ufGW/Manuscript/ufGW-SI.tex
Pierre-Francois Loos 07ed3bd11e adding units
2022-04-26 13:18:28 +02:00

110 lines
4.4 KiB
TeX

\documentclass[aip,jcp,reprint,onecolumn,noshowkeys,superscriptaddress]{revtex4-1}
\usepackage{graphicx,dcolumn,bm,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,longtable,wrapfig,txfonts,siunitx}
\usepackage[version=4]{mhchem}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{txfonts}
\usepackage{siunitx}
\usepackage{soul}
\DeclareSIUnit[number-unit-product = {\,}]
\cal{cal}
\DeclareSIUnit\kcal{\kilo\cal}
\newcommand{\kcalmol}{\si{\kcal\per\mole}}
\usepackage[
colorlinks=true,
citecolor=blue,
breaklinks=true
]{hyperref}
\urlstyle{same}
\usepackage[normalem]{ulem}
% methods
\newcommand{\GW}{\text{$GW$}}
\newcommand{\evGW}{ev$GW$}
\newcommand{\qsGW}{qs$GW$}
\newcommand{\GOWO}{$G_0W_0$}
\newcommand{\Hxc}{\text{Hxc}}
\newcommand{\xc}{\text{xc}}
\newcommand{\Ha}{\text{H}}
\newcommand{\co}{\text{c}}
\newcommand{\x}{\text{x}}
\newcommand{\KS}{\text{KS}}
\newcommand{\HF}{\text{HF}}
\newcommand{\RPA}{\text{RPA}}
% orbital energies
\newcommand{\eps}[2]{\epsilon_{#1}^{#2}}
\newcommand{\reps}[2]{\Tilde{\epsilon}_{#1}^{#2}}
\newcommand{\Om}[2]{\Omega_{#1}^{#2}}
\newcommand{\RHH}{R_{\ce{H-H}}}
% addresses
\newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\'e de Toulouse, CNRS, UPS, France}
\begin{document}
\title{Supplementary Material for ``Unphysical Discontinuities, Intruder States and Regularization in $GW$ Methods''}
\author{Enzo \surname{Monino}}
\affiliation{\LCPQ}
\author{Pierre-Fran\c{c}ois \surname{Loos}}
\email{loos@irsamc.ups-tlse.fr}
\affiliation{\LCPQ}
\maketitle
\begin{figure}
\includegraphics[width=0.6\linewidth]{h2_eta_100_meV}
\includegraphics[width=0.6\linewidth]{h2_kappa_1}
\includegraphics[width=0.6\linewidth]{h2_eta_1}
\caption{
Regularized quasiparticle energies $\reps{p}{\GW}$ as functions of the internuclear distance $\RHH$ (in \si{\angstrom}) of \ce{H2} at the {\GOWO}@HF/6-31G level for $\eta = \SI{100}{\milli\eV}$ (top), $\eta = \SI{1}{\hartree}$ (center), and $\kappa = \SI{1}{\hartree}$ (bottom).
}
\end{figure}
\begin{figure}
\includegraphics[width=0.33\linewidth]{eta_0_1}
\includegraphics[width=0.33\linewidth]{eta_1}
\includegraphics[width=0.33\linewidth]{eta_10}
\caption{Difference between non-regularized and regularized quasiparticle energies $\eps{p}{\GW}-\reps{p}{\GW}$ computed with $\eta = \SI{0.1}{\hartree}$ (left), $\eta = \SI{1}{\hartree}$ (center), and $\eta = \SI{10}{\hartree}$ (right) as functions of the internuclear distance $\RHH$ (in \si{\angstrom}) of \ce{H2} at the {\GOWO}@HF/6-31G level. }
\end{figure}
\begin{figure}
\includegraphics[width=0.33\linewidth]{kappa_0_1}
\includegraphics[width=0.33\linewidth]{kappa_1}
\includegraphics[width=0.33\linewidth]{kappa_10}
\caption{Difference between non-regularized and regularized quasiparticle energies $\eps{p}{\GW}-\reps{p}{\GW}$ computed with computed with $\kappa = \SI{0.1}{\hartree}$ (left), $\kappa = \SI{1}{\hartree}$ (center), and $\kappa = \SI{10}{\hartree}$ (right) as functions of the internuclear distance $\RHH$ (in \si{\angstrom}) of \ce{H2} at the {\GOWO}@HF/6-31G level. }
\end{figure}
\begin{figure}
\includegraphics[width=0.3\linewidth]{f2_eta_0_1}
\hspace{0.03\textwidth}
\includegraphics[width=0.3\linewidth]{f2_eta_1}
\hspace{0.03\textwidth}
\includegraphics[width=0.3\linewidth]{f2_eta_10}
\caption{Ground-state potential energy surface of \ce{F2} around its equilibrium geometry obtained at various levels of theory with the cc-pVDZ basis set for $\kappa = \SI{0.1}{\hartree}$ (left), $\eta = \SI{1}{\hartree}$ (center), and $\eta = \SI{10}{\hartree}$ (right).}
\end{figure}
\begin{figure}
\includegraphics[width=0.3\linewidth]{f2_kappa_0_1}
\hspace{0.03\textwidth}
\includegraphics[width=0.3\linewidth]{f2_kappa_1}
\hspace{0.03\textwidth}
\includegraphics[width=0.3\linewidth]{f2_kappa_10}
\caption{Ground-state potential energy surface of \ce{F2} around its equilibrium geometry obtained at various levels of theory with the cc-pVDZ basis set for $\kappa = \SI{0.1}{\hartree}$ (left), $\kappa = \SI{1}{\hartree}$ (center), and $\kappa = \SI{10}{\hartree}$ (right).
For $\kappa = \SI{0.1}{\hartree}$, the BSE@ev$GW$@HF calculations do not converge for numerous values of $R_{\ce{F-F}}$ and are not shown in this figure.
For $\kappa = \SI{10}{\hartree}$, the black and gray curves are superposed.}
\end{figure}
%%%%%%%%%%%%%%%%%%%%%%%%
\bibliography{ufGW}
%%%%%%%%%%%%%%%%%%%%%%%%
\end{document}