forked from PTEROSOR/QUESTDB
add errors fig
This commit is contained in:
parent
afd1da050f
commit
3251dd129d
444
Data/QUESTDB.nb
444
Data/QUESTDB.nb
@ -10,10 +10,10 @@
|
|||||||
NotebookFileLineBreakTest
|
NotebookFileLineBreakTest
|
||||||
NotebookFileLineBreakTest
|
NotebookFileLineBreakTest
|
||||||
NotebookDataPosition[ 158, 7]
|
NotebookDataPosition[ 158, 7]
|
||||||
NotebookDataLength[ 2472320, 56130]
|
NotebookDataLength[ 2472734, 56136]
|
||||||
NotebookOptionsPosition[ 2424417, 55417]
|
NotebookOptionsPosition[ 2424832, 55423]
|
||||||
NotebookOutlinePosition[ 2424882, 55436]
|
NotebookOutlinePosition[ 2425296, 55442]
|
||||||
CellTagsIndexPosition[ 2424839, 55433]
|
CellTagsIndexPosition[ 2425253, 55439]
|
||||||
WindowFrame->Normal*)
|
WindowFrame->Normal*)
|
||||||
|
|
||||||
(* Beginning of Notebook Content *)
|
(* Beginning of Notebook Content *)
|
||||||
@ -45862,7 +45862,7 @@ Cell[BoxData[{
|
|||||||
RowBox[{"None", ",",
|
RowBox[{"None", ",",
|
||||||
RowBox[{"MaTeX", "[",
|
RowBox[{"MaTeX", "[",
|
||||||
RowBox[{
|
RowBox[{
|
||||||
"\"\<\\\\Delta E^\\\\text{FCI} - \\\\Delta E^\\\\text{CCSDT} \\\\text{ \
|
"\"\<\\\\Delta E_\\\\text{FCI} - \\\\Delta E_\\\\text{CCSDT} \\\\text{ \
|
||||||
(eV)}\>\"", ",",
|
(eV)}\>\"", ",",
|
||||||
RowBox[{"FontSize", "\[Rule]", "18"}]}], "]"}]}], "}"}]}]}],
|
RowBox[{"FontSize", "\[Rule]", "18"}]}], "]"}]}], "}"}]}]}],
|
||||||
"]"}], "\[IndentingNewLine]",
|
"]"}], "\[IndentingNewLine]",
|
||||||
@ -45874,9 +45874,10 @@ Cell[BoxData[{
|
|||||||
3.812730846723929*^9, 3.8127310091055927`*^9}, {3.81273108401068*^9,
|
3.812730846723929*^9, 3.8127310091055927`*^9}, {3.81273108401068*^9,
|
||||||
3.8127311251773577`*^9}, {3.812731193860486*^9, 3.8127312177894487`*^9},
|
3.8127311251773577`*^9}, {3.812731193860486*^9, 3.8127312177894487`*^9},
|
||||||
3.812731269642071*^9, {3.812731398686214*^9, 3.812731536996726*^9}, {
|
3.812731269642071*^9, {3.812731398686214*^9, 3.812731536996726*^9}, {
|
||||||
3.8127318410005836`*^9, 3.812731922956018*^9}},
|
3.8127318410005836`*^9, 3.812731922956018*^9}, {3.812732131434629*^9,
|
||||||
|
3.812732132062683*^9}, {3.812733836877491*^9, 3.812733839221058*^9}},
|
||||||
CellLabel->
|
CellLabel->
|
||||||
"In[116]:=",ExpressionUUID->"24f36136-6c9f-440e-9cf6-f53b12fa630d"],
|
"In[128]:=",ExpressionUUID->"24f36136-6c9f-440e-9cf6-f53b12fa630d"],
|
||||||
|
|
||||||
Cell[BoxData[
|
Cell[BoxData[
|
||||||
GraphicsBox[{{{{
|
GraphicsBox[{{{{
|
||||||
@ -46986,7 +46987,7 @@ ItQ8KwcFUHDJXbUHAJsXdJA=
|
|||||||
FrameLabel->{{
|
FrameLabel->{{
|
||||||
FormBox[
|
FormBox[
|
||||||
GraphicsBox[{
|
GraphicsBox[{
|
||||||
Thickness[0.0055987906612171776`],
|
Thickness[0.005627145349164369],
|
||||||
StyleBox[{
|
StyleBox[{
|
||||||
|
|
||||||
FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1,
|
FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1,
|
||||||
@ -47038,134 +47039,137 @@ G/C8Yni1XgMsvU//AVDTbD8=
|
|||||||
1:eJxTTMoPymNmYGBgBGIVIIaxWZDYzFDMAOUz4GEjqydGLy71uPSSqp5Ut1Fi
|
1:eJxTTMoPymNmYGBgBGIVIIaxWZDYzFDMAOUz4GEjqydGLy71uPSSqp5Ut1Fi
|
||||||
JjHitLALAM7SAnU=
|
JjHitLALAM7SAnU=
|
||||||
"], CompressedData["
|
"], CompressedData["
|
||||||
1:eJxTTMoPSmVmYGBgBGJvIGYCYhNjIFC2cdB4y7vPINLYQV9rpfCFFhsHBhBI
|
1:eJxTTMoPSmVmYGBgBGJvIGYC4jMgsMfaYW9+zduZTxUcThx2WpspZ+NgDAKf
|
||||||
MHawqYxYYfrWxmHJ/X18c5KNHTjcVEuZumzhfPumR8dndNvB+TNmAsFLO7h5
|
FRyuCn1yPN9m4+A8oVko7ZeCw5L7+/jmKNvC+TekaxKNVO3gfBOQvmY7uHlL
|
||||||
PP7rp6Rq2DuAhGdaGjv4XpwY88/Z3uFw2/LwU4+MHHxOsNvODrV3uC1dk2gk
|
X3jo/T9o55CeBgTLFByeZ2l/m37XzuG+a7zjrI/yDk8TF14zeW/n8KYtt9to
|
||||||
auQQLr79IsM+BB9s7mZ7uHm4+F82BGTPmo7g9weXqEw/j8mHme8Acre2Kdx+
|
t4zDhw0B2bPC7eF8m8qIFaa+9nDzcPG7bTx3pSUpwvmdIP4lTD7M/C3mPw6l
|
||||||
GB/mvjQQKDNxkJgXp3nawd6hkeVov2G4iUMqSNzM3iEl9o4bs4UJ3H8b9fIW
|
dKnA7YfxYe77DwLyyhDxW3YOD0DufagEET9vBwmfxUpw/1Xf/3HLOFsJ7n+w
|
||||||
M8qYwP0PDj8GE4i6DjuIPV+NHSSmXuHMWGQL5/8HAX4EH6x/JjQ+fho7wOIH
|
vLGSw59vpQ/mKNo5rBXS4UuXU3LYope3mNHGFs6fMRMIVtrA+WD9xjYQ/6kq
|
||||||
Zh6Mv+KFh97/hebQ8Ldx2GL+41DKLnMIfcrG4UWW9rfpe80dEkD2z7CF858k
|
OcDiB2YejN/AcrTfsFwTGv42DnMWKe/8s1zTwefixJh/yTYOLJxd8snrNCH2
|
||||||
LrxmYm8H5y8FmcNo71D326rg3ApzSPjk2TucAYEec4c/30ofzDkI9W+FucMG
|
G9rC+bW/rQrO3UDw7ZseHZ8x287BQGul8IUWTUj4sNtD7PHRdJg6gb/KLNre
|
||||||
kD/P2DvcEPrkeD4NwQeHlxiCf6BW1iLdxMzhd0zu0X9KDhj8m6D4ZYW6X9vB
|
4efb1wcslYHmn2C3nZ1q7/AoQnz7RQYEHxwu8Rpw/iaQP+eoOfQGl6hMv4/J
|
||||||
IUbB8WPyGnOH4q2iv0/bOTh4gcLD1cLhACidXLJ3iAbJ+1hA/JdlDwk3fwtI
|
B4ezrYaDxLw4zdMf7B1eF28V/d0NdQ+3g8NxUDrcp+UQo+D4MTkHmB5A8qe1
|
||||||
er1iB+eD6XhbuHpwuG61gZsHts8awQfrf2IN54PTST1uPtj8ektU+4D8T6D0
|
HHxB/mO2h4TTZS1Ies2zg/PB4fnTBq7+CSh+/W3g5oHD66o1nA+m6xB89be8
|
||||||
99zc4TooXNSsHGxB+eauuUM9KN0ct4LE+yVzSHq5YQUJv20IPjidLjaD8/lB
|
+wwkcfNBxs+UtITbB+OLT73CmcGk5ZC/pvt2xgFLh/WqT5rnvdWE+C/ByiEh
|
||||||
dIcBnA/29ys9uHkBt4ABuEkPbt9zUHzO1YO7pxYUnx0IPjj+duhC8rOvlUML
|
9o4b8w1Nh+Wg9FJo5fAAFH4LEPyaT8CAr1KH83cGW0X8bxeD88H5wVoIbl4l
|
||||||
L9Dgo7pw88DxfUbXYQso/mqs4fwer1csJoY2cP6Jw05rM9fZwPVD1NvCzYfx
|
KL2dFoTbF/z28scZCwXh7nFfc3Q5QwWC/6L2cfb5NfwO10H5+Zmlw/7ufU0m
|
||||||
YfZD4scG7j4w38QG7n5Yeob5D8aH+R+9fAIAbREHWQ==
|
j/nh5oHj7z8/JP5EreF8FaA3zp5C8FNA/vCwgeuHqLeFmw/jw+yHxI8N3H1g
|
||||||
|
/jlruPth6RnmPxgf5n/08gkAp1MiXA==
|
||||||
"]],
|
"]],
|
||||||
|
|
||||||
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
|
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
|
||||||
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
|
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
|
||||||
3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}}, CompressedData["
|
3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}}, CompressedData["
|
||||||
1:eJxTTMoPSmVmYGBgBGJlIGYC4jMg8MXFQf1J87yzXAYON6VrEo2eujg8z9L+
|
1:eJxTTMoPSmVmYGBgBGJlIGYC4pkgcNDF4YFrvOOsiSIOy1546P3f6OIQoxoh
|
||||||
Nl3XwKHH6xWLSaWLg77WSuELLvoQPqOLw4yZQLBTzwGsv8YZzk84fFk7VdMJ
|
c05G1CFCfPtFBjcXh96Ibn/GD0IQ/jlnh9kgfTcFHcD6PRF83QkLfhh+c4Tz
|
||||||
zl/TfTuDwd3R4c+30gdzFA3h/P7gEpXp543hfAYQCDBzEP7keD6N18mh9rdV
|
KyNWmJ4VdnQ4AwJvJOD8ThvPXWmXFOF8I2MguKzmcH8f3xzjW44O+lorhS+o
|
||||||
wbkf5g4hQGX/LZzhfIemR8dnPEbwczh/Lkif7OLwAuTeXAT/685bXX+fmsH5
|
aDnIO35MPsPqDOfz+K+fkroBwbe4djTXJMHFgZmzSz6ZTxPOl1sO8og6nJ8Q
|
||||||
MybwV5m9NoW47ySC/ycm9+i/Uy4OGm959xnMNHNY9sJD7/9FF4c0EBAzd5CY
|
EqS+gFMN4r5pCP4JTatJp6e7OLTwggxWdyjZKvr79DwXh/8gEK/h8CRx4TWT
|
||||||
eoUz45WLQ4yC48fkP+YQ8TAXhwjx7RcZ4iwcQNakXnd2mA4yr9vCweLa0VyT
|
7S4Ob4qBEtpaDiYgdyq7QMTfazm0Lw8/ZbTEGWKep7YDy+JJVoyqCL73CXbb
|
||||||
CAS/HuTOA05wvjlI3sDJYTnIHkcLiH92OzpsMf9xKGWXucNtUPh/dXCQmRen
|
2b1OqPJ/HR0aWI72G27XcgBb2+HoMGeR8s4/yzUdwM4+6OCQkf+h9eQVdUj4
|
||||||
efqCGSR8exwcTIyBINkUzretjFhh2muMyp9r4HBc02rS6fmODqY2e4OmOerC
|
Rjo4zADRP1Xg/PLD21xn+irC+W/acruNbos5TP7GFj8jx9HB/4nnJdPLvPDw
|
||||||
ww/Gh/gfwd+gl7eY0cfFQQbkoP26Dm3Lw08ZHUGLX6T0AQA5Ov48
|
g/Eh/kfwa39bFZyTcHFQ/6TyctZJfoeQEpXp/ye4oMYvUvoAADXG8QQ=
|
||||||
"]],
|
"]],
|
||||||
|
|
||||||
FilledCurveBox[{{{1, 4, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3,
|
FilledCurveBox[{{{1, 4, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3,
|
||||||
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
|
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
|
||||||
0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3,
|
0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3,
|
||||||
3}, {0, 1, 0}}}, CompressedData["
|
3}, {0, 1, 0}}}, CompressedData["
|
||||||
1:eJxTTMoPSmVmYGBgBGJlIGZigIIdbg5L7u/jm7PYzAHGvyH0yfH8NnOHut9W
|
1:eJxTTMoPSmVmYGBgBGJlIGZigIIKN4eaTxsCsqvUHWD8BxHi2y8u0HSo+21V
|
||||||
BecOuDlITL3CmXEJyhdwd7CtjFhhetfc4UCtrEV6irvDpw0B2bOeI/j/QcDf
|
cK7BzSEh9o4b8w0o/4Kbw3rVJ83z3mo6HKiVtUhXcXcQn3qFM4NJC843MQaC
|
||||||
wgFkTNpTNwevE+y2s10tHNZ0385g2I/gQ9Qj+CIg9bwIvkPTo+MzHrtC7PWw
|
y1oOQp8cz6ctdXM4fthpbeY+LYc13bczGOoRfIh6BF8EpP6sK5zv0PTo+IzF
|
||||||
cEgDA1e4+TA+zP6L+fHs53a6wt237IWH3n9OhPvf8O4zmCmE8B+MD/M/jM/v
|
rg76WiuFLxzRckgDATVXuPkwPsz+i/nx7OcqXeHuW/bCQ+//SVe4+9/w7jOY
|
||||||
v35KaocBnL/F/MehlFd6cPMCbknXJG7Sg9v3PEv72/S5enD31ILc24Hgp8Te
|
eckV7j8YH+Z/GH9nsFXE/3YxOP9NW263kbUQ3LzK+z9uGZ8WhNsX/PbyxxkL
|
||||||
cWPeoevAsniSFeNZV4cWXqAFR3Xh5p0BA114eMD4sPCC8X1A4fLXDa4fFt4w
|
BeHucV9zdDlDBYL/ovZx9vk1/A4siydZMfa6Ouzv3tdk8pgfbt5/MOCHhweM
|
||||||
82F8mP2w+IK5DxafMPfD4hvmPxgf5n/09AEAEgjxcg==
|
DwsvGN/nBLvt7L1ucP2w8IaZD+PD7IfFF8x9sPiEuR8W3zD/wfgw/6OnDwCG
|
||||||
|
+PSk
|
||||||
"]],
|
"]],
|
||||||
|
|
||||||
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3,
|
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3,
|
||||||
3}, {0, 1, 0}}}, {{{63.587500000000006`, 11.7891}, {
|
3}, {0, 1, 0}}}, {{{63.087500000000006`, 11.7891}, {
|
||||||
63.90309999999999, 11.7891}, {64.2391, 11.7891}, {64.2391,
|
63.40309999999999, 11.7891}, {63.739099999999986`, 11.7891}, {
|
||||||
12.160899999999998`}, {64.2391, 12.5344}, {63.90309999999999,
|
63.739099999999986`, 12.160899999999998`}, {63.739099999999986`,
|
||||||
12.5344}, {63.587500000000006`, 12.5344}, {53.49999999999999,
|
12.5344}, {63.40309999999999, 12.5344}, {63.087500000000006`,
|
||||||
12.5344}, {53.182799999999986`, 12.5344}, {52.8469, 12.5344}, {
|
12.5344}, {52.99999999999999, 12.5344}, {52.682799999999986`,
|
||||||
52.8469, 12.160899999999998`}, {52.8469, 11.7891}, {
|
12.5344}, {52.3469, 12.5344}, {52.3469, 12.160899999999998`}, {
|
||||||
53.182799999999986`, 11.7891}, {53.49999999999999, 11.7891}, {
|
52.3469, 11.7891}, {52.682799999999986`, 11.7891}, {
|
||||||
63.587500000000006`, 11.7891}}}],
|
52.99999999999999, 11.7891}, {63.087500000000006`, 11.7891}}}],
|
||||||
|
|
||||||
FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1,
|
FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1,
|
||||||
0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}}, {{0, 2, 0}, {1, 3, 3}, {1,
|
0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}}, {{0, 2, 0}, {1, 3, 3}, {1,
|
||||||
3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}}, {{{
|
3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}}, {{{75.0047,
|
||||||
75.40469999999998, 19.6594}, {70.2359, 7.893750000000001}, {
|
19.6594}, {69.83589999999998, 7.893750000000001}, {69.8719,
|
||||||
70.2719, 7.446879999999999}, {71.89999999999999,
|
7.446879999999999}, {71.49999999999999, 7.499999999999999}, {
|
||||||
7.499999999999999}, {73.09689999999999, 7.499999999999999}, {
|
72.69689999999999, 7.499999999999999}, {74.3953,
|
||||||
74.79529999999998, 7.499999999999999}, {76.4766,
|
7.499999999999999}, {76.07659999999998, 7.499999999999999}, {
|
||||||
7.499999999999999}, {78.6219, 7.499999999999999}, {
|
78.2219, 7.499999999999999}, {79.6531, 7.446879999999999}, {
|
||||||
80.05309999999999, 7.446879999999999}, {81.1609,
|
80.76089999999999, 8.071879999999998}, {80.76089999999999,
|
||||||
8.071879999999998}, {81.1609, 8.232809999999999}, {76.0828,
|
8.232809999999999}, {75.68279999999999, 20.017200000000003`}, {
|
||||||
20.017200000000003`}, {75.40469999999998, 19.6594}}, {{
|
75.0047, 19.6594}}, {{74.94999999999999, 17.6391}, {
|
||||||
75.35000000000001, 17.6391}, {78.7656, 9.556249999999999}, {
|
78.36559999999999, 9.556249999999999}, {78.52659999999999,
|
||||||
78.92660000000001, 9.181249999999999}, {79.1234, 8.7875}, {
|
9.181249999999999}, {78.72340000000001, 8.7875}, {
|
||||||
79.1234, 8.57344}, {79.1234, 8.37656}, {78.83749999999999,
|
78.72340000000001, 8.57344}, {78.72340000000001, 8.37656}, {
|
||||||
8.268749999999999}, {78.3906, 8.232809999999999}, {
|
78.4375, 8.268749999999999}, {77.99059999999999,
|
||||||
72.45309999999999, 8.232809999999999}, {71.8641, 8.2875}, {
|
8.232809999999999}, {72.05309999999999, 8.232809999999999}, {
|
||||||
71.6484, 8.4125}, {71.6484, 8.69844}, {71.6484,
|
71.46409999999999, 8.2875}, {71.24839999999999, 8.4125}, {
|
||||||
8.929689999999999}, {72.04219999999998, 9.86094}, {
|
71.24839999999999, 8.69844}, {71.24839999999999,
|
||||||
72.27499999999999, 10.396900000000002`}, {75.35000000000001,
|
8.929689999999999}, {71.64219999999999, 9.86094}, {
|
||||||
|
71.87499999999999, 10.396900000000002`}, {74.94999999999999,
|
||||||
17.6391}}}],
|
17.6391}}}],
|
||||||
FilledCurveBox[CompressedData["
|
FilledCurveBox[CompressedData["
|
||||||
1:eJxTTMoPymNmYGBgBGJdIAaxQYAJSjNCxZiR+Ax42MSox6UGWZxUc4jRS6r5
|
1:eJxTTMoPymNmYGBgBGJdIAaxQYAJSjNCxZiR+Ax42MSox6UGWZxUc4jRS6r5
|
||||||
pOqlxO+0UEOM+0n1CwDTMQKN
|
pOqlxO+0UEOM+0n1CwDTMQKN
|
||||||
"], CompressedData["
|
"], CompressedData["
|
||||||
1:eJxdlAtIFEEYx7eMHoQKnpqZq3tphddluWsWYvQJFV4gPnLmDJLIvFMyU8zC
|
1:eJxdlAtIFFEUhtcHZYQaapbW5mwq1bY9nDETKToFShax6zr3aqGY5gvTijLQ
|
||||||
RDNKolTI7GFeFpaCRZL2MEtQepP5SJMuUMnTzLQySkwNq2t3Z5kFPxiWH9/M
|
0IyMXgaZPczNwkpSYbHSVIoU7QWWmlZYqaCV1lppaNrLVzNzh7nggcvwce6c
|
||||||
95r/rDYhLcbkwDDMHHFhcc0VV5S3+76ISgR/Jg/Zyn/qoGj7l3lB/piy19fB
|
c+5//xlNzF5jnI1KpbISFhaWtbAMi1yTtmUjGP91sKdwSAtntny19Z2FFV74
|
||||||
YM9wlcfrolIsKRjyZkLSO0Z0cDzacOXYdQxrtT4T+606uF4SMifiMYY22XQQ
|
7aOf+1LKw3cMu01bMWSNBexrsWjhaEjw1SNHMazSeIwkt2vhRl6A1bYiDE1S
|
||||||
t6Shi7FiyJX2J+vBdTzsjblL4Rt6qBsYvXA3Uzyvu6npzNeTfOswRPYsy9mT
|
aCF8Xk2bqhpDprg/UQcuwxtfxt+VuVQHdz70X6zghfe1Zc6tx3Sk3xwM+o4F
|
||||||
oYcVQyeutlsRZf+Qkta8mlnch+D+humnidk8MJLZEFT2NzuVP+PBJn6EQQSO
|
GdH7deDdm32tuRopvCwg70XWmWn8EMG9tX8exR5iQSVGPYKb3XUOhY9Z6BEe
|
||||||
kbXnTSM8iTeMYNORuBvrHQXYuuLQXIsXhl+Pegr+ugmk/zBM9nkKwIX93Ntm
|
3CME9vrbF+IsLKn3DMH69PDSNfYcBHoftDaNIxi933F6Yi5Hzq/BZJ87B8zG
|
||||||
wvBxzzVrkI8ANYW9yUyeynJ/L1Ueaah1+DyBYUKK94sn/kkMf6X53eEhSBDN
|
oV1NgRg+RV9v9/XgwJzTmaiKoiyd7xZlS81tmy9vMIyI9UZZkm/HMCHqd5cF
|
||||||
jmHxNjGxZyAs+l2RdM/TSPl592rTUm8jDEnxNvOEVxohsuvsrn++AiyU9vNG
|
X06Ibgyzg4TG7j4w629RQuU/yk9eL49zm8TQK9bbwBKeEQb6tnMRk54c2In7
|
||||||
qB4JD7B3CfR8abFzdnCvAFXS/KcxnNmR6VfaL0B86ot/dz+qLN+PbZa/W+VT
|
ncKgxLJ55VQbp7yfn+t4yK+Tg2JR/3cYzoameuV3cxCZ8nSy4jFl6X7qp+Ur
|
||||||
1cbX/ENM4xVXTAcOB2BIMotmFUAq0+KHaf703Qs6lg4gyvX5OZ333qks6+uW
|
KZ8sCXvOXqb1cov++Hx2wJAQL0Q7B+KYJlus9N8XNbPFrQEpXHUso7WyirLk
|
||||||
yo9z2Y1JRSrL/cUgmm/MsXldmTei9XiER/3xWKbwbmW+cYjUg5V4mYjMN1qA
|
rxzK9Zlq/4RkytL5WKT0G7CvW10wySvzzN9sGJ8/JnOUrK8/IvNguR6PiL4h
|
||||||
WHGb/Zhyv2tUlu+zh6cs68XCk/M5CPbG921zWMiT+R5GcLDebab1aCDJr0Hg
|
HPDCtqmd8v2uoCzdZwersOQXE0vej0CwK7IryMaOJfpiBAeq5o69OOxD+v/k
|
||||||
HB/Vz09xRO9OCE6HGhrNMRzROaOwi+LviAXXIyWZ7VU+RN+vYmHVuN+opYWF
|
wTHS0M3+ZojfB3k4tS74QbyRIT7vkdlJzpfz4JKel9pc7EH8XcrDkmGvflOj
|
||||||
Cen9TMXCt5OphXwvS/tjGyuaTd9ZMo8EBHbZWFJvlsqy/tIwjSeNwZytspy/
|
GkbE7+ctD9+Pp+SwnWrlfOoHRXVxg2qixyYEU1KoybzhlCX/6bFST5Qhfgdl
|
||||||
QGU5fjWm+ci7xDTfN2ne45jGl/U5heFymWgGDnJvP0jI+43h5uRoVhujpfqV
|
qX8SZan+Caz0k+Y1Y6Xfd1HvV1ipL/nzLYYrBUIEM5BZXh2T9R5D2a/+tCaV
|
||||||
PoJmOfEvMkKfP1tj7/YlfmcjBIc2xVx84kf09gNT3im9hw/K/6F8Ocn/Vom3
|
RvGv+OCcF5N8P4auZWrz1GtPkv+BwW9drfFSgxfxWyvl7eL3UCf/HwoXk/4V
|
||||||
Q0v0+wpDU1rOWNknDtyl+msxmX8DR/R5Sdl/jiPz3YJBI807kSN6na/ykCvb
|
cr1QDfFvKYbavRkDBX0MuIrzn8VE/xqG+DNN3n+eIfp6YXAW9Y5liF8/I4V7
|
||||||
8uk9oizroBlBjYveKekAB1miTNrTFH+VynL/LbPYoCX3kY6U/FpyXxlIqVcL
|
XdSNfTWUJR9cQ2B20jkk7GEgTbBJs17OF1OWzt84jYM15D4MSO6vIfdlRPK8
|
||||||
s/+n/wEynWcw
|
Gpj+P/0PPWhpYw==
|
||||||
"]],
|
"]],
|
||||||
|
|
||||||
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
|
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
|
||||||
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
|
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
|
||||||
3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}}, CompressedData["
|
3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}}, CompressedData["
|
||||||
1:eJxTTMoPSmVmYGBgBGJlIGYC4vv+vdPzdkU6qD9pnneWy8Bhy4myffM3RTo8
|
1:eJxTTMoPSmVmYGBgBGJlIGYCYtdtn/9eaYh0eOAa7zhrooiDlP5dFbbKSIcY
|
||||||
z9L+Nl3XwOF78OOls2siHfS1VgpfcNF3qM/aUzLZIdJhxkwg2KnnkAYC/yLg
|
1QiZczKiDnG7PHmYnCMdeiO6/Rk/CDk8vaB0+ydbpMPsmUBwU9DhDAgciYDz
|
||||||
/A0PX07dFILgXz2aa9LwONzhz7fSB3MUDeH8/uASlennjeF8BhAIMHPg+Lkg
|
xT0C/khII/g2OldmPVsZDlH3RgLO77Tx3JV2SRHONzIGgstqDvnx7OckeSMc
|
||||||
fbNbhEPtb6uCcz/MHTStJp2uv4Pg5ws1HzhlGAnn19ibxu3qjHR4AXJvLoL/
|
9LVWCl9Q0XLoX/DD8NkiBL99efgpox8I/uOls48oBEQ6MHN2ySfzacL5cstf
|
||||||
deetrr9PzeD8GRP4q8xemzq8UDPkWLMEwde/q8LWuDTSQeMt7z6DmWYOMiCB
|
eOj9V4fzE0KC1Bdwqjn4907PE8pG8Kc4d+c8B/JbeP3XT0lVd2iYChTIj3T4
|
||||||
lZEQf4mZO5Tvmy+lvzXSIUbB8WPyH3MHYxDIjnSIEN9+kSHOwmH/qYWu27Qj
|
DwLxGg53VNgap1ZHOrwp3ir6W1vLAeStmYaRDk8SF14zea/lcPiydqrkpwiI
|
||||||
HaaDzOu2cJB+/chM6k0EnL+/VtYifUEEqnxEhMPyFx56/x0tHOSBxp6RjXDY
|
eZ7aDk2BnnMbNiH4qk+a551NQ5OXi3BoYDnab7hdy6EN5J8n4Q5zFinv/LNc
|
||||||
Yv7jUMouc4c3IGfsCneQmRenefqCGcQdbeEOJiB7k03hfNvKiBWmvcao/LkG
|
0yGkRGX6/4Zwh4z8D60nr6hDws0n3GEGyN6fKnB++eFtrjN9FeH8N2253Ua3
|
||||||
Do9FZE8+5Y9wMLXZGzTNURcefjD+S5D/VSLh/N0lkyVY0iIdZEAO2q/roA6U
|
xRy8qpv1fa6FO/g/8bxkepkXHn4wPjh+XiP4wNisy9KJdFD/pPJy1kl+hx5g
|
||||||
llmEiF/09AEAirjxuA==
|
8DRnIOIXPX0AAMKP/Gk=
|
||||||
"]],
|
"]],
|
||||||
|
|
||||||
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
|
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
|
||||||
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
|
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
|
||||||
3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}}, CompressedData["
|
3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}}, CompressedData["
|
||||||
1:eJxTTMoPSmVmYGBgBGJlIGYCYpdtn/9eUYhxUH/SPO8sl4GDjP5dFTbJGIfn
|
1:eJxTTMoPSmVmYGBgBGJlIGYC4jUyUSnWz6MdHrjGO86aKOLQMNW5O+d+tEOM
|
||||||
WdrfpusaOMTv8uRhehztoK+1UviCi77DkwtKt38ui3aYMRMIduo5nAGBFATf
|
aoTMORlRhyMKG4oyVkY79EZ0+zN+EHLwMe90TMiNdpg9EwhuCjqYGAOBNoK/
|
||||||
v3d6ntDuKDg/YIdc62vPKIc/30ofzFE0hPP7g0tUpp83hvMZQCDAzKHldeAO
|
/fPfKxWNUQi+XOvrQIEohzMg8EYCzu+08dyVdkkRzjcCmXNZzeFN4A651uIo
|
||||||
ubVRDrW/rQrO/TB3qBFZ5/7QKRrOv1LxUs1wBoL/ZOnsIwofoh1egNybi+B/
|
B32tlcIXVLQcHlSJrHPnjIbzbe77906PQ/A9eJi027dFOzBzdskn82nC+XLL
|
||||||
3Xmr6+9TMzh/xgT+KrPXphD3ccfA+VOcu3OeA/kab3n3Gcw0c2iYChTgj3FI
|
X3jo/VeH8xNCgtQXcKpB3HcRwf+z8uMl30vRDi28/uunpKo7PP8NFLga7fAf
|
||||||
AwExc4c7KmyNU6VjHGIUHD8m/zGH+OtitEOE+PaLDHEWDuqGHGtkJkU7TAeZ
|
BOI1HFy6c57/fhjt8KZ4q+hvbS2I+PRohyeJC6+ZvNdy6JmeJ9QcATXPU9sB
|
||||||
123hcB4YPHVBCD5/hOWWE2wIvgcPk3b7viiH5S889P47Wjj4JAlEWLZEOWwx
|
FDxPJRD88n3zpfTPRsH564syJr5tiXJoYDnab7hdy2HLibJ9872iHOYsUt75
|
||||||
/3EoZZe5gwQo/BWjHGTmxWmevmAGCd83kQ4mxkCQbArn21ZGrDDtNUblzzVw
|
Z7mmQz0o/J9HOmTkf2g9eUUdEr6bIx1mgMLzpwqcX354m+tMX0U4/01bbrfR
|
||||||
aDlwaqFrWZSDqc3eoGmOuvDwg/HB/u9G8FWAzs06E+0gA3LQfl2HHqB0M0cM
|
bTGHF2qGHGtsohz8n3heMr3MCw8/GB/s/0AEvwPo3AuToh3UP6m8nHWS3+EL
|
||||||
PP7Q0wcARRj4uA==
|
UPrlOUR8oqcPAMpm9qU=
|
||||||
"]],
|
"]],
|
||||||
|
|
||||||
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
|
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
|
||||||
@ -47173,23 +47177,23 @@ PP7Q0wcARRj4uA==
|
|||||||
0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
|
0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
|
||||||
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1,
|
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1,
|
||||||
0}}}, CompressedData["
|
0}}}, CompressedData["
|
||||||
1:eJxTTMoPSmVmYGBgBGI7IGYC4jeBO+RaT8c6RIhvv8jAZ+YA46eBwDEzhycX
|
1:eJxTTMoPSmVmYGBgBGI7IGYC4oAdcq2vJ8Y6PE1ceM3EX80BxmcAgQPqDj7m
|
||||||
lG7/PBfrcAYEbMwd3B9Wiay7HutQ+9uq4NwPcwdVQ441MpNiHXj9109JzbBw
|
nY4JU2MdTp8BgjUaDmvdH1aJzIt10NdaKXxBRcuhZ3qeUHNErIP/xYkx/5i1
|
||||||
qBFZ5/4wK9Zh+gT+KrNuC4fYXZ48TNYI/gOgdvedMXC+6M1z34OjYxz8Lk6M
|
HR5UiaxzN4x1SAgJUl/gqe1wRGFDUQYjgg/Svq4+Bs6vsTeN26UY43D+atgb
|
||||||
+edsDuc7Nj06PqPaFM7v8XrFYnLRxMHmvn/v9LQYhyX39/HNCTZxkIlKsb5f
|
/d0acP4W8x+HUrRU4fw9+TVvZ15Vdljguu3zX50YB+cJzUJpt5QcWg6cWujq
|
||||||
H+Pgc4LddvZXYwcf807HhLkxDjNBoNPYQfeuClvj0RiH5S889P4HGjsEAL33
|
FuOwVkiHL11OyWHD3PfLjyXHOKSmAYGbosMU5+6c590xDvyxAfeNris4bAd6
|
||||||
WjLWwUBrpfAFFWOHBa7bPv+NiXU4fdhpbeY/Iwf2NUATq2MdkmPvuDHfMIL7
|
L/BBjMNZkH9qFBzY18hEpShD/Wug4JAr1HzglGOsQzpI/zF5uP/A5rXJORwv
|
||||||
D8zvMHJIEIiw3LIi1qF4q+jv03ZGDkDX5AltjnXgdlMtZbplCOd7g9wTiuBH
|
2zdfKj/WIeTt5Y8zEmUdtn7+e6WiMtZBfteCfannpOH8GNUImXN7JOF8jzVH
|
||||||
Kzh+TJYxgNhfGOsgAvJQiZ7DnPfLj3mLI/g19qZxuy7GwPlPf6/8eKk3xuHH
|
lzPcEIHYbwFV7yfowBLGp7vpbgyc/2Tp7CMKMxB8nySBCMsQqHtzhB102sVu
|
||||||
29cHLJv1HY4obCjK6IxxKFjTfTsjwMDhPDB66ppiIPZbGcLDB8YvyJj4tiYd
|
nvOPcdgRbBXxf7mogykwep56wNRLwsMHxr9+7nvwY90YB2MQCJaA81sV2FXP
|
||||||
Gt6/DeD8xaDwO4zgnwT5fx0an8/AgSWMT3dTKsL+HqB3mhNiHLaY/ziU4qUH
|
lIjD+WD/K6DxF4g4ZOwpmSyhg7D/C9A7L9ViHF635XYb/RaAhk8MxL82/A6x
|
||||||
DZ8Yhw16eYsZ5+g6fA9+vHT2kRgHU5u9QdMcdR2Ol+2bL/UdwQe7ry8Wzgd5
|
uzx5mIDh7f/E85LpZV4H3bsqbI17EXyw+0Ji4XyQdzccioXbB+Mf6N7XZNIs
|
||||||
1/NPLNw+GL+R5Wi/IbsRnK/6pHne2VVGDqbA6H36AZpe5YwdarP2lEy+EevA
|
A+ffd413nCUo7zAHGL3e22MdwjnF2o3zFRyeXFC6/ROYHu9oyq75r6wIcU9D
|
||||||
A0p/FcYQ9+yKdZgB8u9raPxPhaZPCROH8pdqhhwm0PTsY+KQK9R84NTJGIcD
|
rMNMEOBUgsR/NFQ+Wcnhrn/v9LxfMQ5nwEDJAeQbwwkxDirXHgUz2Cg7tAOD
|
||||||
tbIW6S0mDgrA4MxaEgOx/zuCD05vzGZwfgooPWhA0+vtGHh+AKdHdUT+AJvv
|
80JWjIOpzd6gaYoqcH7Npw0B2VZqcP6vt68PWDZD0+vCGHh+AKfHdwg+2HwB
|
||||||
ieC7dOc8/50Z62BbGbHC9K65w9bPf69UNMY61IHkV5g7THgLTAHzYh1eZGl/
|
RH5Z8fGSb5JBrMN61SfN895qOgBTn/V991gHA5B8i6YDMPSXzk6JdWDm7JJP
|
||||||
m55r7qDTLnbz3PJYB423vPsMLM0d7oIS1KpYiHuvmEHy43rM/AvjAwBHRK5K
|
5tN0mPAWaENerEMLr//6KUs1HFyAwXelINZhk17eYsY76pD8WIaZf2F8APsJ
|
||||||
|
qu4=
|
||||||
"]],
|
"]],
|
||||||
|
|
||||||
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
|
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
|
||||||
@ -47197,54 +47201,54 @@ m55r7qDTLnbz3PJYB423vPsMLM0d7oIS1KpYiHuvmEHy43rM/AvjAwBHRK5K
|
|||||||
0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}}, {{1,
|
0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}}, {{1,
|
||||||
4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
|
4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
|
||||||
3, 3}, {0, 1, 0}}}, {CompressedData["
|
3, 3}, {0, 1, 0}}}, {CompressedData["
|
||||||
1:eJxTTMoPSmViYGBQB2IQnZoGBHZxDgmxd9yYI/QcYPwUEH+HrgP7GpmolMVx
|
1:eJxTTMoPSmViYGBQB2IQfQYEWOIcvuz7uDVdTNABxn9R+zj7/Bp+h1yh5gOn
|
||||||
DmfAAJNfP9W5O2c7gn+8bN98qeMI/gLXbZ//XkHwX6gZcqx5EufQwuu/fspR
|
MuMc/oMBJv/p75UfL9Ui+Lp3VdgaexF89jUyUSmzEXz/3ul5QqvjHPZ372sy
|
||||||
XYetQNkKzXi4feh8geYDpxaaIvgtrwN3yC1F8Guz9pRM/hHv8DxL+9v0uXoO
|
eczvAJS1vv8eYR86v/ylmiHHHwT/TeAOudbseDj/yQWl2z/3xTsEv738ccZC
|
||||||
HY4JTy9IJTg8SVx4zcTewEEdaJ2MVYJDOshfZoYO6RPf1tj7JjicPOy0NnOd
|
Qaj6eIeDIPOTRR0igcb5yyY4MICAg6TD7CMKG4oMEiDukZeH898vWq9wtkIJ
|
||||||
EZx/qG15+CklEzhf9UnzvLOrzBzeLz/mbS6Y4PAfBPwtHJbMPqKwISsezv8e
|
zq/9bVVwrkPdwWXb579XXsQ7mBgDwWUtBx4m7XYxQwQ/dpcnUAjBd39YJbJO
|
||||||
/Hjp7BQE/0GVyDr3SAS/xt40bpdnvEO0guPHZB8Lh7XuD6tE5OId6n5bFZzz
|
HsF/shRookC8w5viraK/T2s5iKwDqngS56CvtVL4whEth+Nl++ZL7Y9zOH7Y
|
||||||
sHBIEIiw3PIjzsHrBLvtbFcLB9Gb574HX0bw/Xun5wltRvBNjIGgOQ6uH2yP
|
aW3mPi2HGnvTuF0zEfytQOsrKhH8GTOBwBOhPzUNCJ7Fwu2D8cWnXuHMYNJy
|
||||||
fBzcPhj/04aA7FnPzSHh4RTnYFsZscL0rrlDO4ifFecgMfUKZ8YlcwdQdFrn
|
eL/8mLc5Z5zDetUnzfPeajq8BfEN4xwSYu+4Md/QdBAARudC0ziHmWCA4Nd8
|
||||||
x0HM3YzgL7m/j2/OYjM4v8frFYuJoQGcv92h6dHxGfoOc0ABlB7nILv8hYfe
|
2hCQXaUO51fd/3HLWFsUzndfc3Q5wwxhB5YwPt1NunEOwpWTSs6mCDnotIvd
|
||||||
fz0HYOgUZUTGOXjsr5W1OI5IT7D0BQA/HSNj
|
PCcf59CqwK565gsiPcHSFwASnyb+
|
||||||
"], CompressedData["
|
"], CompressedData["
|
||||||
1:eJxTTMoPSmViYGAQB2IQHbBDrvX1wTiHut9WBedWmDv0TM8Tar4R57DF/Meh
|
1:eJxTTMoPSmViYGAQB2IQvV2u9XVgR5yDgdZK4Qstmg5f/l6peDkvzmHOIuWd
|
||||||
lF3mDk8uKN3++S3OwUBrpfCFI+YO54HcOqV4ON+lO+f570QE3/1hlci65fEO
|
f5ZrOviYdzom7I1zmNLeGnV5j6aDKZD79AWCv+LjJd8kjXg4f637wyqRvHgH
|
||||||
jSxH+w2nmzv4JglEWJ6Jd7gjXZNoFGru0DDVuTvnfrzDl523uv6amjvIRKVY
|
M5u9QdMSNR22nCjbN39SvMPzLO1v0+9qODz/vfLjpaXxDrLLX3jozddwaDlw
|
||||||
338f73ATJM9q7hDKp7tp7v94hzQQOGbmkAzUvkUkweFJ4sJrJvJmDktnH1HY
|
aqHrNqi8rYbDnpLJEizH4h0YQOCAuoNOu9jNc+/jHf5+K30wp1DN4ca578GP
|
||||||
IJcAsU/FFM7n918/JfWEMZwvPvUKZ4aTkQPIuuf8CRD3iBs6pILMfRbvoPqk
|
GRMg9tWowPm3NWXX/D+sCOf3RnT7MxbIOkx4W2Nv+ize4WD3viaTwxIOZ0Bg
|
||||||
ed7ZKAMHVUOONTKb4h2eRIhvv5ig73D93Pfgx7XxEP+/0nN4EwgMIGk0/uc4
|
TbzDA9d4x1kXRR16pucJNVfEO+wItor4ry7sYGsat8vTJd7hTVtut5G1kEPA
|
||||||
OB8WXimxd9yYf+g5wMITbL+SvgN6+AIAxpmlRw==
|
DmAAPYxD5e9E8GHh9Xnfx63pYUIOsPCsvv/jlvFqBB8WvgCtbbBu
|
||||||
"]}],
|
"]}],
|
||||||
FilledCurveBox[CompressedData["
|
FilledCurveBox[CompressedData["
|
||||||
1:eJxTTMoPymNmYGBgBGJpIIaxWaBsBigfRjNjEcelhlT1lIgT4wZa24UsDgC4
|
1:eJxTTMoPymNmYGBgBGJpIIaxWaBsBigfRjNjEcelhlT1lIgT4wZa24UsDgC4
|
||||||
FwI/
|
FwI/
|
||||||
"], CompressedData["
|
"], CompressedData["
|
||||||
1:eJxTTMoPSmVmYGBgBGIzIGYC4u/Bj5fOPpHgcEu6JtFoqbnDjXNAkZMJDiVb
|
1:eJxTTMoPSmVmYGBgBGIzIGYCYu12sZvnVic4PM/S/ja9VtOBmwkosjbBQWpe
|
||||||
RX+f1jN3KJkswRJ2Csq/Zwbna7zl3WfgieDz+6+fktphAOdvMf9xKOWVnkN0
|
nObpCRoOy495m3cC+TIg/gd1OL+F13/9lKNqcP7OYKuI/+1icP6bttxuI2sh
|
||||||
/6GvGkDzA0AWbILytyQ4PM/S/jZ9rp6DClvjVOf5CQ61v60KznUg+Cmxd9yY
|
h/5DXzVigOZX3v9xy/i0IIQ/PcEh+O3ljzMWCjqEW245UdaU4OC+5uhyhgoE
|
||||||
d+g6mHc6JjzdkeDQwgu04Kgu3LwzYKDr0AGUvnAPwT+ssKEo4yuCz82k3S7G
|
/0Xt4+zza/gdsveUTJaYk+Cwv3tfk8ljfrh5/8GA32E3UJrlEIL/Pfjx0tk3
|
||||||
mgjXPz1PqPmAXCLcfBgfZj/Y/5yJcPfFP72gdPsrwv37Ty103fYZ4T8YH+Z/
|
EHx707hdni8Q+k8vdN32mTERbj6MD7Mf7P+3CPcBTQ/ju4lw/+e/VypeXkP4
|
||||||
GB8WPjD+1523uv4+NXPI3gMMoS8JDhJTr3BmGJnD3QsLf7B/LRLhfFBw8rki
|
D8aH+R/Gh4UPjC+3/IWH3n91h7nvgSF0PcEhOfaOG/MMDbh7YeEP9q9MIpx/
|
||||||
+GD3eCY6fAGZ12ru8Hvlx0u+Xolw84C8JAGfRIcniQuvmcibOSw/5m3eGYnJ
|
HBicjhoIPtg9uokQ8+w1HfTvqrA1Avkw84C8qc76iQ5/v5U+mFOo5nD7Z13W
|
||||||
//Ot9MEcRnOH9DQgiEp0mAkCneYO7MDg745JdPgPAv4WDukT39bY2yY6RCs4
|
HhtMvq6i/JccMw2HmSBgm+iQmgYEbpoOoODfZ5/oYGIMBJe1HGYfUdhQpJDo
|
||||||
fkz2sXBgBAbnTT0Ef+nsIwoblBId6kDh52HhwBzGp7tJMNHB6wS77WxXC3j4
|
8KZ4q+jv01oOJsDg5BFC8G+cA/qANdFBX2ul8IUjWg5A1yY8/ZLgcPyw09rM
|
||||||
w/iHv2rE9P9LgPPzgcF/aieCb8t1fXHBVgT/NCj45ibAzQfK2nLVJ8DtB6tP
|
fVrw8IfxgbHXf+ghgg8K/r9zEPwCW67ri2cg+KDgU2tMgJvPfX1xgW1SAtx+
|
||||||
TIC7NxRo/dzkBLh/ekERnJIA9y+MDwsPsPmFCD44vooR8QNObyUJ8PAGuv7Q
|
sHqXBLh7O4DWX3BLgPvnwCmgDe4JcP/C+LDwAJsfiuCD4ysMET/g9BaeAA/v
|
||||||
1wpEfIH914rgo+cnAI7fh0Q=
|
aLAAIr7A/stA8NHzEwBsbZvj
|
||||||
"]],
|
"]],
|
||||||
|
|
||||||
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1,
|
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1,
|
||||||
0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1,
|
0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1,
|
||||||
0}}}, CompressedData["
|
0}}}, CompressedData["
|
||||||
1:eJxTTMoPSmVmYGBgBGJpIGYC4p91WXtK1ic5/AcBeQEH7uuLC2zbkhxiVCNk
|
1:eJxTTMoPSmVmYGBgBGJpIGYCYp1Nc98vn5Tk8B8E5AUcbLmuLy7ITHKIUY2Q
|
||||||
ztWIOfQf+qoRU57kcAYE3kg69EzPE2rOSHJYK6TDl66n4DD7iMKGopgkhweu
|
OVcj5nD4q0ZMf1SSwxkQeCPpsP/UQtdt3kkOa4V0+NL1FBzOfw9+vNQ+yeGB
|
||||||
8Y6zDio5gKQPhCU57HBoenS8QhXO//X29QHLZg04//zVsDf61dpw/fpaK4Uv
|
a7zjrINKDqeB0p8tkxx2ODQ9Ol6hCuf/evv6gGWzBpx//mrYG/1qbbh+fa2V
|
||||||
sOhB7EtPctigl7eYUcfAYeLbGnvTsiSH5Ng7bswrDB26c57/Xtma5PAkceE1
|
whdY9CD2eSU5bNDLW8yoY+BwRGFDUUZkkkNy7B035hWGDvvnS+nfzUhyeJK4
|
||||||
k3ojB5j7D9TKWqSzmDiwN0517l6S5DBtAn+VWbWJw2QJljC+zCSHv99KH8y5
|
8JpJvZEDzP0HamUt0llMHCy3nCjb157kMG0Cf5VZtYnDcW/zTkefJIe/30of
|
||||||
aOQwEwQCkxy8T7Dbzr5q6AD0Ldd16ySH29I1iUaiBg4aMUAX6EDdc0TXYfkx
|
zLloBPGHSZKD9wl229lXDR2AvrXlkk9yuC1dk2gkauAQ3X/oq4YA1D1HdB1u
|
||||||
b/NOVah7rbXhfJh/YPwTu3b0sm1QgZhnnORgDALCig5z3wNV+Cc5fNn3cWv6
|
/6zL2sMBda+1NpwP8w+Mf2LXjl62DSoQ88STHIxBQFjR4YISUIVRksOXfR+3
|
||||||
NmmI/5KTHGru/7hl/FoM4p/SJIeQt5c/zlAUgbufAQQceB3Q4wcAH27CsA==
|
pm+ThvjPLcmh5v6PW8avxSD+iUhyCHl7+eMMRRG4+xlAwIHXAT1+AFuYyqM=
|
||||||
|
|
||||||
"]],
|
"]],
|
||||||
|
|
||||||
@ -47253,62 +47257,62 @@ NmmI/5KTHGru/7hl/FoM4p/SJIeQt5c/zlAUgbufAQQceB3Q4wcAH27CsA==
|
|||||||
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}, {{1, 4, 3}, {1,
|
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}, {{1, 4, 3}, {1,
|
||||||
3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
|
3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
|
||||||
3}}}, {CompressedData["
|
3}}}, {CompressedData["
|
||||||
1:eJxTTMoPSmViYGDQAGIQnTHxbY393mSHld9eVpxpUHTIF2o+cGprsoPytUfB
|
1:eJxTTMoPSmViYGDQAGIQPeeIwoaiBckOK7+9rDjToOiw0HXb578zkh2Urz0K
|
||||||
DHcUHT4sP+ZtPhEmr+Dw8ZJvkkBLssNaIR2+dD0FB441MlEp2Qg+9/XFBbZu
|
Zrij6KB8+2ddVglMXsFBha1xqnN6ssNaIR2+dD0FB5v7/r3T/RB8W67riws0
|
||||||
CH7/oa8aMerJDu5rji5nsFB0mPseaKA4lP9DyWH2EYUNRTzJDmkgoKYC4XPA
|
EfzDXzVi+rmSHdzXHF3OYKHocEEJaOCvJAj/h5LD+e/Bj5e+T3JIAwE1FQj/
|
||||||
+KoQ9ezJDjNmAoGlugOjdrvYzSgE/89KoIuaEPwvf69UvJyV7JCR/6H1ZIi6
|
NYyvClH/KslhxkwgsFR3MInb5cljlwznG9wFuigVwdcw5FgjU5fskJH/ofVk
|
||||||
QzrInENQ+Z3qDjnPf6/8CONbajikWN/37z2c7PC6eKvo724Ev/rThoDsXwh+
|
iLoDSHjmUqj8TnWHBVL6d1WWwdRrOMzIE2o+AOS/Lt4q+rsbwa/+tCEg+xeC
|
||||||
A8vRfkNxXUh4zEx2aOH1Xz/lqL4DDxPQQZEIPr/uprnvnRF8sP+1kx1YOLvk
|
38BytN9QXBcSHjXJDi28/uunHNV3cDAFOsgGwXdMeHpBSR3BB/ufL9mBhbNL
|
||||||
k/30HaY6d+c8F052MDEGgmI9B40YoIonSQ76WiuFLxzRcVA3BIbopSSHMyDQ
|
PtlP3+FE2b75Ut+THEyMgaBYzyG6/9BXjRNJDvpaK4UvHNFxiEyxvu+/Ncnh
|
||||||
owXng/1zRQ3OF+3xesUyRcVBB2jd8ltJDnvza97OXKoEkX+V5DAb5D9PRYeF
|
DAj0aMH5YP9cUYPzRXu8XrFMUXGIB1p3e2+Sw978mrczlypB5M8mOcwG+c9T
|
||||||
rts+/2VIdlD/pPJy1kk5eHw8cI13nDVRBhJfQQg+OD7TEfwfwY+Xzq5JdhCp
|
0eFKxUs1wydJDuqfVF7OOikHj48HrvGOsybKQOLLFMEHx6cXgq/TLnbzXHyy
|
||||||
nFRyVkUWEv9Tkh1kdy3Yl5on51AMSkCLYfErD+GvT3botPHclSakAElPG5Oh
|
g0jlpJKzKrKQ+C9PdpDdtWBfap6cw9LZwATUBotfeQh/UrJDp43nrjQhBUh6
|
||||||
7lFwQE9vAE4vGhM=
|
mpIMdY+CA3p6AwAWVRyJ
|
||||||
"], CompressedData["
|
"], CompressedData["
|
||||||
1:eJxTTMoPSmViYGAQBmIQ/SP48dLZE5IdXhdvFf3dreHAqN0udrMo2aH604aA
|
1:eJxTTMoPSmViYGAQBmIQrd0udvNccbLD6+Ktor+7NRxM4nZ58oQlO1R/2hCQ
|
||||||
7CoNh79XKl6qpSY7SM+L0zxdoOHA2jjVuTsAwZ/4tsbe1AzB7z/0VSNGHaF/
|
XaXhYMCxRibKI9lBel6c5ukCDQeLLSfK9hkj+EcUNhRlSCL4h79qxPRzIfSf
|
||||||
9hGFDUUcyQ5zFinv/LMcwddXlP+SE6blsBQkwJXsILP8hYeevLbDfCn9uypC
|
/x78eOnrJIc5i5R3/lmO4Osryn/JCdNyuHEOKPA2yUFm+QsPPXlth8u+SQIR
|
||||||
yQ5rVZ80z+PVgZgvl+zwHwTm6zp0OCY8vQC0r4HlaL/hdD0H7uuLC2yDEHyY
|
X5Mc1qo+aZ7HqwMxnzHZ4T8IzNd12F0yWYJFKtmhgeVov+F0PQdbruuLC0wR
|
||||||
e2F8BhAoSXZ4ECG+/aKCnsOflR8v+dYlO8SHBKkv0NR1+ALS0JXscP5q2Bv9
|
fJh7YXwTYyAIT3Z4ECG+/aICUP6uCltjYrJDfEiQ+gJNXQcNQ6CGvGSH81fD
|
||||||
39oQfl+yw59vpQ/mfNRyQA8fABs7izU=
|
3uj/1nZQB/GLkh3+fCt9MOejlgN6+AAAKH6DGg==
|
||||||
"]}],
|
"]}],
|
||||||
FilledCurveBox[CompressedData["
|
FilledCurveBox[CompressedData["
|
||||||
1:eJxTTMoPymNmYGBgBGIpIAaxQYAJSjNCxZjR2DA5BjQ2LjXUEifGXlLdSS31
|
1:eJxTTMoPymNmYGBgBGIpIAaxQYAJSjNCxZjR2DA5BjQ2LjXUEifGXlLdSS31
|
||||||
AJgXAjc=
|
AJgXAjc=
|
||||||
"], CompressedData["
|
"], CompressedData["
|
||||||
1:eJxTTMoPSmVmYGBgBGJjIGYCYhNjIChOcUhPA4IwYwcYvz+4RGX6fWOHY97m
|
1:eJxTTMoPSmVmYGBgBGJjIGYC4jQQCEtxSAfTxg4wfn9wicr0+8YOP+uy9pSI
|
||||||
nY4mKQ7LX3jo/b+IyT9Rtm++lDqCf+Pc9+DHkrj58bs8eZhuJ8PNh/Fh9ofy
|
pzgsf+Gh9/8iJv/Pyo+XfLkQfB4m7Xaxv8k4+RPf1tib7kuGmw/jw+zvcEx4
|
||||||
6W6a+z7Zgd9//ZRUDyj/d7LDk8SF10zsjR2iUqzv+zOmOHzdeavrr6ixw52f
|
euFSsgO///opqR5Q/r1khyeJC6+Z2Bs79E7PE2p+kuzwdeetrr+ixg78upvm
|
||||||
dVl7OFIczoBAj5GDg2ncLs+SFAfRHq9XLFNUHEyAXJ62FAfla4+CGe4oOmjE
|
vn+d7HAGBHqMHIoygCaGpziI9ni9Ypmi4gDi2memOChfexTMcEfRIab/0FeN
|
||||||
9B/62gPlz1FwMLirwtY4NcXhTVtut1G0rIOaIccamU0I/kLXbZ//7klx2Jtf
|
Aih/joJDkkCE5ZaKFIc3bbndRtGyDpEp1vf9pyL4VypeqhkuSHHYm1/zduZT
|
||||||
83bmUwWHJQW2XNcPpziAgslYWMlhRp5Q84FrKQ7Hdu3oZfug4vBn5cdLvlap
|
BYcbiwtsuZanOBiDgLCSw6mFrts+70xxOLZrRy/bBxUHg7sqbI2yqQ7FW0V/
|
||||||
DsVbRX+f/mfoAHJeiXuqwxeQe78aOXwFOcA31UH1SfO8s1bGDh+WA0M0MhXu
|
n/5n6KADdN5yrVSHLyD3fjVy0AA5wCDVQfVJ87yzVsYOSreBIWqTCvfvimPe
|
||||||
35LJEixhWanw8IDxYeEFdKxzt04qPDy5ri8usFVC8HmYtNvFRKH6rxk79E4H
|
5p2+qfDwgPFh4WW55UTZPv5UeHjacl1fXMCK4DuYxu3y/AGNz2vGDgdADnye
|
||||||
OpAl1WH6BP4qs9vGDj05z3+vZETwgablPP+eAueD/fMOEf8wPsw9YPN4EO4F
|
4jB9An+V2W1jh33zpfTvPkHwgabNl7qN4IP9cxER/zA+zD1g896nwN0Ltu9P
|
||||||
2yeZ6uB/cWLMP2djB1aQ+xRS4fED4//9VvpgzkUjOH/J/X18cxYbOTACtd+U
|
ioP/xYkx/5yNHSxA7mNOhccPjP/3W+mDOReN4Pwl9/fxzVls5GAC1M7DBOUn
|
||||||
g/KTjRyAoR+VIp3q8BgU3/JGDktnH1HYAIyPO5qya/4HKzucAkWIYwok/HYZ
|
GznY3Pfvnf4vxeExKL7ljRxunPse/BgYH3c0Zdf8D1Z2+AuKENUUSPjtMnL4
|
||||||
OQBlizIcofF/xsgBmBr17zpA5W8h+GDpNwg+2L3Kxg4HQAa6p8Dd75jw9IJS
|
Efx46WyVFEj8nzFyAKbGJAEVqPwtBB8s/QbBB7tX2djhC8hALYT7SyZLsISZ
|
||||||
cArcf+j5AwC6v2Tf
|
IfyHnj8A77p6/g==
|
||||||
"]],
|
"]],
|
||||||
|
|
||||||
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1,
|
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1,
|
||||||
0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1,
|
0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1,
|
||||||
0}}}, CompressedData["
|
0}}}, CompressedData["
|
||||||
1:eJxTTMoPSmVmYGBgBGJpIGYCYqXbP+uyJqQ6MICAA6/DkgJbruvbUx1EKieV
|
1:eJxTTMoPSmVmYGBgBGJpIGYC4lA+3U1zi1MdGEDAgdfhxuICW67ZqQ4ilZNK
|
||||||
nHURdphzRGFD0YlUh5C3lz/OWCjqMOFtjb3prVSHA937mkyUJR14mLTbxf6m
|
zroIO5z7Hvx46epUh5C3lz/OWCjqcERhQ1HG3lSHA937mkyUJR0cTON2eT5I
|
||||||
OswEAU4FB441MlEp/GkOTxIXXjPRV4Hzqz9tCMiu0oDzz18Ne6Nvre3Ap7tp
|
dZgJApwKDjb3/Xunf0p1eJK48JqJvgqcX/1pQ0B2lQacf/5q2Bt9a20Hx4Sn
|
||||||
7nv2NAd9rZXCF47oQsz7mepwW7om0UjUwGHCoa8aMY9THbq9XrGYXDR0mOrc
|
F5Repzroa60UvnBEF2LenVSH29I1iUaiBg6HvmrE9B9Ldej2esVictHQ4UTZ
|
||||||
nfP8dKrDGTAwcoC5f9oE/iqzahMHg7sqbI2tQPfVylqks5g4zH2//Jj3+lSH
|
vvlS61MdzoCBkQPM/dMm8FeZVZs4JAlEWG7JALqvVtYincXE4YLS7Z91k1Id
|
||||||
LeY/DqVUGTnMyBNqPrAv1WHJ/X18cxYbOkyRYAnjO5vqsEEvbzGjjoFDz3Sg
|
tpj/OJRSZeRwaqHrts8LUx2W3N/HN2exocMxb/NOxw2pDhv08hYz6hg4HAAp
|
||||||
ghupEPew6DlMBPn3XirEvdXacP6vt68PWDZrwPk7HJoeHa9Qhet/4BrvOOug
|
2A11D4sexL8Hoe6t1obzf719fcCyWQPO3+HQ9Oh4hSpc/wPXeMdZB5Ug4Qd0
|
||||||
EiT8zqQ6rBXS4UvXU4CE016o+99IOiydDVSwLtUhRjVC5lyNGNz9/0FAXsAB
|
71ohHb50PQWIuxdA3f9G0uEGSMHEVIcY1QiZczVicPf/BwF5AQf0+AEAsL/F
|
||||||
PX4A0kC7AA==
|
5Q==
|
||||||
"]]}, {
|
"]]}, {
|
||||||
Thickness[0.0055987906612171776`]}, StripOnInput -> False]}, {
|
Thickness[0.005627145349164369]}, StripOnInput -> False]}, {
|
||||||
ImageSize -> {178.60573848069737`, 25.517369863013695`},
|
ImageSize -> {177.7091407222914, 23.511820672478205`},
|
||||||
BaselinePosition -> Scaled[0.29204085728140255`],
|
BaselinePosition -> Scaled[0.3169518292168768],
|
||||||
ImageSize -> {179., 26.},
|
ImageSize -> {178., 24.},
|
||||||
PlotRange -> {{0., 178.60999999999999`}, {0., 25.52}}, AspectRatio ->
|
PlotRange -> {{0., 177.70999999999998`}, {0., 23.51}}, AspectRatio ->
|
||||||
Automatic}], TraditionalForm], None}, {None, None}},
|
Automatic}], TraditionalForm], None}, {None, None}},
|
||||||
FrameStyle->Automatic,
|
FrameStyle->Automatic,
|
||||||
FrameTicks->{{Automatic, None}, {{{1,
|
FrameTicks->{{Automatic, None}, {{{1,
|
||||||
@ -47482,7 +47486,6 @@ ooXgw8yHqYfZL/36kZkURwBE/Ss1h9p125LqeQMcjEDxflnNgfPngvTNfAFw
|
|||||||
HdxB4S8C9Y+XFiQ9yAU4SMyL0zxdoAW33x8UH80IPiz9wfjgdC+sDfcfLP3C
|
HdxB4S8C9Y+XFiQ9yAU4SMyL0zxdoAW33x8UH80IPiz9wfjgdC+sDfcfLP3C
|
||||||
/A/jw8IHxoeFH0r6/+vvoAPy7zctePjD8hd6fgcA9mCtvg==
|
/A/jw8IHxoeFH0r6/+vvoAPy7zctePjD8hd6fgcA9mCtvg==
|
||||||
"]],
|
"]],
|
||||||
|
|
||||||
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
|
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
|
||||||
3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
|
3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
|
||||||
3}}}, CompressedData["
|
3}}}, CompressedData["
|
||||||
@ -47588,7 +47591,6 @@ Nf+VFRz+g8B+HYdwTrF2Y31FiD1puhDzFis6nL8a9kZ/th6c739xYsw/YQM4
|
|||||||
H0xPNnAAWTNzpQKcvx/kf2c5OF9+14J9qX3SDstfeOj9NzRwOAiSfyzhUPNp
|
H0xPNnAAWTNzpQKcvx/kf2c5OF9+14J9qX3SDstfeOj9NzRwOAiSfyzhUPNp
|
||||||
Q0B2lJ6DAlhexAE9vQEAkbz7Iw==
|
Q0B2lJ6DAlhexAE9vQEAkbz7Iw==
|
||||||
"]],
|
"]],
|
||||||
|
|
||||||
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
|
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
|
||||||
3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
|
3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
|
||||||
3}}}, CompressedData["
|
3}}}, CompressedData["
|
||||||
@ -47807,7 +47809,6 @@ r5W1eK7m4ND06PgMa3eHlNg7bswRqhD31EH1b1B2UHD8mHxmrrvDA9d4x1kf
|
|||||||
lRwqIlaYnj3t7nBHU3bNf2ElB1j6+QDyj4eiw3wbnSuzypzh/OWg9BGJ4Puc
|
lRwqIlaYnj3t7nBHU3bNf2ElB1j6+QDyj4eiw3wbnSuzypzh/OWg9BGJ4Puc
|
||||||
YLedbYvJh4UvjA9LjzD9MD7MfBgfPf0CAESNMYg=
|
YLedbYvJh4UvjA9LjzD9MD7MfBgfPf0CAESNMYg=
|
||||||
"]],
|
"]],
|
||||||
|
|
||||||
FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1,
|
FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1,
|
||||||
3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {
|
3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {
|
||||||
1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3,
|
1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3,
|
||||||
@ -48566,6 +48567,7 @@ x9chPwcDUHwUy0P4Sv6Q9PpQzkEApD7V3+E/CNTLOciD0nOtv8OB7n1NJotl
|
|||||||
4Xxw+j0uDefL71qwL3WdhMOHDQHZs8z9HVoV2FXPTBGDpJfTfnA+OH9MRfBh
|
4Xxw+j0uDefL71qwL3WdhMOHDQHZs8z9HVoV2FXPTBGDpJfTfnA+OH9MRfBh
|
||||||
/oWkd3FI/FpDw8NBAs6H5Sf0/AUAEvCAtg==
|
/oWkd3FI/FpDw8NBAs6H5Sf0/AUAEvCAtg==
|
||||||
"]],
|
"]],
|
||||||
|
|
||||||
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
|
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
|
||||||
3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
|
3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
|
||||||
3}}}, CompressedData["
|
3}}}, CompressedData["
|
||||||
@ -48671,6 +48673,7 @@ Nf+VFRz+g8B+HYdwTrF2Y31FiD1puhDzFis6nL8a9kZ/th6c739xYsw/YQM4
|
|||||||
H0xPNnAAWTNzpQKcvx/kf2c5OF9+14J9qX3SDstfeOj9NzRwOAiSfyzhUPNp
|
H0xPNnAAWTNzpQKcvx/kf2c5OF9+14J9qX3SDstfeOj9NzRwOAiSfyzhUPNp
|
||||||
Q0B2lJ6DAlhexAE9vQEAkbz7Iw==
|
Q0B2lJ6DAlhexAE9vQEAkbz7Iw==
|
||||||
"]],
|
"]],
|
||||||
|
|
||||||
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
|
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
|
||||||
3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
|
3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
|
||||||
3}}}, CompressedData["
|
3}}}, CompressedData["
|
||||||
@ -49068,6 +49071,7 @@ AAmnPVN14PFfPyX1hh2cD46PzXYOjyLEt198oIoIf5B5t1Qh8SON4O8F2XfF
|
|||||||
Bq7eHmT+XSu4e64LfXI8H4bgL3/hofe/0BLO7wsuUZkub+kwZ5Hyzj/uqg6N
|
Bq7eHmT+XSu4e64LfXI8H4bgL3/hofe/0BLO7wsuUZkub+kwZ5Hyzj/uqg6N
|
||||||
4Pxp4SBSOankrImyA3r+BgAfmcDy
|
4Pxp4SBSOankrImyA3r+BgAfmcDy
|
||||||
"]],
|
"]],
|
||||||
|
|
||||||
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
|
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
|
||||||
3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {
|
3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {
|
||||||
1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1,
|
1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1,
|
||||||
@ -49921,7 +49925,6 @@ ooXgw8yHqYfZL/36kZkURwBE/Ss1h9p125LqeQMcjEDxflnNgfPngvTNfAFw
|
|||||||
HdxB4S8C9Y+XFiQ9yAU4SMyL0zxdoAW33x8UH80IPiz9wfjgdC+sDfcfLP3C
|
HdxB4S8C9Y+XFiQ9yAU4SMyL0zxdoAW33x8UH80IPiz9wfjgdC+sDfcfLP3C
|
||||||
/A/jw8IHxoeFH0r6/+vvoAPy7zctePjD8hd6fgcA9mCtvg==
|
/A/jw8IHxoeFH0r6/+vvoAPy7zctePjD8hd6fgcA9mCtvg==
|
||||||
"]],
|
"]],
|
||||||
|
|
||||||
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
|
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
|
||||||
3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
|
3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
|
||||||
3}}}, CompressedData["
|
3}}}, CompressedData["
|
||||||
@ -49960,7 +49963,6 @@ mIHcm6ji8Hnfx63pYQIOU9pboy7HqDjMBANBON8YBISFHWDugfFh7gXzjQXh
|
|||||||
9MnxvJqBw8HufU0mj5kcfoDsP6zvMP/E5CXZy37YPwXFj76+A3r6AACRT/sU
|
9MnxvJqBw8HufU0mj5kcfoDsP6zvMP/E5CXZy37YPwXFj76+A3r6AACRT/sU
|
||||||
|
|
||||||
"]],
|
"]],
|
||||||
|
|
||||||
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1,
|
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1,
|
||||||
3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {
|
3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {
|
||||||
0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
|
0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
|
||||||
@ -50141,6 +50143,7 @@ v98Ifj8ofJgCHd6A4otbHc6HhS+MDwt/cPr6C00P69Qd0kHu+hbgMAOcHtQd
|
|||||||
Pr45xv8CHCTmxWmeLtCC2+8Pio9mBB+W/mB8E5C/hLXh/kNJv58QfFj4wPiw
|
Pr45xv8CHCTmxWmeLtCC2+8Pio9mBB+W/mB8E5C/hLXh/kNJv58QfFj4wPiw
|
||||||
8ENJ//cCHHRA/v2mBQ9/WP5Cz+8AzivDhQ==
|
8ENJ//cCHHRA/v2mBQ9/WP5Cz+8AzivDhQ==
|
||||||
"]],
|
"]],
|
||||||
|
|
||||||
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
|
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
|
||||||
3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
|
3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
|
||||||
3}}}, CompressedData["
|
3}}}, CompressedData["
|
||||||
@ -50916,7 +50919,6 @@ pYFDE8h9bZwO3qDwnGrgYAwCxZwO6WlA8AzBNwCFj4sh3D0wPsy9YPqMAdw/
|
|||||||
oOBj8DOA+/e60CfH82YG8PCA8WHhBeOD7busBLFfzMDBeUKzUNorJYcHYAP1
|
oOBj8DOA+/e60CfH82YG8PCA8WHhBeOD7busBLFfzMDBeUKzUNorJYcHYAP1
|
||||||
HcoPb3Od6avksNWh6dHxHboQ9YcVIf4X0YHEj76iA3r6AABqhvQO
|
HcoPb3Od6avksNWh6dHxHboQ9YcVIf4X0YHEj76iA3r6AABqhvQO
|
||||||
"]],
|
"]],
|
||||||
|
|
||||||
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
|
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
|
||||||
3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
|
3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
|
||||||
3}}}, CompressedData["
|
3}}}, CompressedData["
|
||||||
@ -50952,7 +50954,6 @@ Df5/lMA6IQ9tNBhRPzLVeL+3DusNFfKm1+H8tWlhqvFoYoW/DsrQ3FeTIjei
|
|||||||
h3RYYkvr3C0xvSTOv7tO1MvfJ1/GpvvNjN8PDfao74Uk/r4kUqKe5d+f/9Kz
|
h3RYYkvr3C0xvSTOv7tO1MvfJ1/GpvvNjN8PDfao74Uk/r4kUqKe5d+f/9Kz
|
||||||
8xs=
|
8xs=
|
||||||
"]],
|
"]],
|
||||||
|
|
||||||
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
|
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
|
||||||
3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {
|
3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {
|
||||||
1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1,
|
1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1,
|
||||||
@ -52529,7 +52530,6 @@ n1AHsVgIRZF+8tOBu3dJ0NHvPJvrQ9vnjEqOq8r8cjf5qLh4xK8i8fp5dulx
|
|||||||
tAao0YJaa6Bzv54C3Db2EJrEH6BgBe53OQ0eWI9ayfENPJ95PMcNOgbfX0Xi
|
tAao0YJaa6Bzv54C3Db2EJrEH6BgBe53OQ0eWI9ayfENPJ95PMcNOgbfX0Xi
|
||||||
i2gu38ppr+TqOcSx634X2zKThb3liNSjW0n0+yEun8X/n3/O3+0T
|
i2gu38ppr+TqOcSx634X2zKThb3liNSjW0n0+yEun8X/n3/O3+0T
|
||||||
"]],
|
"]],
|
||||||
|
|
||||||
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
|
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
|
||||||
3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {
|
3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {
|
||||||
1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3,
|
1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3,
|
||||||
@ -52605,6 +52605,7 @@ lfd/3DK2VnLYfavrb+rpQIe/30ofzJmo5rCm+3YGw/dABwYQWKDu0BzoObeB
|
|||||||
KcjBY3+trMVzdYj7hYMcpk/grzLj1nC4DuJrI/hvePcZzAxC8DWtJp2uzwly
|
KcjBY3+trMVzdYj7hYMcpk/grzLj1nC4DuJrI/hvePcZzAxC8DWtJp2uzwly
|
||||||
eBQhvv3iA3UHecePyWc6oealqzughxcAkxSCqA==
|
eBQhvv3iA3UHecePyWc6oealqzughxcAkxSCqA==
|
||||||
"]}],
|
"]}],
|
||||||
|
|
||||||
FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1,
|
FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1,
|
||||||
3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {
|
3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {
|
||||||
0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3,
|
0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3,
|
||||||
@ -54506,6 +54507,7 @@ wyxQuFlKQMLP0tihTYFd9UyIhMNXkHunGsPtA/OvGjv8B4HzipB0omHiMBuk
|
|||||||
z1PZwUBrpfCFIyYOsstfeOjdV3F4AU7XphD/SKg5QPKHqQMLKH7XqUH89QbB
|
z1PZwUBrpfCFIyYOsstfeOjdV3F4AU7XphD/SKg5QPKHqQMLKH7XqUH89QbB
|
||||||
h6VnGP8mMFiNXM0g8dGl5hADip8cRP5Cz28A+mNzEA==
|
h6VnGP8mMFiNXM0g8dGl5hADip8cRP5Cz28A+mNzEA==
|
||||||
"]],
|
"]],
|
||||||
|
|
||||||
FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1,
|
FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1,
|
||||||
3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {
|
3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {
|
||||||
0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3,
|
0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3,
|
||||||
@ -54789,6 +54791,7 @@ dE2I/9kQfLD5OyzhfJj/Am5J1yRe0oDHxw5QxEeoO6CnVwAHDRyL
|
|||||||
15.665599999999998`}, {26.762500000000003`,
|
15.665599999999998`}, {26.762500000000003`,
|
||||||
15.901599999999997`}, {26.470299999999995`,
|
15.901599999999997`}, {26.470299999999995`,
|
||||||
15.901599999999997`}}}],
|
15.901599999999997`}}}],
|
||||||
|
|
||||||
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1,
|
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1,
|
||||||
3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {
|
3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {
|
||||||
1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3,
|
1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3,
|
||||||
@ -55280,6 +55283,7 @@ dxjfvunR8RnS1g47HICMCHWI/ghrSLopVXdIAfErrB2mgMNDHZIfliH4EPsQ
|
|||||||
/CeJC6+Z/EfoB6c7Nxu4+eD43m/j4AHyiLo6NL5tHf6C05W6w1WhT47n0xB8
|
/CeJC6+Z/EfoB6c7Nxu4+eD43m/j4AHyiLo6NL5tHf6C05W6w1WhT47n0xB8
|
||||||
WP6B8WHpEWyfjTo8/YLt26rugJ7/AYCHwPQ=
|
WP6B8WHpEWyfjTo8/YLt26rugJ7/AYCHwPQ=
|
||||||
"]],
|
"]],
|
||||||
|
|
||||||
FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1,
|
FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1,
|
||||||
3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {
|
3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {
|
||||||
0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3,
|
0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3,
|
||||||
@ -55396,9 +55400,10 @@ HyUcfsXkHv23yAMSfnKyDujpAQAwEvjm
|
|||||||
3.8127310936893*^9}, {3.812731123721017*^9, 3.812731127080247*^9}, {
|
3.8127310936893*^9}, {3.812731123721017*^9, 3.812731127080247*^9}, {
|
||||||
3.812731213751737*^9, 3.81273123428584*^9}, 3.8127312702517653`*^9, {
|
3.812731213751737*^9, 3.81273123428584*^9}, 3.8127312702517653`*^9, {
|
||||||
3.812731399455118*^9, 3.812731410339974*^9}, {3.8127314659837*^9,
|
3.812731399455118*^9, 3.812731410339974*^9}, {3.8127314659837*^9,
|
||||||
3.8127315032041407`*^9}, {3.812731876899417*^9, 3.812731924087626*^9}},
|
3.8127315032041407`*^9}, {3.812731876899417*^9, 3.812731924087626*^9},
|
||||||
|
3.812732139217062*^9, 3.812733840914311*^9},
|
||||||
CellLabel->
|
CellLabel->
|
||||||
"Out[117]=",ExpressionUUID->"e36355e4-9e9c-458d-9adc-557654f4da6b"],
|
"Out[129]=",ExpressionUUID->"ad669be2-a9cb-4d47-800b-d30c73a81d12"],
|
||||||
|
|
||||||
Cell[BoxData["\<\"errors.pdf\"\>"], "Output",
|
Cell[BoxData["\<\"errors.pdf\"\>"], "Output",
|
||||||
CellChangeTimes->{{3.812727180716263*^9, 3.812727190018889*^9},
|
CellChangeTimes->{{3.812727180716263*^9, 3.812727190018889*^9},
|
||||||
@ -55409,15 +55414,16 @@ Cell[BoxData["\<\"errors.pdf\"\>"], "Output",
|
|||||||
3.8127310936893*^9}, {3.812731123721017*^9, 3.812731127080247*^9}, {
|
3.8127310936893*^9}, {3.812731123721017*^9, 3.812731127080247*^9}, {
|
||||||
3.812731213751737*^9, 3.81273123428584*^9}, 3.8127312702517653`*^9, {
|
3.812731213751737*^9, 3.81273123428584*^9}, 3.8127312702517653`*^9, {
|
||||||
3.812731399455118*^9, 3.812731410339974*^9}, {3.8127314659837*^9,
|
3.812731399455118*^9, 3.812731410339974*^9}, {3.8127314659837*^9,
|
||||||
3.8127315032041407`*^9}, {3.812731876899417*^9, 3.8127319253174543`*^9}},
|
3.8127315032041407`*^9}, {3.812731876899417*^9, 3.812731924087626*^9},
|
||||||
|
3.812732139217062*^9, 3.812733841488163*^9},
|
||||||
CellLabel->
|
CellLabel->
|
||||||
"Out[118]=",ExpressionUUID->"770ceaad-b52b-44a5-b693-dfbc07c2dbf1"]
|
"Out[130]=",ExpressionUUID->"22326222-93ea-4631-82a2-9b59464f600d"]
|
||||||
}, Open ]]
|
}, Open ]]
|
||||||
}, Open ]]
|
}, Open ]]
|
||||||
},
|
},
|
||||||
Evaluator->"K2",
|
Evaluator->"K2",
|
||||||
WindowSize->{1359, 1395},
|
WindowSize->{1280, 755},
|
||||||
WindowMargins->{{Automatic, 0}, {Automatic, 0}},
|
WindowMargins->{{0, Automatic}, {Automatic, 0}},
|
||||||
PrintingCopies->1,
|
PrintingCopies->1,
|
||||||
PrintingPageRange->{1, Automatic},
|
PrintingPageRange->{1, Automatic},
|
||||||
FrontEndVersion->"12.1 for Mac OS X x86 (64-bit) (March 13, 2020)",
|
FrontEndVersion->"12.1 for Mac OS X x86 (64-bit) (March 13, 2020)",
|
||||||
@ -56127,9 +56133,9 @@ Cell[1890754, 45751, 548, 15, 30, "Input",ExpressionUUID->"fb1f6096-a487-441c-ae
|
|||||||
Cell[1891305, 45768, 166, 3, 34, "Output",ExpressionUUID->"bffc36d2-a970-4a1c-8510-c0b5e72bc90e"]
|
Cell[1891305, 45768, 166, 3, 34, "Output",ExpressionUUID->"bffc36d2-a970-4a1c-8510-c0b5e72bc90e"]
|
||||||
}, Open ]],
|
}, Open ]],
|
||||||
Cell[CellGroupData[{
|
Cell[CellGroupData[{
|
||||||
Cell[1891508, 45776, 4137, 102, 157, "Input",ExpressionUUID->"24f36136-6c9f-440e-9cf6-f53b12fa630d"],
|
Cell[1891508, 45776, 4233, 103, 157, "Input",ExpressionUUID->"24f36136-6c9f-440e-9cf6-f53b12fa630d"],
|
||||||
Cell[1895648, 45880, 527958, 9520, 533, "Output",ExpressionUUID->"e36355e4-9e9c-458d-9adc-557654f4da6b"],
|
Cell[1895744, 45881, 528231, 9524, 534, "Output",ExpressionUUID->"ad669be2-a9cb-4d47-800b-d30c73a81d12"],
|
||||||
Cell[2423609, 55402, 780, 11, 34, "Output",ExpressionUUID->"770ceaad-b52b-44a5-b693-dfbc07c2dbf1"]
|
Cell[2423978, 55407, 826, 12, 34, "Output",ExpressionUUID->"22326222-93ea-4631-82a2-9b59464f600d"]
|
||||||
}, Open ]]
|
}, Open ]]
|
||||||
}, Open ]]
|
}, Open ]]
|
||||||
}
|
}
|
||||||
|
@ -137,7 +137,7 @@ We refer the interested reader to Ref.~\cite{Loos_2019b} where we review the gen
|
|||||||
%%% FIGURE 1 %%%
|
%%% FIGURE 1 %%%
|
||||||
\begin{figure}
|
\begin{figure}
|
||||||
\centering
|
\centering
|
||||||
\includegraphics[width=0.5\linewidth]{fig1/fig1}
|
\includegraphics[width=0.6\linewidth]{fig1/fig1}
|
||||||
\caption{Composition of each of the five subsets making up the present QUEST dataset of highly-accurate vertical excitation energies.}
|
\caption{Composition of each of the five subsets making up the present QUEST dataset of highly-accurate vertical excitation energies.}
|
||||||
\label{fig:scheme}
|
\label{fig:scheme}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
@ -207,7 +207,7 @@ The reported oscillator strengths have been computed in the linear-response (LR)
|
|||||||
For open-shell molecules, the CCSDT, CCSDTQ, and CCSDTQP calculations performed with MRCC \cite{Rolik_2013,mrcc} do consider an unrestricted Hartree-Fock wave function as reference.
|
For open-shell molecules, the CCSDT, CCSDTQ, and CCSDTQP calculations performed with MRCC \cite{Rolik_2013,mrcc} do consider an unrestricted Hartree-Fock wave function as reference.
|
||||||
All excited-state calculations are performed, except when explicitly mentioned, in the frozen-core (FC) approximation using large cores for the third-row atoms.
|
All excited-state calculations are performed, except when explicitly mentioned, in the frozen-core (FC) approximation using large cores for the third-row atoms.
|
||||||
|
|
||||||
All the SCI calculations are performed within the FC approximation using QUANTUM PACKAGE \cite{Garniron_2019} where the CIPSI algorithm \cite{Huron_1973} is implemented. Details regarding this specific CIPSI implementation can be found in Refs.~\cite{Garniron_2019} and \cite{Scemama_2019}.
|
All the SCI calculations are performed within the frozen-core approximation using QUANTUM PACKAGE \cite{Garniron_2019} where the CIPSI algorithm \cite{Huron_1973} is implemented. Details regarding this specific CIPSI implementation can be found in Refs.~\cite{Garniron_2019} and \cite{Scemama_2019}.
|
||||||
A state-averaged formalism is employed, i.e., the ground and excited states are described with the same set of determinants, but different CI coefficients.
|
A state-averaged formalism is employed, i.e., the ground and excited states are described with the same set of determinants, but different CI coefficients.
|
||||||
Our usual protocol \cite{Scemama_2018,Scemama_2018b,Scemama_2019,Loos_2018a,Loos_2019,Loos_2020a,Loos_2020b,Loos_2020c} consists of performing a preliminary CIPSI calculation using Hartree-Fock orbitals in order to generate a CIPSI wave function with at least $10^7$ determinants.
|
Our usual protocol \cite{Scemama_2018,Scemama_2018b,Scemama_2019,Loos_2018a,Loos_2019,Loos_2020a,Loos_2020b,Loos_2020c} consists of performing a preliminary CIPSI calculation using Hartree-Fock orbitals in order to generate a CIPSI wave function with at least $10^7$ determinants.
|
||||||
Natural orbitals are then computed based on this wave function, and a new, larger CIPSI calculation is performed with this new set of orbitals.
|
Natural orbitals are then computed based on this wave function, and a new, larger CIPSI calculation is performed with this new set of orbitals.
|
||||||
@ -315,17 +315,25 @@ Only the last $M>2$ computed energy differences are considered. $M$ is chosen su
|
|||||||
If all the values of $P(\mathcal{G})$ are below $0.8$, $M$ is chosen such that $P(\mathcal{G})$ is maximal.
|
If all the values of $P(\mathcal{G})$ are below $0.8$, $M$ is chosen such that $P(\mathcal{G})$ is maximal.
|
||||||
A Python code associated with this procedure is provided in the {\SupInf}.
|
A Python code associated with this procedure is provided in the {\SupInf}.
|
||||||
|
|
||||||
|
The singlet and triplet excitation energies obtained at the FCI/6-31+G(d) level are reported in Table \ref{tab:cycles} alongside the computed error bars estimated with the method presented above based on Gaussian random variables.
|
||||||
The singlet and triplet excitation energies obtained at the FCI/6-31+G(d) level are reported in Table \ref{tab:cycles} alongside the computed error bar estimated with the method presented above and the CC3 and CCSDT values from Ref.~\cite{Loos_2020b} computed in the same basis.
|
For the sake of comparison, we also report the CC3 and CCSDT vertical energies from Ref.~\cite{Loos_2020b} computed in the same basis.
|
||||||
For the sake of comparison, we also report the estimated value of the excitation energies obtained via a three-point linear extrapolation considering the three largest SCI wave functions.
|
The estimated values of the excitation energies obtained via a three-point linear extrapolation considering the three largest CIPSI wave functions are also gathered in Table \ref{tab:cycles}.
|
||||||
In such a case, the error bar is estimated via the difference in excitation energies obtained with the three-point linear extrapolation and the largest variational wave function.
|
In this case, the error bar is estimated via the extrapolation distance, \ie, the difference in excitation energies obtained with the three-point linear extrapolation and the largest CIPSI wave function.
|
||||||
This strategy has been considered in some of our previous works \cite{Loos_2020b,Loos_2020c}.
|
This strategy has been considered in some of our previous works \cite{Loos_2020b,Loos_2020c,Loos_2020e}.
|
||||||
\alert{Here comes the discussion of the results.}
|
The deviation from the CCSDT excitation energies for the same set of excitations are depicted in Fig.~\ref{fig:errors}, where the red dots correspond to the excitation energies and error bars estimated via the present method, and the blue dots correspond to the excitation energies obtained via a three-point linear fit using the three largest CIPSI wave functions, and error bars estimated via the extrapolation distance.
|
||||||
|
These results are a good balance between well-behaved and ill-behaved cases.
|
||||||
|
For example, cyclopentadiene and furan correspond to well-behaved cases where the two flavor of excitation energy estimates are nearly identical and the error bars associated with these two methods overlap nicely.
|
||||||
|
In these cases, one can observe that our method based on Gaussian random variables provides almost systematically smaller error bars.
|
||||||
|
Even in less idealistic situations (like in imidazole, pyrrole, and thiophene), the results are very satisfactory.
|
||||||
|
The six-membered rings correspond to much more challenging cases for SCI methods, and even for these systems the newly-developed method provides realistic error bars.
|
||||||
|
The present scheme has also been tested on much smaller systems when one can easily tightly converged the CIPSI calculations.
|
||||||
|
In these cases, the agreement is nearly perfect in every cases.
|
||||||
|
Some of these results can be found in the {\SupInf}.
|
||||||
|
|
||||||
%%% TABLE I %%%
|
%%% TABLE I %%%
|
||||||
\begin{table}
|
\begin{table}
|
||||||
\centering
|
\centering
|
||||||
\caption{Singlet and triplet excitation energies obtained at the CC3, CCSDT, and FCI levels of theory with the 6-31+G* basis set for various five- and six-membered rings.
|
\caption{Singlet and triplet excitation energies (in eV) obtained at the CC3, CCSDT, and FCI levels of theory with the 6-31+G* basis set for various five- and six-membered rings.
|
||||||
The error bars reported in parenthesis correspond to one standard deviation.}
|
The error bars reported in parenthesis correspond to one standard deviation.}
|
||||||
\label{tab:cycles}
|
\label{tab:cycles}
|
||||||
\begin{threeparttable}
|
\begin{threeparttable}
|
||||||
@ -333,39 +341,39 @@ The error bars reported in parenthesis correspond to one standard deviation.}
|
|||||||
\headrow
|
\headrow
|
||||||
\thead{Molecule} & \thead{Transition} & \thead{CC3} & \thead{CCSDT} & \thead{FCI$^a$} & \thead{FCI$^b$}\\
|
\thead{Molecule} & \thead{Transition} & \thead{CC3} & \thead{CCSDT} & \thead{FCI$^a$} & \thead{FCI$^b$}\\
|
||||||
\mc{6}{c}{Five-membered rings} \\
|
\mc{6}{c}{Five-membered rings} \\
|
||||||
Cyclopentadiene & $^1 B_2 (\pi \ra \pis)$ & 5.79 & 5.80 & 5.80(2) & 5.79(2) \\%& 5.79(7)
|
Cyclopentadiene & $^1 B_2 (\pi \ra \pis)$ & 5.79 & 5.80 & 5.80(2) & 5.79(2) \\
|
||||||
& $^3 B_2 (\pi \ra \pis)$ & 3.33 & 3.33 & 3.32(4) & 3.29(7) \\%& 3.29(1)
|
& $^3 B_2 (\pi \ra \pis)$ & 3.33 & 3.33 & 3.32(4) & 3.29(7) \\
|
||||||
Furan & $^1A_2(\pi \ra 3s)$ & 6.26 & 6.28 & 6.31(5) & 6.37(1) \\%& 6.37(8)
|
Furan & $^1A_2(\pi \ra 3s)$ & 6.26 & 6.28 & 6.31(5) & 6.37(1) \\
|
||||||
& $^3B_2(\pi \ra \pis)$ & 4.28 & 4.28 & 4.26(4) & 4.22(7) \\%& 4.22(14)
|
& $^3B_2(\pi \ra \pis)$ & 4.28 & 4.28 & 4.26(4) & 4.22(7) \\
|
||||||
Imidazole & $^1A''(\pi \ra 3s)$ & 5.77 & 5.77 & 5.78(5) & 5.96(14) \\%& 5.96(31)
|
Imidazole & $^1A''(\pi \ra 3s)$ & 5.77 & 5.77 & 5.78(5) & 5.96(14) \\
|
||||||
& $^3A'(\pi \ra \pis)$ & 4.83 & 4.81 & 4.82(7) & 4.65(22) \\%& 4.65(35)
|
& $^3A'(\pi \ra \pis)$ & 4.83 & 4.81 & 4.82(7) & 4.65(22) \\
|
||||||
Pyrrole & $^1A_2(\pi \ra 3s)$ & 5.25 & 5.25 & 5.23(7) & 5.31(1) \\%& 5.31(26)
|
Pyrrole & $^1A_2(\pi \ra 3s)$ & 5.25 & 5.25 & 5.23(7) & 5.31(1) \\
|
||||||
& $^3B_2(\pi \ra \pis)$ & 4.59 & 4.58 & 4.54(7) & 4.37(23) \\%& 4.37(35)
|
& $^3B_2(\pi \ra \pis)$ & 4.59 & 4.58 & 4.54(7) & 4.37(23) \\
|
||||||
Thiophene & $^1A_1(\pi \ra \pis)$ & 5.79 & 5.77 & 5.75(8) & 5.73(9) \\%& 5.73(7)
|
Thiophene & $^1A_1(\pi \ra \pis)$ & 5.79 & 5.77 & 5.75(8) & 5.73(9) \\
|
||||||
& $^3B_2(\pi \ra \pis)$ & 3.95 & 3.94 & 3.98(1) & 3.99(2) \\%& 3.99(8)
|
& $^3B_2(\pi \ra \pis)$ & 3.95 & 3.94 & 3.98(1) & 3.99(2) \\
|
||||||
\mc{6}{c}{Six-membered rings} \\
|
\mc{6}{c}{Six-membered rings} \\
|
||||||
Benzene & $^1B_{2u}(\pi \ra \pis)$ & 5.13 & 5.10 & 5.06(9) & 5.21(7) \\%& 5.21(36)
|
Benzene & $^1B_{2u}(\pi \ra \pis)$ & 5.13 & 5.10 & 5.06(9) & 5.21(7) \\
|
||||||
& $^3B_{1u}(\pi \ra \pis)$ & 4.18 & 4.16 & 4.28(6) & 4.17(7) \\%& 4.17(67)
|
& $^3B_{1u}(\pi \ra \pis)$ & 4.18 & 4.16 & 4.28(6) & 4.17(7) \\
|
||||||
Cyclopentadienone & $^1A_2(n \ra \pis)$ & 3.03 & 3.03 & 3.08(2) & 3.13(3) \\%& 3.13(8)
|
Cyclopentadienone & $^1A_2(n \ra \pis)$ & 3.03 & 3.03 & 3.08(2) & 3.13(3) \\
|
||||||
& $^3B_2(\pi \ra \pis)$ & 2.30 & 2.32 & 2.37(5) & 2.10(25) \\%& 2.10(45)
|
& $^3B_2(\pi \ra \pis)$ & 2.30 & 2.32 & 2.37(5) & 2.10(25) \\
|
||||||
Pyrazine & $^1B_{3u}(n \ra \pis)$ & 4.28 & 4.28 & 4.26(9) & 4.10(25) \\%& 4.10(8)
|
Pyrazine & $^1B_{3u}(n \ra \pis)$ & 4.28 & 4.28 & 4.26(9) & 4.10(25) \\
|
||||||
& $^3B_{3u}(n \ra \pis)$ & 3.68 & 3.68 & 3.70(3) & 3.70(1) \\%& 3.70(37)
|
& $^3B_{3u}(n \ra \pis)$ & 3.68 & 3.68 & 3.70(3) & 3.70(1) \\
|
||||||
Tetrazine & $^1B_{3u}(n \ra \pis)$ & 2.53 & 2.54 & 2.56(5) & 5.07(16) \\%& 5.07(77)
|
Tetrazine & $^1B_{3u}(n \ra \pis)$ & 2.53 & 2.54 & 2.56(5) & 5.07(16) \\
|
||||||
& $^3B_{3u}(n \ra \pis)$ & 1.87 & 1.88 & 1.91(3) & 4.04(49) \\%& 4.04(40)
|
& $^3B_{3u}(n \ra \pis)$ & 1.87 & 1.88 & 1.91(3) & 4.04(49) \\
|
||||||
Pyridazine & $^1B_1(n \ra \pis)$ & 3.95 & 3.95 & 3.97(10)& 3.60(43) \\%& 3.60(26)
|
Pyridazine & $^1B_1(n \ra \pis)$ & 3.95 & 3.95 & 3.97(10)& 3.60(43) \\
|
||||||
& $^3B_1(n \ra \pis)$ & 3.27 & 3.26 & 3.27(15)& 3.46(14) \\%& 3.46(1.61)
|
& $^3B_1(n \ra \pis)$ & 3.27 & 3.26 & 3.27(15)& 3.46(14) \\
|
||||||
Pyridine & $^1B_1(n \ra \pis)$ & 5.12 & 5.10 & 5.15(12)& 4.90(24) \\%& 4.90(1.34)
|
Pyridine & $^1B_1(n \ra \pis)$ & 5.12 & 5.10 & 5.15(12)& 4.90(24) \\
|
||||||
& $^3A_1(\pi \ra \pis)$ & 4.33 & 4.31 & 4.42(85)& 3.68(1.05) \\%& 3.68(0.65)
|
& $^3A_1(\pi \ra \pis)$ & 4.33 & 4.31 & 4.42(85)& 3.68(1.05) \\
|
||||||
Pyrimidine & $^1B_1(n \ra \pis)$ & 4.58 & 4.57 & 4.64(11)& 2.54(5) \\%& 2.54(13)
|
Pyrimidine & $^1B_1(n \ra \pis)$ & 4.58 & 4.57 & 4.64(11)& 2.54(5) \\
|
||||||
& $^3B_1(n \ra \pis)$ & 4.20 & 4.20 & 4.55(37)& 2.18(27) \\%& 2.18(29)
|
& $^3B_1(n \ra \pis)$ & 4.20 & 4.20 & 4.55(37)& 2.18(27) \\
|
||||||
Triazine & $^1A_1''(n \ra \pis)$ & 4.85 & 4.84 & 4.77(13)& 5.12(51) \\%& 5.12(13)
|
Triazine & $^1A_1''(n \ra \pis)$ & 4.85 & 4.84 & 4.77(13)& 5.12(51) \\
|
||||||
& $^3A_2''(n \ra \pis)$ & 4.40 & 4.40 & 4.45(39)& 4.73(6) \\%& 4.73(1.07)
|
& $^3A_2''(n \ra \pis)$ & 4.40 & 4.40 & 4.45(39)& 4.73(6) \\
|
||||||
%\hiderowcolors
|
%\hiderowcolors
|
||||||
\hline % Please only put a hline at the end of the table
|
\hline % Please only put a hline at the end of the table
|
||||||
\end{tabular}
|
\end{tabular}
|
||||||
\begin{tablenotes}
|
\begin{tablenotes}
|
||||||
\item $^a$ Excitation energies and error bars estimated via the present method (see Sec.~\ref{sec:error}).
|
\item $^a$ Excitation energies and error bars estimated via the present method (see Sec.~\ref{sec:error}).
|
||||||
\item $^b$ Excitation energies obtained via a three-point linear fit using the three largest variational wave functions, and error bars estimated via the extrapolation distance, \ie, the difference in excitation energies obtained with the three-point linear extrapolation and the largest variational wave function.
|
\item $^b$ Excitation energies obtained via a three-point linear fit using the three largest CIPSI variational wave functions, and error bars estimated via the extrapolation distance, \ie, the difference in excitation energies obtained with the three-point linear extrapolation and the largest CIPSI wave function.
|
||||||
\end{tablenotes}
|
\end{tablenotes}
|
||||||
\end{threeparttable}
|
\end{threeparttable}
|
||||||
\end{table}
|
\end{table}
|
||||||
@ -373,10 +381,10 @@ Triazine & $^1A_1''(n \ra \pis)$ & 4.85 & 4.84 & 4.77(13)& 5.12(51) \\%& 5.1
|
|||||||
%%% FIGURE 2 %%%
|
%%% FIGURE 2 %%%
|
||||||
\begin{figure}
|
\begin{figure}
|
||||||
\centering
|
\centering
|
||||||
\label{fig:errors}
|
\includegraphics[width=0.6\linewidth]{errors}
|
||||||
\includegraphics[width=0.5\linewidth]{errors}
|
\caption{Deviation from the CCSDT excitation energies for singlet and triplet excitation energies (in eV) of five- and six-membered rings obtained at the FCI/6-31+G* level of theory. Red dots: excitation energies and error bars estimated via the present method (see Sec.~\ref{sec:error}). Blue dots: excitation energies obtained via a three-point linear fit using the three largest CIPSI wave functions, and error bars estimated via the extrapolation distance, \ie, the difference in excitation energies obtained with the three-point linear extrapolation and the largest CIPSI wave function.
|
||||||
\caption{Deviation from the CCSDT excitation energies of singlet and triplet excitation energies of five- and six-membered rings obtained at the FCI/6-31+G* level of theory. Red dots: excitation energies and error bars estimated via the present method (see Sec.~\ref{sec:error}). Blue dots: excitation energies obtained via a three-point linear fit using the three largest variational wave functions, and error bars estimated via the extrapolation distance, \ie, the difference in excitation energies obtained with the three-point linear extrapolation and the largest variational wave function.
|
|
||||||
The error bars corresponds to one standard deviation.}
|
The error bars corresponds to one standard deviation.}
|
||||||
|
\label{fig:errors}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
@ -405,7 +413,7 @@ Throughout the present article, we report several statistical indicators: the me
|
|||||||
%=======================
|
%=======================
|
||||||
The QUEST\#1 benchmark set \cite{Loos_2018a} consists of 110 vertical excitation energies (as well as oscillator strengths) from 18 molecules with sizes ranging from one to three non-hydrogen atoms (water, hydrogen sulfide, ammonia, hydrogen chloride, dinitrogen, carbon monoxide, acetylene, ethylene, formaldehyde, methanimine, thioformaldehyde, acetaldehyde, cyclopropene, diazomethane, formamide, ketene, nitrosomethane, and the smallest
|
The QUEST\#1 benchmark set \cite{Loos_2018a} consists of 110 vertical excitation energies (as well as oscillator strengths) from 18 molecules with sizes ranging from one to three non-hydrogen atoms (water, hydrogen sulfide, ammonia, hydrogen chloride, dinitrogen, carbon monoxide, acetylene, ethylene, formaldehyde, methanimine, thioformaldehyde, acetaldehyde, cyclopropene, diazomethane, formamide, ketene, nitrosomethane, and the smallest
|
||||||
streptocyanine). For this set, we provided two sets of TBEs: i) one obtained within the frozen-core approximation and the aug-cc-pVTZ basis set, and ii) another one including further corrections for basis set incompleteness and ``all electron'' effects.
|
streptocyanine). For this set, we provided two sets of TBEs: i) one obtained within the frozen-core approximation and the aug-cc-pVTZ basis set, and ii) another one including further corrections for basis set incompleteness and ``all electron'' effects.
|
||||||
For the former set, we systematically selected FCI/aug-cc-pVTZ values to define our TBEs except in very few cases.
|
For the former set, we systematically employed FCI/aug-cc-pVTZ values to define our TBEs except in very few cases.
|
||||||
For the latter set, both the ``all electron'' correlation and the basis set corrections were systematically obtained at the CC3 level of theory and with the d-aug-cc-pV5Z basis for the nine smallest molecules, and slightly more compact basis sets for the larger compounds.
|
For the latter set, both the ``all electron'' correlation and the basis set corrections were systematically obtained at the CC3 level of theory and with the d-aug-cc-pV5Z basis for the nine smallest molecules, and slightly more compact basis sets for the larger compounds.
|
||||||
Our TBE/aug-cc-pVTZ reference excitation energies were employed to benchmark a series of popular excited-state wave function methods partially or fully accounting for double and triple excitations, namely CIS(D), CC2, CCSD, STEOM-CCSD, CCSDR(3), CCSDT-3, CC3, ADC(2), and ADC(3).
|
Our TBE/aug-cc-pVTZ reference excitation energies were employed to benchmark a series of popular excited-state wave function methods partially or fully accounting for double and triple excitations, namely CIS(D), CC2, CCSD, STEOM-CCSD, CCSDR(3), CCSDT-3, CC3, ADC(2), and ADC(3).
|
||||||
Our main conclusions were that i) ADC(2) and CC2 show strong similarities in terms of accuracy, ii) STEOM-CCSD is, on average, as accurate as CCSD, the latter overestimating transition energies, iii) CC3 is extremely accurate (with a mean absolute error of only $\sim 0.03$ eV) and that although slightly less accurate than CC3, CCSDT-3 could be used as a reliable reference for benchmark studies, and iv) ADC(3) was found to be significantly less accurate than CC3 by overcorrecting ADC(2) excitation energies.
|
Our main conclusions were that i) ADC(2) and CC2 show strong similarities in terms of accuracy, ii) STEOM-CCSD is, on average, as accurate as CCSD, the latter overestimating transition energies, iii) CC3 is extremely accurate (with a mean absolute error of only $\sim 0.03$ eV) and that although slightly less accurate than CC3, CCSDT-3 could be used as a reliable reference for benchmark studies, and iv) ADC(3) was found to be significantly less accurate than CC3 by overcorrecting ADC(2) excitation energies.
|
||||||
@ -452,6 +460,7 @@ Likewise, the excitation energies obtained with CCSD are much less satisfying fo
|
|||||||
|
|
||||||
The QUEST\#5 subset is composed by additional accurate excitation energies that we have produced for the present article.
|
The QUEST\#5 subset is composed by additional accurate excitation energies that we have produced for the present article.
|
||||||
This new set gathers 13 new systems composed by small molecules as well as larger molecules (aza-naphthalene, benzoquinone, cyclopentadienone, cyclopentadienethione, diazirine, hexatriene, maleimide, naphthalene, nitroxyl, octatetraene, streptocyanine-C3, streptocyanine-C5, and thioacrolein).
|
This new set gathers 13 new systems composed by small molecules as well as larger molecules (aza-naphthalene, benzoquinone, cyclopentadienone, cyclopentadienethione, diazirine, hexatriene, maleimide, naphthalene, nitroxyl, octatetraene, streptocyanine-C3, streptocyanine-C5, and thioacrolein).
|
||||||
|
For these new transitions, we report at least CCSDT/aug-cc-pVTZ vertical energies.
|
||||||
The interested reader will find in the {\SupInf} a detailed discussion for each of these molecules in which comparisons are made with literature data.
|
The interested reader will find in the {\SupInf} a detailed discussion for each of these molecules in which comparisons are made with literature data.
|
||||||
|
|
||||||
%\begin{table}[bt]
|
%\begin{table}[bt]
|
||||||
@ -584,7 +593,7 @@ The interested reader will find in the {\SupInf} a detailed discussion for each
|
|||||||
\label{sec:TBE}
|
\label{sec:TBE}
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
We discuss in this section the generation of the TBEs obtained with the aug-cc-pVTZ basis as well as oscillator strengths for most transitions.
|
We discuss in this section the generation of the TBEs obtained with the aug-cc-pVTZ basis as well as oscillator strengths for most transitions.
|
||||||
An exhaustive list of TBEs can be found in {\SupInf}.
|
An exhaustive list of TBEs can be found in the {\SupInf}.
|
||||||
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
\section{Benchmarks}
|
\section{Benchmarks}
|
||||||
@ -609,7 +618,7 @@ All quantities are given in eV. ``Count'' refers to the number of transitions co
|
|||||||
& \thead{SOS-ADC(2)[TM]} & \thead{SOS-CC2[TM]} & \thead{SCS-CC2[TM]} & \thead{SOS-ADC(2) [QC]} & \thead{ADC(2)} & \thead{ADC(3)} & \thead{ADC(2.5)} \\
|
& \thead{SOS-ADC(2)[TM]} & \thead{SOS-CC2[TM]} & \thead{SCS-CC2[TM]} & \thead{SOS-ADC(2) [QC]} & \thead{ADC(2)} & \thead{ADC(3)} & \thead{ADC(2.5)} \\
|
||||||
Count & & 429 & 431 & 427 & 360 & 431 & 259 & 251 & 431 & 430 & 430 & 430 & 430 & 426 & 423 & 423 \\
|
Count & & 429 & 431 & 427 & 360 & 431 & 259 & 251 & 431 & 430 & 430 & 430 & 430 & 426 & 423 & 423 \\
|
||||||
Max(+) & & 1.06 & 0.63 & 0.80 & 0.59 & 0.80 & 0.43 & 0.26 & 0.19 & 0.87 & 0.84 & 0.76 & 0.73 & 0.64 & 0.60 & 0.24 \\
|
Max(+) & & 1.06 & 0.63 & 0.80 & 0.59 & 0.80 & 0.43 & 0.26 & 0.19 & 0.87 & 0.84 & 0.76 & 0.73 & 0.64 & 0.60 & 0.24 \\
|
||||||
Min($-$) & & -0.69 & -0.71 & -0.38 & -0.56 & -0.25 & -0.07 & -0.07 & -0.09 & -0.29 & -0.24 & -0.92 & -0.46 & -0.76 & -0.79 & -0.34 \\
|
Max($-$) & & -0.69 & -0.71 & -0.38 & -0.56 & -0.25 & -0.07 & -0.07 & -0.09 & -0.29 & -0.24 & -0.92 & -0.46 & -0.76 & -0.79 & -0.34 \\
|
||||||
MSE & & 0.13 & 0.02 & 0.18 & -0.01 & 0.10 & 0.04 & 0.04 & 0.00 & 0.18 & 0.21 & 0.15 & 0.02 & -0.01 & -0.12 & -0.06 \\
|
MSE & & 0.13 & 0.02 & 0.18 & -0.01 & 0.10 & 0.04 & 0.04 & 0.00 & 0.18 & 0.21 & 0.15 & 0.02 & -0.01 & -0.12 & -0.06 \\
|
||||||
& singlet & 0.10 & -0.02 & 0.22 & 0.03 & 0.14 & 0.04 & 0.04 & 0.00 & 0.18 & 0.20 & 0.13 & 0.00 & -0.04 & -0.08 & -0.06 \\
|
& singlet & 0.10 & -0.02 & 0.22 & 0.03 & 0.14 & 0.04 & 0.04 & 0.00 & 0.18 & 0.20 & 0.13 & 0.00 & -0.04 & -0.08 & -0.06 \\
|
||||||
& triplet & 0.19 & 0.08 & 0.14 & -0.07 & 0.03 & & & 0.00 & 0.19 & 0.22 & 0.17 & 0.04 & 0.04 & -0.18 & -0.07 \\
|
& triplet & 0.19 & 0.08 & 0.14 & -0.07 & 0.03 & & & 0.00 & 0.19 & 0.22 & 0.17 & 0.04 & 0.04 & -0.18 & -0.07 \\
|
||||||
|
BIN
Manuscript/errors.pdf
Normal file
BIN
Manuscript/errors.pdf
Normal file
Binary file not shown.
Loading…
x
Reference in New Issue
Block a user