJIeQt5c/zlAUgbufAQQceB3Q4wcAH27CsA==
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}, {{1, 4, 3}, {1,
3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}}}, {CompressedData["
1:eJxTTMoPSmViYGDQAGIQnTHxbY393mSHld9eVpxpUHTIF2o+cGprsoPytUfB
DHcUHT4sP+ZtPhEmr+Dw8ZJvkkBLssNaIR2+dD0FB441MlEp2Qg+9/XFBbZu
CH7/oa8aMerJDu5rji5nsFB0mPseaKA4lP9DyWH2EYUNRTzJDmkgoKYC4XPA
+KoQ9ezJDjNmAoGlugOjdrvYzSgE/89KoIuaEPwvf69UvJyV7JCR/6H1ZIi6
QzrInENQ+Z3qDjnPf6/8CONbajikWN/37z2c7PC6eKvo724Ev/rThoDsXwh+
A8vRfkNxXUh4zEx2aOH1Xz/lqL4DDxPQQZEIPr/uprnvnRF8sP+1kx1YOLvk
k/30HaY6d+c8F052MDEGgmI9B40YoIonSQ76WiuFLxzRcVA3BIbopSSHMyDQ
owXng/1zRQ3OF+3xesUyRcVBB2jd8ltJDnvza97OXKoEkX+V5DAb5D9PRYeF
rts+/2VIdlD/pPJy1kk5eHw8cI13nDVRBhJfQQg+OD7TEfwfwY+Xzq5JdhCp
nFRyVkUWEv9Tkh1kdy3Yl5on51AMSkCLYfErD+GvT3botPHclSakAElPG5Oh
7lFwQE9vAE4vGhM=
1:eJxTTMoPSmViYGDQAGIQPeeIwoaiBckOK7+9rDjToOiw0HXb578zkh2Urz0K
Zrij6KB8+2ddVglMXsFBha1xqnN6ssNaIR2+dD0FB5v7/r3T/RB8W67riws0
EfzDXzVi+rmSHdzXHF3OYKHocEEJaOCvJAj/h5LD+e/Bj5e+T3JIAwE1FQj/
NYyvClH/KslhxkwgsFR3MInb5cljlwznG9wFuigVwdcw5FgjU5fskJH/ofVk
iLoDSHjmUqj8TnWHBVL6d1WWwdRrOMzIE2o+AOS/Lt4q+rsbwa/+tCEg+xeC
38BytN9QXBcSHjXJDi28/uunHNV3cDAFOsgGwXdMeHpBSR3BB/ufL9mBhbNL
PtlP3+FE2b75Ut+THEyMgaBYzyG6/9BXjRNJDvpaK4UvHNFxiEyxvu+/Ncnh
DAj0aMH5YP9cUYPzRXu8XrFMUXGIB1p3e2+Sw978mrczlypB5M8mOcwG+c9T
0eFKxUs1wydJDuqfVF7OOikHj48HrvGOsybKQOLLFMEHx6cXgq/TLnbzXHyy
g0jlpJKzKrKQ+C9PdpDdtWBfap6cw9LZwATUBotfeQh/UrJDp43nrjQhBUh6
mpIMdY+CA3p6AwAWVRyJ
"], CompressedData["
1:eJxTTMoPSmViYGAQBmIQ/SP48dLZE5IdXhdvFf3dreHAqN0udrMo2aH604aA
7CoNh79XKl6qpSY7SM+L0zxdoOHA2jjVuTsAwZ/4tsbe1AzB7z/0VSNGHaF/
9hGFDUUcyQ5zFinv/LMcwddXlP+SE6blsBQkwJXsILP8hYeevLbDfCn9uypC
yQ5rVZ80z+PVgZgvl+zwHwTm6zp0OCY8vQC0r4HlaL/hdD0H7uuLC2yDEHyY
e2F8BhAoSXZ4ECG+/aKCnsOflR8v+dYlO8SHBKkv0NR1+ALS0JXscP5q2Bv9
39oQfl+yw59vpQ/mfNRyQA8fABs7izU=
1:eJxTTMoPSmViYGAQBmIQrd0udvNccbLD6+Ktor+7NRxM4nZ58oQlO1R/2hCQ
XaXhYMCxRibKI9lBel6c5ukCDQeLLSfK9hkj+EcUNhRlSCL4h79qxPRzIfSf
/x78eOnrJIc5i5R3/lmO4Osryn/JCdNyuHEOKPA2yUFm+QsPPXlth8u+SQIR
X5Mc1qo+aZ7HqwMxnzHZ4T8IzNd12F0yWYJFKtmhgeVov+F0PQdbruuLC0wR
fJh7YXwTYyAIT3Z4ECG+/aICUP6uCltjYrJDfEiQ+gJNXQcNQ6CGvGSH81fD
3uj/1nZQB/GLkh3+fCt9MOejlgN6+AAAKH6DGg==
"]}],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGIpIAaxQYAJSjNCxZjR2DA5BjQ2LjXUEifGXlLdSS31
AJgXAjc=
"], CompressedData["
1:eJxTTMoPSmVmYGBgBGJjIGYCYhNjIChOcUhPA4IwYwcYvz+4RGX6fWOHY97m
nY4mKQ7LX3jo/b+IyT9Rtm++lDqCf+Pc9+DHkrj58bs8eZhuJ8PNh/Fh9ofy
6W6a+z7Zgd9//ZRUDyj/d7LDk8SF10zsjR2iUqzv+zOmOHzdeavrr6ixw52f
dVl7OFIczoBAj5GDg2ncLs+SFAfRHq9XLFNUHEyAXJ62FAfla4+CGe4oOmjE
9B/62gPlz1FwMLirwtY4NcXhTVtut1G0rIOaIccamU0I/kLXbZ//7klx2Jtf
83bmUwWHJQW2XNcPpziAgslYWMlhRp5Q84FrKQ7Hdu3oZfug4vBn5cdLvlap
DsVbRX+f/mfoAHJeiXuqwxeQe78aOXwFOcA31UH1SfO8s1bGDh+WA0M0MhXu
35LJEixhWanw8IDxYeEFdKxzt04qPDy5ri8usFVC8HmYtNvFRKH6rxk79E4H
OpAl1WH6BP4qs9vGDj05z3+vZETwgablPP+eAueD/fMOEf8wPsw9YPN4EO4F
2yeZ6uB/cWLMP2djB1aQ+xRS4fED4//9VvpgzkUjOH/J/X18cxYbOTACtd+U
g/KTjRyAoR+VIp3q8BgU3/JGDktnH1HYAIyPO5qya/4HKzucAkWIYwok/HYZ
OQBlizIcofF/xsgBmBr17zpA5W8h+GDpNwg+2L3Kxg4HQAa6p8Dd75jw9IJS
cArcf+j5AwC6v2Tf
1:eJxTTMoPSmVmYGBgBGJjIGYC4jQQCEtxSAfTxg4wfn9wicr0+8YOP+uy9pSI
pzgsf+Gh9/8iJv/Pyo+XfLkQfB4m7Xaxv8k4+RPf1tib7kuGmw/jw+zvcEx4
euFSsgO///opqR5Q/r1khyeJC6+Z2Bs79E7PE2p+kuzwdeetrr+ixg78upvm
vn+d7HAGBHqMHIoygCaGpziI9ni9Ypmi4gDi2memOChfexTMcEfRIab/0FeN
Aih/joJDkkCE5ZaKFIc3bbndRtGyDpEp1vf9pyL4VypeqhkuSHHYm1/zduZT
BYcbiwtsuZanOBiDgLCSw6mFrts+70xxOLZrRy/bBxUHg7sqbI2yqQ7FW0V/
n/5n6KADdN5yrVSHLyD3fjVy0AA5wCDVQfVJ87yzVsYOSreBIWqTCvfvimPe
5p2+qfDwgPFh4WW55UTZPv5UeHjacl1fXMCK4DuYxu3y/AGNz2vGDgdADnye
4jB9An+V2W1jh33zpfTvPkHwgabNl7qN4IP9cxER/zA+zD1g896nwN0Ltu9P
ioP/xYkx/5yNHSxA7mNOhccPjP/3W+mDOReN4Pwl9/fxzVls5GAC1M7DBOUn
GznY3Pfvnf4vxeExKL7ljRxunPse/BgYH3c0Zdf8D1Z2+AuKENUUSPjtMnL4
Efx46WyVFEj8nzFyAKbGJAEVqPwtBB8s/QbBB7tX2djhC8hALYT7SyZLsISZ
IfyHnj8A77p6/g==
"]],
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJpIGYCYqXbP+uyJqQ6MICAA6/DkgJbruvbUx1EKieV
nHURdphzRGFD0YlUh5C3lz/OWCjqMOFtjb3prVSHA937mkyUJR14mLTbxf6m
OswEAU4FB441MlEp/GkOTxIXXjPRV4Hzqz9tCMiu0oDzz18Ne6Nvre3Ap7tp
7nv2NAd9rZXCF47oQsz7mepwW7om0UjUwGHCoa8aMY9THbq9XrGYXDR0mOrc
nfP8dKrDGTAwcoC5f9oE/iqzahMHg7sqbI2tQPfVylqks5g4zH2//Jj3+lSH
LeY/DqVUGTnMyBNqPrAv1WHJ/X18cxYbOkyRYAnjO5vqsEEvbzGjjoFDz3Sg
ghupEPew6DlMBPn3XirEvdXacP6vt68PWDZrwPk7HJoeHa9Qhet/4BrvOOug
EiT8zqQ6rBXS4UvXU4CE016o+99IOiydDVSwLtUhRjVC5lyNGNz9/0FAXsAB
PX4A0kC7AA==
1:eJxTTMoPSmVmYGBgBGJpIGYC4lA+3U1zi1MdGEDAgdfhxuICW67ZqQ4ilZNK
zroIO5z7Hvx46epUh5C3lz/OWCjqcERhQ1HG3lSHA937mkyUJR0cTON2eT5I
dZgJApwKDjb3/Xunf0p1eJK48JqJvgqcX/1pQ0B2lQacf/5q2Bt9a20Hx4Sn
F5Repzroa60UvnBEF2LenVSH29I1iUaiBg6HvmrE9B9Ldej2esVictHQ4UTZ
vvlS61MdzoCBkQPM/dMm8FeZVZs4JAlEWG7JALqvVtYincXE4YLS7Z91k1Id
tpj/OJRSZeRwaqHrts8LUx2W3N/HN2exocMxb/NOxw2pDhv08hYz6hg4HAAp
2A11D4sexL8Hoe6t1obzf719fcCyWQPO3+HQ9Oh4hSpc/wPXeMdZB5Ug4Qd0
71ohHb50PQWIuxdA3f9G0uEGSMHEVIcY1QiZczVicPf/BwF5AQf0+AEAsL/F
5Q==
"]]}, {
Thickness[0.0055987906612171776`]}, StripOnInput -> False]}, {
ImageSize -> {178.60573848069737`, 25.517369863013695`},
BaselinePosition -> Scaled[0.29204085728140255`],
ImageSize -> {179., 26.},
PlotRange -> {{0., 178.60999999999999`}, {0., 25.52}}, AspectRatio ->
Thickness[0.005627145349164369]}, StripOnInput -> False]}, {
ImageSize -> {177.7091407222914, 23.511820672478205`},
BaselinePosition -> Scaled[0.3169518292168768],
ImageSize -> {178., 24.},
PlotRange -> {{0., 177.70999999999998`}, {0., 23.51}}, AspectRatio ->
Automatic}], TraditionalForm], None}, {None, None}},
FrameStyle->Automatic,
FrameTicks->{{Automatic, None}, {{{1,
@ -47482,7 +47486,6 @@ ooXgw8yHqYfZL/36kZkURwBE/Ss1h9p125LqeQMcjEDxflnNgfPngvTNfAFw
HdxB4S8C9Y+XFiQ9yAU4SMyL0zxdoAW33x8UH80IPiz9wfjgdC+sDfcfLP3C
/A/jw8IHxoeFH0r6/+vvoAPy7zctePjD8hd6fgcA9mCtvg==
"]],
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}}}, CompressedData["
@ -47588,7 +47591,6 @@ Nf+VFRz+g8B+HYdwTrF2Y31FiD1puhDzFis6nL8a9kZ/th6c739xYsw/YQM4
H0xPNnAAWTNzpQKcvx/kf2c5OF9+14J9qX3SDstfeOj9NzRwOAiSfyzhUPNp
Q0B2lJ6DAlhexAE9vQEAkbz7Iw==
"]],
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}}}, CompressedData["
@ -47807,7 +47809,6 @@ r5W1eK7m4ND06PgMa3eHlNg7bswRqhD31EH1b1B2UHD8mHxmrrvDA9d4x1kf
lRwqIlaYnj3t7nBHU3bNf2ElB1j6+QDyj4eiw3wbnSuzypzh/OWg9BGJ4Puc
YLedbYvJh4UvjA9LjzD9MD7MfBgfPf0CAESNMYg=
"]],
FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1,
3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {
1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3,
@ -48566,6 +48567,7 @@ x9chPwcDUHwUy0P4Sv6Q9PpQzkEApD7V3+E/CNTLOciD0nOtv8OB7n1NJotl
4Xxw+j0uDefL71qwL3WdhMOHDQHZs8z9HVoV2FXPTBGDpJfTfnA+OH9MRfBh
/oWkd3FI/FpDw8NBAs6H5Sf0/AUAEvCAtg==
"]],
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}}}, CompressedData["
@ -48671,6 +48673,7 @@ Nf+VFRz+g8B+HYdwTrF2Y31FiD1puhDzFis6nL8a9kZ/th6c739xYsw/YQM4
H0xPNnAAWTNzpQKcvx/kf2c5OF9+14J9qX3SDstfeOj9NzRwOAiSfyzhUPNp
Q0B2lJ6DAlhexAE9vQEAkbz7Iw==
"]],
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}}}, CompressedData["
@ -49068,6 +49071,7 @@ AAmnPVN14PFfPyX1hh2cD46PzXYOjyLEt198oIoIf5B5t1Qh8SON4O8F2XfF
Bq7eHmT+XSu4e64LfXI8H4bgL3/hofe/0BLO7wsuUZkub+kwZ5Hyzj/uqg6N
4Pxp4SBSOankrImyA3r+BgAfmcDy
"]],
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {
1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1,
@ -49921,7 +49925,6 @@ ooXgw8yHqYfZL/36kZkURwBE/Ss1h9p125LqeQMcjEDxflnNgfPngvTNfAFw
HdxB4S8C9Y+XFiQ9yAU4SMyL0zxdoAW33x8UH80IPiz9wfjgdC+sDfcfLP3C
/A/jw8IHxoeFH0r6/+vvoAPy7zctePjD8hd6fgcA9mCtvg==
"]],
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}}}, CompressedData["
@ -49960,7 +49963,6 @@ mIHcm6ji8Hnfx63pYQIOU9pboy7HqDjMBANBON8YBISFHWDugfFh7gXzjQXh
9MnxvJqBw8HufU0mj5kcfoDsP6zvMP/E5CXZy37YPwXFj76+A3r6AACRT/sU
"]],
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1,
3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {
0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
@ -50141,6 +50143,7 @@ v98Ifj8ofJgCHd6A4otbHc6HhS+MDwt/cPr6C00P69Qd0kHu+hbgMAOcHtQd
Pr45xv8CHCTmxWmeLtCC2+8Pio9mBB+W/mB8E5C/hLXh/kNJv58QfFj4wPiw
8ENJ//cCHHRA/v2mBQ9/WP5Cz+8AzivDhQ==
"]],
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}}}, CompressedData["
@ -50916,7 +50919,6 @@ pYFDE8h9bZwO3qDwnGrgYAwCxZwO6WlA8AzBNwCFj4sh3D0wPsy9YPqMAdw/
oOBj8DOA+/e60CfH82YG8PCA8WHhBeOD7busBLFfzMDBeUKzUNorJYcHYAP1
HcoPb3Od6avksNWh6dHxHboQ9YcVIf4X0YHEj76iA3r6AABqhvQO
"]],
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}}}, CompressedData["
@ -50952,7 +50954,6 @@ Df5/lMA6IQ9tNBhRPzLVeL+3DusNFfKm1+H8tWlhqvFoYoW/DsrQ3FeTIjei
h3RYYkvr3C0xvSTOv7tO1MvfJ1/GpvvNjN8PDfao74Uk/r4kUqKe5d+f/9Kz
8xs=
"]],
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {
1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1,
@ -52529,7 +52530,6 @@ n1AHsVgIRZF+8tOBu3dJ0NHvPJvrQ9vnjEqOq8r8cjf5qLh4xK8i8fp5dulx
tAao0YJaa6Bzv54C3Db2EJrEH6BgBe53OQ0eWI9ayfENPJ95PMcNOgbfX0Xi
i2gu38ppr+TqOcSx634X2zKThb3liNSjW0n0+yEun8X/n3/O3+0T
"]],
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {
1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3,
@ -52605,6 +52605,7 @@ lfd/3DK2VnLYfavrb+rpQIe/30ofzJmo5rCm+3YGw/dABwYQWKDu0BzoObeB
KcjBY3+trMVzdYj7hYMcpk/grzLj1nC4DuJrI/hvePcZzAxC8DWtJp2uzwly
eBQhvv3iA3UHecePyWc6oealqzughxcAkxSCqA==
"]}],
FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1,
3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {
0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3,
@ -54506,6 +54507,7 @@ wyxQuFlKQMLP0tihTYFd9UyIhMNXkHunGsPtA/OvGjv8B4HzipB0omHiMBuk
z1PZwUBrpfCFIyYOsstfeOjdV3F4AU7XphD/SKg5QPKHqQMLKH7XqUH89QbB
h6VnGP8mMFiNXM0g8dGl5hADip8cRP5Cz28A+mNzEA==
"]],
FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1,
3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {
0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3,
@ -54789,6 +54791,7 @@ dE2I/9kQfLD5OyzhfJj/Am5J1yRe0oDHxw5QxEeoO6CnVwAHDRyL
15.665599999999998`}, {26.762500000000003`,
15.901599999999997`}, {26.470299999999995`,
15.901599999999997`}}}],
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1,
3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {
1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3,
@ -55280,6 +55283,7 @@ dxjfvunR8RnS1g47HICMCHWI/ghrSLopVXdIAfErrB2mgMNDHZIfliH4EPsQ
/CeJC6+Z/EfoB6c7Nxu4+eD43m/j4AHyiLo6NL5tHf6C05W6w1WhT47n0xB8
WP6B8WHpEWyfjTo8/YLt26rugJ7/AYCHwPQ=
"]],
FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1,
3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {
0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3,
@ -55396,9 +55400,10 @@ HyUcfsXkHv23yAMSfnKyDujpAQAwEvjm
3.8127310936893*^9}, {3.812731123721017*^9, 3.812731127080247*^9}, {
3.812731213751737*^9, 3.81273123428584*^9}, 3.8127312702517653`*^9, {
3.812731399455118*^9, 3.812731410339974*^9}, {3.8127314659837*^9,
3.8127315032041407`*^9}, {3.812731876899417*^9, 3.812731924087626*^9}},
3.8127315032041407`*^9}, {3.812731876899417*^9, 3.812731924087626*^9},
3.812732139217062*^9, 3.812733840914311*^9},
CellLabel->
"Out[117]=",ExpressionUUID->"e36355e4-9e9c-458d-9adc-557654f4da6b"],
"Out[129]=",ExpressionUUID->"ad669be2-a9cb-4d47-800b-d30c73a81d12"],
Cell[BoxData["\<\"errors.pdf\"\>"], "Output",
CellChangeTimes->{{3.812727180716263*^9, 3.812727190018889*^9},
@ -55409,15 +55414,16 @@ Cell[BoxData["\<\"errors.pdf\"\>"], "Output",
3.8127310936893*^9}, {3.812731123721017*^9, 3.812731127080247*^9}, {
3.812731213751737*^9, 3.81273123428584*^9}, 3.8127312702517653`*^9, {
3.812731399455118*^9, 3.812731410339974*^9}, {3.8127314659837*^9,
3.8127315032041407`*^9}, {3.812731876899417*^9, 3.8127319253174543`*^9}},
3.8127315032041407`*^9}, {3.812731876899417*^9, 3.812731924087626*^9},
3.812732139217062*^9, 3.812733841488163*^9},
CellLabel->
"Out[118]=",ExpressionUUID->"770ceaad-b52b-44a5-b693-dfbc07c2dbf1"]
"Out[130]=",ExpressionUUID->"22326222-93ea-4631-82a2-9b59464f600d"]
}, Open ]]
}, Open ]]
},
Evaluator->"K2",
WindowSize->{1359, 1395},
WindowMargins->{{Automatic, 0}, {Automatic, 0}},
WindowSize->{1280, 755},
WindowMargins->{{0, Automatic}, {Automatic, 0}},
PrintingCopies->1,
PrintingPageRange->{1, Automatic},
FrontEndVersion->"12.1 for Mac OS X x86 (64-bit) (March 13, 2020)",
@ -56127,9 +56133,9 @@ Cell[1890754, 45751, 548, 15, 30, "Input",ExpressionUUID->"fb1f6096-a487-441c-ae
Cell[1891305, 45768, 166, 3, 34, "Output",ExpressionUUID->"bffc36d2-a970-4a1c-8510-c0b5e72bc90e"]
}, Open ]],
Cell[CellGroupData[{
Cell[1891508, 45776, 4137, 102, 157, "Input",ExpressionUUID->"24f36136-6c9f-440e-9cf6-f53b12fa630d"],
Cell[1895648, 45880, 527958, 9520, 533, "Output",ExpressionUUID->"e36355e4-9e9c-458d-9adc-557654f4da6b"],
Cell[2423609, 55402, 780, 11, 34, "Output",ExpressionUUID->"770ceaad-b52b-44a5-b693-dfbc07c2dbf1"]
Cell[1891508, 45776, 4233, 103, 157, "Input",ExpressionUUID->"24f36136-6c9f-440e-9cf6-f53b12fa630d"],
Cell[1895744, 45881, 528231, 9524, 534, "Output",ExpressionUUID->"ad669be2-a9cb-4d47-800b-d30c73a81d12"],
Cell[2423978, 55407, 826, 12, 34, "Output",ExpressionUUID->"22326222-93ea-4631-82a2-9b59464f600d"]
}, Open ]]
}, Open ]]
}

View File

@ -137,7 +137,7 @@ We refer the interested reader to Ref.~\cite{Loos_2019b} where we review the gen
%%% FIGURE 1 %%%
\begin{figure}
\centering
\includegraphics[width=0.5\linewidth]{fig1/fig1}
\includegraphics[width=0.6\linewidth]{fig1/fig1}
\caption{Composition of each of the five subsets making up the present QUEST dataset of highly-accurate vertical excitation energies.}
\label{fig:scheme}
\end{figure}
@ -207,7 +207,7 @@ The reported oscillator strengths have been computed in the linear-response (LR)
For open-shell molecules, the CCSDT, CCSDTQ, and CCSDTQP calculations performed with MRCC \cite{Rolik_2013,mrcc} do consider an unrestricted Hartree-Fock wave function as reference.
All excited-state calculations are performed, except when explicitly mentioned, in the frozen-core (FC) approximation using large cores for the third-row atoms.
All the SCI calculations are performed within the FC approximation using QUANTUM PACKAGE \cite{Garniron_2019} where the CIPSI algorithm \cite{Huron_1973} is implemented. Details regarding this specific CIPSI implementation can be found in Refs.~\cite{Garniron_2019} and \cite{Scemama_2019}.
All the SCI calculations are performed within the frozen-core approximation using QUANTUM PACKAGE \cite{Garniron_2019} where the CIPSI algorithm \cite{Huron_1973} is implemented. Details regarding this specific CIPSI implementation can be found in Refs.~\cite{Garniron_2019} and \cite{Scemama_2019}.
A state-averaged formalism is employed, i.e., the ground and excited states are described with the same set of determinants, but different CI coefficients.
Our usual protocol \cite{Scemama_2018,Scemama_2018b,Scemama_2019,Loos_2018a,Loos_2019,Loos_2020a,Loos_2020b,Loos_2020c} consists of performing a preliminary CIPSI calculation using Hartree-Fock orbitals in order to generate a CIPSI wave function with at least $10^7$ determinants.
Natural orbitals are then computed based on this wave function, and a new, larger CIPSI calculation is performed with this new set of orbitals.
@ -315,17 +315,25 @@ Only the last $M>2$ computed energy differences are considered. $M$ is chosen su
If all the values of $P(\mathcal{G})$ are below $0.8$, $M$ is chosen such that $P(\mathcal{G})$ is maximal.
A Python code associated with this procedure is provided in the {\SupInf}.
The singlet and triplet excitation energies obtained at the FCI/6-31+G(d) level are reported in Table \ref{tab:cycles} alongside the computed error bar estimated with the method presented above and the CC3 and CCSDT values from Ref.~\cite{Loos_2020b} computed in the same basis.
For the sake of comparison, we also report the estimated value of the excitation energies obtained via a three-point linear extrapolation considering the three largest SCI wave functions.
In such a case, the error bar is estimated via the difference in excitation energies obtained with the three-point linear extrapolation and the largest variational wave function.
This strategy has been considered in some of our previous works \cite{Loos_2020b,Loos_2020c}.
\alert{Here comes the discussion of the results.}
The singlet and triplet excitation energies obtained at the FCI/6-31+G(d) level are reported in Table \ref{tab:cycles} alongside the computed error bars estimated with the method presented above based on Gaussian random variables.
For the sake of comparison, we also report the CC3 and CCSDT vertical energies from Ref.~\cite{Loos_2020b} computed in the same basis.
The estimated values of the excitation energies obtained via a three-point linear extrapolation considering the three largest CIPSI wave functions are also gathered in Table \ref{tab:cycles}.
In this case, the error bar is estimated via the extrapolation distance, \ie, the difference in excitation energies obtained with the three-point linear extrapolation and the largest CIPSI wave function.
This strategy has been considered in some of our previous works \cite{Loos_2020b,Loos_2020c,Loos_2020e}.
The deviation from the CCSDT excitation energies for the same set of excitations are depicted in Fig.~\ref{fig:errors}, where the red dots correspond to the excitation energies and error bars estimated via the present method, and the blue dots correspond to the excitation energies obtained via a three-point linear fit using the three largest CIPSI wave functions, and error bars estimated via the extrapolation distance.
These results are a good balance between well-behaved and ill-behaved cases.
For example, cyclopentadiene and furan correspond to well-behaved cases where the two flavor of excitation energy estimates are nearly identical and the error bars associated with these two methods overlap nicely.
In these cases, one can observe that our method based on Gaussian random variables provides almost systematically smaller error bars.
Even in less idealistic situations (like in imidazole, pyrrole, and thiophene), the results are very satisfactory.
The six-membered rings correspond to much more challenging cases for SCI methods, and even for these systems the newly-developed method provides realistic error bars.
The present scheme has also been tested on much smaller systems when one can easily tightly converged the CIPSI calculations.
In these cases, the agreement is nearly perfect in every cases.
Some of these results can be found in the {\SupInf}.
%%% TABLE I %%%
\begin{table}
\centering
\caption{Singlet and triplet excitation energies obtained at the CC3, CCSDT, and FCI levels of theory with the 6-31+G* basis set for various five- and six-membered rings.
\caption{Singlet and triplet excitation energies (in eV) obtained at the CC3, CCSDT, and FCI levels of theory with the 6-31+G* basis set for various five- and six-membered rings.
The error bars reported in parenthesis correspond to one standard deviation.}
\label{tab:cycles}
\begin{threeparttable}
@ -333,39 +341,39 @@ The error bars reported in parenthesis correspond to one standard deviation.}
\headrow
\thead{Molecule} & \thead{Transition} & \thead{CC3} & \thead{CCSDT} & \thead{FCI$^a$} & \thead{FCI$^b$}\\
\mc{6}{c}{Five-membered rings} \\
Cyclopentadiene & $^1 B_2 (\pi \ra \pis)$ & 5.79 & 5.80 & 5.80(2) & 5.79(2) \\%& 5.79(7)
& $^3 B_2 (\pi \ra \pis)$ & 3.33 & 3.33 & 3.32(4) & 3.29(7) \\%& 3.29(1)
Furan & $^1A_2(\pi \ra 3s)$ & 6.26 & 6.28 & 6.31(5) & 6.37(1) \\%& 6.37(8)
& $^3B_2(\pi \ra \pis)$ & 4.28 & 4.28 & 4.26(4) & 4.22(7) \\%& 4.22(14)
Imidazole & $^1A''(\pi \ra 3s)$ & 5.77 & 5.77 & 5.78(5) & 5.96(14) \\%& 5.96(31)
& $^3A'(\pi \ra \pis)$ & 4.83 & 4.81 & 4.82(7) & 4.65(22) \\%& 4.65(35)
Pyrrole & $^1A_2(\pi \ra 3s)$ & 5.25 & 5.25 & 5.23(7) & 5.31(1) \\%& 5.31(26)
& $^3B_2(\pi \ra \pis)$ & 4.59 & 4.58 & 4.54(7) & 4.37(23) \\%& 4.37(35)
Thiophene & $^1A_1(\pi \ra \pis)$ & 5.79 & 5.77 & 5.75(8) & 5.73(9) \\%& 5.73(7)
& $^3B_2(\pi \ra \pis)$ & 3.95 & 3.94 & 3.98(1) & 3.99(2) \\%& 3.99(8)
Cyclopentadiene & $^1 B_2 (\pi \ra \pis)$ & 5.79 & 5.80 & 5.80(2) & 5.79(2) \\
& $^3 B_2 (\pi \ra \pis)$ & 3.33 & 3.33 & 3.32(4) & 3.29(7) \\
Furan & $^1A_2(\pi \ra 3s)$ & 6.26 & 6.28 & 6.31(5) & 6.37(1) \\
& $^3B_2(\pi \ra \pis)$ & 4.28 & 4.28 & 4.26(4) & 4.22(7) \\
Imidazole & $^1A''(\pi \ra 3s)$ & 5.77 & 5.77 & 5.78(5) & 5.96(14) \\
& $^3A'(\pi \ra \pis)$ & 4.83 & 4.81 & 4.82(7) & 4.65(22) \\
Pyrrole & $^1A_2(\pi \ra 3s)$ & 5.25 & 5.25 & 5.23(7) & 5.31(1) \\
& $^3B_2(\pi \ra \pis)$ & 4.59 & 4.58 & 4.54(7) & 4.37(23) \\
Thiophene & $^1A_1(\pi \ra \pis)$ & 5.79 & 5.77 & 5.75(8) & 5.73(9) \\
& $^3B_2(\pi \ra \pis)$ & 3.95 & 3.94 & 3.98(1) & 3.99(2) \\
\mc{6}{c}{Six-membered rings} \\
Benzene & $^1B_{2u}(\pi \ra \pis)$ & 5.13 & 5.10 & 5.06(9) & 5.21(7) \\%& 5.21(36)
& $^3B_{1u}(\pi \ra \pis)$ & 4.18 & 4.16 & 4.28(6) & 4.17(7) \\%& 4.17(67)
Cyclopentadienone & $^1A_2(n \ra \pis)$ & 3.03 & 3.03 & 3.08(2) & 3.13(3) \\%& 3.13(8)
& $^3B_2(\pi \ra \pis)$ & 2.30 & 2.32 & 2.37(5) & 2.10(25) \\%& 2.10(45)
Pyrazine & $^1B_{3u}(n \ra \pis)$ & 4.28 & 4.28 & 4.26(9) & 4.10(25) \\%& 4.10(8)
& $^3B_{3u}(n \ra \pis)$ & 3.68 & 3.68 & 3.70(3) & 3.70(1) \\%& 3.70(37)
Tetrazine & $^1B_{3u}(n \ra \pis)$ & 2.53 & 2.54 & 2.56(5) & 5.07(16) \\%& 5.07(77)
& $^3B_{3u}(n \ra \pis)$ & 1.87 & 1.88 & 1.91(3) & 4.04(49) \\%& 4.04(40)
Pyridazine & $^1B_1(n \ra \pis)$ & 3.95 & 3.95 & 3.97(10)& 3.60(43) \\%& 3.60(26)
& $^3B_1(n \ra \pis)$ & 3.27 & 3.26 & 3.27(15)& 3.46(14) \\%& 3.46(1.61)
Pyridine & $^1B_1(n \ra \pis)$ & 5.12 & 5.10 & 5.15(12)& 4.90(24) \\%& 4.90(1.34)
& $^3A_1(\pi \ra \pis)$ & 4.33 & 4.31 & 4.42(85)& 3.68(1.05) \\%& 3.68(0.65)
Pyrimidine & $^1B_1(n \ra \pis)$ & 4.58 & 4.57 & 4.64(11)& 2.54(5) \\%& 2.54(13)
& $^3B_1(n \ra \pis)$ & 4.20 & 4.20 & 4.55(37)& 2.18(27) \\%& 2.18(29)
Triazine & $^1A_1''(n \ra \pis)$ & 4.85 & 4.84 & 4.77(13)& 5.12(51) \\%& 5.12(13)
& $^3A_2''(n \ra \pis)$ & 4.40 & 4.40 & 4.45(39)& 4.73(6) \\%& 4.73(1.07)
Benzene & $^1B_{2u}(\pi \ra \pis)$ & 5.13 & 5.10 & 5.06(9) & 5.21(7) \\
& $^3B_{1u}(\pi \ra \pis)$ & 4.18 & 4.16 & 4.28(6) & 4.17(7) \\
Cyclopentadienone & $^1A_2(n \ra \pis)$ & 3.03 & 3.03 & 3.08(2) & 3.13(3) \\
& $^3B_2(\pi \ra \pis)$ & 2.30 & 2.32 & 2.37(5) & 2.10(25) \\
Pyrazine & $^1B_{3u}(n \ra \pis)$ & 4.28 & 4.28 & 4.26(9) & 4.10(25) \\
& $^3B_{3u}(n \ra \pis)$ & 3.68 & 3.68 & 3.70(3) & 3.70(1) \\
Tetrazine & $^1B_{3u}(n \ra \pis)$ & 2.53 & 2.54 & 2.56(5) & 5.07(16) \\
& $^3B_{3u}(n \ra \pis)$ & 1.87 & 1.88 & 1.91(3) & 4.04(49) \\
Pyridazine & $^1B_1(n \ra \pis)$ & 3.95 & 3.95 & 3.97(10)& 3.60(43) \\
& $^3B_1(n \ra \pis)$ & 3.27 & 3.26 & 3.27(15)& 3.46(14) \\
Pyridine & $^1B_1(n \ra \pis)$ & 5.12 & 5.10 & 5.15(12)& 4.90(24) \\
& $^3A_1(\pi \ra \pis)$ & 4.33 & 4.31 & 4.42(85)& 3.68(1.05) \\
Pyrimidine & $^1B_1(n \ra \pis)$ & 4.58 & 4.57 & 4.64(11)& 2.54(5) \\
& $^3B_1(n \ra \pis)$ & 4.20 & 4.20 & 4.55(37)& 2.18(27) \\
Triazine & $^1A_1''(n \ra \pis)$ & 4.85 & 4.84 & 4.77(13)& 5.12(51) \\
& $^3A_2''(n \ra \pis)$ & 4.40 & 4.40 & 4.45(39)& 4.73(6) \\
%\hiderowcolors
\hline % Please only put a hline at the end of the table
\end{tabular}
\begin{tablenotes}
\item $^a$ Excitation energies and error bars estimated via the present method (see Sec.~\ref{sec:error}).
\item $^b$ Excitation energies obtained via a three-point linear fit using the three largest variational wave functions, and error bars estimated via the extrapolation distance, \ie, the difference in excitation energies obtained with the three-point linear extrapolation and the largest variational wave function.
\item $^b$ Excitation energies obtained via a three-point linear fit using the three largest CIPSI variational wave functions, and error bars estimated via the extrapolation distance, \ie, the difference in excitation energies obtained with the three-point linear extrapolation and the largest CIPSI wave function.
\end{tablenotes}
\end{threeparttable}
\end{table}
@ -373,10 +381,10 @@ Triazine & $^1A_1''(n \ra \pis)$ & 4.85 & 4.84 & 4.77(13)& 5.12(51) \\%& 5.1
%%% FIGURE 2 %%%
\begin{figure}
\centering
\label{fig:errors}
\includegraphics[width=0.5\linewidth]{errors}
\caption{Deviation from the CCSDT excitation energies of singlet and triplet excitation energies of five- and six-membered rings obtained at the FCI/6-31+G* level of theory. Red dots: excitation energies and error bars estimated via the present method (see Sec.~\ref{sec:error}). Blue dots: excitation energies obtained via a three-point linear fit using the three largest variational wave functions, and error bars estimated via the extrapolation distance, \ie, the difference in excitation energies obtained with the three-point linear extrapolation and the largest variational wave function.
\includegraphics[width=0.6\linewidth]{errors}
\caption{Deviation from the CCSDT excitation energies for singlet and triplet excitation energies (in eV) of five- and six-membered rings obtained at the FCI/6-31+G* level of theory. Red dots: excitation energies and error bars estimated via the present method (see Sec.~\ref{sec:error}). Blue dots: excitation energies obtained via a three-point linear fit using the three largest CIPSI wave functions, and error bars estimated via the extrapolation distance, \ie, the difference in excitation energies obtained with the three-point linear extrapolation and the largest CIPSI wave function.
The error bars corresponds to one standard deviation.}
\label{fig:errors}
\end{figure}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@ -405,7 +413,7 @@ Throughout the present article, we report several statistical indicators: the me
%=======================
The QUEST\#1 benchmark set \cite{Loos_2018a} consists of 110 vertical excitation energies (as well as oscillator strengths) from 18 molecules with sizes ranging from one to three non-hydrogen atoms (water, hydrogen sulfide, ammonia, hydrogen chloride, dinitrogen, carbon monoxide, acetylene, ethylene, formaldehyde, methanimine, thioformaldehyde, acetaldehyde, cyclopropene, diazomethane, formamide, ketene, nitrosomethane, and the smallest
streptocyanine). For this set, we provided two sets of TBEs: i) one obtained within the frozen-core approximation and the aug-cc-pVTZ basis set, and ii) another one including further corrections for basis set incompleteness and ``all electron'' effects.
For the former set, we systematically selected FCI/aug-cc-pVTZ values to define our TBEs except in very few cases.
For the former set, we systematically employed FCI/aug-cc-pVTZ values to define our TBEs except in very few cases.
For the latter set, both the ``all electron'' correlation and the basis set corrections were systematically obtained at the CC3 level of theory and with the d-aug-cc-pV5Z basis for the nine smallest molecules, and slightly more compact basis sets for the larger compounds.
Our TBE/aug-cc-pVTZ reference excitation energies were employed to benchmark a series of popular excited-state wave function methods partially or fully accounting for double and triple excitations, namely CIS(D), CC2, CCSD, STEOM-CCSD, CCSDR(3), CCSDT-3, CC3, ADC(2), and ADC(3).
Our main conclusions were that i) ADC(2) and CC2 show strong similarities in terms of accuracy, ii) STEOM-CCSD is, on average, as accurate as CCSD, the latter overestimating transition energies, iii) CC3 is extremely accurate (with a mean absolute error of only $\sim 0.03$ eV) and that although slightly less accurate than CC3, CCSDT-3 could be used as a reliable reference for benchmark studies, and iv) ADC(3) was found to be significantly less accurate than CC3 by overcorrecting ADC(2) excitation energies.
@ -452,6 +460,7 @@ Likewise, the excitation energies obtained with CCSD are much less satisfying fo
The QUEST\#5 subset is composed by additional accurate excitation energies that we have produced for the present article.
This new set gathers 13 new systems composed by small molecules as well as larger molecules (aza-naphthalene, benzoquinone, cyclopentadienone, cyclopentadienethione, diazirine, hexatriene, maleimide, naphthalene, nitroxyl, octatetraene, streptocyanine-C3, streptocyanine-C5, and thioacrolein).
For these new transitions, we report at least CCSDT/aug-cc-pVTZ vertical energies.
The interested reader will find in the {\SupInf} a detailed discussion for each of these molecules in which comparisons are made with literature data.
%\begin{table}[bt]
@ -584,7 +593,7 @@ The interested reader will find in the {\SupInf} a detailed discussion for each
\label{sec:TBE}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
We discuss in this section the generation of the TBEs obtained with the aug-cc-pVTZ basis as well as oscillator strengths for most transitions.
An exhaustive list of TBEs can be found in {\SupInf}.
An exhaustive list of TBEs can be found in the {\SupInf}.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Benchmarks}
@ -609,7 +618,7 @@ All quantities are given in eV. ``Count'' refers to the number of transitions co
& \thead{SOS-ADC(2)[TM]} & \thead{SOS-CC2[TM]} & \thead{SCS-CC2[TM]} & \thead{SOS-ADC(2) [QC]} & \thead{ADC(2)} & \thead{ADC(3)} & \thead{ADC(2.5)} \\
Count & & 429 & 431 & 427 & 360 & 431 & 259 & 251 & 431 & 430 & 430 & 430 & 430 & 426 & 423 & 423 \\
Max(+) & & 1.06 & 0.63 & 0.80 & 0.59 & 0.80 & 0.43 & 0.26 & 0.19 & 0.87 & 0.84 & 0.76 & 0.73 & 0.64 & 0.60 & 0.24 \\
Min($-$) & & -0.69 & -0.71 & -0.38 & -0.56 & -0.25 & -0.07 & -0.07 & -0.09 & -0.29 & -0.24 & -0.92 & -0.46 & -0.76 & -0.79 & -0.34 \\
Max($-$) & & -0.69 & -0.71 & -0.38 & -0.56 & -0.25 & -0.07 & -0.07 & -0.09 & -0.29 & -0.24 & -0.92 & -0.46 & -0.76 & -0.79 & -0.34 \\
MSE & & 0.13 & 0.02 & 0.18 & -0.01 & 0.10 & 0.04 & 0.04 & 0.00 & 0.18 & 0.21 & 0.15 & 0.02 & -0.01 & -0.12 & -0.06 \\
& singlet & 0.10 & -0.02 & 0.22 & 0.03 & 0.14 & 0.04 & 0.04 & 0.00 & 0.18 & 0.20 & 0.13 & 0.00 & -0.04 & -0.08 & -0.06 \\
& triplet & 0.19 & 0.08 & 0.14 & -0.07 & 0.03 & & & 0.00 & 0.19 & 0.22 & 0.17 & 0.04 & 0.04 & -0.18 & -0.07 \\

BIN
Manuscript/errors.pdf Normal file

Binary file not shown.