(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 13.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 218174, 5054] NotebookOptionsPosition[ 209419, 4919] NotebookOutlinePosition[ 209943, 4939] CellTagsIndexPosition[ 209900, 4936] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell["Initialization", "Section", CellChangeTimes->{{3.777975423676639*^9, 3.777975424355794*^9}, { 3.778171212629854*^9, 3.7781712163388643`*^9}},ExpressionUUID->"02be5389-c76a-4857-909d-\ d9a74db06627"], Cell[BoxData[ RowBox[{ RowBox[{"HaToeV", "=", "27.21138602"}], ";"}]], "Input", InitializationCell->True, CellChangeTimes->{{3.7208031947801647`*^9, 3.7208032000677156`*^9}, { 3.7208034541742477`*^9, 3.720803455246439*^9}}, CellLabel->"In[1]:=",ExpressionUUID->"d157845e-0bac-4623-9438-6db32c2b348a"], Cell[BoxData[ RowBox[{ RowBox[{ "SetDirectory", "[", "\"\<~/Dropbox/Manuscripts/ufGW/Data\>\"", "]"}], ";"}]], "Input", InitializationCell->True, CellLabel->"In[2]:=",ExpressionUUID->"466164d7-6b9d-472d-8dbb-051b87d2ab0d"], Cell[BoxData[{ RowBox[{"Needs", "[", "\"\\"", "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"SetOptions", "[", RowBox[{"MaTeX", ",", RowBox[{"\"\\"", "\[Rule]", RowBox[{ "{", "\"\<\\\\usepackage{amssymb,amsmath,latexsym,amsfonts,amsthm,\ mathpazo,xcolor,bm,mhchem}\>\"", "}"}]}]}], "]"}], ";"}]}], "Input", InitializationCell->True, CellChangeTimes->{{3.7288240181604652`*^9, 3.728824027007351*^9}, { 3.733131339213026*^9, 3.733131352923026*^9}}, CellLabel->"In[3]:=",ExpressionUUID->"1a76bff9-c9eb-4a64-8550-cf38c809ba22"] }, Closed]], Cell[CellGroupData[{ Cell["Numerical data", "Section",ExpressionUUID->"a68e1e90-2158-4da8-9829-76467decd8c9"], Cell[BoxData[ RowBox[{ RowBox[{"\[Epsilon]4", "=", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1.0", ",", "23.284472"}], "}"}], ",", RowBox[{"{", RowBox[{"1.025", ",", "23.540448"}], "}"}], ",", RowBox[{"{", RowBox[{"1.05", ",", "23.781121"}], "}"}], ",", RowBox[{"{", RowBox[{"1.075", ",", "24.002084"}], "}"}], ",", RowBox[{"{", RowBox[{"1.1", ",", "24.196931"}], "}"}], ",", RowBox[{"{", RowBox[{"1.125", ",", "24.355758"}], "}"}], ",", RowBox[{"{", RowBox[{"1.15", ",", "24.463104"}], "}"}], ",", RowBox[{"{", RowBox[{"1.175", ",", "24.497569"}], "}"}], ",", RowBox[{"{", RowBox[{"1.2", ",", "24.439877"}], "}"}], ",", RowBox[{"{", RowBox[{"1.225", ",", "24.289859"}], "}"}], ",", RowBox[{"{", RowBox[{"1.25", ",", "24.069414"}], "}"}], ",", RowBox[{"{", RowBox[{"1.275", ",", "23.805244"}], "}"}], ",", RowBox[{"{", RowBox[{"1.3", ",", "23.516919"}], "}"}], ",", RowBox[{"{", RowBox[{"1.325", ",", "23.216331"}], "}"}], ",", RowBox[{"{", RowBox[{"1.35", ",", "22.910393"}], "}"}]}], "}"}]}], ";"}]], "Input",Ex\ pressionUUID->"682f75fb-1edd-4aa6-a4ad-b597c5f869c9"], Cell[BoxData[ RowBox[{ RowBox[{"\[Epsilon]5", "=", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1.1", ",", "27.103397"}], "}"}], ",", RowBox[{"{", RowBox[{"1.125", ",", "26.784466"}], "}"}], ",", RowBox[{"{", RowBox[{"1.15", ",", "26.509573"}], "}"}], ",", RowBox[{"{", RowBox[{"1.175", ",", "26.299399"}], "}"}], ",", RowBox[{"{", RowBox[{"1.2", ",", "26.172614"}], "}"}], ",", RowBox[{"{", RowBox[{"1.225", ",", "26.128902"}], "}"}], ",", RowBox[{"{", RowBox[{"1.25", ",", "26.146006"}], "}"}], ",", RowBox[{"{", RowBox[{"1.275", ",", "26.197002"}], "}"}], ",", RowBox[{"{", RowBox[{"1.3", ",", "26.262232"}], "}"}], ",", RowBox[{"{", RowBox[{"1.325", ",", "26.329847"}], "}"}], ",", RowBox[{"{", RowBox[{"1.35", ",", "26.393103"}], "}"}]}], "}"}]}], ";"}]], "Input", CellLabel->"In[14]:=",ExpressionUUID->"35c12977-2872-4eab-be4f-329f455172b3"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ListPlot", "[", RowBox[{ RowBox[{"{", RowBox[{"\[Epsilon]4", ",", "\[Epsilon]5"}], "}"}], ",", RowBox[{"PlotTheme", "\[Rule]", "\"\\""}], ",", RowBox[{"Joined", "\[Rule]", "True"}]}], "]"}]], "Input", CellLabel->"In[15]:=",ExpressionUUID->"59810817-5144-4818-800a-a2ceb8fcd500"], Cell[BoxData[ GraphicsBox[{{}, {{}, {}, {RGBColor[0.790588, 0.201176, 0.], PointSize[0.012833333333333334`], AbsoluteThickness[3], CapForm["Butt"], LineBox[{{1., 23.284472}, {1.025, 23.540448}, {1.05, 23.781121}, {1.075, 24.002084}, {1.1, 24.196931}, {1.125, 24.355758}, {1.15, 24.463104}, { 1.175, 24.497569}, {1.2, 24.439877}, {1.225, 24.289859}, {1.25, 24.069414}, {1.275, 23.805244}, {1.3, 23.516919}, {1.325, 23.216331}, { 1.35, 22.910393}}]}, {RGBColor[0.192157, 0.388235, 0.807843], PointSize[0.012833333333333334`], AbsoluteThickness[3], CapForm["Butt"], LineBox[{{1.1, 27.103397}, {1.125, 26.784466}, {1.15, 26.509573}, {1.175, 26.299399}, {1.2, 26.172614}, {1.225, 26.128902}, {1.25, 26.146006}, { 1.275, 26.197002}, {1.3, 26.262232}, {1.325, 26.329847}, {1.35, 26.393103}}]}}, {{}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{False, False}, AxesLabel->{None, None}, AxesOrigin->{0.9927083333333359, 22.677448333333384`}, DisplayFunction->Identity, Frame->{{True, False}, {True, False}}, FrameLabel->{{None, None}, {None, None}}, FrameStyle->{{ StrokeForm[ Opacity[0]], StrokeForm[ Opacity[0]]}, {Automatic, None}}, FrameTicks->FrontEndValueCache[{{Charting`FindScaledTicks[ (Charting`SimpleTicks[#, #2, 6]& )[ SlotSequence[1]], {Identity, Identity}]& , None}, { Charting`FindScaledTicks[ (Charting`SimpleTicks[#, #2, 6]& )[ SlotSequence[1]], {Identity, Identity}]& , None}}, {{{{23., FormBox["23", TraditionalForm], {0.01, 0.}}, {24., FormBox["24", TraditionalForm], {0.01, 0.}}, {25., FormBox["25", TraditionalForm], {0.01, 0.}}, {26., FormBox["26", TraditionalForm], {0.01, 0.}}, {27., FormBox["27", TraditionalForm], {0.01, 0.}}}, None}, {{{1., FormBox[ TagBox[ InterpretationBox[ StyleBox["\"1.0\"", ShowStringCharacters -> False], 1.`15.954589770191003, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}}, { 1.1, FormBox[ TagBox[ InterpretationBox[ StyleBox["\"1.1\"", ShowStringCharacters -> False], 1.1`15.954589770191003, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}}, { 1.2, FormBox[ TagBox[ InterpretationBox[ StyleBox["\"1.2\"", ShowStringCharacters -> False], 1.2`15.954589770191003, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}}, { 1.3, FormBox[ TagBox[ InterpretationBox[ StyleBox["\"1.3\"", ShowStringCharacters -> False], 1.3`15.954589770191003, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}}}, None}}], GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.4, 0.5], AbsoluteThickness[1], AbsoluteDashing[{1, 2}]], Method->{ "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotRange->{{0.9927083333333359, 1.35}, {22.677448333333384`, 27.103397}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Charting`FindScaledTicks[ (Charting`SimpleTicks[#, #2, 6]& )[ SlotSequence[1]], {Identity, Identity}, RotateLabel -> 0]& , Charting`FindScaledTicks[ (Charting`SimpleTicks[#, #2, 6]& )[ SlotSequence[1]], {Identity, Identity}, RotateLabel -> 0]& }]], "Output",\ CellLabel->"Out[15]=",ExpressionUUID->"814e3769-9eaf-4e1a-8956-617c8e61d77e"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"Z4", "=", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1.0", ",", "0.964721"}], "}"}], ",", RowBox[{"{", RowBox[{"1.025", ",", "0.961772"}], "}"}], ",", RowBox[{"{", RowBox[{"1.05", ",", "0.956999"}], "}"}], ",", RowBox[{"{", RowBox[{"1.075", ",", "0.948699"}], "}"}], ",", RowBox[{"{", RowBox[{"1.1", ",", "0.933404"}], "}"}], ",", RowBox[{"{", RowBox[{"1.125", ",", "0.904167"}], "}"}], ",", RowBox[{"{", RowBox[{"1.15", ",", "0.848555"}], "}"}], ",", RowBox[{"{", RowBox[{"1.175", ",", "0.751875"}], "}"}], ",", RowBox[{"{", RowBox[{"1.2", ",", "0.616552"}], "}"}], ",", RowBox[{"{", RowBox[{"1.225", ",", "0.476710"}], "}"}], ",", RowBox[{"{", RowBox[{"1.25", ",", "0.365270"}], "}"}], ",", RowBox[{"{", RowBox[{"1.275", ",", "0.287739"}], "}"}], ",", RowBox[{"{", RowBox[{"1.3", ",", "0.235707"}], "}"}], ",", RowBox[{"{", RowBox[{"1.325", ",", "0.200378"}], "}"}], ",", RowBox[{"{", RowBox[{"1.35", ",", "0.175725"}], "}"}]}], "}"}]}], ";"}]], "Input", CellLabel->"In[18]:=",ExpressionUUID->"5f735bd6-ba1a-4987-b9f7-8ff4ac674345"], Cell[BoxData[ RowBox[{ RowBox[{"Z5", "=", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1.1", ",", "0.021813"}], "}"}], ",", RowBox[{"{", RowBox[{"1.125", ",", "0.048282"}], "}"}], ",", RowBox[{"{", RowBox[{"1.15", ",", "0.100987"}], "}"}], ",", RowBox[{"{", RowBox[{"1.175", ",", "0.194635"}], "}"}], ",", RowBox[{"{", RowBox[{"1.2", ",", "0.326815"}], "}"}], ",", RowBox[{"{", RowBox[{"1.225", ",", "0.463419"}], "}"}], ",", RowBox[{"{", RowBox[{"1.25", ",", "0.571546"}], "}"}], ",", RowBox[{"{", RowBox[{"1.275", ",", "0.645708"}], "}"}], ",", RowBox[{"{", RowBox[{"1.3", ",", "0.694337"}], "}"}], ",", RowBox[{"{", RowBox[{"1.325", ",", "0.726254"}], "}"}], ",", RowBox[{"{", RowBox[{"1.35", ",", "0.747506"}], "}"}]}], "}"}]}], ";"}]], "Input", CellLabel->"In[19]:=",ExpressionUUID->"5928cf25-152d-4cb2-9ce3-3f99ce9557d3"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ListPlot", "[", RowBox[{ RowBox[{"{", RowBox[{"Z4", ",", "Z5"}], "}"}], ",", RowBox[{"PlotTheme", "\[Rule]", "\"\\""}], ",", RowBox[{"Joined", "\[Rule]", "True"}]}], "]"}]], "Input", CellLabel->"In[20]:=",ExpressionUUID->"33a86cd9-4a3d-4b09-91de-2cbb886a6250"], Cell[BoxData[ GraphicsBox[{{}, {{}, {}, {RGBColor[0.790588, 0.201176, 0.], PointSize[0.012833333333333334`], AbsoluteThickness[3], CapForm["Butt"], LineBox[{{1., 0.964721}, {1.025, 0.961772}, {1.05, 0.956999}, {1.075, 0.948699}, {1.1, 0.933404}, {1.125, 0.904167}, {1.15, 0.848555}, {1.175, 0.751875}, {1.2, 0.616552}, {1.225, 0.47671}, {1.25, 0.36527}, {1.275, 0.287739}, {1.3, 0.235707}, {1.325, 0.200378}, {1.35, 0.175725}}]}, {RGBColor[0.192157, 0.388235, 0.807843], PointSize[0.012833333333333334`], AbsoluteThickness[3], CapForm["Butt"], LineBox[{{1.1, 0.021813}, {1.125, 0.048282}, {1.15, 0.100987}, {1.175, 0.194635}, {1.2, 0.326815}, {1.225, 0.463419}, {1.25, 0.571546}, {1.275, 0.645708}, {1.3, 0.694337}, {1.325, 0.726254}, {1.35, 0.747506}}]}}, {{}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{False, False}, AxesLabel->{None, None}, AxesOrigin->{0.9927083333333359, 0}, DisplayFunction->Identity, Frame->{{True, False}, {True, False}}, FrameLabel->{{None, None}, {None, None}}, FrameStyle->{{ StrokeForm[ Opacity[0]], StrokeForm[ Opacity[0]]}, {Automatic, None}}, FrameTicks->FrontEndValueCache[{{Charting`FindScaledTicks[ (Charting`SimpleTicks[#, #2, 6]& )[ SlotSequence[1]], {Identity, Identity}]& , None}, { Charting`FindScaledTicks[ (Charting`SimpleTicks[#, #2, 6]& )[ SlotSequence[1]], {Identity, Identity}]& , None}}, {{{{0., FormBox["0", TraditionalForm], {0.01, 0.}}, {0.2, FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.2\"", ShowStringCharacters -> False], 0.2`15.954589770191003, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}}, { 0.4, FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.4\"", ShowStringCharacters -> False], 0.4`15.954589770191003, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}}, { 0.6, FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.6\"", ShowStringCharacters -> False], 0.6`15.954589770191003, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}}, { 0.8, FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.8\"", ShowStringCharacters -> False], 0.8`15.954589770191003, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}}, {1., FormBox[ TagBox[ InterpretationBox[ StyleBox["\"1.0\"", ShowStringCharacters -> False], 1.`15.954589770191003, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}}}, None}, {{{1., FormBox[ TagBox[ InterpretationBox[ StyleBox["\"1.0\"", ShowStringCharacters -> False], 1.`15.954589770191003, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}}, { 1.1, FormBox[ TagBox[ InterpretationBox[ StyleBox["\"1.1\"", ShowStringCharacters -> False], 1.1`15.954589770191003, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}}, { 1.2, FormBox[ TagBox[ InterpretationBox[ StyleBox["\"1.2\"", ShowStringCharacters -> False], 1.2`15.954589770191003, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}}, { 1.3, FormBox[ TagBox[ InterpretationBox[ StyleBox["\"1.3\"", ShowStringCharacters -> False], 1.3`15.954589770191003, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}}}, None}}], GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.4, 0.5], AbsoluteThickness[1], AbsoluteDashing[{1, 2}]], Method->{ "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotRange->{{0.9927083333333359, 1.35}, {0, 0.964721}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.05]}}, Ticks->{Charting`FindScaledTicks[ (Charting`SimpleTicks[#, #2, 6]& )[ SlotSequence[1]], {Identity, Identity}, RotateLabel -> 0]& , Charting`FindScaledTicks[ (Charting`SimpleTicks[#, #2, 6]& )[ SlotSequence[1]], {Identity, Identity}, RotateLabel -> 0]& }]], "Output",\ CellLabel->"Out[20]=",ExpressionUUID->"d32fbdb3-4ad8-4d05-aa55-4c32ff841fbc"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"ZZ4", "=", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1.0", ",", "0.000259"}], "}"}], ",", RowBox[{"{", RowBox[{"1.025", ",", "0.001499"}], "}"}], ",", RowBox[{"{", RowBox[{"1.05", ",", "0.004661"}], "}"}], ",", RowBox[{"{", RowBox[{"1.075", ",", "0.011599"}], "}"}], ",", RowBox[{"{", RowBox[{"1.1", ",", "0.026034"}], "}"}], ",", RowBox[{"{", RowBox[{"1.125", ",", "0.055329"}], "}"}], ",", RowBox[{"{", RowBox[{"1.15", ",", "0.112492"}], "}"}], ",", RowBox[{"{", RowBox[{"1.175", ",", "0.212615"}], "}"}], ",", RowBox[{"{", RowBox[{"1.2", ",", "0.352622"}], "}"}], ",", RowBox[{"{", RowBox[{"1.225", ",", "0.496698"}], "}"}], ",", RowBox[{"{", RowBox[{"1.25", ",", "0.610946"}], "}"}], ",", RowBox[{"{", RowBox[{"1.275", ",", "0.690069"}], "}"}], ",", RowBox[{"{", RowBox[{"1.3", ",", "0.742975"}], "}"}], ",", RowBox[{"{", RowBox[{"1.325", ",", "0.778807"}], "}"}], ",", RowBox[{"{", RowBox[{"1.35", ",", "0.803778"}], "}"}]}], "}"}]}], ";"}]], "Input", CellLabel->"In[12]:=",ExpressionUUID->"051138e6-33b2-49e1-b570-b5e33fd33d7f"], Cell[BoxData[ RowBox[{ RowBox[{"ZZ5", "=", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1.1", ",", "0.947557"}], "}"}], ",", RowBox[{"{", RowBox[{"1.125", ",", "0.917757"}], "}"}], ",", RowBox[{"{", RowBox[{"1.15", ",", "0.860133"}], "}"}], ",", RowBox[{"{", RowBox[{"1.175", ",", "0.759591"}], "}"}], ",", RowBox[{"{", RowBox[{"1.2", ",", "0.619206"}], "}"}], ",", RowBox[{"{", RowBox[{"1.225", ",", "0.474792"}], "}"}], ",", RowBox[{"{", RowBox[{"1.25", ",", "0.360243"}], "}"}], ",", RowBox[{"{", RowBox[{"1.275", ",", "0.280855"}], "}"}], ",", RowBox[{"{", RowBox[{"1.3", ",", "0.227717"}], "}"}], ",", RowBox[{"{", RowBox[{"1.325", ",", "0.191686"}], "}"}], ",", RowBox[{"{", RowBox[{"1.35", ",", "0.166547"}], "}"}]}], "}"}]}], ";"}]], "Input", CellLabel->"In[16]:=",ExpressionUUID->"37bd2bc4-e119-4f55-88d4-845984e63c22"], Cell[BoxData[ RowBox[{"(*", " ", RowBox[{ RowBox[{"(", "1", ")"}], " ", "\[Rule]", " ", RowBox[{"(", RowBox[{"2", ",", "2"}], ")"}]}], " ", "*)"}]], "Input",ExpressionUUID->\ "c2496421-c71c-4de1-a28d-dd9067951fda"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ListPlot", "[", RowBox[{ RowBox[{"{", RowBox[{"ZZ4", ",", "ZZ5"}], "}"}], ",", RowBox[{"PlotTheme", "\[Rule]", "\"\\""}], ",", RowBox[{"Joined", "\[Rule]", "True"}]}], "]"}]], "Input", CellLabel->"In[17]:=",ExpressionUUID->"bbbc4763-dda3-4da9-8ff0-9b7dc9932b23"], Cell[BoxData[ GraphicsBox[{{}, {{}, {}, {RGBColor[0.790588, 0.201176, 0.], PointSize[0.012833333333333334`], AbsoluteThickness[3], CapForm["Butt"], LineBox[{{1., 0.000259}, {1.025, 0.001499}, {1.05, 0.004661}, {1.075, 0.011599}, {1.1, 0.026034}, {1.125, 0.055329}, {1.15, 0.112492}, {1.175, 0.212615}, {1.2, 0.352622}, {1.225, 0.496698}, {1.25, 0.610946}, { 1.275, 0.690069}, {1.3, 0.742975}, {1.325, 0.778807}, {1.35, 0.803778}}]}, {RGBColor[0.192157, 0.388235, 0.807843], PointSize[0.012833333333333334`], AbsoluteThickness[3], CapForm["Butt"], LineBox[{{1.1, 0.947557}, {1.125, 0.917757}, {1.15, 0.860133}, {1.175, 0.759591}, {1.2, 0.619206}, {1.225, 0.474792}, {1.25, 0.360243}, {1.275, 0.280855}, {1.3, 0.227717}, {1.325, 0.191686}, {1.35, 0.166547}}]}}, {{}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{False, False}, AxesLabel->{None, None}, AxesOrigin->{0.9927083333333359, 0}, DisplayFunction->Identity, Frame->{{True, False}, {True, False}}, FrameLabel->{{None, None}, {None, None}}, FrameStyle->{{ StrokeForm[ Opacity[0]], StrokeForm[ Opacity[0]]}, {Automatic, None}}, FrameTicks->FrontEndValueCache[{{Charting`FindScaledTicks[ (Charting`SimpleTicks[#, #2, 6]& )[ SlotSequence[1]], {Identity, Identity}]& , None}, { Charting`FindScaledTicks[ (Charting`SimpleTicks[#, #2, 6]& )[ SlotSequence[1]], {Identity, Identity}]& , None}}, {{{{0., FormBox["0", TraditionalForm], {0.01, 0.}}, {0.2, FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.2\"", ShowStringCharacters -> False], 0.2`15.954589770191003, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}}, { 0.4, FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.4\"", ShowStringCharacters -> False], 0.4`15.954589770191003, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}}, { 0.6, FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.6\"", ShowStringCharacters -> False], 0.6`15.954589770191003, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}}, { 0.8, FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.8\"", ShowStringCharacters -> False], 0.8`15.954589770191003, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}}}, None}, {{{1., FormBox[ TagBox[ InterpretationBox[ StyleBox["\"1.0\"", ShowStringCharacters -> False], 1.`15.954589770191003, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}}, { 1.1, FormBox[ TagBox[ InterpretationBox[ StyleBox["\"1.1\"", ShowStringCharacters -> False], 1.1`15.954589770191003, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}}, { 1.2, FormBox[ TagBox[ InterpretationBox[ StyleBox["\"1.2\"", ShowStringCharacters -> False], 1.2`15.954589770191003, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}}, { 1.3, FormBox[ TagBox[ InterpretationBox[ StyleBox["\"1.3\"", ShowStringCharacters -> False], 1.3`15.954589770191003, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}}}, None}}], GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.4, 0.5], AbsoluteThickness[1], AbsoluteDashing[{1, 2}]], Method->{ "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotRange->{{0.9927083333333359, 1.35}, {0, 0.947557}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.05]}}, Ticks->{Charting`FindScaledTicks[ (Charting`SimpleTicks[#, #2, 6]& )[ SlotSequence[1]], {Identity, Identity}, RotateLabel -> 0]& , Charting`FindScaledTicks[ (Charting`SimpleTicks[#, #2, 6]& )[ SlotSequence[1]], {Identity, Identity}, RotateLabel -> 0]& }]], "Output",\ CellLabel->"Out[17]=",ExpressionUUID->"cad1c286-e9fa-457d-9d0f-e5060da9432b"] }, Open ]], Cell[BoxData[{ RowBox[{ RowBox[{"eps", "=", RowBox[{"Import", "[", "\"\<~/Dropbox/quack/H2_6-31g_e_3.dat\>\"", "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"epsZ", "=", RowBox[{"Import", "[", "\"\<~/Dropbox/quack/H2_6-31g_Z_3.dat\>\"", "]"}]}], ";"}]}], "Input", CellChangeTimes->{{3.851224781838089*^9, 3.8512248063112907`*^9}, 3.8512252162611103`*^9, {3.851225406389719*^9, 3.8512254135446*^9}}, CellLabel->"In[31]:=",ExpressionUUID->"c351c0eb-ffe9-41ea-b9a4-ee9c001a879d"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ListPlot", "[", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"eps", "\[LeftDoubleBracket]", RowBox[{"k", ",", "1"}], "\[RightDoubleBracket]"}], ",", RowBox[{"eps", "\[LeftDoubleBracket]", RowBox[{"k", ",", "n"}], "\[RightDoubleBracket]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"n", ",", "2", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"k", ",", RowBox[{"Length", "[", "eps", "]"}]}], "}"}]}], "]"}], ",", RowBox[{"PlotTheme", "\[Rule]", "\"\\""}], ",", RowBox[{"Joined", "\[Rule]", "True"}]}], "]"}]], "Input", CellChangeTimes->{{3.85122480749051*^9, 3.851224864147612*^9}, { 3.851224940625348*^9, 3.851225002439535*^9}, {3.851225040451601*^9, 3.851225091883659*^9}, {3.851225124903017*^9, 3.851225125940886*^9}, { 3.851225330238618*^9, 3.851225355378878*^9}, {3.851225388992231*^9, 3.851225389155015*^9}}, CellLabel->"In[25]:=",ExpressionUUID->"3dc691e1-f05a-4c4c-8978-c337f01f76cf"], Cell[BoxData[ GraphicsBox[{{}, {{}, {}, {RGBColor[0.790588, 0.201176, 0.], PointSize[0.009166666666666668], AbsoluteThickness[3], CapForm["Butt"], LineBox[{{1., -67.071819}, {1.025, -66.241153}, {1.05, -65.450083}, { 1.075, -64.6967}, {1.1, -63.979235}, {1.125, -63.296047}, { 1.15, -62.645614}, {1.175, -62.026518}, {1.2, -61.43744}, { 1.225, -60.877141}, {1.25, -60.344459}, {1.275, -59.838294}, { 1.3, -59.357603}, {1.325, -58.901389}, {1.35, -58.468692}, { 1.375, -58.216274}, {1.4, -57.824379}}]}, {RGBColor[0.192157, 0.388235, 0.807843], PointSize[0.009166666666666668], AbsoluteThickness[3], CapForm["Butt"], LineBox[{{1., -58.623711}, {1.025, -58.563333}, {1.05, -58.504956}, { 1.075, -58.447203}, {1.1, -58.388713}, {1.125, -58.32816}, { 1.15, -58.264269}, {1.175, -58.195841}, {1.2, -58.121769}, { 1.225, -58.041055}, {1.25, -57.952826}, {1.275, -57.85634}, { 1.3, -57.750997}, {1.325, -57.636343}, {1.35, -57.512066}, { 1.375, -57.270398}, {1.4, -57.128207}}]}, {RGBColor[1., 0.607843, 0.], PointSize[0.009166666666666668], AbsoluteThickness[3], CapForm["Butt"], LineBox[{{1., -38.390529}, {1.025, -38.020108}, {1.05, -37.657111}, { 1.075, -37.301375}, {1.1, -36.952753}, {1.125, -36.611115}, { 1.15, -36.276346}, {1.175, -35.94834}, {1.2, -35.627002}, { 1.225, -35.312246}, {1.25, -35.003991}, {1.275, -34.70216}, { 1.3, -34.406679}, {1.325, -34.117473}, {1.35, -33.83447}, { 1.375, -33.641535}, {1.4, -33.37055}}]}, {RGBColor[0., 0.596078, 0.109804], PointSize[0.009166666666666668], AbsoluteThickness[3], CapForm["Butt"], LineBox[{{1., 23.284472}, {1.025, 23.540448}, {1.05, 23.781121}, {1.075, 24.002084}, {1.1, 24.196931}, {1.125, 24.355758}, {1.15, 24.463104}, { 1.175, 24.497569}, {1.2, 24.439877}, {1.225, 24.289859}, {1.25, 24.069414}, {1.275, 23.805244}, {1.3, 23.516919}, {1.325, 23.216331}, { 1.35, 22.910393}, {1.375, 23.258001}, {1.4, 22.954121}}]}, {RGBColor[0.567426, 0.32317, 0.729831], PointSize[0.009166666666666668], AbsoluteThickness[3], CapForm["Butt"], LineBox[{{1., 28.599216}, {1.025, 28.204056}, {1.05, 27.820422}, {1.075, 27.451719}, {1.1, 27.103397}, {1.125, 26.784466}, {1.15, 26.509573}, { 1.175, 26.299399}, {1.2, 26.172614}, {1.225, 26.128902}, {1.25, 26.146006}, {1.275, 26.197002}, {1.3, 26.262232}, {1.325, 26.329847}, { 1.35, 26.393103}, {1.375, 25.591742}, {1.4, 25.484738}}]}, {RGBColor[0., 0.588235, 0.705882], PointSize[0.009166666666666668], AbsoluteThickness[3], CapForm["Butt"], LineBox[{{1., 48.641983}, {1.025, 48.588177}, {1.05, 48.504272}, {1.075, 48.419204}, {1.1, 48.331931}, {1.125, 48.241414}, {1.15, 48.14664}, { 1.175, 48.046638}, {1.2, 47.940507}, {1.225, 47.827425}, {1.25, 47.706672}, {1.275, 47.577637}, {1.3, 47.439833}, {1.325, 47.292895}, { 1.35, 47.136588}, {1.375, 47.241166}, {1.4, 47.066894}}]}, {RGBColor[0.8505, 0.4275, 0.13185], PointSize[0.009166666666666668], AbsoluteThickness[3], CapForm["Butt"], LineBox[{{1., 48.671943}, {1.025, 48.750422}, {1.05, 48.854852}, {1.075, 48.953891}, {1.1, 49.0462}, {1.125, 49.130498}, {1.15, 49.205585}, { 1.175, 49.270359}, {1.2, 49.323832}, {1.225, 49.365142}, {1.25, 49.393571}, {1.275, 49.408547}, {1.3, 49.298772}, {1.325, 48.828426}, { 1.35, 48.380629}, {1.375, 47.758995}, {1.4, 47.337534}}]}, {RGBColor[0.499929, 0.285875, 0.775177], PointSize[0.009166666666666668], AbsoluteThickness[3], CapForm["Butt"], LineBox[{{1., 56.04421}, {1.025, 55.439455}, {1.05, 54.85986}, {1.075, 54.296173}, {1.1, 53.734711}, {1.125, 53.16163}, {1.15, 52.575077}, { 1.175, 51.986525}, {1.2, 51.408299}, {1.225, 50.847802}, {1.25, 50.308585}, {1.275, 49.792109}, {1.3, 49.40965}, {1.325, 49.396616}, { 1.35, 49.369333}, {1.375, 49.130262}, {1.4, 48.867172}}]}, {RGBColor[0.12490296143062507`, 0.63, 0.47103259454284074`], PointSize[ 0.009166666666666668], AbsoluteThickness[3], CapForm["Butt"], LineBox[{{1., 57.406912}, {1.025, 56.577538}, {1.05, 55.796352}, {1.075, 55.069086}, {1.1, 54.406125}, {1.125, 53.818231}, {1.15, 53.304366}, { 1.175, 52.850334}, {1.2, 52.441244}, {1.225, 52.06726}, {1.25, 51.722515}, {1.275, 51.403338}, {1.3, 51.107209}, {1.325, 50.832237}, { 1.35, 50.576893}, {1.375, 50.46715}, {1.4, 50.432833}}]}}, {{}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{False, False}, AxesLabel->{None, None}, AxesOrigin->{0.9916666666666691, 0}, DisplayFunction->Identity, Frame->{{True, False}, {True, False}}, FrameLabel->{{None, None}, {None, None}}, FrameStyle->{{ StrokeForm[ Opacity[0]], StrokeForm[ Opacity[0]]}, {Automatic, None}}, FrameTicks->FrontEndValueCache[{{Charting`FindScaledTicks[ (Charting`SimpleTicks[#, #2, 6]& )[ SlotSequence[1]], {Identity, Identity}]& , None}, { Charting`FindScaledTicks[ (Charting`SimpleTicks[#, #2, 6]& )[ SlotSequence[1]], {Identity, Identity}]& , None}}, {{{{-50., FormBox[ RowBox[{"-", "50"}], TraditionalForm], {0.01, 0.}}, {-25., FormBox[ RowBox[{"-", "25"}], TraditionalForm], {0.01, 0.}}, {0., FormBox["0", TraditionalForm], {0.01, 0.}}, {25., FormBox["25", TraditionalForm], {0.01, 0.}}, {50., FormBox["50", TraditionalForm], {0.01, 0.}}}, None}, {{{1., FormBox[ TagBox[ InterpretationBox[ StyleBox["\"1.0\"", ShowStringCharacters -> False], 1.`15.954589770191003, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}}, { 1.1, FormBox[ TagBox[ InterpretationBox[ StyleBox["\"1.1\"", ShowStringCharacters -> False], 1.1`15.954589770191003, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}}, { 1.2, FormBox[ TagBox[ InterpretationBox[ StyleBox["\"1.2\"", ShowStringCharacters -> False], 1.2`15.954589770191003, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}}, { 1.3, FormBox[ TagBox[ InterpretationBox[ StyleBox["\"1.3\"", ShowStringCharacters -> False], 1.3`15.954589770191003, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}}, { 1.4, FormBox[ TagBox[ InterpretationBox[ StyleBox["\"1.4\"", ShowStringCharacters -> False], 1.4`15.954589770191003, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}}}, None}}], GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.4, 0.5], AbsoluteThickness[1], AbsoluteDashing[{1, 2}]], ImageSize->{723.3671875, Automatic}, Method->{ "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotRange->{{0.9916666666666691, 1.4}, {-67.071819, 57.406912}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Charting`FindScaledTicks[ (Charting`SimpleTicks[#, #2, 6]& )[ SlotSequence[1]], {Identity, Identity}, RotateLabel -> 0]& , Charting`FindScaledTicks[ (Charting`SimpleTicks[#, #2, 6]& )[ SlotSequence[1]], {Identity, Identity}, RotateLabel -> 0]& }]], "Output",\ CellChangeTimes->{{3.851224944105775*^9, 3.8512250028919086`*^9}, { 3.851225043024221*^9, 3.851225092347924*^9}, 3.851225126310198*^9, 3.851225223079907*^9, {3.851225330489601*^9, 3.851225355948699*^9}, 3.851225389588039*^9}, CellLabel->"Out[25]=",ExpressionUUID->"dad67ae9-473d-49b3-a4ed-6cc27aca3cc2"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ListPlot", "[", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"epsZ", "\[LeftDoubleBracket]", RowBox[{"k", ",", "1"}], "\[RightDoubleBracket]"}], ",", RowBox[{"epsZ", "\[LeftDoubleBracket]", RowBox[{"k", ",", "n"}], "\[RightDoubleBracket]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"n", ",", "3", ",", "6"}], "}"}], ",", RowBox[{"{", RowBox[{"k", ",", RowBox[{"Length", "[", "eps", "]"}]}], "}"}]}], "]"}], ",", RowBox[{"PlotTheme", "\[Rule]", "\"\\""}], ",", RowBox[{"Joined", "\[Rule]", "True"}]}], "]"}]], "Input", CellChangeTimes->{{3.851225420601947*^9, 3.851225434580069*^9}, { 3.851225492872567*^9, 3.851225492962043*^9}}, CellLabel->"In[34]:=",ExpressionUUID->"e9d7c473-f53c-4be4-9780-1cba856893ff"], Cell[BoxData[ GraphicsBox[{{}, {{}, {}, {RGBColor[0.790588, 0.201176, 0.], PointSize[0.011000000000000001`], AbsoluteThickness[3], CapForm["Butt"], LineBox[{{1., 0.001932}, {1.025, 0.001864}, {1.05, 0.0018}, {1.075, 0.001738}, {1.1, 0.00168}, {1.125, 0.001625}, {1.15, 0.001574}, {1.175, 0.001527}, {1.2, 0.001483}, {1.225, 0.001443}, {1.25, 0.001405}, {1.275, 0.001372}, {1.3, 0.001341}, {1.325, 0.001313}, {1.35, 0.001289}, { 1.375, 0.}, {1.4, 0.}}]}, {RGBColor[0.192157, 0.388235, 0.807843], PointSize[0.011000000000000001`], AbsoluteThickness[3], CapForm["Butt"], LineBox[{{1., 0.}, {1.025, 0.}, {1.05, 0.}, {1.075, 0.}, {1.1, 0.}, { 1.125, 0.}, {1.15, 0.}, {1.175, 0.}, {1.2, 0.}, {1.225, 0.}, {1.25, 0.}, {1.275, 0.}, {1.3, 0.}, {1.325, 0.}, {1.35, 0.}, {1.375, 0.001369}, {1.4, 0.001375}}]}, {RGBColor[1., 0.607843, 0.], PointSize[0.011000000000000001`], AbsoluteThickness[3], CapForm["Butt"], LineBox[{{1., 0.964721}, {1.025, 0.961772}, {1.05, 0.956999}, {1.075, 0.948699}, {1.1, 0.933404}, {1.125, 0.904167}, {1.15, 0.848555}, {1.175, 0.751875}, {1.2, 0.616552}, {1.225, 0.47671}, {1.25, 0.36527}, {1.275, 0.287739}, {1.3, 0.235707}, {1.325, 0.200378}, {1.35, 0.175725}, {1.375, 0.}, {1.4, 0.}}]}, {RGBColor[0., 0.596078, 0.109804], PointSize[0.011000000000000001`], AbsoluteThickness[3], CapForm["Butt"], LineBox[{{1., 0.000059}, {1.025, 0.000852}, {1.05, 0.00331}, {1.075, 0.00914}, {1.1, 0.021813}, {1.125, 0.048282}, {1.15, 0.100987}, {1.175, 0.194635}, {1.2, 0.326815}, {1.225, 0.463419}, {1.25, 0.571546}, {1.275, 0.645708}, {1.3, 0.694337}, {1.325, 0.726254}, {1.35, 0.747506}, { 1.375, 0.91574}, {1.4, 0.915323}}]}}, {{}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{False, False}, AxesLabel->{None, None}, AxesOrigin->{0.9916666666666691, 0}, DisplayFunction->Identity, Frame->{{True, False}, {True, False}}, FrameLabel->{{None, None}, {None, None}}, FrameStyle->{{ StrokeForm[ Opacity[0]], StrokeForm[ Opacity[0]]}, {Automatic, None}}, FrameTicks->FrontEndValueCache[{{Charting`FindScaledTicks[ (Charting`SimpleTicks[#, #2, 6]& )[ SlotSequence[1]], {Identity, Identity}]& , None}, { Charting`FindScaledTicks[ (Charting`SimpleTicks[#, #2, 6]& )[ SlotSequence[1]], {Identity, Identity}]& , None}}, {{{{0., FormBox["0", TraditionalForm], {0.01, 0.}}, {0.2, FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.2\"", ShowStringCharacters -> False], 0.2`15.954589770191003, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}}, { 0.4, FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.4\"", ShowStringCharacters -> False], 0.4`15.954589770191003, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}}, { 0.6, FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.6\"", ShowStringCharacters -> False], 0.6`15.954589770191003, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}}, { 0.8, FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.8\"", ShowStringCharacters -> False], 0.8`15.954589770191003, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}}, {1., FormBox[ TagBox[ InterpretationBox[ StyleBox["\"1.0\"", ShowStringCharacters -> False], 1.`15.954589770191003, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}}}, None}, {{{1., FormBox[ TagBox[ InterpretationBox[ StyleBox["\"1.0\"", ShowStringCharacters -> False], 1.`15.954589770191003, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}}, { 1.1, FormBox[ TagBox[ InterpretationBox[ StyleBox["\"1.1\"", ShowStringCharacters -> False], 1.1`15.954589770191003, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}}, { 1.2, FormBox[ TagBox[ InterpretationBox[ StyleBox["\"1.2\"", ShowStringCharacters -> False], 1.2`15.954589770191003, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}}, { 1.3, FormBox[ TagBox[ InterpretationBox[ StyleBox["\"1.3\"", ShowStringCharacters -> False], 1.3`15.954589770191003, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}}, { 1.4, FormBox[ TagBox[ InterpretationBox[ StyleBox["\"1.4\"", ShowStringCharacters -> False], 1.4`15.954589770191003, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}}}, None}}], GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.4, 0.5], AbsoluteThickness[1], AbsoluteDashing[{1, 2}]], Method->{ "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotRange->{{0.9916666666666691, 1.4}, {0, 0.964721}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.05]}}, Ticks->{Charting`FindScaledTicks[ (Charting`SimpleTicks[#, #2, 6]& )[ SlotSequence[1]], {Identity, Identity}, RotateLabel -> 0]& , Charting`FindScaledTicks[ (Charting`SimpleTicks[#, #2, 6]& )[ SlotSequence[1]], {Identity, Identity}, RotateLabel -> 0]& }]], "Output",\ CellChangeTimes->{{3.85122542357023*^9, 3.851225434992806*^9}, { 3.851225486314489*^9, 3.851225493333332*^9}}, CellLabel->"Out[34]=",ExpressionUUID->"2a2efd1e-215b-4367-831c-d3eaaa63ec02"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Downfolding BSE", "Section", CellChangeTimes->{{3.8539418515047903`*^9, 3.853941859257752*^9}},ExpressionUUID->"6a704d60-27a2-4628-a61b-\ b8f4e21f8868"], Cell[BoxData[ RowBox[{ SuperscriptBox["H", RowBox[{"(", "p", ")"}]], "=", RowBox[{"(", "\[NoBreak]", GridBox[{ { SubsuperscriptBox["\[Epsilon]", "p", "HF"], SubsuperscriptBox["V", "p", RowBox[{"2", "h1p"}]], SubsuperscriptBox["V", "p", RowBox[{"2", "p1h"}]]}, { RowBox[{ RowBox[{"(", SubsuperscriptBox["V", "p", RowBox[{"2", "h1p"}]], ")"}], "\[Transpose]"}], SuperscriptBox["C", RowBox[{"2", "h1p"}]], "0"}, { RowBox[{ RowBox[{"(", SubsuperscriptBox["V", "p", RowBox[{"2", "p1h"}]], ")"}], "\[Transpose]"}], "0", SuperscriptBox["C", RowBox[{"2", "p1h"}]]} }], "\[NoBreak]", ")"}]}]], "Input", CellChangeTimes->{{3.853860765989546*^9, 3.853860843155305*^9}},ExpressionUUID->"6feb960f-bb32-4591-80f4-\ 4f095d8668c2"], Cell[BoxData[ RowBox[{ RowBox[{"Det", "[", RowBox[{ SuperscriptBox["H", RowBox[{"(", "p", ")"}]], "-", RowBox[{"\[Omega]", " ", "1"}]}], "]"}], "==", "0"}]], "Input", CellChangeTimes->{{3.853860845482641*^9, 3.8538608764071417`*^9}},ExpressionUUID->"21c50754-febc-41cd-a91a-\ d483a7bc8140"], Cell[BoxData[ RowBox[{ RowBox[{"Det", "[", RowBox[{"(", "\[NoBreak]", GridBox[{ { RowBox[{ SubsuperscriptBox["\[Epsilon]", "p", "HF"], "-", "\[Omega]"}], SubsuperscriptBox["V", "p", RowBox[{"2", "h1p"}]], SubsuperscriptBox["V", "p", RowBox[{"2", "p1h"}]]}, { RowBox[{ RowBox[{"(", SubsuperscriptBox["V", "p", RowBox[{"2", "h1p"}]], ")"}], "\[Transpose]"}], RowBox[{ SuperscriptBox["C", RowBox[{"2", "h1p"}]], "-", RowBox[{"\[Omega]", " ", "1"}]}], "0"}, { RowBox[{ RowBox[{"(", SubsuperscriptBox["V", "p", RowBox[{"2", "p1h"}]], ")"}], "\[Transpose]"}], "0", RowBox[{ SuperscriptBox["C", RowBox[{"2", "p1h"}]], "-", RowBox[{"\[Omega]", " ", "1"}]}]} }], "\[NoBreak]", ")"}], "]"}], "==", "0"}]], "Input", CellChangeTimes->{{3.853860882936471*^9, 3.853860914930173*^9}},ExpressionUUID->"4dfd87b2-28e1-4b90-98bd-\ 12ef5c33e7cd"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ SubsuperscriptBox["\[Epsilon]", "p", "HF"], "-", "\[Omega]"}], ")"}], RowBox[{"Det", "[", RowBox[{"(", "\[NoBreak]", GridBox[{ { RowBox[{ SuperscriptBox["C", RowBox[{"2", "h1p"}]], "-", RowBox[{"\[Omega]", " ", "1"}]}], "0"}, {"0", RowBox[{ SuperscriptBox["C", RowBox[{"2", "p1h"}]], "-", RowBox[{"\[Omega]", " ", "1"}]}]} }], "\[NoBreak]", ")"}], "]"}]}], "-", RowBox[{ RowBox[{ RowBox[{"(", SubsuperscriptBox["V", "p", RowBox[{"2", "h1p"}]], ")"}], "\[Transpose]"}], RowBox[{"(", "\[NoBreak]", GridBox[{ { SubsuperscriptBox["V", "p", RowBox[{"2", "h1p"}]], SubsuperscriptBox["V", "p", RowBox[{"2", "p1h"}]]}, {"0", RowBox[{ SuperscriptBox["C", RowBox[{"2", "p1h"}]], "-", RowBox[{"\[Omega]", " ", "1"}]}]} }], "\[NoBreak]", ")"}]}], "+", RowBox[{ RowBox[{ RowBox[{"(", SubsuperscriptBox["V", "p", RowBox[{"2", "p1h"}]], ")"}], "\[Transpose]"}], RowBox[{"(", "\[NoBreak]", GridBox[{ { SubsuperscriptBox["V", "p", RowBox[{"2", "h1p"}]], SubsuperscriptBox["V", "p", RowBox[{"2", "p1h"}]]}, { RowBox[{ SuperscriptBox["C", RowBox[{"2", "h1p"}]], "-", RowBox[{"\[Omega]", " ", "1"}]}], "0"} }], "\[NoBreak]", ")"}]}]}], "=", "0"}]], "Input", CellChangeTimes->{{3.853860944854035*^9, 3.853860994667194*^9}},ExpressionUUID->"f6448161-1952-4500-b5f5-\ 566946f9b807"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ SubsuperscriptBox["\[Epsilon]", "p", "HF"], "-", "\[Omega]"}], ")"}], RowBox[{"(", RowBox[{ SuperscriptBox["C", RowBox[{"2", "h1p"}]], "-", RowBox[{"\[Omega]", " ", "1"}]}], ")"}], RowBox[{"(", RowBox[{ SuperscriptBox["C", RowBox[{"2", "p1h"}]], "-", RowBox[{"\[Omega]", " ", "1"}]}], ")"}]}], "-", RowBox[{ RowBox[{ RowBox[{"(", SubsuperscriptBox["V", "p", RowBox[{"2", "h1p"}]], ")"}], "\[Transpose]"}], RowBox[{"(", RowBox[{ SuperscriptBox["C", RowBox[{"2", "p1h"}]], "-", RowBox[{"\[Omega]", " ", "1"}]}], ")"}], SubsuperscriptBox["V", "p", RowBox[{"2", "h1p"}]]}], "-", RowBox[{ RowBox[{ RowBox[{"(", SubsuperscriptBox["V", "p", RowBox[{"2", "p1h"}]], ")"}], "\[Transpose]"}], RowBox[{"(", RowBox[{ SuperscriptBox["C", RowBox[{"2", "h1p"}]], "-", RowBox[{"\[Omega]", " ", "1"}]}], ")"}], SubsuperscriptBox["V", "p", RowBox[{"2", "p1h"}]]}]}], "=", "0"}]], "Input", CellChangeTimes->{{3.853861004235111*^9, 3.8538610705718946`*^9}},ExpressionUUID->"260633fc-4386-4e7b-a747-\ 77a336ee6b4d"], Cell[BoxData[ RowBox[{ RowBox[{ SubsuperscriptBox["\[Epsilon]", "p", "HF"], "-", "\[Omega]"}], "=", RowBox[{ FractionBox[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", SubsuperscriptBox["V", "p", RowBox[{"2", "h1p"}]], ")"}], "\[Transpose]"}], RowBox[{"(", RowBox[{ SuperscriptBox["C", RowBox[{"2", "p1h"}]], "-", RowBox[{"\[Omega]", " ", "1"}]}], ")"}], SubsuperscriptBox["V", "p", RowBox[{"2", "h1p"}]]}], "+", RowBox[{ RowBox[{ RowBox[{"(", SubsuperscriptBox["V", "p", RowBox[{"2", "p1h"}]], ")"}], "\[Transpose]"}], RowBox[{"(", RowBox[{ SuperscriptBox["C", RowBox[{"2", "h1p"}]], "-", RowBox[{"\[Omega]", " ", "1"}]}], ")"}], SubsuperscriptBox["V", "p", RowBox[{"2", "p1h"}]]}]}], RowBox[{ RowBox[{"(", RowBox[{ SuperscriptBox["C", RowBox[{"2", "h1p"}]], "-", RowBox[{"\[Omega]", " ", "1"}]}], ")"}], RowBox[{"(", RowBox[{ SuperscriptBox["C", RowBox[{"2", "p1h"}]], "-", RowBox[{"\[Omega]", " ", "1"}]}], ")"}]}]], "=", "0"}]}]], "Input", CellChangeTimes->{{3.853861132474517*^9, 3.8538611458989067`*^9}},ExpressionUUID->"0819721e-8f8a-4961-93d6-\ 77fc2fd42396"] }, Closed]], Cell[CellGroupData[{ Cell["Two-determinant reference", "Section", CellChangeTimes->{{3.853941873054824*^9, 3.853941895786997*^9}, { 3.853994650330038*^9, 3.85399465155588*^9}, {3.854010641568082*^9, 3.854010643582584*^9}},ExpressionUUID->"470a82c0-3bf7-49b2-b0a4-\ e18638c845fc"], Cell[TextData[{ "Let\[CloseCurlyQuote]s consider that additionally to the 1h or 1p reference \ determinant, we now have an additional 2h1p or 2p1h configuration in the \ reference space.\nLet\[CloseCurlyQuote]s denote the reference determinant as \ P (where P can be a particle or a hole) and the 2h1p or 2p1h configuration as \ ", Cell[BoxData[ FormBox["QIA", TraditionalForm]],ExpressionUUID-> "1e30d1d7-03d1-4b6f-8e9a-ca3867a36ad2"], " (where Q can be a particle or a hole)." }], "Text", CellChangeTimes->{{3.8539419915154533`*^9, 3.853942148847609*^9}, { 3.8539946847186537`*^9, 3.853994686507917*^9}, {3.854119054456788*^9, 3.854119123820446*^9}, {3.85411940362047*^9, 3.854119469378769*^9}, { 3.854120228323204*^9, 3.854120229289616*^9}, 3.854120581153137*^9},ExpressionUUID->"0d18b6aa-4968-4bd0-a62c-\ 7cbf1928b263"], Cell[BoxData[ RowBox[{ SuperscriptBox["H", RowBox[{"(", "P", ")"}]], "=", RowBox[{"(", "\[NoBreak]", GridBox[{ { SubsuperscriptBox["\[Epsilon]", "P", "HF"], SubscriptBox["V", RowBox[{ RowBox[{"Q", "[", "IA", "]"}], ",", "P"}]], SubsuperscriptBox["V", "p", RowBox[{"2", "h1p"}]], SubsuperscriptBox["V", "p", RowBox[{"2", "p1h"}]]}, { SubscriptBox["V", RowBox[{"P", ",", RowBox[{"Q", "[", "IA", "]"}]}]], SubscriptBox["C", RowBox[{ RowBox[{"Q", "[", "IA", "]"}], ",", RowBox[{"Q", "[", "IA", "]"}]}]], SubsuperscriptBox["C", RowBox[{"Q", "[", "IA", "]"}], RowBox[{"2", "h1p"}]], SubsuperscriptBox["C", RowBox[{"Q", "[", "IA", "]"}], RowBox[{"2", "h1p"}]]}, { RowBox[{ RowBox[{"(", SubsuperscriptBox["V", "P", RowBox[{"2", "h1p"}]], ")"}], "\[Transpose]"}], RowBox[{ RowBox[{"(", SubsuperscriptBox["C", RowBox[{"Q", "[", "IA", "]"}], RowBox[{"2", "h1p"}]], ")"}], "\[Transpose]"}], SuperscriptBox["C", RowBox[{"2", "h1p"}]], "0"}, { RowBox[{ RowBox[{"(", SubsuperscriptBox["V", "P", RowBox[{"2", "p1h"}]], ")"}], "\[Transpose]"}], RowBox[{ RowBox[{"(", SubsuperscriptBox["C", RowBox[{"Q", "[", "IA", "]"}], RowBox[{"2", "h1p"}]], ")"}], "\[Transpose]"}], "0", SuperscriptBox["C", RowBox[{"2", "p1h"}]]} }], "\[NoBreak]", ")"}]}]], "Input", CellChangeTimes->{{3.853860765989546*^9, 3.853860843155305*^9}, { 3.853941896875486*^9, 3.853941941030599*^9}, {3.853941981055896*^9, 3.8539419850432796`*^9}, {3.853942156748558*^9, 3.853942157474918*^9}, { 3.853942470091695*^9, 3.853942483640237*^9}, {3.8539426350210333`*^9, 3.853942650511012*^9}, {3.853994680996086*^9, 3.853994703807873*^9}, { 3.853995596018257*^9, 3.8539956365205193`*^9}, {3.853996052084077*^9, 3.853996091861925*^9}, {3.853996294868775*^9, 3.853996330160097*^9}, { 3.853996398976129*^9, 3.853996410667295*^9}, {3.854119126273769*^9, 3.854119129234701*^9}, {3.854119293794915*^9, 3.854119305768619*^9}, { 3.854119477861698*^9, 3.854119478514227*^9}, {3.854120744279851*^9, 3.8541207542482443`*^9}, {3.858824229339693*^9, 3.858824229583788*^9}},ExpressionUUID->"de460126-5872-41ad-b94a-\ 2ac25594d244"], Cell["The matrix elements are", "Text",ExpressionUUID->"5ddc87f4-cdbc-4e64-b398-e4dd73a164b9"], Cell[BoxData[ RowBox[{ SubsuperscriptBox["V", RowBox[{"P", ",", RowBox[{"k", "[", "lc", "]"}]}], RowBox[{"2", "h1p"}]], "=", RowBox[{ RowBox[{ SqrtBox["2"], TemplateBox[{"Pc", "kl"}, "BraKet"], "\t", SubsuperscriptBox["V", RowBox[{"P", ",", RowBox[{ RowBox[{"[", "kc", "]"}], "d"}]}], RowBox[{"2", "p1h"}]]}], "=", RowBox[{ SqrtBox["2"], TemplateBox[{"Pk", "dc"}, "BraKet"]}]}]}]], "Input", CellChangeTimes->{{3.8539944371520357`*^9, 3.853994504010198*^9}, { 3.853994657174964*^9, 3.853994662806715*^9}, {3.853994753414856*^9, 3.853994759578096*^9}, 3.853996303420765*^9},ExpressionUUID->"13b10e6f-abda-4091-a5ab-\ 9647b9bd5090"], Cell[BoxData[ RowBox[{ SubscriptBox["V", RowBox[{"P", ",", RowBox[{"Q", "[", "IA", "]"}]}]], "=", RowBox[{ SqrtBox["2"], TemplateBox[{"PA", "QI"}, "BraKet"]}]}]], "Input", CellChangeTimes->{{3.8539947702657337`*^9, 3.8539948131985807`*^9}, { 3.85399629930897*^9, 3.8539963007982683`*^9}, {3.854120213092823*^9, 3.854120216961879*^9}},ExpressionUUID->"8fae97ef-b0a1-4939-9bfa-\ 1b576bff870a"], Cell[BoxData[ RowBox[{ SubsuperscriptBox["C", RowBox[{ RowBox[{"i", "[", "ja", "]"}], ",", RowBox[{"k", "[", "lc", "]"}]}], RowBox[{"2", "h1p"}]], "=", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ SubscriptBox["\[Epsilon]", "i"], "+", SubscriptBox["\[Epsilon]", "j"], "-", SubscriptBox["\[Epsilon]", "a"]}], ")"}], SubscriptBox["\[Delta]", "jl"], SubscriptBox["\[Delta]", "ac"]}], "-", RowBox[{"2", TemplateBox[{"jc", "al"}, "BraKet"]}]}], ")"}], SubscriptBox["\[Delta]", "ik"], "\t", SubsuperscriptBox["C", RowBox[{ RowBox[{ RowBox[{"[", "ia", "]"}], "b"}], ",", RowBox[{ RowBox[{"[", "kc", "]"}], "d"}]}], RowBox[{"2", "p1h"}]]}], "=", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ SubscriptBox["\[Epsilon]", "a"], "+", SubscriptBox["\[Epsilon]", "b"], "-", SubscriptBox["\[Epsilon]", "i"]}], ")"}], SubscriptBox["\[Delta]", "ik"], SubscriptBox["\[Delta]", "ac"]}], "+", RowBox[{"2", TemplateBox[{"ak", "ic"}, "BraKet"]}]}], ")"}], SubscriptBox["\[Delta]", "bd"]}]}]}]], "Input", CellChangeTimes->{{3.854120312844335*^9, 3.8541203155664053`*^9}, { 3.854120347333592*^9, 3.854120433318367*^9}, {3.854120878817917*^9, 3.8541209016574574`*^9}},ExpressionUUID->"a36084fe-8d84-44a2-ab56-\ 752e26abb5c2"], Cell[BoxData[ RowBox[{ SubscriptBox["C", RowBox[{ RowBox[{"Q", "[", "IA", "]"}], ",", RowBox[{"Q", "[", "IA", "]"}]}]], "=", RowBox[{ RowBox[{"Sign", "[", RowBox[{ SubscriptBox["\[Epsilon]", "Q"], "-", "\[Mu]"}], "]"}], RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{ SubscriptBox["\[Epsilon]", "Q"], "+", SubscriptBox["\[Epsilon]", "A"], "-", SubscriptBox["\[Epsilon]", "I"]}], ")"}], "+", RowBox[{"2", TemplateBox[{"IA", "AI"}, "BraKet"]}]}], ")"}]}]}]], "Input", CellChangeTimes->{{3.853995497349127*^9, 3.853995505457183*^9}, { 3.853995541603786*^9, 3.8539955528216953`*^9}, {3.85399634487328*^9, 3.8539963551113367`*^9}, {3.85412027301052*^9, 3.854120276687199*^9}},ExpressionUUID->"953e39d9-6625-402e-8c90-\ 8a7cb2cccde3"], Cell[BoxData[ RowBox[{ SubsuperscriptBox["C", RowBox[{ RowBox[{"Q", "[", "IA", "]"}], ",", RowBox[{"k", "[", "lc", "]"}]}], RowBox[{"2", "h1p"}]], "=", RowBox[{ RowBox[{ RowBox[{"-", "2"}], TemplateBox[{"Ic", "Al"}, "BraKet"], SubscriptBox["\[Delta]", "Qk"], "\t", SubsuperscriptBox["C", RowBox[{ RowBox[{ RowBox[{"[", "IA", "]"}], "Q"}], ",", RowBox[{ RowBox[{"[", "kc", "]"}], "d"}]}], RowBox[{"2", "p1h"}]]}], "=", RowBox[{ RowBox[{"+", "2"}], TemplateBox[{"Ak", "Ic"}, "BraKet"], SubscriptBox["\[Delta]", "Qd"]}]}]}]], "Input", CellChangeTimes->{{3.854120489513905*^9, 3.8541205118547907`*^9}, { 3.854120541925247*^9, 3.854120559913643*^9}, {3.854120622184505*^9, 3.8541207030246143`*^9}, {3.854120766637642*^9, 3.854120780648139*^9}, { 3.8541208494794207`*^9, 3.8541209095616493`*^9}},ExpressionUUID->"458a09fb-389c-463e-aefa-\ 8294bec583fa"], Cell["Let us now solve the secular equations", "Text",ExpressionUUID->"c90c48af-9fdf-4ddc-8608-9400c30a5610"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"(", "\[NoBreak]", GridBox[{ { RowBox[{ SubsuperscriptBox["\[Epsilon]", "P", "HF"], "-", "\[Omega]"}], SubscriptBox["V", RowBox[{"Q", "[", "IA", "]"}]], SubsuperscriptBox["V", "P", RowBox[{"2", "h1p"}]], SubsuperscriptBox["V", "P", RowBox[{"2", "p1h"}]]}, { SubscriptBox["V", RowBox[{"Q", "[", "IA", "]"}]], RowBox[{ SubscriptBox["C", RowBox[{ RowBox[{"Q", "[", "IA", "]"}], ",", RowBox[{"Q", "[", "IA", "]"}]}]], "-", "\[Omega]"}], SubsuperscriptBox["C", RowBox[{"Q", "[", "IA", "]"}], RowBox[{"2", "h1p"}]], SubsuperscriptBox["C", RowBox[{"Q", "[", "IA", "]"}], RowBox[{"2", "p1h"}]]}, { RowBox[{ RowBox[{"(", SubsuperscriptBox["V", "P", RowBox[{"2", "h1p"}]], ")"}], "\[Transpose]"}], RowBox[{ RowBox[{"(", SubsuperscriptBox["C", RowBox[{"Q", "[", "IA", "]"}], RowBox[{"2", "h1p"}]], ")"}], "\[Transpose]"}], RowBox[{ SuperscriptBox["C", RowBox[{"2", "h1p"}]], "-", RowBox[{"\[Omega]", " ", "I"}]}], "0"}, { RowBox[{ RowBox[{"(", SubsuperscriptBox["V", "P", RowBox[{"2", "p1h"}]], ")"}], "\[Transpose]"}], RowBox[{ RowBox[{"(", SubsuperscriptBox["C", RowBox[{"Q", "[", "IA", "]"}], RowBox[{"2", "p1h"}]], ")"}], "\[Transpose]"}], "0", RowBox[{ SuperscriptBox["C", RowBox[{"2", "p1h"}]], "-", RowBox[{"\[Omega]", " ", "I"}]}]} }], "\[NoBreak]", ")"}], RowBox[{"(", "\[NoBreak]", GridBox[{ { SubscriptBox["c", "P"]}, { SubscriptBox["c", RowBox[{"Q", "[", "IA", "]"}]]}, { SuperscriptBox["c", RowBox[{"2", "h1p"}]]}, { SuperscriptBox["c", RowBox[{"2", "p1h"}]]} }], "\[NoBreak]", ")"}]}], "==", RowBox[{"(", "\[NoBreak]", GridBox[{ {"0"}, {"0"}, {"0"}, {"0"} }], "\[NoBreak]", ")"}]}]], "Input", CellChangeTimes->{{3.854120937286797*^9, 3.854120976971858*^9}, { 3.85412111123944*^9, 3.854121135956566*^9}, {3.854121314200409*^9, 3.854121318452858*^9}},ExpressionUUID->"3c8afc9a-6104-43d2-8a12-\ a28ea7c2ad67"], Cell["The fourth line yields", "Text",ExpressionUUID->"aafadf45-fa5d-4336-8b76-b63439e28ca0"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", SubsuperscriptBox["V", "P", RowBox[{"2", "p1h"}]], ")"}], "\[Transpose]"}], SubscriptBox["c", "P"]}], "+", RowBox[{ RowBox[{ RowBox[{"(", SubsuperscriptBox["C", RowBox[{"Q", "[", "IA", "]"}], RowBox[{"2", "p1h"}]], ")"}], "\[Transpose]"}], SubscriptBox["c", RowBox[{"Q", "[", "IA", "]"}]]}], "+", RowBox[{ RowBox[{"(", RowBox[{ SuperscriptBox["C", RowBox[{"2", "p1h"}]], "-", RowBox[{"\[Omega]", " ", "I"}]}], ")"}], SuperscriptBox["c", RowBox[{"2", "p1h"}]]}]}], "==", RowBox[{"0", "\t", "\[DoubleLongRightArrow]", "\t", SuperscriptBox["c", RowBox[{"2", "p1h"}]]}], "==", RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["C", RowBox[{"2", "p1h"}]], "-", RowBox[{"\[Omega]", " ", "I"}]}], ")"}], RowBox[{"-", "1"}]]}], RowBox[{"(", RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", SubsuperscriptBox["V", "P", RowBox[{"2", "p1h"}]], ")"}], "\[Transpose]"}], SubscriptBox["c", "P"]}], "+", RowBox[{ RowBox[{ RowBox[{"(", SubsuperscriptBox["C", RowBox[{"Q", "[", "IA", "]"}], RowBox[{"2", "p1h"}]], ")"}], "\[Transpose]"}], SubscriptBox["c", RowBox[{"Q", "[", "IA", "]"}]]}]}], ")"}]}]}]], "Input", CellChangeTimes->{{3.854010454233684*^9, 3.854010532192396*^9}, { 3.854010646575485*^9, 3.8540106473948936`*^9}, {3.8541209550372334`*^9, 3.8541209560589457`*^9}, {3.8541209884594193`*^9, 3.8541210005737047`*^9}},ExpressionUUID->"731e5aa2-2627-4749-89ca-\ 13d707fa2305"], Cell["The third line yields", "Text",ExpressionUUID->"4d08ac91-7b28-436a-a672-edd3cf5ebb8f"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", SubsuperscriptBox["V", "P", RowBox[{"2", "h1p"}]], ")"}], "\[Transpose]"}], SubscriptBox["c", "P"]}], "+", RowBox[{ RowBox[{ RowBox[{"(", SubsuperscriptBox["C", RowBox[{"Q", "[", "IA", "]"}], RowBox[{"2", "h1p"}]], ")"}], "\[Transpose]"}], SubscriptBox["c", RowBox[{"Q", "[", "IA", "]"}]]}], "+", RowBox[{ RowBox[{"(", RowBox[{ SuperscriptBox["C", RowBox[{"2", "h1p"}]], "-", RowBox[{"\[Omega]", " ", "I"}]}], ")"}], SuperscriptBox["c", RowBox[{"2", "h1p"}]]}]}], "==", RowBox[{"0", "\t", "\[DoubleLongRightArrow]", "\t", SuperscriptBox["c", RowBox[{"2", "h1p"}]]}], "==", RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["C", RowBox[{"2", "h1p"}]], "-", RowBox[{"\[Omega]", " ", "I"}]}], ")"}], RowBox[{"-", "1"}]]}], RowBox[{"(", RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", SubsuperscriptBox["V", "P", RowBox[{"2", "h1p"}]], ")"}], "\[Transpose]"}], SubscriptBox["c", "P"]}], "+", RowBox[{ RowBox[{ RowBox[{"(", SubsuperscriptBox["C", RowBox[{"Q", "[", "IA", "]"}], RowBox[{"2", "h1p"}]], ")"}], "\[Transpose]"}], SubscriptBox["c", RowBox[{"Q", "[", "IA", "]"}]]}]}], ")"}]}]}]], "Input", CellChangeTimes->{{3.854010540138933*^9, 3.854010579623904*^9}, { 3.8540106481750793`*^9, 3.8540106491862783`*^9}, {3.854121003736683*^9, 3.854121017943685*^9}},ExpressionUUID->"09edbc2e-1fd4-47fa-b54f-\ e187cfeccc59"], Cell["The second line yields", "Text",ExpressionUUID->"8e0d45f2-faf4-46af-a8aa-fb7d172b4e8c"], Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{ SubscriptBox["V", RowBox[{"Q", "[", "IA", "]"}]], SubscriptBox["c", "P"]}], "+", RowBox[{ RowBox[{"(", RowBox[{ SubscriptBox["C", RowBox[{ RowBox[{"Q", "[", "IA", "]"}], ",", RowBox[{"Q", "[", "IA", "]"}]}]], "-", "\[Omega]"}], ")"}], SubscriptBox["c", RowBox[{"Q", "[", "IA", "]"}]]}], "+", RowBox[{ SubsuperscriptBox["C", RowBox[{"Q", "[", "IA", "]"}], RowBox[{"2", "h1p"}]], SuperscriptBox["c", RowBox[{"2", "h1p"}]]}], "+", RowBox[{ SubsuperscriptBox["C", RowBox[{"Q", "[", "IA", "]"}], RowBox[{"2", "p1h"}]], SuperscriptBox["c", RowBox[{"2", "p1h"}]]}]}], "==", "0"}], "\t"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ RowBox[{"\[DoubleLongRightArrow]", "\t", SubscriptBox["V", RowBox[{"Q", "[", "IA", "]"}]]}], SubscriptBox["c", "P"]}], "+", RowBox[{ RowBox[{"(", RowBox[{ SubscriptBox["C", RowBox[{ RowBox[{"Q", "[", "IA", "]"}], ",", RowBox[{"Q", "[", "IA", "]"}]}]], "-", "\[Omega]"}], ")"}], SubscriptBox["c", RowBox[{"Q", "[", "IA", "]"}]]}], "-", RowBox[{ SubsuperscriptBox["C", RowBox[{"Q", "[", "IA", "]"}], RowBox[{"2", "h1p"}]], SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["C", RowBox[{"2", "h1p"}]], "-", RowBox[{"\[Omega]", " ", "I"}]}], ")"}], RowBox[{"-", "1"}]], RowBox[{"(", RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", SubsuperscriptBox["V", "P", RowBox[{"2", "h1p"}]], ")"}], "\[Transpose]"}], SubscriptBox["c", "P"]}], "+", RowBox[{ RowBox[{ RowBox[{"(", SubsuperscriptBox["C", RowBox[{"Q", "[", "IA", "]"}], RowBox[{"2", "h1p"}]], ")"}], "\[Transpose]"}], SubscriptBox["c", RowBox[{"Q", "[", "IA", "]"}]]}]}], ")"}]}], "-", RowBox[{ SubsuperscriptBox["C", RowBox[{"Q", "[", "IA", "]"}], RowBox[{"2", "p1h"}]], SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["C", RowBox[{"2", "p1h"}]], "-", RowBox[{"\[Omega]", " ", "I"}]}], ")"}], RowBox[{"-", "1"}]], RowBox[{"(", RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", SubsuperscriptBox["V", "P", RowBox[{"2", "p1h"}]], ")"}], "\[Transpose]"}], SubscriptBox["c", "P"]}], "+", RowBox[{ RowBox[{ RowBox[{"(", SubsuperscriptBox["C", RowBox[{"Q", "[", "IA", "]"}], RowBox[{"2", "p1h"}]], ")"}], "\[Transpose]"}], SubscriptBox["c", RowBox[{"Q", "[", "IA", "]"}]]}]}], ")"}]}]}], "==", "0"}]}], "Input",\ CellChangeTimes->{{3.854010611587925*^9, 3.854010694140316*^9}, { 3.854121023141982*^9, 3.854121057195273*^9}, 3.854121122972999*^9},ExpressionUUID->"f2438676-7819-493d-ac9a-\ 51dc5fb67c04"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"\[DoubleLongRightArrow]", "\t", SubscriptBox["V", RowBox[{"Q", "[", "IA", "]"}]]}], SubscriptBox["c", "P"]}], "+", RowBox[{ RowBox[{"(", RowBox[{ SubscriptBox["C", RowBox[{ RowBox[{"Q", "[", "IA", "]"}], ",", RowBox[{"Q", "[", "IA", "]"}]}]], "-", "\[Omega]"}], ")"}], SubscriptBox["c", RowBox[{"Q", "[", "IA", "]"}]]}], "-", RowBox[{ SubsuperscriptBox["C", RowBox[{"Q", "[", "IA", "]"}], RowBox[{"2", "h1p"}]], SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["C", RowBox[{"2", "h1p"}]], "-", RowBox[{"\[Omega]", " ", "I"}]}], ")"}], RowBox[{"-", "1"}]], RowBox[{ RowBox[{"(", SubsuperscriptBox["V", "P", RowBox[{"2", "h1p"}]], ")"}], "\[Transpose]"}], SubscriptBox["c", "P"]}], "-", RowBox[{ SubsuperscriptBox["C", RowBox[{"Q", "[", "IA", "]"}], RowBox[{"2", "h1p"}]], SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["C", RowBox[{"2", "h1p"}]], "-", RowBox[{"\[Omega]", " ", "I"}]}], ")"}], RowBox[{"-", "1"}]], RowBox[{ RowBox[{"(", SubsuperscriptBox["C", RowBox[{"Q", "[", "IA", "]"}], RowBox[{"2", "h1p"}]], ")"}], "\[Transpose]"}], SubscriptBox["c", RowBox[{"Q", "[", "IA", "]"}]]}], "-", RowBox[{ SubsuperscriptBox["C", RowBox[{"Q", "[", "IA", "]"}], RowBox[{"2", "p1h"}]], SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["C", RowBox[{"2", "p1h"}]], "-", RowBox[{"\[Omega]", " ", "I"}]}], ")"}], RowBox[{"-", "1"}]], RowBox[{ RowBox[{"(", SubsuperscriptBox["V", "P", RowBox[{"2", "p1h"}]], ")"}], "\[Transpose]"}], SubscriptBox["c", "P"]}], "-", RowBox[{ SubsuperscriptBox["C", RowBox[{"Q", "[", "IA", "]"}], RowBox[{"2", "p1h"}]], SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["C", RowBox[{"2", "p1h"}]], "-", RowBox[{"\[Omega]", " ", "I"}]}], ")"}], RowBox[{"-", "1"}]], RowBox[{ RowBox[{"(", SubsuperscriptBox["C", RowBox[{"Q", "[", "IA", "]"}], RowBox[{"2", "p1h"}]], ")"}], "\[Transpose]"}], SubscriptBox["c", RowBox[{"Q", "[", "IA", "]"}]]}]}], "==", "0"}]], "Input", CellChangeTimes->{{3.854010714623451*^9, 3.854010733338195*^9}, { 3.8541210590283813`*^9, 3.854121082192257*^9}},ExpressionUUID->"02baca0b-7f2f-4be6-826c-\ 0d732408f2ad"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"\[DoubleLongRightArrow]", "\t", RowBox[{"(", RowBox[{ SubscriptBox["V", RowBox[{"Q", "[", "IA", "]"}]], "-", RowBox[{ SubsuperscriptBox["C", RowBox[{"Q", "[", "IA", "]"}], RowBox[{"2", "h1p"}]], SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["C", RowBox[{"2", "h1p"}]], "-", RowBox[{"\[Omega]", " ", "I"}]}], ")"}], RowBox[{"-", "1"}]], RowBox[{ RowBox[{"(", SubsuperscriptBox["V", "P", RowBox[{"2", "h1p"}]], ")"}], "\[Transpose]"}]}], "-", RowBox[{ SubsuperscriptBox["C", RowBox[{"Q", "[", "IA", "]"}], RowBox[{"2", "p1h"}]], SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["C", RowBox[{"2", "p1h"}]], "-", RowBox[{"\[Omega]", " ", "I"}]}], ")"}], RowBox[{"-", "1"}]], RowBox[{ RowBox[{"(", SubsuperscriptBox["V", "P", RowBox[{"2", "p1h"}]], ")"}], "\[Transpose]"}]}]}], ")"}]}], SubscriptBox["c", "P"]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{ SubscriptBox["C", RowBox[{ RowBox[{"Q", "[", "IA", "]"}], ",", RowBox[{"Q", "[", "IA", "]"}]}]], "-", "\[Omega]"}], ")"}], "-", RowBox[{ SubsuperscriptBox["C", RowBox[{"Q", "[", "IA", "]"}], RowBox[{"2", "h1p"}]], SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["C", RowBox[{"2", "h1p"}]], "-", RowBox[{"\[Omega]", " ", "I"}]}], ")"}], RowBox[{"-", "1"}]], RowBox[{ RowBox[{"(", SubsuperscriptBox["C", RowBox[{"Q", "[", "IA", "]"}], RowBox[{"2", "h1p"}]], ")"}], "\[Transpose]"}]}], "-", RowBox[{ SubsuperscriptBox["C", RowBox[{"Q", "[", "IA", "]"}], RowBox[{"2", "p1h"}]], SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["C", RowBox[{"2", "p1h"}]], "-", RowBox[{"\[Omega]", " ", "I"}]}], ")"}], RowBox[{"-", "1"}]], RowBox[{ RowBox[{"(", SubsuperscriptBox["C", RowBox[{"Q", "[", "IA", "]"}], RowBox[{"2", "p1h"}]], ")"}], "\[Transpose]"}]}]}], ")"}], SubscriptBox["c", RowBox[{"Q", "[", "IA", "]"}]]}]}], "==", "0"}]], "Input", CellChangeTimes->{{3.854010746281262*^9, 3.8540107970959873`*^9}, { 3.8541210848483467`*^9, 3.85412110387169*^9}},ExpressionUUID->"f1fe5e52-9053-451b-8521-\ 6d393ea4a08f"], Cell["The first line yields", "Text",ExpressionUUID->"09951dc5-1207-416a-a2ea-cf6c4c6fc44d"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ SubsuperscriptBox["\[Epsilon]", "P", "HF"], "-", "\[Omega]"}], ")"}], SubscriptBox["c", "P"]}], "+", RowBox[{ SubscriptBox["V", RowBox[{"Q", "[", "IA", "]"}]], SubscriptBox["c", RowBox[{"Q", "[", "IA", "]"}]]}], "+", RowBox[{ SubsuperscriptBox["V", "P", RowBox[{"2", "h1p"}]], SuperscriptBox["c", RowBox[{"2", "h1p"}]]}], "+", RowBox[{ SubsuperscriptBox["V", "P", RowBox[{"2", "p1h"}]], SuperscriptBox["c", RowBox[{"2", "p1h"}]]}]}], "==", "0"}]], "Input", CellChangeTimes->{ 3.854121107266527*^9, {3.8541211446980553`*^9, 3.8541211510634117`*^9}},ExpressionUUID->"04e3db48-bd52-4a1d-bdea-\ 7c8f4c20e3f6"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"\[DoubleLongRightArrow]", "\t", RowBox[{"(", RowBox[{ SubsuperscriptBox["\[Epsilon]", "P", "HF"], "-", "\[Omega]"}], ")"}]}], SubscriptBox["c", "P"]}], "+", RowBox[{ SubscriptBox["V", RowBox[{"Q", "[", "IA", "]"}]], SubscriptBox["c", RowBox[{"Q", "[", "IA", "]"}]]}], "-", RowBox[{ SubsuperscriptBox["V", "p", RowBox[{"2", "h1p"}]], SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["C", RowBox[{"2", "h1p"}]], "-", RowBox[{"\[Omega]", " ", "I"}]}], ")"}], RowBox[{"-", "1"}]], RowBox[{"(", RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", SubsuperscriptBox["V", "P", RowBox[{"2", "h1p"}]], ")"}], "\[Transpose]"}], SubscriptBox["c", "P"]}], "+", RowBox[{ RowBox[{ RowBox[{"(", SubsuperscriptBox["C", RowBox[{"Q", "[", "IA", "]"}], RowBox[{"2", "h1p"}]], ")"}], "\[Transpose]"}], SubscriptBox["c", RowBox[{"Q", "[", "IA", "]"}]]}]}], ")"}]}], "-", RowBox[{ SubsuperscriptBox["V", "P", RowBox[{"2", "p1h"}]], SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["C", RowBox[{"2", "p1h"}]], "-", RowBox[{"\[Omega]", " ", "I"}]}], ")"}], RowBox[{"-", "1"}]], RowBox[{"(", RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", SubsuperscriptBox["V", "P", RowBox[{"2", "p1h"}]], ")"}], "\[Transpose]"}], SubscriptBox["c", "P"]}], "+", RowBox[{ RowBox[{ RowBox[{"(", SubsuperscriptBox["C", RowBox[{"Q", "[", "IA", "]"}], RowBox[{"2", "p1h"}]], ")"}], "\[Transpose]"}], SubscriptBox["c", RowBox[{"Q", "[", "IA", "]"}]]}]}], ")"}]}]}], "==", "0"}]], "Input", CellChangeTimes->{ 3.854121117923003*^9, {3.854121155430485*^9, 3.8541211670051813`*^9}, { 3.8541213225013227`*^9, 3.854121326236671*^9}},ExpressionUUID->"ab19d3af-3174-4ce8-86b0-\ dcc88d1af0ac"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"\[DoubleLongRightArrow]", "\t", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{ SubsuperscriptBox["\[Epsilon]", "P", "HF"], "-", "\[Omega]"}], ")"}], "-", RowBox[{ SubsuperscriptBox["V", "p", RowBox[{"2", "h1p"}]], SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["C", RowBox[{"2", "h1p"}]], "-", RowBox[{"\[Omega]", " ", "I"}]}], ")"}], RowBox[{"-", "1"}]], RowBox[{ RowBox[{"(", SubsuperscriptBox["V", "P", RowBox[{"2", "h1p"}]], ")"}], "\[Transpose]"}]}], "-", RowBox[{ SubsuperscriptBox["V", "p", RowBox[{"2", "p1h"}]], SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["C", RowBox[{"2", "p1h"}]], "-", RowBox[{"\[Omega]", " ", "I"}]}], ")"}], RowBox[{"-", "1"}]], RowBox[{ RowBox[{"(", SubsuperscriptBox["V", "P", RowBox[{"2", "p1h"}]], ")"}], "\[Transpose]"}]}]}], ")"}]}], SubscriptBox["c", "P"]}], "+", RowBox[{ RowBox[{"(", RowBox[{ SubscriptBox["V", RowBox[{"Q", "[", "IA", "]"}]], "-", RowBox[{ SubsuperscriptBox["V", "P", RowBox[{"2", "h1p"}]], SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["C", RowBox[{"2", "h1p"}]], "-", RowBox[{"\[Omega]", " ", "I"}]}], ")"}], RowBox[{"-", "1"}]], RowBox[{ RowBox[{"(", SubsuperscriptBox["C", RowBox[{"Q", "[", "IA", "]"}], RowBox[{"2", "h1p"}]], ")"}], "\[Transpose]"}]}], "-", RowBox[{ SubsuperscriptBox["V", "P", RowBox[{"2", "p1h"}]], SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["C", RowBox[{"2", "p1h"}]], "-", RowBox[{"\[Omega]", " ", "I"}]}], ")"}], RowBox[{"-", "1"}]], RowBox[{ RowBox[{"(", SubsuperscriptBox["C", RowBox[{"Q", "[", "IA", "]"}], RowBox[{"2", "p1h"}]], ")"}], "\[Transpose]"}]}]}], ")"}], SubscriptBox["c", RowBox[{"Q", "[", "IA", "]"}]]}]}], "==", "0"}]], "Input", CellChangeTimes->{{3.8541211690967293`*^9, 3.854121180449953*^9}},ExpressionUUID->"5555ca58-25bc-40bf-9d66-\ 0058a15c72a0"], Cell["Finally, we end up wit the new dynamical system", "Text",ExpressionUUID->"cf5c443b-a1be-47db-8c90-8d92dc005175"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"(", "\[NoBreak]", GridBox[{ { RowBox[{ RowBox[{"(", RowBox[{ SubsuperscriptBox["\[Epsilon]", "P", "HF"], "-", "\[Omega]"}], ")"}], "-", RowBox[{ SubsuperscriptBox["V", "P", RowBox[{"2", "h1p"}]], SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["C", RowBox[{"2", "h1p"}]], "-", RowBox[{"\[Omega]", " ", "I"}]}], ")"}], RowBox[{"-", "1"}]], RowBox[{ RowBox[{"(", SubsuperscriptBox["V", "P", RowBox[{"2", "h1p"}]], ")"}], "\[Transpose]"}]}], "-", RowBox[{ SubsuperscriptBox["V", "P", RowBox[{"2", "p1h"}]], SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["C", RowBox[{"2", "p1h"}]], "-", RowBox[{"\[Omega]", " ", "I"}]}], ")"}], RowBox[{"-", "1"}]], RowBox[{ RowBox[{"(", SubsuperscriptBox["V", "P", RowBox[{"2", "p1h"}]], ")"}], "\[Transpose]"}]}]}], RowBox[{ SubscriptBox["V", RowBox[{"Q", "[", "IA", "]"}]], "-", RowBox[{ SubsuperscriptBox["V", "P", RowBox[{"2", "h1p"}]], SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["C", RowBox[{"2", "h1p"}]], "-", RowBox[{"\[Omega]", " ", "I"}]}], ")"}], RowBox[{"-", "1"}]], RowBox[{ RowBox[{"(", SubsuperscriptBox["C", RowBox[{"Q", "[", "IA", "]"}], RowBox[{"2", "h1p"}]], ")"}], "\[Transpose]"}]}], "-", RowBox[{ SubsuperscriptBox["V", "P", RowBox[{"2", "p1h"}]], SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["C", RowBox[{"2", "p1h"}]], "-", RowBox[{"\[Omega]", " ", "I"}]}], ")"}], RowBox[{"-", "1"}]], RowBox[{ RowBox[{"(", SubsuperscriptBox["C", RowBox[{"Q", "[", "IA", "]"}], RowBox[{"2", "p1h"}]], ")"}], "\[Transpose]"}]}]}]}, { RowBox[{ SubscriptBox["V", RowBox[{"Q", "[", "IA", "]"}]], "-", RowBox[{ SubsuperscriptBox["C", RowBox[{"Q", "[", "IA", "]"}], RowBox[{"2", "h1p"}]], SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["C", RowBox[{"2", "h1p"}]], "-", RowBox[{"\[Omega]", " ", "I"}]}], ")"}], RowBox[{"-", "1"}]], RowBox[{ RowBox[{"(", SubsuperscriptBox["V", "P", RowBox[{"2", "h1p"}]], ")"}], "\[Transpose]"}]}], "-", RowBox[{ SubsuperscriptBox["C", RowBox[{"Q", "[", "IA", "]"}], RowBox[{"2", "p1h"}]], SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["C", RowBox[{"2", "p1h"}]], "-", RowBox[{"\[Omega]", " ", "I"}]}], ")"}], RowBox[{"-", "1"}]], RowBox[{ RowBox[{"(", SubsuperscriptBox["V", "P", RowBox[{"2", "p1h"}]], ")"}], "\[Transpose]"}]}]}], RowBox[{ RowBox[{"(", RowBox[{ SubscriptBox["C", RowBox[{ RowBox[{"Q", "[", "IA", "]"}], ",", RowBox[{"Q", "[", "IA", "]"}]}]], "-", "\[Omega]"}], ")"}], "-", RowBox[{ SubsuperscriptBox["C", RowBox[{"Q", "[", "IA", "]"}], RowBox[{"2", "h1p"}]], SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["C", RowBox[{"2", "h1p"}]], "-", RowBox[{"\[Omega]", " ", "I"}]}], ")"}], RowBox[{"-", "1"}]], RowBox[{ RowBox[{"(", SubsuperscriptBox["C", RowBox[{"Q", "[", "IA", "]"}], RowBox[{"2", "h1p"}]], ")"}], "\[Transpose]"}]}], "-", RowBox[{ SubsuperscriptBox["C", RowBox[{"Q", "[", "IA", "]"}], RowBox[{"2", "p1h"}]], SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["C", RowBox[{"2", "p1h"}]], "-", RowBox[{"\[Omega]", " ", "I"}]}], ")"}], RowBox[{"-", "1"}]], RowBox[{ RowBox[{"(", SubsuperscriptBox["C", RowBox[{"Q", "[", "IA", "]"}], RowBox[{"2", "p1h"}]], ")"}], "\[Transpose]"}]}]}]} }], "\[NoBreak]", ")"}], RowBox[{"(", "\[NoBreak]", GridBox[{ { SubscriptBox["c", "P"]}, { SubscriptBox["c", RowBox[{"Q", "[", "IA", "]"}]]} }], "\[NoBreak]", ")"}]}], "==", RowBox[{"(", "\[NoBreak]", GridBox[{ {"0"}, {"0"} }], "\[NoBreak]", ")"}]}]], "Input", CellChangeTimes->{{3.8541211857211227`*^9, 3.854121230232273*^9}},ExpressionUUID->"009c187a-6ffb-4145-8afd-\ 433506865326"], Cell["with elements", "Text",ExpressionUUID->"0581ffe5-a1bd-456d-b8ca-274d0988b17f"], Cell[BoxData[ FrameBox[ RowBox[{ RowBox[{ RowBox[{ SubscriptBox["\[CapitalSigma]", "P"], "[", "\[Omega]", "]"}], "=", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["V", "P", RowBox[{"2", "h1p"}]]}], SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["C", RowBox[{"2", "h1p"}]], "-", RowBox[{"\[Omega]", " ", "I"}]}], ")"}], RowBox[{"-", "1"}]], RowBox[{ RowBox[{"(", SubsuperscriptBox["V", "P", RowBox[{"2", "h1p"}]], ")"}], "\[Transpose]"}]}], "-", RowBox[{ SubsuperscriptBox["V", "P", RowBox[{"2", "p1h"}]], SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["C", RowBox[{"2", "p1h"}]], "-", RowBox[{"\[Omega]", " ", "I"}]}], ")"}], RowBox[{"-", "1"}]], RowBox[{ RowBox[{"(", SubsuperscriptBox["V", "P", RowBox[{"2", "p1h"}]], ")"}], "\[Transpose]"}]}]}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{ SubscriptBox["\[CapitalSigma]", RowBox[{"Q", "[", "IA", "]"}]], "[", "\[Omega]", "]"}], "=", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["C", RowBox[{"Q", "[", "IA", "]"}], RowBox[{"2", "h1p"}]]}], SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["C", RowBox[{"2", "h1p"}]], "-", RowBox[{"\[Omega]", " ", "I"}]}], ")"}], RowBox[{"-", "1"}]], RowBox[{ RowBox[{"(", SubsuperscriptBox["C", RowBox[{"Q", "[", "IA", "]"}], RowBox[{"2", "h1p"}]], ")"}], "\[Transpose]"}]}], "-", RowBox[{ SubsuperscriptBox["C", RowBox[{"Q", "[", "IA", "]"}], RowBox[{"2", "p1h"}]], SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["C", RowBox[{"2", "p1h"}]], "-", RowBox[{"\[Omega]", " ", "I"}]}], ")"}], RowBox[{"-", "1"}]], RowBox[{ RowBox[{"(", SubsuperscriptBox["C", RowBox[{"Q", "[", "IA", "]"}], RowBox[{"2", "p1h"}]], ")"}], "\[Transpose]"}]}]}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{ SubscriptBox["\[CapitalSigma]", RowBox[{ RowBox[{"Q", "[", "IA", "]"}], ",", "P"}]], "[", "\[Omega]", "]"}], "=", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["C", RowBox[{"Q", "[", "IA", "]"}], RowBox[{"2", "h1p"}]]}], SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["C", RowBox[{"2", "h1p"}]], "-", RowBox[{"\[Omega]", " ", "I"}]}], ")"}], RowBox[{"-", "1"}]], RowBox[{ RowBox[{"(", SubsuperscriptBox["V", "P", RowBox[{"2", "h1p"}]], ")"}], "\[Transpose]"}]}], "-", RowBox[{ SubsuperscriptBox["C", RowBox[{"Q", "[", "IA", "]"}], RowBox[{"2", "p1h"}]], SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["C", RowBox[{"2", "p1h"}]], "-", RowBox[{"\[Omega]", " ", "I"}]}], ")"}], RowBox[{"-", "1"}]], RowBox[{ RowBox[{"(", SubsuperscriptBox["V", "P", RowBox[{"2", "p1h"}]], ")"}], "\[Transpose]"}]}]}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{ SubscriptBox["\[CapitalSigma]", RowBox[{"P", ",", RowBox[{"Q", "[", "IA", "]"}]}]], "[", "\[Omega]", "]"}], "=", RowBox[{ RowBox[{ RowBox[{"-", SubsuperscriptBox["V", "P", RowBox[{"2", "h1p"}]]}], SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["C", RowBox[{"2", "h1p"}]], "-", RowBox[{"\[Omega]", " ", "I"}]}], ")"}], RowBox[{"-", "1"}]], RowBox[{ RowBox[{"(", SubsuperscriptBox["C", RowBox[{"Q", "[", "IA", "]"}], RowBox[{"2", "h1p"}]], ")"}], "\[Transpose]"}]}], "-", RowBox[{ SubsuperscriptBox["V", "P", RowBox[{"2", "p1h"}]], SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["C", RowBox[{"2", "p1h"}]], "-", RowBox[{"\[Omega]", " ", "I"}]}], ")"}], RowBox[{"-", "1"}]], RowBox[{ RowBox[{"(", SubsuperscriptBox["C", RowBox[{"Q", "[", "IA", "]"}], RowBox[{"2", "p1h"}]], ")"}], "\[Transpose]"}]}]}]}]}]]], "Input", CellChangeTimes->{{3.854121250195992*^9, 3.854121280870821*^9}},ExpressionUUID->"7bc8daef-44bc-447f-8659-\ e2e31520db06"], Cell["The final result is", "Text",ExpressionUUID->"53ef96ad-c734-44f1-8123-1d211616b540"], Cell[BoxData[ RowBox[{"\[Therefore]", RowBox[{ RowBox[{ RowBox[{"(", "\[NoBreak]", GridBox[{ { RowBox[{ SubsuperscriptBox["\[Epsilon]", "P", "HF"], "+", RowBox[{ SubscriptBox["\[CapitalSigma]", "P"], "[", "\[Omega]", "]"}], "-", "\[Omega]"}], RowBox[{ SubscriptBox["V", RowBox[{"Q", "[", "IA", "]"}]], "+", RowBox[{ SubscriptBox["\[CapitalSigma]", RowBox[{"P", ",", RowBox[{"Q", "[", "IA", "]"}]}]], "[", "\[Omega]", "]"}]}]}, { RowBox[{ SubscriptBox["V", RowBox[{"Q", "[", "IA", "]"}]], "+", RowBox[{ SubscriptBox["\[CapitalSigma]", RowBox[{ RowBox[{"Q", "[", "IA", "]"}], ",", "P"}]], "[", "\[Omega]", "]"}]}], RowBox[{ UnderscriptBox[ SubscriptBox["C", RowBox[{ RowBox[{"Q", "[", "IA", "]"}], ",", RowBox[{"Q", "[", "IA", "]"}]}]], UnderscriptBox["\[UnderBrace]", SubscriptBox["\[Epsilon]", RowBox[{"Q", "[", "IA", "]"}]]]], "+", RowBox[{ SubscriptBox["\[CapitalSigma]", RowBox[{"Q", "[", "IA", "]"}]], "[", "\[Omega]", "]"}], "-", "\[Omega]"}]} }], "\[NoBreak]", ")"}], RowBox[{"(", "\[NoBreak]", GridBox[{ { SubscriptBox["c", "P"]}, { SubscriptBox["c", RowBox[{"Q", "[", "IA", "]"}]]} }], "\[NoBreak]", ")"}]}], "==", RowBox[{"(", "\[NoBreak]", GridBox[{ {"0"}, {"0"} }], "\[NoBreak]", ")"}]}]}]], "Input", CellChangeTimes->{{3.854121286300622*^9, 3.854121308654326*^9}, { 3.8587679676437817`*^9, 3.8587679969425173`*^9}},ExpressionUUID->"920b9a14-7358-437b-8b2d-\ 9af272494adb"], Cell["Let us now linearize the various quantities", "Text", CellChangeTimes->{{3.858767764328784*^9, 3.858767773643785*^9}},ExpressionUUID->"93942955-95fa-4960-8441-\ d27720ba0dd0"], Cell[BoxData[ SubscriptBox[ RowBox[{ RowBox[{ RowBox[{ SubscriptBox["\[CapitalSigma]", "P"], "[", "\[Omega]", "]"}], "\[TildeTilde]", RowBox[{ RowBox[{ SubscriptBox["\[CapitalSigma]", "P"], "[", SubscriptBox["\[Epsilon]", "P"], "]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"\[Omega]", "-", SubscriptBox["\[Epsilon]", "P"]}], ")"}], FractionBox[ RowBox[{"\[PartialD]", RowBox[{ SubscriptBox["\[CapitalSigma]", "P"], "[", "\[Omega]", "]"}]}], RowBox[{"\[PartialD]", "\[Omega]"}]]}]}]}], "\[RightBracketingBar]"}], RowBox[{"\[Omega]", "=", SubscriptBox["\[Epsilon]", "P"]}]]], "Input", CellChangeTimes->{{3.858767783408907*^9, 3.8587677859547987`*^9}, { 3.858767830909958*^9, 3.8587679006999702`*^9}},ExpressionUUID->"47e9290a-cfa8-4af9-a77d-\ 518740bd08e2"], Cell[BoxData[ SubscriptBox[ RowBox[{ RowBox[{ RowBox[{ SubscriptBox["\[CapitalSigma]", RowBox[{"Q", "[", "IA", "]"}]], "[", "\[Omega]", "]"}], "\[TildeTilde]", RowBox[{ RowBox[{ SubscriptBox["\[CapitalSigma]", RowBox[{"Q", "[", "IA", "]"}]], "[", SubscriptBox["\[Epsilon]", RowBox[{"Q", "[", "IA", "]"}]], "]"}], "+", RowBox[{ RowBox[{"(", RowBox[{"\[Omega]", "-", SubscriptBox["\[Epsilon]", RowBox[{"Q", "[", "IA", "]"}]]}], ")"}], FractionBox[ RowBox[{"\[PartialD]", RowBox[{ SubscriptBox["\[CapitalSigma]", RowBox[{"Q", "[", "IA", "]"}]], "[", "\[Omega]", "]"}]}], RowBox[{"\[PartialD]", "\[Omega]"}]]}]}]}], "\[RightBracketingBar]"}], RowBox[{"\[Omega]", "=", SubscriptBox["\[Epsilon]", RowBox[{"Q", "[", "IA", "]"}]]}]]], "Input", CellChangeTimes->{{3.858767908756872*^9, 3.8587679103548307`*^9}, { 3.858768020647278*^9, 3.858768030603697*^9}},ExpressionUUID->"ab0fa501-ac3f-4c9c-8066-\ 9fc31c8041bf"], Cell[BoxData[ RowBox[{ SubscriptBox["\[CapitalSigma]", RowBox[{"P", ",", RowBox[{"Q", "[", "IA", "]"}]}]], "[", "\[Omega]", "]"}]], "Input",Express\ ionUUID->"4498a696-6326-43f3-929f-4540537b631f"], Cell[BoxData[GridBox[{ { RowBox[{ SubsuperscriptBox["\[Epsilon]", "P", "HF"], "+", RowBox[{ SubscriptBox["\[CapitalSigma]", "P"], "[", "\[Omega]", "]"}], "-", "\[Omega]"}], RowBox[{ SubscriptBox["V", RowBox[{"Q", "[", "IA", "]"}]], "+", RowBox[{ SubscriptBox["\[CapitalSigma]", RowBox[{"P", ",", RowBox[{"Q", "[", "IA", "]"}]}]], "[", "\[Omega]", "]"}]}]}, { RowBox[{ SubscriptBox["V", RowBox[{"Q", "[", "IA", "]"}]], "+", RowBox[{ SubscriptBox["\[CapitalSigma]", RowBox[{ RowBox[{"Q", "[", "IA", "]"}], ",", "P"}]], "[", "\[Omega]", "]"}]}], RowBox[{ SubscriptBox["C", RowBox[{ RowBox[{"Q", "[", "IA", "]"}], ",", RowBox[{"Q", "[", "IA", "]"}]}]], "+", RowBox[{ SubscriptBox["\[CapitalSigma]", RowBox[{"Q", "[", "IA", "]"}]], "[", "\[Omega]", "]"}], "-", "\[Omega]"}]} }]], "Input",ExpressionUUID->"9a0c7b03-b777-49f5-bbb5-8250e18341f6"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Solve", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ SubscriptBox["\[CapitalSigma]", "P"], "+", RowBox[{ RowBox[{"(", RowBox[{"\[Omega]", "-", SubscriptBox["\[Epsilon]", "P"]}], ")"}], SubscriptBox["d\[CapitalSigma]", "P"]}], "-", "\[Omega]"}], ")"}], RowBox[{"(", RowBox[{ SubscriptBox["\[CapitalSigma]", "S"], "+", RowBox[{ RowBox[{"(", RowBox[{"\[Omega]", "-", SubscriptBox["\[Epsilon]", "S"]}], ")"}], SubscriptBox["d\[CapitalSigma]", "S"]}], "-", "\[Omega]"}], ")"}]}], "-", RowBox[{ SubscriptBox["\[CapitalSigma]", "PS"], SubscriptBox["\[CapitalSigma]", "SP"]}]}], "==", "0"}], ",", "\[Omega]"}], "]"}], "//", "FullSimplify"}]], "Input", CellChangeTimes->{{3.858768426206644*^9, 3.8587686087391768`*^9}}, CellLabel->"In[15]:=",ExpressionUUID->"9aac74ba-b0da-4219-b2f4-760e75b19181"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\[Omega]", "\[Rule]", RowBox[{ FractionBox["1", RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SubscriptBox["d\[CapitalSigma]", "P"]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SubscriptBox["d\[CapitalSigma]", "S"]}], ")"}]}]], RowBox[{"(", RowBox[{ SubscriptBox["\[CapitalSigma]", "P"], "-", RowBox[{ SubscriptBox["d\[CapitalSigma]", "S"], " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Epsilon]", "S"], "+", SubscriptBox["\[CapitalSigma]", "P"]}], ")"}]}], "+", RowBox[{ SubscriptBox["d\[CapitalSigma]", "P"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SubscriptBox["d\[CapitalSigma]", "S"]}], ")"}], " ", SubscriptBox["\[Epsilon]", "P"]}], "+", RowBox[{ SubscriptBox["d\[CapitalSigma]", "S"], " ", SubscriptBox["\[Epsilon]", "S"]}], "-", SubscriptBox["\[CapitalSigma]", "S"]}], ")"}]}], "+", SubscriptBox["\[CapitalSigma]", "S"], "-", SqrtBox[ RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["d\[CapitalSigma]", "S"], " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Epsilon]", "S"], "-", SubscriptBox["\[CapitalSigma]", "P"]}], ")"}]}], "+", SubscriptBox["\[CapitalSigma]", "P"], "-", SubscriptBox["\[CapitalSigma]", "S"], "+", RowBox[{ SubscriptBox["d\[CapitalSigma]", "P"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SubscriptBox["d\[CapitalSigma]", "S"]}], ")"}], " ", SubscriptBox["\[Epsilon]", "P"]}], "-", RowBox[{ SubscriptBox["d\[CapitalSigma]", "S"], " ", SubscriptBox["\[Epsilon]", "S"]}], "+", SubscriptBox["\[CapitalSigma]", "S"]}], ")"}]}]}], ")"}], "2"], "+", RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SubscriptBox["d\[CapitalSigma]", "P"]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SubscriptBox["d\[CapitalSigma]", "S"]}], ")"}], " ", SubscriptBox["\[CapitalSigma]", "PS"], " ", SubscriptBox["\[CapitalSigma]", "SP"]}]}]]}], ")"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{"\[Omega]", "\[Rule]", RowBox[{ FractionBox["1", RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SubscriptBox["d\[CapitalSigma]", "P"]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SubscriptBox["d\[CapitalSigma]", "S"]}], ")"}]}]], RowBox[{"(", RowBox[{ SubscriptBox["\[CapitalSigma]", "P"], "-", RowBox[{ SubscriptBox["d\[CapitalSigma]", "S"], " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Epsilon]", "S"], "+", SubscriptBox["\[CapitalSigma]", "P"]}], ")"}]}], "+", RowBox[{ SubscriptBox["d\[CapitalSigma]", "P"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SubscriptBox["d\[CapitalSigma]", "S"]}], ")"}], " ", SubscriptBox["\[Epsilon]", "P"]}], "+", RowBox[{ SubscriptBox["d\[CapitalSigma]", "S"], " ", SubscriptBox["\[Epsilon]", "S"]}], "-", SubscriptBox["\[CapitalSigma]", "S"]}], ")"}]}], "+", SubscriptBox["\[CapitalSigma]", "S"], "+", SqrtBox[ RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["d\[CapitalSigma]", "S"], " ", RowBox[{"(", RowBox[{ SubscriptBox["\[Epsilon]", "S"], "-", SubscriptBox["\[CapitalSigma]", "P"]}], ")"}]}], "+", SubscriptBox["\[CapitalSigma]", "P"], "-", SubscriptBox["\[CapitalSigma]", "S"], "+", RowBox[{ SubscriptBox["d\[CapitalSigma]", "P"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SubscriptBox["d\[CapitalSigma]", "S"]}], ")"}], " ", SubscriptBox["\[Epsilon]", "P"]}], "-", RowBox[{ SubscriptBox["d\[CapitalSigma]", "S"], " ", SubscriptBox["\[Epsilon]", "S"]}], "+", SubscriptBox["\[CapitalSigma]", "S"]}], ")"}]}]}], ")"}], "2"], "+", RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SubscriptBox["d\[CapitalSigma]", "P"]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SubscriptBox["d\[CapitalSigma]", "S"]}], ")"}], " ", SubscriptBox["\[CapitalSigma]", "PS"], " ", SubscriptBox["\[CapitalSigma]", "SP"]}]}]]}], ")"}]}]}], "}"}]}], "}"}]], "Output", CellChangeTimes->{{3.858768516946767*^9, 3.858768560222417*^9}, { 3.858768596609387*^9, 3.858768610822707*^9}}, CellLabel->"Out[15]=",ExpressionUUID->"d0dd5be3-43a4-4c53-a5ba-112275dc3ac6"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Eigenvalues", "[", RowBox[{"(", "\[NoBreak]", GridBox[{ {"a", "\[Lambda]"}, {"\[Lambda]", "b"} }], "\[NoBreak]", ")"}], "]"}]], "Input", CellChangeTimes->{{3.858830415492423*^9, 3.858830432549013*^9}}, CellLabel->"In[16]:=",ExpressionUUID->"0fcbabf1-9a31-4e73-9b0f-e3193cf0da0e"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"a", "+", "b", "-", SqrtBox[ RowBox[{ SuperscriptBox["a", "2"], "-", RowBox[{"2", " ", "a", " ", "b"}], "+", SuperscriptBox["b", "2"], "+", RowBox[{"4", " ", SuperscriptBox["\[Lambda]", "2"]}]}]]}], ")"}]}], ",", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"a", "+", "b", "+", SqrtBox[ RowBox[{ SuperscriptBox["a", "2"], "-", RowBox[{"2", " ", "a", " ", "b"}], "+", SuperscriptBox["b", "2"], "+", RowBox[{"4", " ", SuperscriptBox["\[Lambda]", "2"]}]}]]}], ")"}]}]}], "}"}]], "Output",\ CellChangeTimes->{3.858830432809946*^9}, CellLabel->"Out[16]=",ExpressionUUID->"bd579e22-0bcf-489d-bbb5-ee10d9e3eb82"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ SuperscriptBox["a", "2"], "-", RowBox[{"2", " ", "a", " ", "b"}], "+", SuperscriptBox["b", "2"]}], "//", "Factor"}]], "Input", CellChangeTimes->{{3.858830442428556*^9, 3.858830450530805*^9}}, CellLabel->"In[19]:=",ExpressionUUID->"a0a20f99-3eda-4ca6-920f-918e1132f616"], Cell[BoxData[ SuperscriptBox[ RowBox[{"(", RowBox[{"a", "-", "b"}], ")"}], "2"]], "Output", CellChangeTimes->{{3.8588304441435213`*^9, 3.8588304508188457`*^9}}, CellLabel->"Out[19]=",ExpressionUUID->"fb8f2b92-e9b5-4bca-bba0-b46f70bfcb93"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{"a", "-", "b"}], ")"}], "2"], "+", RowBox[{"4", " ", SuperscriptBox["\[Lambda]", "2"]}]}], ">", "0"}]], "Input", CellChangeTimes->{{3.8588304578840847`*^9, 3.858830472644949*^9}},ExpressionUUID->"bba87f46-334f-485b-8c9d-\ 0eb7ff79cc9c"] }, Open ]], Cell[CellGroupData[{ Cell["PES", "Section",ExpressionUUID->"8a3d16ca-0779-480a-b23d-aa8d77e59793"], Cell[BoxData["AspectRatio"], "Input",ExpressionUUID->"bcdffa1d-f22d-40ee-a1b9-2dc03ba0be9c"], Cell[BoxData[{ RowBox[{ RowBox[{"SizeTitle", "=", "20"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"SizeLabel", "=", "20"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"SizeLegend", "=", "20"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"PlotOptions", "=", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"Joined", "\[Rule]", "True"}], ",", "\[IndentingNewLine]", RowBox[{"InterpolationOrder", "\[Rule]", "2"}], ",", "\[IndentingNewLine]", RowBox[{"PlotTheme", "\[Rule]", "\"\\""}], ",", "\[IndentingNewLine]", RowBox[{"BaseStyle", "\[Rule]", "18"}], ",", "\[IndentingNewLine]", RowBox[{"ImageSize", "\[Rule]", "500"}], ",", "\[IndentingNewLine]", RowBox[{"AspectRatio", "\[Rule]", "1"}], ",", "\[IndentingNewLine]", RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",", "\[IndentingNewLine]", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Thickness", "[", "0.01", "]"}], ",", "Orange"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"Thickness", "[", "0.01", "]"}], ",", "Red"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"Thickness", "[", "0.01", "]"}], ",", "Blue"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"Thickness", "[", "0.01", "]"}], ",", "Black"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"Thickness", "[", "0.01", "]"}], ",", "Gray"}], "}"}]}], "\[IndentingNewLine]", "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"PlotMarkers", "->", "None"}]}], "\[IndentingNewLine]", "}"}]}], ";"}]}], "Input", InitializationCell->True, CellLabel->"In[5]:=",ExpressionUUID->"d754cecd-0dc1-44bc-aadc-26d9c91dd570"], Cell[CellGroupData[{ Cell["cc-pVDZ", "Subsection",ExpressionUUID->"14db7a36-714c-4139-a9a1-b9adf8150988"], Cell[CellGroupData[{ Cell["Loading data", "Subsubsection", CellChangeTimes->{{3.788078378070216*^9, 3.7880783810021048`*^9}},ExpressionUUID->"6995328e-6a17-410f-8738-\ 8a1d6809e67a"], Cell[BoxData[{ RowBox[{ RowBox[{"cc3", "=", RowBox[{"Import", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"ccsd", "=", RowBox[{"Import", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"g0w0", "=", RowBox[{"Import", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"rg0w0", "=", RowBox[{"Import", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"revgw", "=", RowBox[{"Import", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"rqsgw", "=", RowBox[{"Import", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]}], ";"}]}], "Input", CellLabel-> "In[203]:=",ExpressionUUID->"61300761-bb45-4b64-b105-cf2d5871979f"] }, Open ]], Cell[CellGroupData[{ Cell["Ground state", "Subsubsection", CellChangeTimes->{{3.7880783884469843`*^9, 3.7880783896389627`*^9}, { 3.7880832682080507`*^9, 3.78808326877501*^9}, {3.788084752046632*^9, 3.788084752585346*^9}, {3.7882629830715733`*^9, 3.788262983710948*^9}},ExpressionUUID->"dcd678bb-6dc4-4a3c-9206-\ 61c1204c9bdb"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ListPlot", "[", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{"cc3", ",", "ccsd", ",", "g0w0", ",", "rg0w0", ",", "revgw"}], "\[IndentingNewLine]", "}"}], ",", "\[IndentingNewLine]", RowBox[{"FrameLabel", "\[Rule]", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"Style", "[", RowBox[{ "\"\<\!\(\*SubscriptBox[\(R\), \(F - F\)]\) (\[Angstrom])\>\"", ",", RowBox[{"FontSize", "\[Rule]", "SizeLabel"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Style", "[", RowBox[{ "\"\<\!\(\*StyleBox[\"E\",FontSlant->\"Italic\"]\)(F-F) (hartree)\>\"", ",", RowBox[{"FontSize", "\[Rule]", "SizeLabel"}]}], "]"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"PlotLegends", "\[Rule]", RowBox[{"Placed", "[", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"Style", "[", RowBox[{"\"\\"", ",", RowBox[{"FontSize", "\[Rule]", "SizeLegend"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Style", "[", RowBox[{"\"\\"", ",", RowBox[{"FontSize", "\[Rule]", "SizeLegend"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Style", "[", RowBox[{ "\"\\"", ",", RowBox[{"FontSize", "\[Rule]", "SizeLegend"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Style", "[", RowBox[{ "\"\\"", ",", RowBox[{"FontSize", "\[Rule]", "SizeLegend"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Style", "[", RowBox[{"\"\\"", ",", RowBox[{"FontSize", "\[Rule]", "SizeLegend"}]}], "]"}]}], "\[IndentingNewLine]", "}"}], ",", RowBox[{"{", RowBox[{"Right", ",", "Top"}], "}"}]}], "]"}]}], ",", "\[IndentingNewLine]", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1.1", ",", "1.65"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "199"}], ",", RowBox[{"-", "199.125"}]}], "}"}]}], "}"}]}], ",", "\[IndentingNewLine]", "PlotOptions"}], "\[IndentingNewLine]", "]"}]], "Input", CellLabel-> "In[210]:=",ExpressionUUID->"cd7ca353-7a15-4a03-a45c-503c6b68d417"], Cell[BoxData[ TagBox[ GraphicsBox[{{{}, {{}, {}, {RGBColor[1, 0.5, 0], PointSize[0.009166666666666668], Thickness[0.01], CapForm["Butt"], LineBox[CompressedData[" 1:eJwl13k4VV3bAHA8qBCNSGYKJcmc6SYJCQ2GIkMlZI5MTUiiUk+IiKQokamI EiGaVAohJRV6UCrO2Wemvnu9n39cv2ufvfbea617WEp7w7bvF+Dj4zPg5+Mj /2/ZV7P0vk4DH/n7EtAy6OW0WnZiGqaLRiIk0FPpsWER09PgWsqfqIDmttje fc6ZBssg021riX800+UFaHB7InPEHP170ZBulAgNclTnGjmiP+gXRbxcRIO5 srmOnuhHzhLVSstpMPNmk1owOitMeTJGhQYRFgsfH0b7nhpc2bmaBoEhbPnT aLVcMx9VPRqMus6YXUKzZvJyD5vS4GhbitoN9Jiw47u3G2nQHic0ehfNqdux QM2BBi1xUZEt6NXzKxyOudAgtK2/9zX6+Dz3tB5PGrxx1RT9iJ6+7f5Kw48G X3UjF4+jk6nK+QmhNCh1L/9FoY1HXLf2RdNA+WV/Pv/XgBaJ2O0XNeNp4JDM kBNHC9ZcGziRQoPVp4UiZNDLL25UHPiXBo19c3JXoncsNwlYm0MDvtCZDB10 mW3yneRCGjAdR7zN0aqyKjMfb9GgMK7xrx26KWuJrc4dnJ+fKREu6Jh7u7JS H9BApNz6vg8Z7whtZKiVBq9qGG+D0E5jQ7r6HTSwEMppjEYHcuSTz3bTwL9Q 80giuuTO3f6vH2gAyTViaWihBZdXG42Q+zUPZqOTlvQmnP9BAzHNnFuFaJXm ff2jdBrM/mTcLUMPS2xaazKD78exvlCLbhM+mpouSAe2Y6rFI3R7kdDImBgd BH41tj0j71v03dh8KR1+CfIrdqEjHuukXZSjw1TrQY8P6Lt8Q33fV9BBeIVE 9Aja0GtSxlKLDmu1BsIm0QIfPXdeMqBDyKc3tgz0khidf3+a0+GxDp3vD/k+ ncBmKxs6qGtZ5QgPB7QIzxeayHWiQ9GbZnGJYbIf/hGbcqODjtQBXym0hKKv +iYfOvQLQq4C+thOdfP8ADpcyLGsUENrVzs50MLpsLs7vHAtWl3tg4ttHB3M 7r6KMET7Nz1zK0jE8YxcVAH9PUJ6B3WaDia+Ivc2oWttXtlszqCDu8GkqiO6 3WREv/AyHdIquZEuaBknTznmdTr0vNK/vhtdk2j8x/42HTTTr1TtQ2f2HH5/ rYYOl3nr8gPRDRvly1kP6SAvRvc/iF7Zqxrn0E6H+sdfFsWi+0+eh6JXdNin wMs/jn6zw+Mv+x0dlJU3CCejRTacve/4iQ7MjnuOZ9HnneSDir/R4csy1+h0 9ILjFXLcn3TIOlmaeAnt+Karz4mJ75dgEHUFbWN1NvvGHzpcEp/dWoSeHRjY zROmYHTN7JJSdHBmk8Y2CQrqhgxaK9HZYQazN6UoWKhU5lKLPhK6sX9GgYJp yrX7Afn+C2P129Up2OluZtiMjnmncPWWNgW22zxPtpP3M/mZ9seIgkcDdQ9e oL2fOCU6W1LQQLfr70T/PGhztMyOArgq+akHrW/57hjfdgo2D8q+fI820mUm u7pT8Kls97VPaKZNxcXyvRQwRfq8h9Hh8ZxSgSAKsmdShcfQRQMfnuyMpKAp PirrB5l/123jlUcoCL6YJzaFNmfuXih0koIiY14QhS6+P2vhkUaBT8TFGja6 7YpuzJ2LFFw38R+ZQRfe+FMz5woFodmRPL4R3M9vvVieNyhoOfGAJ4hOlXO2 rK2gIIdv/ehcdNa5oXSROgo4ErRaMbSX4p9xn0cUfKkeDVmAjjgzsKH+KQWn 1aMWLUF7JlzKm/+GAs3GOTel0KoCRvR9/RS8DMpXX45ul3ho1/CZAj9D3cvy aPNSxasLxingyr/iKqEzOwPoflMUpCn7b16Bbo3P3NTEpkB6g+BpdfTzxsKc xfwMKDxWVLcafTv5wsSBeQxQ7t3Yo4Xe/2Hv+paFeN12fGgdmtcglSopw4Bl 788N6KED1ap6g5UZkJak32aIrlXQUG5bxYDZzZ/zjNH9Rckhy3QZ4K91dp8Z uqemvT7MhAGv16yXsSDPc/qP76kVA7TtJpo3oN1jvtvKbmHA2YQ8Z2v02Kqu fyOcGTDa4/TeBr058HLv890MMLQStt+MPqO/SUZhPwNOdT4q34IuTHvnGRXC gM6ouFlH9MUw68KXUQxYst7AbBvaZyjnq9JxBjhLM4J2oIUHOpViTzHgwuK6 0y7oU95jPp3nGfB0VVy2G/rzweEC1UsMYHuaZ+xCm2TtHjx8lQHps+fjPdDN jrRlXSV4fRfl44kOLShyU6tmwNrIUANvtM3J8Kxj9xlgYDf71wdty7erp6eF AaKDhU170VGLPBeuesGAu6t3hfmiXzQcdUroYsBKo5VL/cjvOfXn+gYYEMI/ t8ofPf1a/JXmMAMSU/6YHiDrb5QokvQd57djXnMg+tF6CbsBGgNkOjT0g9Gj b++nrOUxoOCU19UQtO6fY0+T/2HC9N+S2VAy/61eQoOiTJA0EN4ajnZY7rFR ZwkT5mrEZR9ES4tGJqXKMqHjPV9XBFo8/ebjIVUmeFlf+RuJ1qpg8OuvYUJL qKNyFDra28fyrD6O77xkfTT6e8l/CV/NmECxflnFoE+eSm0x3MSENrehDbFk PXnWfOcdmbD/0LB+HNpIWMFi1JUJvQ482cPobSWLE4y9mbB0VJ1NnDmk0nLB nwkrDIOeHUHzlTvxjYUxQdDm8ZmjaEnTJxZmsUzoLJ+/8Rh618O7iZkJTCjg X8Mgfq4h3TaRyoRIa8WC42jfFIagRToTnGLHzOPRmu8222TnMkHr8ol+YpUF 0mcmr+H83J72T0BbmXi+3lDGBIHbelPEGS4yC3PvMoGeax+eiBb1dnL53cCE 7zEG48R33WZyrduYML6R4XaC7C9Q+pz3kgk/+FKb/2fJR6q0Hrz/9i/5JPL7 we5A20Ecf5NGNLFIhvedglF8/hvDJ8TnDXzZ1CS+n42M2EkS7x1fwJ7BBMfK t5uJ5R16U67N4vcJeiQSqzdbvmUJsaDA7kEVsafiymWO4ix4fexHL3Fz+Im9 xZIsELg2TSd2qnYt58qzAGpezksmz/98nblVjQUJtXFSxPQZP8uStSx4WsyT JZ4rUpQ2a8iCxSe3yRDbCru932HBAt/tRySI66ZPqJbZsqBJIm6GjC9nGhXG t40Fou23homdXY7Wu+5igVVMQBuxq1nOTPkeFuzRuF9ArEI9N/8nkAWBHy4d Im6KEz++K4IF7mfmWBMrdwY0VB1mgfb6OQuIt07304WSWDD9X3YvmS+HEY9V u8+yICezLotYqpjyvJvJglXgt5W4TPf6+bn5LLg+cUPo/+fbt9GrmAX8mVH3 yPoYNpuM1ZazYItJrzex9kM1CdF7LDg23C5ITEtW19vTxILs1I3FZL1PKpi7 1j9hwaU1zubEX1ICouZ3suBEF72b7Jc5zSXp+/pYsP2Qyl5iXjuv7MEQC8Ql R36Q/daQ69sqMcaC6jqdcOKNZsPv9v9mgbHrot9kv+ZXHfr2kMWCcioxgLhl ajl9IR8bRDISB8n+ruR7P+s/lw1btBbaEwd8viX0aAEbYl9o15L4mEo7L7Jk GRvS9n2RIt4w77RYoBIbUmcUokk8WdjfEWrRYINw19QbEm/P7RSnluqw4bqc 80riD4J9L4OM2eAxbBdH4jXmaHdO6wY2rFPofk7iOa96qZuUPRtU3k0uIXa8 dlU4ZAcb9Pgve5L4T3EML3nswYY9Nweuk/zgeD9lvbQvG8rbbo+S/JE39K0x JJgNi3ctUCE+1HpmXdshNuT4zfE6ROqJT/Ql6WNsWD95IYvknyeNt36FJLOB M1H+guQn814lw7ZzbOjz9uCS/GVR9jVcOpsNnQ75asQdJuN5IQVsGK0J20by 3dfT+vcf32SDZEZvTBj6xMUXT6Sq2BAw/voyyY8VHsXtwfU4Xt3OBpI/935+ UtvazAaf2ag+kl8LFbSyJZ+zYW7jit9BZL5lPwUEvWXDK5q/IHFTb7dmy3s2 VF8zlST5Oc9eYnjJVzZUPS9SJflb4HhG6oEJNnT4X1kbQOIreLfio2k2CMZr GJJ8HyYdUrqIywZ3cVsTUg8mHxcH+AtwoEi11HQ/eqRy5HqjCAeq386YkPrh PKixc9FiDiQtslq/D21mH5MasJwDct+P6JF6U8B7qduswoHDbiVr9qAP/1Rz l9TkQKH7E1VSn94onuWF6HHgNL13GalfV7IYUk9NOWCsPCDmReqJvX+VvDUH Kv7rnN2NLrb60hrjwIFxi/pJUg+Hjvo4dbmgtTMG3NEXWGNuq704UFXn3U7q Z2NN9MdkPxyvW6FiJ6nHd8Q+fAnlYP/QnUnqbcJU6Q7TGA4Ud8TEupJ4Peho mxPPgYQSCQ9Sn9V1ufVUCgdUZC6bOJN8aVBxfdsFvF9ZSobU89oj/nOrcjhw v+UUk9T7dQIaE2LXOBgv42+3old0TG8MKuWA7yOzUif0xZ7W5R13ODAqlxxP +oWj8rkhGg0cUF/cvMMBPVgWY3z6MQfWFfxYQfqLuljPExMdHOBvFmGS/kMk dbP15h4OZEfJttuR9V8qMFj6kQPe3RMXbNH7PW2uCo9yoPObiSfpXwR8ZP71 meTAcNUijU1kfeSO3K6nOJCrHUptJPUr6wAlOssBhr9jsxU6/dm3A55CXGC5 1Jwm/dGt2t+i5fO5kM/N32GJ9tqd8oG1lAvfXETlSD9V86i810KeCz3+f76Z o29+9J49tZIL+7WjK0n/ZVxTuK1DC++viog2RQdah3WLGHIh7hvdzIRcz3gZ bwtc4HRxBEn/VpZ7b1eSDRfkok6+NCLf77HG56ETF0Y7M9NJv7fnvU7mlBsX tn9WczMg+UfiKU3ZB59300JWH53DP3Z8ewAXZFWHvuiS+lSZZRgfzoWonXw3 dNDWS7tlS2O5cMiqJID0l6KG+VpvE7iw7Fv3am10+GIqmErlgo9Z0i/Sj0aW DfQvTefCli33q9eQ+ZrZEqaXy4WhhRERmmT/z3XU3XqNC4vOV+uSflb/zaDK gVIu/GyJpDRI/F9PHku9wwVf4ds1pP/V7n2n+uABFyIbrMPV0Pv8Oj5yWrkg 9clq1Uqyfq5+YvYd+H2hN76qovVu3Kor7+aCSmhgtgq6a3v6B/mPXEgbzLBV JuvprRh7bYQLZx7IsxVJfHW4/Ks3yQVFIfEbCuiki+sU31NcsG/2cSL9untT zaq0WS7MH5dkyaL5rQcrtwrzYH+8dj7p72NW3y5fIcEDl+QKcxn0g3BFVVFp HnzknBuSRr9eYrqUX4kHrMGuI+R8UC71J37OKh6UasVJSpLx4/x85XV5QP+V VEnOE+/XRz22NuVBtxzNajFaddeqy8esebD5YVvfQpI/+5N/PHHkgdszth85 j6jXptTJ7+QB1zKdEifx/XstL2UPD/RWn4ufj/Y9c/wBfxAPBJMm55DzTENS 5PTZQzwItqs6J0LqxUfxopXHeRBwvHfBPPK+GVs7u1J4MKvknT4HnXbLKPJc Og/U9LZICKON6votlfJ4YCvllUnOT9+dzb87F/OgcY3ryn/QJSeDg9UreJAc o/ec/3/7d+/zvHs8uEaxY/93/rqk8KeyiQcLbhQZ/cXzmdjh4vl7n/CgL1Vv zh/0+M8pZu0rHvy8enuUnN86aYINJT088Pg+t4uHbkz94mr8gQfLA7a84qLv ViW9Dv7CA+1l0X0cdJX/Lzn4jweXZpN/k/NgfbWi7Z0fuD5Lj0oRPzsjs6Vt igd+PjsdWej/A8STdlU= "]]}, {RGBColor[1, 0, 0], PointSize[0.009166666666666668], Thickness[0.01], CapForm["Butt"], LineBox[CompressedData[" 1:eJwd13k4lVsXAHAUFYpkikxRhrrpGlKKRRGpEKLMRKmIUimSSiKkZIhGUxki Y0hk7pZKRZIhcylNnPOeGX1rf/7x/J7zvufsvfbea6+l4h1o5yvAx8enx8/H R/4Huc9lDTKngI/8Dfk1cBssy15wpqDy662TgsQ/6umKAjSY23FzSBL9R2JA 94QwDVomjoqqoXv1s4+9kqABc60KVwf9zEGsREWeBndz8vJN0SmBy3+GqNKg 0ny+vC3a51L/yvZVNNgsaWLtjlZPN/JU06OBibjtFn80a/pWeugmGngHZgiE oseFrD+8M6OB/YH05Gg0p9JeXH0nDaTYhpxk9KqFRTvDd9MgXyVqbRb67ALn +E43GiwaCzEsRk89dH6tuZ8GZrBEphYdRT1aeO4IDax0nZ6/QBuOOtp+PEmD 5Q1bLLvQYqfskldH0ODll0+3h9FzyzN7LkTjeHOkW36h5ZPNlHuu0iCeN13H QdvLb/TTTqNB3o+4WMFhv4YCy6jSqAwapBxv1lyMVlumOt2XRwO71Oxby9B1 KZKWOqU0GLJdPaSODnm8NyXmCQ2Mc9xYOmj7MNroQCMNgq4ZDBuhbcYHdPXb aHBUquaOJfoQRzEqrgPno/tltT06t7Sse7iXBl+/Vye4oQXFb65aP0oD1w36 zQfQkZJd5xJ+0CBDxbntKFq1fl/3GB3XI0s9Jww9IrZVe+M0DW7X3rGNQjcL nYlJnEsHh8DatwnolmzB0XFROnyuiVRJI+PNnjA0lqLD/cqFOzLRx5p04pMV 6LAs9PjuAnQZ38DHiRV0MBGsNipHG7j/lDNdQweJPZ/m1qIF+tz23FhHh+vH ugpa0JIhOld/GdOh0aFY+w2Zn86h+i0WdLgz65vUhRZaKPg93YYO6kGcrs/D ZD/MEZ10ooNH/kHWF7SYso/GVk86mBdUsn6hw/doGN/2o0PPsaGPDPTaEpud tCAc35zx5Bm0hnrvbsvTdBBxaftXcMSv4UDdf053z9MhPzS2SBQ9cUzWnrpM B4aX+nxJdIXFawur63SYFM80lUe3bBzVz7hJhxvRrL3L0XI2bgrMLDr8btXa pYkuP284u/0hPv/KUH0tOqkz9FNmOR2y0tX716FrzBQLWU/pIKA9FWiEXtml dnpnCx3E42+MbEF3X0yA7Nd0eFUip2eFfmvv8pf9gQ7r7oT62KKFN8dVW3+m w45dVcGO6AQbxcM5XzC+b955uaLFzxYpcH/RwVfDStcbbf32/UcbJh1Whj34 eQBtsSUu9f4sHRxbv1wJQM/09LjyhChgCM2XCUb7J9Vp7hKjgM9kYcwpdGrg upkHMhSEBTGGwtFhR8y6p5Uo8E5rUIkk8782XmWnQUF11RGrGHTIB6V7eWsp ONv+1/kKGd/GX/Gz6yko6Q+2v472aLU572BKge1Im+4N9K+jFmcKtlHgNTh3 +hZa3/RDOJ8dBZ87VQoz0Ot1mVGOzhS8qFcxu49mWhQlF3pToJw9tyUfHRTB yRc4TMG38LZVj9DZPb2te4IpULANDisj8Xfc9e1RGAVNS/+WVaKNma6LBS9S 8KE3oKMGnVM9Y+IST8HupPqeZ+jmO7ohpckUmG6hXjShM+7Pls+7Q8HdCZGM 52iDd+4st/sUHLos5NGGjlFwMK0ooiBLaUywHZ1yZSBRuJICy6Kc5Pdod+XZ b57PKHDVsRTpQh+L7dlc9ZyC3GfaAZ/Qbudu3Fr4loIfXrV1fWg1gfX0fd0U rFr2e3qA7Dexp9tqBinw/dWiNULGn698T/wbBTe7TCy+kPm1+9H3T1Lw+oOX 3Td0Y0TS1jo2BZwJ9R0/0C9qM9KW8DNAWTZJ7zf6YdS17wcXMMDUNVtkCu3b 672hYTED3Kv2vKejeTUyMdJyDDipWR7FRB9SL+7yX86A2LIyDQ45D0qay5u1 GJBm51TDI/s1OypgqS4DshZkGs6iO8tbqgI3MuB+99V8vlH8PZuvfM+3MOBB req8OWjnkAnLZTsYkFHtai+IHtd6f/WYAwNSXxkmzENbHbrZ9cKVAZcYdVUL 0LH6W+WUfBkQvO7rWxF0RvwHtxMBDNibUP5xITo50Dzj1QkGbJpZ8VoM7TmQ NqxylgFykUYli9FCPe0qpy4xgKbEvbAEfclj3LM9gQGtnS5mUujBoyN31W4w IOmuNyWN3pji2h96jwGDM8kpsuh6a9rS97kMUA88rSWHPnI320m9hAGBNLFy ebTFxaCU8GoGVETv0VZAW/Lt7exsYABjjf09RfQJCbfFWi8ZYPDtr4Ay+mXN GZtz7zG+5e7OKuR5TtWVjz34/rXA+8vRU28WvV49woA/ETpjquiW9eeFIycY oHU+V3oF+tkGsW09NAZ4JrdvWokee1cdrc3D+D3JdVRH686GP4+aw4SXkzo+ GiT+je6C/SJM4G4I8tVE75R3MdORZIJGioezFlpWJDgyZhkTHAX4t6xCL0p8 0DSgxoQL5x2UVqPXFDH49f9hQpGE8x/ikx6epnH6TOh4vLj8H/RE7tdzw0ZM 4BwKO7QGffFSTIPBViYs07khpU3Wk2fOl2DNBGMR3wri9UJKJmOOTHBjjm1d i96Vu+ScoQcTQunSb4iTBlQbrh1gQqoAb+u/aL5CG77xQCaUqCZWEEtvajUx OsUEA0aljA5679Oy80nnmHBLyuoY8QtN2ebvMUwYvGjVQuwTzZhrksiE2c3V C3XRqz9YWaSmM4Fnk2RNrCouG/szkwndD/suEW/Z6PZmcwETrjkmVhJf3y23 OL2MCSttKz4Ti3jY7P5Tw4SbaWbTxGVO0+nmzUz4ob1ZQo/sL1AZvPUK5y9d pPR/Sz9To3VivLdHqRGX9XccsuxnwuK3bcrEwtc9Su+OMaE3M1ySOGGdD5v6 yYTw5jt/yfcbtw3BdgYTBPRWjRAr7uyKzpxhgjd9RS2xRr3pO5YgCzL4E64Q uymvXGq9iAU17vscieuDLnjnSLOgXPiBNLFNiWMhV5EFsYKO7SQ+woNZTFt1 FhjbBIcT06f3m+Zqs+Dd+Iwq8Xzh7PgZA/z8LaORxN9SyOmTvQkL4gRdnIgr py6oFViyoDL2nzGyfgqbTgTy7WKBtUnbQWKH3WeqHPey4Pu8hO9k/R2N0qYL vVgQNXxqH7Eq9cJ4ziEWqL6J7Sb7p+70orN7j7Ggqa3ZnHh5u19NcSgLPHpV H5H9ZjvVTReMZMEsr0CceOeoi5ZrHAvuau8NIPtTJodyK0tigemJNS1kPxfo ZiXMv82CsddaUqv+H2+fWvccFlxaZ+1J9r9B/cbxikIWrC5Lu0/Ox9qn6mIi j1nwHoS/kPNDi9LQ86pjwenBLEXii0rGjlWtLFBJ9LYj520o2u/EwnYWvHTY do6cx3n1uYn7PrIgWMspj5xXXguv4MkACxQl4tvU0DXpPo1i4/i8yLev5Hyb GY188P3DgpMyh2fI+b9dfPzLUxbGQ19qEXHDpDx9MR8bPvh8lSX54hHfp5kD 89lw8cGAAsknfoN5gs/E2aDHnVmmhJ6MTxCWXMqGrx5m0iT/bF5wWfSQChtu dpcuIPnJZHupYIMmG+Ys28Ym+evFNuVJKR029IyLjpL81jv346vDhmyQ2zjz cik65ExHWuNmNryUkisi+fBWiZSTzHY2jITsi5dBW2feEwqwZ8NBr54DJH9G WwflNrmwwaUjDEh+ta6O3iDrw4aaNqslkuT9gS+1Af44fqutoxLo442x/zYf x893HSkm+brb8+QN2XA2eAw1hYijW2vzfgdEsSGAuWUTye/GXSoGzVfY8D1p aprkf5OC4SDZVDa8q371RBTdtvHbrYC7bFju23GM3BfDl/Wrmx7geNMENYTR F5JftsoUs2GRg2/PfHSRS06LfxUbclOnLpH7x3uwtaKxng0PPQvWCpH7RmlN qvQLNsiXXf04l8R72We/w+/YwIzNPEXus7qujtUNn9hg8mNQWoDMb7vYiOQw G6gOq1Jy/wmcvR5z8DsbJDePWPzF+5Hu76r8bIoNWesf9M6gA2UD8iW4uD6V qQen0T+bcvwOCHBgg5wXg4sefTSaVSvMgYrGsrPk/nXo19wjsYQDi4riBNlo o+0hMX7yHNja/+Myua/v8l7p1qtywMWmU4SBDv2l7iy9mgPWQpvjyP3+VjmO F6DHAWX+9fNp6DspDJnnmzjwFh5fmESPbT9QrGiO7zc94ZJ6IWfLUGPITg60 xpgH/UIPnPG0eb+bA+JJe0ZJfXGNNe60yp0D64Zp9hPo2vKTfVH7ObAxWLKJ 1COepaK9Q0c4oLCt7p9x9LnJfPtNIRz47P0rldQvMketLdMiOHCmIWdmFK2h y62iojnA8Rr1IvVO2bqirF3XOOBgkd88ROqPsAPzi9M4EBvEXD6I/ldA87to JgcyPrdFfEavaJsyO5zPgeSElb2knkrubJRvK+XA/sgFOr3oM4rpAZo1HJCu DY4m9Vd/QYjh5SYOrodv70d05Sm3C9/bML6cz1qkXhOOsTK36uSA08znU51o PymB/vw+Dpj+tm0l9Z2vm8U9oTEOJB5fvvgdWsBT7qrnTw6YX7NzJfWgkULY wyqKA+6mww9eo6VTDlIiMxzoi26fJPVj4n9fDroJcuHZPjnDl+i8ij8ihQu5 INTVcuE/Uj+6RveypLhQ2vemrZX0F88Ku0wUudAUoi/Rgn7Q5zFzaSUXNuTz 9pB61bA8Y1fbGi4sCVK+10DqN/PADmEDLti/zh4j9a3h9VcRlsAFVl2UZh26 IP3x3kgLLgiYPw94Subv8o/nUxsuHPHyLX2C9vqkkzTpxAWTJfuoKvQjsee0 5Z5cOO1cv47U02n842ft/LggbRB6qgKt+CjFICIInZ/0hNTf5lIdy/JPceFM iQi3BC1icHvNu3NcsNg5sqGY1O9LKH8qhgsnI2ROF6GDC3q6pRK5IGzxsOoh idf0jkC9dC4I5txhkHrfYb61rm0mF7xTf+vkkX7hbb/qwXwurFC8G/gA3ZYV NR5TyoX4XVR+Dnpt1we1J0+40LN1w1AWet/+tj5OIxcWzPpLZJL1c9wvur2N CwohV03uofXu51UWdnBBpizj0B30e7vEXsU+LlCPMq6R/sTIQ/lU5igXHgdc LUsn56tt91W9n1xw/e3/jvQzkcn/Kn+iuPB17YaJFLRzXblW/AwXdutTf5PQ /Ob9j2yFeJDHu7OY9EMhqx4WrhDjwXDkOqVr6CdBymoisjyYflOnkYB+I7lJ il+FBzM9umvi0YUysxHztHgwkpumHUu+//R+H0VdHjw0+Lma9F+fNpxoMt/E g72X16y8RPqJvVo3w8158OO2h/xF0j90R/1otebBvmMRohfIeauIrlTcw4Nn CxI4EeR8/9HmRXvh73vHjZB+zyf27BP+wzxQPhvyXxjpXyODp+KO80DTxS7v NLq3b1H2yrM8kOTKR4WQ8V63bX8fzYOvzlino+Pz1gdfSeTBzfAwHdJfrq/s NlW5xYPk+R1iR9ETDsYTDjk8WJ2VJhCIzr3o769RxIP9Vm+FA/6/f71f3HrM g838JzUOk/7rhtLsozoe1D2PdzmIFg3NWejdyoPem0tySH/77dcks+I1D26E CwvsR7fT5tbkdvKAeeToCR+Sn2KGHA17ecA6YjlL+uOy4sg3/kM8SA2/etsL XXzgtwJ85cGnm1ttPdFVJcqWpT94UPM8YKkH+r9YuR3Nkzww5hdku6H/BxGr b3I= "]]}, {RGBColor[0, 0, 1], PointSize[0.009166666666666668], Thickness[0.01], CapForm["Butt"], LineBox[CompressedData[" 1:eJw12XtYTVsXB2AKIU7oqlJURCGEJBlE6R6lECWVInSTECIkISqSkApFSRTd UIrcki5OKIUohFBrr7X32ruLbwzn+fYf5zzvU3u11ppj/uacwzjPAMf1Uv36 9ZuO/6H/J+81e+9f2QX96NOyocx+/9DNz6u6oM33+/UB6NPacbV3a7vAcZLn lmHodmU3w+z6Lui56jZWAb1orf+p8w1d8PlL82M1dKa4QnCsuQuGt37w0Ear fPVYtqelC4KTfX7poeN1za5vaesCZaWggBloxbsbZNzbu6Db9k+rMfpSWv1a +44uUDcbabsQbdIUWTC/swt2cxlXLNHvfXfLGrBdoOZbJnRAH1lS5K7Jd4Hk tJvxCvTCMOObcj1doBQZHuCO7v/3wRgInK6dtB5d1SBr3ynNgOx5m4LN6NQB bmdbZBj4WCF6vBUdfkDQVivLAH9N93kY2te5Zkq5HAM2y5oeRKBdwzpDcuUZ eH97VM5h9ArG5U6aMgM3X784dgLtXiLVF6fGwIOCYWtPowObBLBfk4GRzjU6 yeijtnr7grUZuJCr+P4S+uaIjFJPXQb8qj4cyUK36Pp2O+ozsC19in4uWjV+ y+xFBgyUzvtTWohe41AcYGjIgEX8cotSdNsNu6vaRgx4XQt6VIH+Jj31o7wJ Xi/m7ILn6E02rqoDgAG3OTWFdWi/Qy+dWDMGjLPl9BvQn2+fjmmzYKDft9Vn 39Pff53xpN6agVu/bg38jHbpkJJ6ZM/AshLlLT/QNlzWvHxHBt4uj6rtQt/r urA93YUBu3ypaTz62sf3eQmuDGS/jz7ah1Z+5Pcr0p0BUa1664CPOB7nzfRC PRnQO3Z3tiza14c+DFiN8Dk0Em2t8/qiix8DTm7qL5XR117FfbDwZ8By6/vR GujosCR1o2AGJjpmu+mgP4/6uUo3lAFGHJmshy69cCxROYyBq36bGqehFTV2 vJIJZ8D68pqRRuj22BvyfAQDrzNWmZuijUUzHNsjGbAN9ty2CC2zTCquIZqB nEHb06zQjhfG1D6NYUDilfjMAa364aBccRwD0488/OmM9pCf45CZgPe7s3v4 GrSOidGJpCQGPKaDnif6aoNzTXQyAykuoaYb0DP9feXC0hhYHnPYzB/9qHuT g186A/tebTMOQbtFeJ1wzWRAx2C+Vhha0mdXY32dgflnP/bsRaeE6MuZ5DJQ q+TxLBJt9anbXj+fgcbLxVFH0d1L7h9XK2bAdfEvozh0Xvq2atkSBpZyvY2n 0YHdGv/0lDFwv7B9y3m6H6u7dh0VDKQfzRGkoXuPW8c0P2VAOshh0xV0dRV9 GHjj+7w+G50uZTaspJYBrUCtaXno/dOybK7XM9AWvXxPIXq9y8CjyQ0MaOav u3cPbR/iVBnTzEBNl9XPcvT8I6eGhLdgPcDwEU/Qs848tfRvYyAx5ZpOFXrG hd9R7u34/keM16+jn58f8sS+g4F5J3dqv6bvxysNgk4GQDdzeBNdf5+SuQHL wL2qW98+oL19hhzU5HE+HkgqbEPvW/z7gVwPA6NtXbd/Q19UfYqRIADJeOHE X2jhkXMLOqUFUFz6rZpBXzEK2tsiI4Cih7mbROjbY61Ka2UFIJxp/6cbPdZC u7dMTgA7Rt2P7vdpQ9mXK39McuUFYLJmgOxA9DCL92FpygKYP0rjwBD0sbH3 i+PUMANmDmOGozcbXeQjNAUg87B6xSj0lSNRRsHaAqguWX9bCQ2qAaGeugJ4 o1Mno4Y2/LIy31FfAOP4EY6a6EO/FrNmBgLINhp/Uhs905A+AtjeOvy5Ln3/ tnawtpEADnZXivXRV4OUcuVNBFC3d43mNLT/JtlOaRCAe+ADk5noE2lSBqyZ AKa96LGfg/5HoWdLm4UAFp6WXTUP/eOBKLveWgAnn/9atQA9IYf7UWEvgIlb MpYtRt99xenlOwqgJ2zGAkt0jjG/Md1FAKO4+PG26L7GnqsJrgLwa3rSfyk6 q0C6PdJdAP2n1tU7oW/XDNMN9RTA246cCyvQquNVMA8EwCmvW7saneCrk+7i h+87y1tlLfrdkmltFv4CiE6Z/dwT3fnIRNsoWACTRK+3+6BrP1p46oYKwCXX XMMPvefcsjTlMAHIV+8v3YLmmNUtMuECWGt3fGUQ2qR9vSYfIQBjgw0dIWib XQHu7ZECuLh1RNgO9KTsHckN0QI4oxrVfzf637CI5qcxAtDUqdq/F231NVqt OE4AhrEfevfTeHfFuWYmCOC1e3nwIfTZJPoIYGhs0MdodOiH1IboZAE80+60 ikGrP7yiHJYmABVV0+xYdNziHBe/dAGIglcOPoWu87qd4JopAK+pZu6J9Pxj 79RbX8fxs5VcP4su2HVf3iRXAO1V+0TJ6NUhFY76+QLod/PV3DT0i6HP4tSK BXCF47dfRsvCi1rZEgG8S/6ecwWtOLJOrqdMAKlXsz5k0Xjvq7fvqBAAo2g8 NAd9/PgbzAN8ns8JU3PRPcZvMQ8EYK5Sbnsbff9es2xJrQBaGu54FtLfX/rB +nq9AOY5HfC/g65mP0YnNwjALUo1sAStltX2NKYZv79tn28ZemHgV5nwFgH8 VM9f/pC85LuFf5sA1oQXGT2m3zf4GeneLoATSUdGPKPn0e2ssO/A+vbX//Ac vWK6QBo6BQC9Zy9Vo+/ZCM0MWAHcM290q0NLQsURmjy+D8svw+vRI271lMn1 CGDQgAe3XqP/bg/6sVC3c7NDI7rSDS8nzYJH5ueWJpqvVYPCW2RYuB0/ZcN7 9FeboSW1siw8n7X4cwt6XvNwvCALGfGTVraiN+4ZiXnAwuLMd2Wf0UEGipgH LGTu9NBsRy9jVDAPWHgpnbf1O3roY3XMAxZKlrws6UAnZ43FPGDB37y89xd6 cKoO5gELLT3hhl1ou4yJmAcsqPjLrhXQ/ZVMxjxgQSnJZx+H9vo8DfOAhdd7 YhNFaBeFWZgHLEiHyV4To70XGGMesLDox6rybnTsRlPMAxZO1+1624tuOLEQ 84CFP5ODhH/QprfM/dssWAjrNVaUat1QVvKv1fV6axZkFr2ePQC9uguXD3sW snrNVw9CKwzD8nNkwW1K9P7B6J/aWM4uLEx8mZI9FN0yB6eHKwuDOqIbh6E7 rXG6ubPAhS0ZIoce44rT15MFSXiDyUj03+2BDwsj+XlB8ujnAXg5PxZMv4Rk KqLtQ/H2/FnYbbWvTRn9ayc+bjAL1ePWaqmiM8Pw9YWyMDNgpJc6OmIHDkcY CznTEzM00Nu34vCG4/U2dnaMRUdv2o95wMJ7xTGztdGFHofwBlmINxqzfzxa yukI5gELa6o7a3XRG82OYx6wMOdtopYe/f2p8ZgH+LyrR22fjD6uchofmAW9 ZR7VU9E2fygPWDC7FzFxOrq+DS+XzEKsWHqfIbqxEm8vjYXZPiE1s9Arc/Fx 0/H+pf5VmoN2OoOvL5OFmBeaLnPRT/ficFxnYf5T15h56Du+OLy5LFgxB+7N R09YiuWSz8J1m3OtC9D/GGP5FbOwsT5VahE6SAvLuYSFvcdOjTZHLx1WjnnA ws+toROX0PsT4nSrYCH/iIWBFTr8I07fpyy8qR0w1Qb94u/+gIWlFrk6duik IrxcLQvaP2zkHdDvLuPt1bNgf79evBSdirur5AYW6h/YNDiim8Px9TWzkMfd zFmOPrUZh6OFhfYVA/a4oCtdcXjbsP6+mS9aSeNlheXSzoJn1rb+rnS9OVh+ HSyknz1ZuBptMRHLuZOFBXdS1rtR/ajQ9MD3N+Ss7Fp0/yE43XgW9kftz/RA q0i6MQ9wvGatAk901o8/+EGP0njhhd75jvKAg02xI53Wo61q8PZkOPgwLqTO Bz26HB9XloNDj80tN6Db8/D1yXGwOvxQ4UZ00WUcDnkOPKxma25CR53G4VXm IFHXee9m9IrDWC5qHPSptL7ZQuMVhuWnycHpMS0TA9DcJixnbQ7cZtkGB6If u+H00OVghYfu7SB0ggNON30Owi8E/QpGe9P0NeDgzW+9cSGt/98fcOC53Ml2 G9XveLycEQdqVd8DQtEvlfD2TDgYtKLr6Hb0xcH4uMCBFueTuoPqQ4Kvz4wD /wyb6zvRCzpwOCw4+OaXkheGlnuPw2vNQYKZ581d6A81WC72HARPOZWxG32j nPKAg336sxL2oHffojzgoGSe+e5wtF065QEHk9dVrN6LVk+kPODg+Zk8w33o jsOUBxycbZUbEIG+G0Z5gF7YXEW220x5wEF7yuIT++n53SgPOLj8Y5vtAfQf O8oDDip1AgccRI+dT3mA42FjWEiumEJ5wMG6tfe9Iymv1CkPOKj2UBh+CH1O lvKAgysOM26Sa8VYfpEcdOqPto+i8fyK5RyNf497+oX8qB6nRwwHFdkLww6j D5XjdIvjwHHZgcHRlF/XcfomcGDbGhNH/m9/wEGu5zrFI+jvBykPODhY03uS fD+A8oCDR5O8hh+lenOlPOAgKCgugixcRHnAwZGMw53klVMoDzgY8czS9Rh6 IW3/cjmQaqwrJWf33cYBwXp4ra0Rg77wpQhvkIOp5fN3kBWq7+EE5sA3SesF +Z98nB5lHAxbW6N+nPLsHOUBBxqjzH3JcRGUBxycyzuQTVb1pTzgIGrB0Q7y GzvKAw5iYqQnn0DvMKI8wHredCqA3KtNecCBoNG0kOwlT3nAwfLGP1Kx6JyB lAdY3xvfOpLfSVqxALG+jrzIIP9kvuKAcKA/r7GP/Oknbk878H2G97rGUb38 +I0TmIM/y+beJYd2CLCgOVAoOKEZT8/bKcI84IDJ6o0inxFSHuDzTDvIkv/b Hwhh2BLt9SfR1sMG4AQRgsWvt43kULXBWDBCsJpwzfEU+vAUPB7JCkHx98ka cpjZCMwDIVy1TFiaQPnqqoATTgiDDG+8IstuU8ECFIJ+zkf305S38eqYB0JQ uzO5gzzp1ljMAyHUu8TuSaT3/1oHJ7AQnA8Okz+Dft0zEQtaCBfM0rLJ/SdM wTwQws04e+skGj/H6ZgHQjgWpNBBloqYhXkghOmfmLizaP6qMU4QIXjXbzE+ h1YuM8WCEcL3OUNayKsfL8Q8EMJDuUeR59FP7uJxy0wIXSvT9JLRq1KtcMIJ IUjhQjV5VIgdFqAQFpvdDbqAFsxehnkghM2fePkUtKR9OeaBEL6yLvlk3SMr cQIL4dbOV86plA+qa7CghfAqMIQji5LWYh4IwfKt4ak0Wl8Ge2EeCGFEgfyM i63/3x8IYfIAhRqyyy08fvgJ4XzFzE2X0P6/N2MeCMFdtG3QZfQ11UDMAyFs Pf8mlfzPrK2YB0JovrVqbjrNx/mhOOGEcMa05yXZ1mgnFiCOn/F9vwy0juZu zAOsh6sX+18hC8MxD4Tw4HBGItn2XgROYCG8aKqcfJXqKeggFrQQJqXJlZNl laIwD4TwtiFkeSY6IzMa80AI7/ZLvpA3TD6GeSCEWSmpO7Jo/rw5jhNECC0h s2WuUT19jsM8EEKr9dFY8lLnBMwDIRiNS1HIpvHSTcI8EMInUdBJ8pnVyTjh 8PerpYdfRw9l0jAPhGCcsTyCnPM9A/MAf77Hu5McZZ6NeYDfdzZ0zaH1WCoP JzBef2p5Kbl+XBHmAf580D8aN9BLLpViHuD9fRi9g9x56BHmgRBmF7dVkf/r Hwjhfby/+k1a70PqMQ/wfW8u9CFr7G3GPBDCtCX3r5FP/2jDPMD3M+7QDzLc +Yl5IITXPbITcml9+CHEPBCCXsPS1eTJ4f2W+LcJ4eWt5UfJwVuH4oZNCLUn lAvIPyoVHtl3CEFrc1ITOfGgJk5gIVRavu0mh6bqLTJghfB4/FulPPQRjdkY +EJQkU6aTK7tW4gbIiGUtiiZkm0X2mMeiOBOqZMlOe/0KswDEYx5+suBfPeG J+aBCFjdKGey77GNmAciWPRefRW5aLI/5oEIBv+44Uq+FhuIeSACM/sFf72w KBDzQASMTPUK8s5L/pgHIlBVWeVEdnb0wzwQQWH4R1tyfYUX5oEInpv4LiYL Ja6YByJwcvhu/Pd+WAfMA3Sx3xSyVp4Z5oEIKne2a5Bn/N0fiKAg1usf8qft 4zAPRDC6r+nv+5m5bzjmgQi6ypd9JU+0FWGgimBBc0Utuazp/VTWTAQD7GYV kbunVmxps8CfK1xKJr81v5Jdb43fn/5PBHn12MMY0Pg8GaGe5H2lPnr5jiIo CmxeSLYcuwgnsAiq4kCTnGs+5mqCqwich6RKqB7uT+W+RLqLwOVN77/kgKbK 8aGe+PzdK//WT4XNBW8fH7xeaO4+8pdx2y+5+Ing8cnry8lS/dw+WfiL4MIF gS5Z+YvDOKNgvN/EAxKqV916Bw/dUBHk7HH7W7/TKtekKIeJ4POyiGSy4dPQ 9zLhIvgm/3sL2aA6eQwfIYL8hxmm5PHNdWvaI0Vgt+7qMLIiM+p8Q7QIcjsE b2n+9Mmta3oaI4L366Ovkj/NuqdaHCeC11UbtpHve+lgHoggaVz8QvJ/+wMR TPAeOJzs90atMTpZBHtPPXhD83XmmGu4gIggLe9ZGlnstwQDVQSxpaqbyPll nYmumSKwLMo3JG/WuPLG+jqOf8rZbsoHjYN+yia5IlDe9uwB+WnX3BX6+SKY NscsmrzFVyVRrVgECt8GOJBlP0u9kS0RQXnUyL95c9FPotRTJoK5ChsaKI9m 8n0uHRUi2HN88HlyacyIxOanIjgiZNzJi/QN3lRVicDTVncceaDTVOWSWhFc NpnYQnlnG/XR5Xq9CH4G7EgiKzy1PJ3cIALTb8p25LWK3q9imkWQeGVQN+Xl 1ABDhfAWEYiyFl8ih78qcPRvE4G7oM6cvMzyV6x7uwhe7Mv5RPl75UljtX2H CMyd3u4k73XaOQw6RfDAz1mW3PSjysqAxff1RPNvnhfH1h/S5HF8NhiPIauZ xT6U6xHBJoeLybQe/PfvCzzI7HJVIW+o1J7XKc3DtR/rYmj9WJbWvb1FhocV aUU9tN6UHIy6VSvLg+x5dx9ydsiTX2VyPDxucqqk9Uo96O6kXHkeDnucmUge GeblnabMg5Pe5Aha36JO3L8Qp8aDjrFcPa2H+3NrGnADA33HFo4j9304OSpY m4cP4x9uoPWzR3WYracuD0+kT2XRervHc06koz4PBRNuf6H1eX+BSqmZAQ85 x7XHkIcoXxfOMESbfLKj9dy2njfQNuKhUfndblr/I+f/8ZM34cF5eP8c2h/c di67Ig08jFe3/0j7iabR874IzHhYvLhCicwdCZ7QZsHD7Ugve9p/DMz02lBv zUNoi/5h2q8MD5HLrrDnIXr5mAra3wzt2NZ125GHXx+NpMg9IxLnpLvwcOnw LjPaD335FByR4MpDlmX7Qdo/VawbUhXpzoOUVvgz2m8lxriqhHri+1cwHUFe /3d/wEPG2PGraL82oWNygYsfD13msy/T/u6dRo7MEn8eThwM7KL94eG+b65G wTzsaf53AVnvaMsN3VAe7tl5xNP+sqIibpBKGA/2DYpfaL+69Fqv++BwHqbt Zk3Ir+frFPMRPHgb95yk/a/D3oGK3yJ5aJeb8ov20/c3pwU3RvNQ+ueQNVlb hq97FsND2+ChmbQ/32s/xPBOHA9r9AuGkGvNXiVkJeD79T26mfb3Km2rJWeT eFhwL7qOzgeF1fmuR5N5MBwxdDZ5ZEr3zV1pPByyXJ9I5wst5ym9m9J5mL3+ HEfnkc5Oa1iTyYOlT/ZScmjw8u2213kotDlzlc4vBY1W6fNysf4U1/bSeefm BP1nk/OxXh72cyB7ruI/qRfj+LrsSabzUl1QLjOshIfpL+rb6TzFB7jwPWU8 hE+UmU5udPoq6KjgYdIGhVA6j4WM8f7c/JSHmcd6Cum89l//gIcLp+4L6TzX vG5c1r1aHjZEuM0gX25etye7noc4x9d+dB4cb3rc4nwDD6qD9VLpvOh5IGPg sWYe+l9c+ZLOkytuZN3Z1YLPN9azP3lQ+dn1m9qwnvZbTKHzZ0BR6KDV7TwI ng10ofNpfML8ZOsOHlZyKbvo/Bq4kpk0t5MH9YGKF+h8O6h/fPYklgcQe5fQ +dflxJjxo3keHtSdaKTzsYd0wsnBPTxcPJ7A0PlZx40Xif7geBqEDiaPuXgz 5Ku0GDoNF4+h8/ajNxMmv5ERw+zRowzpPK7e56rxRFYMtz58sKLzurainU2h nBg2Rl1ft5Xen3pv3hV5MSwfsSuMzvfzFTc5n1EWQ1iY5Sk6/zv2nZ4RrSaG 148Ub1B/QLlhn3WYphg2M58qqX8QfXFi8iZtMRj1u/nVn/LG7biem64Y5v3e PZAcPiSPsdfH69230qH+w5/0k9wCAzH8ClRaTP2Jv9sDQzGck271pv6FQm7s tfFGYojYfuOQH/qSZra7iokYkqt2ZVK/41N4pK0siIGRsnxB/ZDaavVtfWZi CFdVYHxp/ZELbuiyEMNi+RZl8p0FkaGfrcWw8Oe1+dRPKfB0cWi0F0Po1e0+ 1G/x3PbZ84WjGD4tXnTCG313x4zcchcxHH7wTzH1Zx5tNp1b4CoG73FvW6l/ s3fZoL4sdzHsXJcuR/46IaYnxVMMj/cHzluH7vezblaCjxhsIk38qP9z8Iv5 x2g/MdRmh52h/pChi+vsPf5iGGN68bE75dM8uVkBwWIwmJ3HUj9pxBnvd2tD xTD0TJYW2dTP1cAhTAw5nkeXrkGfzuvUMw0Xg/Lp5eHUj1IK0q2dtF8MljMG ZVO/6mF6n4biIXxeo9TGVeikpaHKf6LF0D9dS4Z8Nuh48dcYMUTtiplJ/a6K wUsG1sSJ4dWdlnUr0KOVUiW3E8TQ4al+gvpj5/7uD8RQuXXBPWdaX08aftqd LIaAn7bfqJ+mIu1f754mhuaahUpkhW+WgZAuhhFqmouc0PPMK/I1MvF5atoC qB93XLnlck+2GF78iD+/jPLY47xp400xrAia9Iz6dzc1xHtv3xZD5tqrHPX3 IpyEm44XieFBgZwWeXffyf6+98RwMXStvT06VfPlgvllYrBOSQyj/uCvgpuT FCrEUDStKMOW1ssKg3vtT7De9MpfUj9xqKUDf/c5Pl9MXp81uuNan398jRjK T17SJWu5TskN/FcMu0OvWVM/MsuxqdTlDY7X7EpfS6r3hMFnFjeJIePln3Dq X97Ryp8394MY5G1tYy3oeSUt2UatYlh/8cY56ncqqB9rn/dVDKmvJqUtRsPh gt9WP8RQ9vlOKvVHS+Z7PHD/jfXz0vOsGToWoj12CcSQe37c8YVUr0emV6aI xHBwkWgX9VenjF3153m3GEyftHpB6//7BxJo1v1qTv3YsXoTqkwGSMBjfX8t U/SpC8+99g6WQPXeGbwJeo1b5+PKYRLQ2B72lPq7oT6nuDEjJeBi0xhvjP5c XPh7h6IEgnvsV1A/+OoK1/ym0RLYcaRJ0QhdCrstLDQk4MWFV1P/eGLwmEtF WhIwNDWOmEnf/2X6fIauBL6tGzqV+s1c/rvS2/oSOOTF1FM/euWTnj3zp0lg sFnXtmlU79rnBtfOlEBQ76CRBpRXz4rcNxpLoDzBMGMK2kyypPW3qQQc1oUA 9buXiOaKLc3w/goef6F++JSyuNQQCwlMTtA7PwnNLrdtDLaWwK7elLUT0efz /S4tspeA5+8J06mfrv2po+/LMgm897s/YgL6yNuXP9Y4S+B3wMY+HfS/F9T9 0ldK4HSfjoT68z1TK3eWrZbAKyVGmjzoaJNqjrsEMotq1bTQP/OW2vmvk8DI trKF49DFGZNG9veWgHzSg23U7/9vf4C//+ZVoSb6fyaYDXc= "]]}, {GrayLevel[0], PointSize[0.009166666666666668], Thickness[0.01], CapForm["Butt"], LineBox[CompressedData[" 1:eJw12XtYDd0XB3AKlVBulaQQQghFKC2K0kUlhFLIPVSSkHShi6gIlaQIlagU lUolhCSEqIiSVDioM3POzDmS31re59cf7/t8njpzZvZe+zt7L2PcPB02y/Tq 1Ws2/of+73BCq2FiYRf0op/mbeW/mMG/RhR1wdQQy7+90b57R+r0L+2COW53 rPqjzQbP3S4t74J5O4LDh6BXPnbP/1bRBfoXEvPV0dnxOYrvK7tgXI/Cm7Fo 28P9dz6t7gLFo9VfJqPjtGNq7tR0wYnvVR0z0R2qLvqZtV1gXyf4OI+uv87j zPn6LrCznllpis6QVDCRjV1wzCLxihVarX39skPNXdCnWsfHAX1KxzRrV2sX lNTXzXZCD7+zTc61owtu7bou2IC+nFK7zlbQBe3HLsVuRxu9Dy0w6eyC1dNL Z+xGf9zqr6jHdoGC6+/y/ehjFoWuWnwXiIe6mAWhF/rNzVHq7oKxDi2F4eje /wZKCJFqx8ecQFfXK9p2ygrBYOuqQ3Hoi31czjXLCWGEiUV1EjrgCNNaoygE 4ySnQanorStfTL2nJITEkBizTLSTX6dP7lAhzGO/77iFXiV0LE5RFYKaYHt4 Mdq1VKYnZqQQ9Hcqxt1De71n4LCWEI771MRXoo/bTA7y1hbC2L5FkS/QOcpp ZW46QhCPeujzFt2ss/W3g64Q5O+ydh/Q6qd2zTbTE8LqDgvNVvRauyJPfX0h tCWUNX1Dt95YelXbUAj3SiC2C/1VdtqnoUZCkMy9CTx6h7WTeh8QQtRglaYe tHvYq+WsqRD8zXbs6ftpW/mXvLioVnMhPH6R262Ibn6b9rjWSgheBV/9hqAd BTIyD22FsJcb8lMNbS26ZpzvIIS3p6Y6aqFLupL3pToK4czRubfGo69/+ngz 1kkI2fWz+05Bqz50/xnqKoRxR8bbzET3Pm862ddNCHx436Nz0Fu30I8QdNrf Fpqgrca9veToLoSbFxM+LqLrvYlpMvcQQkLeUokVOsIvQcPQWwgfxzLyy+j+ h/xYo+MrhIDvEQNXocuSI+NV/YTgN2iInAt6uOb+N3IBQqg9flzkhu44eWMo HyyEYxvF9dvQc7mZDh2hQjgf65DrgZZbJhNTHyGE/mMvBvigHZJH1VRG4efl mxb4odWbQpSKYoQgtVTiA9Hrh86xy4jF7/8y/UooepyR4YmEBCG4vDdbfBx9 tX7li4gknE9DucaTaAOPrUp+KUL4ITtvexz64e8ddu6pQhhk2ihIRLsEbzzh lCGErV0/tqSgpT1LX1hlCaF7sGddGvqCj66SUa4Qnl5eZ5KJtmz5baubL4Q3 aXcTc9G/Le5GjywSgvrIE78K0DdT9z5XLBVCfK/nc0vQXr81B3WXC2HZKn+/ e3Q/lneWCiqEYK51LvcR+k+0VVRjpRB8Vus0PUU/r6YfITTKjJN9iU6VMR1Q WiOEIM2To96iD0+/Zp1VK4S113dMe4/e7Nj3eFK9EHwzCmY1o219lldFNWJ9 qe3W/4I2OXZGIaBZCCsk53S+oWedrVzi0SoEDWuDIb/QM5N/hbt2CGH0oPkM Q78/r/DYVoDXN82v4unzp1T6QacQXrWfP/uHrh+ksliPFUJID7NWpmVb+aYt CiFavBB2hxWryqGDFv26r9QthLjAzkpF9CX1SowEBvivsV7KaPGxxAWdsgwY /HJQGo5ON9wd2CzHQGfhi9QR6LzRlmU1igyMtxhgoIkeba79p1yJgfoE+eKx 6Lb0v0a5QxlQyK0w1EEPMP/ol6LKwO3IBVm66MjRd4tiRjLwaYq/+nT0TsNL fLAWA0dj9gUa0PcdCzf01mYgu3hm4xw0qHv6uukwsOxq1vT5aP221fkOugx4 OnX4L0SH/VzEmuoxMOBlS/litIE+/TAwbkBStyV9Pk/bW9uQgWJF1em26Ku7 VXKHGjHw7IW9swPaY4dipyww4LzaKsARfSJFRo81ZWB7qmyCE3rQsO5dreYM MAX+113R3+9zmbVWDEgj8/Pd0BOyRd8rbBkI1Mm+vQV9541ocr4DA0FhW3Ld 0dlz+e2pjgz8yfh4yQPd09B9NdYJxztGJdIbfa1AtiPUlQEvk0G7fGl8XwzQ 8XVjYPONh4v90Orj1TAPGHjbaqwSgI7dOi7V0Z2BL296NQWjP1hMbzX3wPE6 kHwxFN350Ejb0JuBmTXDnSPQNZ/M3XR8cbwatgyKQh9KXJai6sfAttiY4pNo kdC5WS6AAc0+cevOoI06NmvxwQxEjff5E4+2Pujp2hGK8yfRPZOInpS5P6k+ goHEoFLtC+jXfsGNlVEMGBdPzLyEtmyPGFkUw0Bc2q6paTTfXTFOGbEMZC6O TM9An0ugHwYC4kPUs9C+TRfrI5KwXs47huWgNR6kq/qlMGC/XOb7LXTMomxH 91QGHErDl9xGv9yYF+uUwcDAd23JxfT8o4trrbIYCMnQ+lmKLjh4d6hRLgMF ujNn30M7+1Q46OYzcGW95r4K9LP+T2JGFjFgs6Q15zFaEZ7VKJbi+LUc+VyF Hj74pVJ3OQPVen8GPaf5Dqq1FVTg5/Xs9V+io6PrMA8YmNPib1+L7p77DvOA gTCLI1vq0HdLGhVLaxgwGtu09x19v32TVVYtA90GAwI/oJ+znyKS6vH6gf0P N6NHXmutjGpk4LrMu4DP6IVe7XIBzQycLfXb20a2+Gbu0cpAbI5g81f6e70f oa4dDKS817MX0PPodFbYChgoMllk8Au9agYjC524vhomDRGiS6zFpnosA2pZ zV9ZtNRXEqzFM+BSuO0Oh1a+1V2u1M1A7u97YVL0v+1BLxaG7BNY/0FXueDl ZFkImdzRv9dnXK/V/QKa5Vjoo5L/QAbdbt2/tEaRhdNzl/v2RRs3DsQLsqAX e3+sPHr7ocGYByw0TJR90h+9W2845gELseyw7QPRy4RqmAcsuPCcjDK6/yMN zAMWDAwy44agk66NxjxgQf3qjHHD0fIXx2EesDBoxdHrquilaRMxD/B+5+RM Uaf7K52CecCC9oqMdA30xi/TMQ9YWHR1j4YW2nHYLMwDFs7E+B0fg960YC7m AQv6uyaJtNEnt8/HPMDPGwWtmYCuP7EQ84CFTb8DCiei599a7NFqzoI4a/wQ XXTpa8usWisW6hx8tkxFO3fh68OWBflv7vl66GEDsPwcWDi6R+HvDPQPbSxn RxbW/rIzM0A3z8Hl4cRCgIvJ4dnoTitcbq4sdJbW3pmDHuWEy9eNhVvKQzvn of9tD7aw8HilRHM++qknXs6dhUlR4UsAbeuLt+fBwseC0p0L0T8P4ON6s9Dy KvG4GTrDD4fPl4XZn8akLkYH78fp8GPh3Se7Igv0vj04vQEs1NSOr7RER+w4 jHnAgkrx5ZfW6Nvrw/AGWciMefJmKVpm+THMAxZOOcfX2tF8m0ZjHuD9qQ58 voy+f9opzAMWbB9Nvr8cHa0Whw/MwritnTkr0dZ/KQ9YsJa6nFuFrm3FyyWx cG7Gy4A16IYqvL0UFtrL0l2d0atz8XFTWZhx6dNcF/Tyszh8GSz4vw9QXoeu DMTpyGKhwj2wZT26eCtOby4Livafb7ihJ9hjueSzYHf82v5N6EFzsfyK8P41 3hhvofoci+VcykKt7MburWj7AfcwD1gYvnDF7e00fmJcbhUsrKi9umsHOuAT Lt9KFmJK12vtQj/7tz9g4Vn3wWoPdEIhXq6GBblTUh8v9IcreHu1LMChRjVv 9EXcXSXVs7C/bEzhHnRjAA5fI47vyiqHvegzO3E6mlloMn3b4YuucsLpbWVh WNhiv/00X5ZYLh1Y31pqcn50vTlYfgIW9gyyPXEQbT4Ry7mThUvL24ccovpR o+XBwvOfn2MC0L0VcLnxLPBNZgOC0GrS35gHLIzVkTscjL72/S/+sGBVMZU5 jD7wgfJABAohCutD0JYv8PbkRNAzU1AZih5xDx9XUQQ6L99MDUd33MThUxLB EddH0UfRhVdwOoaKYPD70u8R6PA4nF5VEbwxL1l0HL3qKJbLSBE8TbmXEEnz 5YflpyUC7vuzb1Fo0Q4sZ20RrBj/yfAE+pELLg8dEXxd+jvoJDrWDpebrgiy Nms8iqH1TctXTwRpOxfJnf78//2BCGrd9iw6Q/U7Hi9nKIJZSzIOxaJfqeDt GYngiUbbzTj0JXl8XBDBqeZJrfFUH1IcPlMRRJ/2GZyAXiDA6TAXQdmsR/PO oZU+4vRaiWD0Y831ieimF1gutiIotAgIPo++cY/yQAQht1uTk9D+tygPRBCs 4lCYTHmWSnkggrxNj55dQGvEUx6IYOSlhU0X0YKjlAf4++cPBCnoO36UB/j5 bzbiS/T5nZQHIjizelz3ZXp+F8oDEfw9GNNzBf13KeWBCO6tOPMnFT3ahPJA BO9bpkjS0BVTKQ9EYD3BuSud8kqD8gDnS0ur7So6UZHyQATTn+2vy0DXSLD8 QkVwdfq2h9doPtuxnCNE4Gv548Z19MNaXB5RIjivKh+fiQ67h8stRgRqiYV+ WZRfWbh8Y0UgeN3jlP35//sDEajcf2d4A/0thPJABAmbbQbnoO96Uh6IYE/Z 8nbyCCfKAxGkVncW5aLFZpQHIphyUjviJuXFVMoDEQxSEKy4hV5I279cESw2 tBqVh87sycMJwXpQN2khJ7cV4g2KoPjW48v5lN/PS3ABi4Dv3b6hgPIiH5dH uQgi+57XuE15lkh5IML12/aaHBNMeYCfn/I4vBCtvpXyQASO9vPnFKHrllIe iMDbNfwLeb8h5YEIjCI/nyhG/9GmPBBBdsMywzv0/hpKeSCCZ+av3pOz+1Ie 4Hi83nSohPJE+hkLUATKQQoapTRfwnacEBHMsCm/TW75gdtTgQh6zYmwL6N6 +f4LF7AI/Mw2tZF9BQwWtAgueiw7cJeet5PDPBCBV5G9Qjn6rJjyQAQ/td3i yP/tD8Sgkh06+h7aakAfXCBi+LbqTjrZd6Q8FowY3MfITrmPPjoVj0eKYojv 75JF9jNVxjwQw86hT3QfUL46DcMFJ4ZOI4t0suJeNSxAMWiF1GlVUN6e0sA8 EIPk+4FY8qRbozEPxBC4Z5r8Qxr/t+NwAYshV120j/y2eyIWtBiiPz1rJfee MBXzQAyqlYW2j2j+HGZgHojB+nl+PlkmeBbmgRimsBUjHqP5q3NxgYjhiIPG QbJq+XwsGDGMkhE2kJ0fLcQ8EAMnYz67Ev34Dh63TMUwdKXaSfKai5a44MSw h9/WTh7isxQLUAxDfhgaP0Ezs5dhHohBNDM0miztWIF5IIYRVfYfyTrHVuMC FkPAzXO6VZQP6muxoMUwXuDmS+YS1mEeiGHQvowycoL8RswDMcxb7tHn6ef/ 7w/EkB6Ua0F2vIXHD3cxrP7rfZTs8Wsn5oEYLF7cfES+ru6FeSAGv04vmWoa n1l7MA/E8NMty4h8zsQXF5wYrkzY5k22MTyABSiGJKOUNPI4LX/MAzG8SVld /8/iAMwDMTisiZZ7Rn9fEowLWAzKbqYG5LO7Q7Cg8f5LfFzJiirhmAdisNs6 PoyclhGBeSCGVxtXXCdvmxKJeYD1k9v7ObmuLhoXiBjWm639Sfb7EoN5IAZG 8fSA51RPK2MxD8Rgo5g2keysk4B5IAbPhbGm5LPOSbjgxLAme70Tub8wBfNA DAMc5L3I2d/SMA/EEDol8gg5fHEm5oEYKucLzpDPyNzEBSyG2tCJV8i1Ywox D3C8+yzMJVtcLsM8EINp8awScmfYQ8wDMaSm9XtI/q9/IIaXT249JTf61GIe iKFCe34NWTOwEfMA6zvv0ity3PdWzAMx9PFv/Wco/oF5IAZbP5mXZI3vYswD MWy80V1NnhLQy8KjVQwLRr5+RPbe0x83bGJoLQ0tI3+vGvbQViAG+/hheeT4 EC1cwPi86YHpZN+Lk830WDEc/vnoLPmY5mwMfDGY7/wWTq7pWYgbIpyf0d98 yDYLbTEPOJg44NE68s24NZgHHMg3pS0h37nhhnnAwRyrfD3y1sjtmAcc3F7a NYxcOMUD84CDsK9OPM3n9ZNemAccXBklbCAvLPTCPOBA+VtBEfnAZQ/MAw6q bTPiySsd3DEPOKizfrKHXFuxEfOAg+mfVGzJYqkT5gEH7wadmkC+w9phHnDw qnbeH6rXsTdNMQ84GKE/+BV55r/9AQe5k4anklv2jcE84CCu0NyXbBA0EPMA v78pdTF5og2HgcqB3YWZQ8nl7z9OY0050OYEH2l9/Z5WsavVnIPF7bVXye8W p2fWWnFQ6PnNi+w8+igGNAd+J6cakoPKtkzOd+DgmGXyb1rfS0ab4QLmoOOc 8b/1nrt41NVYJ7yfEPlA8t1porZQVw5O95MxIXu+rxrv68ZB8+hJvylPKqyT N23ZwoH/60MF5LYx+y47unNwfI22F1mml0uLuQcHM34aTySrttmNMfTmwCum 6iPll06t3XodXw7MzapPk6dXrb2g6sdBvqypBVm/0vejXAAHxa90JZSPes+T RvHBHDjmRGSQxze+XNsRit933nk1ebhwyPn6CA5Wx6f0JfcobXhfGcVByUXn XMrjllkl6kUxHBQURjiT724ch3nAgXWTbh/yf/sDDnyHmV6nfHevG9kQkYT1 tbranmww6jq+QDg4da2KpfeFxN0CA5WDUMX58eT88s54pwwOBh7UnkPeqZle Z5XFwTTJoTp6/2iGuKsa5XLQFmqzl1zZNW+Vbj5ef8yJweRdW9XiRxZxMPrp 4kx6nyl+kalTLOUg+YjXYvIld6lKdznev5XSB3ofGvA9joIKDraMHruHXBal HN9YyUFmnww5spmuXl11NQcR3OVz9H7tu3yaamkNBy9OzJhCtgn/5JhVy4HV Jq+Sf+/nyiVxSfUcSHzWW5PXDd/0JqqRg0/3ejfQ+3yap/6wgGYO/lqt2EwO eFPg4NHKwTLl1Z20H1i25OdJ1w4OGgYP9COnP254bivgIMFujww5cPmBAdDJ QeSTYxG0v3j/vdpSj8X1GrhciVx0sjZMi+dA1fvZadqPjDQ9+UCpm4Psi7wK +b9/X+DhoOKbs7Sf2Valbdwpy+P7zG0EeVnK733NcjwUxKacpf1PaUj4rRpF Hibkx6iQM30e/yxX4qFKWf807Z80dt+ZlDuUh8tXQweRB/tt3JSiykOef8RR 2m+Fn7ibHDOSB0mkSW/y4dwX9biBgX0NV/bTfq2n6fQQb20eJrqV/KT9XLf6 ABs3HR6UdUI3kg+5zQl10OVh2sS/b2n/d7hArcxUj4fDmydbkhVUs8Qz9XkY 0NSvmPaPNrW8nrYhDyWN2ZPIoSZ/3Yca8RCaZnyW9pt5K8vTZYGHjcY5fcnv Rxi3MaY8rElW8Kb9qeiY94RWcx42Vy/5QPvXvhkbt9Va8XD00S4L8kAfpcwK Wx4qIvfn0P63v2BvV54DD8O1tquRu5Xj56Q64ngegkDaL7e1eAfHOvHQk/67 lfbTFRsUqkNdeYhNTrIkx0c5qfm68WC6YXwW7b83/9sf8NCv85QSeYJgSoGj Ow8tVm1etF//oJktZ+HBw9vdWi9pP3+056uToTcPzZtMppMnH2++oePLQ69x ZtG0/6+oiOmn5sfD3BtTv9P5wP76H1f5AHyefj3m5Lcm44r4YB5+TspLofOE XWDf4V9Dedgxwv43nTfu7kzxbojA6715uZysLce/fBLFQ8baudfpfBJoq6Bf HIN/nxPWm1xj+ib2WiwPi2qKHOk8o9bqLD2XwINByatrdN65/Tzf6XgSD4NV v/2h89DgC79zDqbwkHNEzZ48duXUPztSeRgk45pC56fOTitYm8HDjFPFXXS+ 8vVesc8mi4ehBtMWkgsaLFONc3kobi88QeexnAm6T6bk86CZ5fSBzmtua/gW jSIeLEKGTia/3J0rHFDKw/Rdn/fS+Y73dOS7y3lo3FpVTue/huXtjKCCB0uf yv5kn1GbvjRW8nDg1IfldF78r3/Aw7b7CufpPNm4Ycy1khoe1Pss/UznzSuN Gw5l1vIQvSp9Enn8/Gjz8/U8PChR8zxL93MkrW9kI9anfsotOq+uunGt+GAz D3tKFnB0nu1379zmHa04H47cXLJnoW8/5w4edGUfHqTz76lYkyQrAa6Xexkl dD72Wi2cNK+Th46Tqd10fu7X+1TmJJaH7d6FRmTHE6PGj+B5yNzccuAUer1s 7Gn5bhxvd+3bdP4e58Jz3F8efIMPMnQ+H3Upx6ddVgIL54inkR/WTZhSJyeB VaMubKfzvEaPk+ZjRQncmu57OZrqYfhS69tKEnD2PthI5/8GjT8304dKwLIl exjZZPiOlWdVJRAUpGxD/QKHnriZESMl0HvpxcPUT1CtD7Ly05LAUwvXwmPo iEsTk3ZoS6DRy+oH9R8yXaInu+hIYE7lpjHkAIWbQltdCXxYmrWC+hV/U0+L FuhJoLL3uHDqZ/zbHuhLoOdzZWEY5XHuyevjDSVwiE38Sv2Py1qZrmpGElik nzSC3BIQaqMIElhxsXoJ9Utqnmvs7TGVQLbR5H1H6P2j5F3fZS4Bu74FV6i/ Urwg1PeLlQSM/ni+pP5LgZujXYOtBLy0V/+h/ozb3i9uzxwkINjnMZF8Z//M 3HuOEsiV3nQIpPHcOX9egZMEyq6P96f+TuCyfj3XXCWgcvzRFer/tE+I6r7g JoG8s7HV/uheP17Oit0igeTaUwz1i0LaFn+KcJfA1VYZdbK+o9PsQx5oj8kL qL800Fhplqe3BC56K2w5gFY+u+nDOl8JnOy8cJz6UfPdnfTs/CRwoONHzj50 3M3OyfMDJLDGiXlD/SuV3To1kw5LQM88R0r9rQepPZrDw3A8r4/TIifY+6r+ jZBAxXF7Mx963++OLmqPksCRL/pbqT9WIW/R90UMzlfR82PUPxuhclGaFyuB 9n5jsnejE//tDyQQ+XzyS+q3mZ3Wb/FPksBEZQHjSXkh61HrmoLj83STCnnY 1yVekCoBq96xc6hfZ7y4Il8zQwLPc/ydqJ8Xrdp8pTsTf/9upP9OyuP15+c3 5Eig9JB3EvX/cjQlgXl5eP3EoDJ3dPBy8Y7oQgkcm2neRP1C/57TvbeWSKDN 7MHfbeiLWq8WmJTj/b/gtMg/C3ImDauQQHDtZ6B+47YKvZKOxxJ4sDx8HfUj +y+x4+88lUC3TUvAZrTgeo/HqRcSsFneeJ76l2OdpuZ6vZbAa8nawo3oaw7v yxzrJBCzYNNL6ndGxMqfXfReAkd1hO0bqL7G5hvPa8L1ld2vm/qjxtLmTMPP Ehj+NmUgeZhGZIdxuwRuJD3QoH4qHC34ZfldAgF9d05ypfe1yfr7rr8kEDIw UZ/6rychYv1BRgL38+2N1lK9HptRdYGTgGFP5ALq104dvebv098SaG6zM3P6 /P/+gRQeeCaYUX939OQJ1UZ9pNB4dvvC1egzyU83BspLQdet3Jj6wWtdOh9V DZBC7tOkWY6Uz1vOiEYNloLHm95TqH/8pej2r/3DpeAWKNBagb66yin//Qgp RD1xGUz95jLwNzfXlMLPWyt7OaAneo+6XDhWCmEmtQJ7+vzP+U9n6khh5faG t9S/FuV/KMvTlYKTweYyW/Tqx92HTKZLIe7CvsvU71bWTpSvMZCCwnXlMBvK qyeFrtvnSiHPcfoW6o+bSi0+/5ovBUi7ZGWFtuDmSZaYSmFVkv486qdPLY+5 6GMuBanRZ4MlaHaFTYO3lRQmH86dR/338/nul81spdDumWxtTvnXIuhpWyaF aX2vbaV+/bF3r76vXSmF3qa10YvQr5M13FNXS2HDhFH3qL/fPa3qQLmzFGxv hvSYUl4ff6+e7SqFR1/6W5B/3LRf6rFBClXlN87Rvw8UpU0a3HuTFJzN9kgW fP7//kAK+3at3Ej+H5QkZvE= "]]}, {GrayLevel[0.5], PointSize[0.009166666666666668], Thickness[0.01], CapForm["Butt"], LineBox[CompressedData[" 1:eJw12XtYDd0XB3CEUog3KV3RlSivELosQlEpQhJCLqWSJCFJoVQUoQhFCKWk KIUUSkklSReiJApRzcw5Z86R/NbyPr/zB8/nSXNm9l77O3sv49y2O24e0K9f PxP8g/6ua1/kXJXdA/3o0+JRlHlM7fGEHPQCF9lB6C52ZNeY/B7Y8uKQ+zB0 wC5VPdmCHrjZ05ejiJ43ctZWSVEPlN97IVBHryj1zPlW3APP1L/p6qJvnbkt 966sB5K0XBYZou0Pynq/qOiBJc9V185Ax2vFVj+o7oFCs9EbLdAdSmuN02t7 oPjmlDVWdP11PqcvNPSA22ivhfboVHExe6ypB+KDSvSc0Mrt65fub+mBTR9A shZ9Us8yY1tbD5SZvi3cjFZ84CHt2tEDJadP79mGvpJcu86+swdcvvpo70Kb vgvLtejugYhZW58GoT+4B8kZcT1gF3ZoxWF0lHWeqybfA2kVBW+PoucGzrot 34vPI6+87BS6/9+BY2CS/clH59AVDXL23VIMOEZMUr+MvjRw7bkWaQaGP/ri k4oOPsS2Vcsx4NZVdOc22n3Fy8mP5RmwV3vw/R7aJbDbP0uBgdfz34wuRK9k nO4nKzHQ7SE//RnatWBAX6wqAykRW60q0b7vWDioyQBz5ZNNLfqo3cQQPy0G 6u7vt3yHvj3i2iM3PQaWVZpMbkW36Ln/cjRgwOPdSLmvaJWT22bMM2Jg1Ge5 pi70Gof87cbGDDh/07kkRLdlLr6hZcLAZjlr59/or1KGHxVMGfD0cBo08KNH kZeti8pAYGBL/+XXZdGe4TXLOEsGVteBxUj057vx0W1WDFi3jylXQrfUXSut tWFg8rRWGw20U+eAASX2DMgWnC3SRtsK0sxyHBn4GGpuYIB+2JO0O8WJgVsH q6P+Rd/8+CE7zoWBnYVLm03QSiWeP8NcGZg687G+Bbr/BcuJAW4MdHRquM9H u2+hDwPx7z3P2aBttOsuO3kyYC6b8mQJXe9NbLOVDwNv/SqbndCRgQlqJn4M +Cm19ayh+//nxyq9AAb68R28G/pR0rEzSoEMRIxq4jzQihp73kgHMyCzreCz D7rjRKYCH8rAgf7RL/zRs0RTHTvCGOh6ZXMtEC29dEBsQyQDKz8Id4WgHZPU q8uiGcjVjZ0djlZpPiyfH4v1cnMMdxS9XmGmQ2ocA65eJy7HorVNTY4nJDBw zV2w4Az6RsOKl5GJ+P1XpZsvoKf5uMsHJjOQrB3ucxld8svLwTMFx+urL3cd vTZ043GXVAaCmFLfDLSkb/FLmwwGCuHop2z0RX8DedMsBma/um+Xh17U+sve IIeBzmtO6QXoX9aFMar5OF5FrgOeorNTdlXJFTDwR+O1fRna95fG8N4iBtY8 vhNbSfez6MHizmIGeq73e1GD/h1jE91Uht9Xky+pR1dV0IeBZ3Obx75Hpwyw HFpQzcBgga95K/rglDTbjFq8306fJe3ozU6DjiY24HrTb1zVibb3X1Ye3cTA 6BuZq3rQFlGnhwS3MDDDm3EQoqefLVvo08bACf9ks1/oqUldR1w7GNB+/FCz Xyv+/MKQUvtOBn4unS8eiLY4OXowdON60535fAjaPmT0AiMOv2/O2ePD0Zu2 DDmsyeP4Jm6yU0CHzO96It/LgB0k/lFCX1Ypw0hgYaqOZaoaWhh1fk63FAuB y34tGoe+brLjQIs0Cw5Vvq066LtjFz2qlmPhVtxlv4nosVZav4vkWTifekJi iP5y/Y9plgILirKmgcbooVYfApOVWFC7l9xjgj42tjA/VhV//3bxejO0t8ll PlSThZfCK6Vz6Puijpj4abGwLxJ0F6BBZXuAmx4LOR5nghahjb845zga4P2d vlm+GB3+cz5nacRC1dCgEY7oacb0YeHmKxl7J/r9u1p+WiYsKH1aesgFfWPH 6CwFUxaGz1152xXt4yXXLQUsnPyu/MYNfTx5gBFnycLl1vieLejho3q3tVmx MEf31SAv9PcnovRaGxa8c0tHbkfr3hJ8L7ZnQftUoOJO9IM3gok5jiy4P/w6 Yjf61ix+a4oTCyZTFQfuQ/c19t6Ic2HhNNf7MxidlivVEebKQpBU8quDNL4v h+oFuLHAuPZPD0er6ChjHrDADdYIjkLHuWunOHmy8OfloYUx6PfWU9qsfFiI jCmUO4nuLjHVMvHD61u+Ko1DV3+0ctMLYGFcZ15QAnr/+aXJSoEsGB4NmJiI FjCrW6SDWSjQlH11CW3asVmTD2WhInWn71W07b7trh1hLKybcEfmBnpC+p7E hkgWfJPKEm6iXweGNpVFsyA15K5WJnpRe6RqfiwLylt3Xcum+e6JdUmNYyHj 0dDxuehzCfRhoXhIYHw+OqD5UkNkIgtrbAqkCtBqT68rBSazsCukbmsROnb+ LSfPFBbk00vKnqJfbbwb55LKwsTKqLGl9Pxj79faZLDw7JPOjnJ07r5CBdMs Ftq64u9Xolf7Fzsa5OA7p+d9bzW6UvZ5rGo+zm+HxKQWLQeV1XIFLFi++eFV j1Yc+Uq+t4iFTfdyz76l+Q6pte8sZmHw8RWP3qNjYuoxD1iYtKa8qQXdO+st 5gEL1RqK3Cd04cMmuYJqrOfwrIHt9P1Lmm0yalnoN19V/hu6ivsYmdjAwkYn R4UfaNW0trLoJhbEBU4ju9Fzfdulg1tYeByoP4QlW3+z8mlj4cGxUomA/r3R jzDXDha+scZfeHoeve5i+04WFt7e9uIXeuW/rBR0s9D42D+tD/3QVmhpxLFw QX/Rof6fMD8DxKGaPNZ727cVA9Ej7vQWyffi9QWrxkuj/24P+nEwek18xxB0 +Vq8nBQHl5Uu3RiK9q4YHNwizYGb/m43eXS7rWxBtRwHy2NUR/+DNmsahhfk IGBR9NNR6K37R2IecFCxqsJTCb3DSBHzgIMVhQ1yKuiljDLmAQcjArOvqaFl n6lhHnDQF7nKVBOdmDYW84ADta7K5+PQMpe0MQ848EmVd9RGL76mj3nAAZOn UatL91cwCfOAgxvqvxwmoDd+noJ5wEFs/dUSA7TTqOmYBxzsnX9kuiF605xZ mAccGD0ZdmkK+sRWc8wDDu4smTnIGN1wfC7mAQeDugdvno42v7PAp82KA+1L ewtN0AWvF2XU2nAwcsOJUbPRq3vw9WHPwYuptpvM0KOGYvk5cuComHbLAv1D C8vZiYNUmQx2DrplJi4PFw4qhy43nofutsHl5srBo3EXty1Aq7vg8nXjYJ91 zGVr9N/twRYOZILH1SxCv9iOl/PkYEOJc68t2j4Ab8+Hg0j1aePs0T/34uP6 cRAcfmfOEnRqIA5fAAdz+9W7OKJD9+B0BHLwKipp+3L07p04vcEc/Ksre8AJ Hel1EPOAg7U1YyKd0ffWh+MNcuB0vDLaBT1gWRTmAQfqa3Wi19B8W8ZgHnCQ ZTruiCt9v+FJzAMORhk83rceHaMcjw/MwXyDQV5uaNs/lAd4P2Y/lm9C17bh 5RI5UB5XP2sLurEcby+ZgzcXxqp4oJ2z8HFTsL4ynwu2opedxeFL5eCPc02F F7rsAE5HBgfeCbMvbkPfd8fpzeKg0HfAtu1o3SVYLjkc8B8mzNiBHj4Lyy+f A8W22xI/qs/xWM4FHIwJOXPfH71k6GPMAw4G3Hm/K4DGT4jLrZiDl0GHJu1B B3/E5VvGweH3ER/2oiv/7g+wXt/8OLoPnZCHl6vm4MLG7Gn70e+v4u3V4v1G 1DUEoy/h7iqxgQObBS57QtBNwTh8TVifZ80VDqJPe+N0tHAQfTAk9RCtRxec 3jYOoqS0TMNovhZhuXRwsFVVpyycrjcTy68T67k8fEkE2kofy7mbg7fyC2sj qX6UaXlw4Nnpsewouv8QXG48By3rvlYeQytLfmEecGDm+XxeDDrt+x/8cLBf bkjOcfTe95QHAgiZKhkXi170Em9PWgBjq35GnUSPeYyPKycAtw9fuk6hO7Jx +OQFABtbl8Sh867idCgI4OGajxnx6CPxOL1KAqgr/zT4LHplBJaLqgCOZ3xd nUDzFYjlpymAjoFs+jm0wAvLWUsA76v/iM+jn63F5aEnAP+RI+YlouMccLkZ CCDlmVZEEq1vWr5GAgjonv384qf/7w8E0B6zYnAy1a8OXs5EAFzyTriMrhmN t2cqgEsT4vyvoC/L4OOCADp17qdcpfqQ4PBZCqA2vrUmBT2nE6fDSgBrg4b3 XkPLf8DptRHAwTrzcTfQzS+xXOwFYJ3ia5mKznxMeSCAtI5r69LQQXcoD9CX WvbcpDxLoTwQgE2lekw6Wu0M5YEAInxcL2agOyMoDwSw6fDl9FvoB4GUBwJo Hv4tJ5N+35vyQAD7LgY9uE3Pv5byQAC5pckFWeg/iykPBHD6yKqH2eixFpQH AlBovnLvDrp4MuWBAIyrQjLvUl6pUR4IQLC8+0oO+rwc5YEAnHcyp3PR1WIs vzB8/glHDt6j+WzHco4UgNTuW9556JJaXB7R+DxrPJblo8Mf43KLFcC0xrsz 7lN+ZeDyjRNAwY9Tox98+v/+QABfEwax5G+HKQ/w/t8PqXiILtxOeSAAnfxL yQVUby6UB3i9SeU7H6GF8ygPBPBlRrhlIeXFZMoDAcxurB1WhJ5L278sARgq 5L4hp/fdxQkRwNO2Ceceo5O+5OENCkCyeMrqJ5TfVQ9xAQugxv658lPKixxc HkUCsG3nasgx5ykPBOCudCeyGB0bSnkgAK1mKfMStIo75QHWg0V7J7l+MeWB AByunk94ht5jQnkggDUH1s0rRf/WojzA+n059Rt5owLlgQAmxSnGlKFvDaI8 EAD7UtroOeWJ5BMWoABEB4ZUkn8w7TghAjBJUfEoR7f+wO1pJ44fmPZ7QfXy vQsXsAB2OXjFkQM6WSxoAfjWpulV0PN2izAPBHCjSpxLPiukPMD1beE8r/LT //cHQqgf/6yCbDN0IC4QITwPmresiq6nKoMFI4RfttV15IjJeDySE4LXCe+V L9GBliMwD4Qw2kb5DXmJyyhccEIYsPe1QzVabpcyFqAQDNSTSsmpJ9UwD4Rw asYes1foCXfGYh4IYWbJhlvkmDptXMBCUHvuol6DruvVx4IWgpnlxkhyf93J mAdCuDBlH0Me7vgv5gH+/unLzq9p/YdOxzwQgsK2xgdk/sYsXCBCCFZyUqtF KxWZY8EI4UWXfSB59bO5mAf4fIKnb8ilD/C4ZSmE4RNzDN+gV11ahAtOCFLH xoeR//FfjAUohEbVoY1kdsZSzAMhxDXumFiHlnQsxzwQwr8ly/aS9aKccQEL IfNDVgk5SGUNFrQQRugek69HixLWYR4IwfF8qxM5QWYj5oEQ9ljknCf/tz8Q Qqj8wA9kpzt4/PAUgvfwl+oNaJ8ub8wDIcwyHb2afFPFF/NACB1xjXHk4dN3 Yh4IIVBjTBX5nEUALjgh/KytlWpE25nsxQIUwoL8oSZkbc0gzAMhHHhR5P7X wmDMAyGck+uJ+/vvH4biAhZCwt7Ex+SzOw5jQeP9Kj77RpYbfQTzQAimzZ4j 36KvpUZiHgihpe7odLLHpGOYB0Lw6NVfSa6vj8EFIoTcmB0B5MDPsZgHQsiu OH2KvGRFHOaBEJxzT94ir9ZLwDwQQqqtVyn57OpEXHBCuH5M4wNZlknGPBDC kr3pDPnWt2uYB0JIGak46B3l2YJ0zAP0CmdF8ukB2biAcfwXBGiRa8flYR4I Ia3Fx4hsfeUR5oEQMvQsZ5G7w0swD4SwVqV7Dvm//oEQ8vL2WJGb/GsxD4Tw aEDTIrLGgSbMAyH48mNsyfHf2zAPhFCdMNWGDPd/YB4IoeGLjjVZ7bsQ80AI Mc3sXPKk4H7WPm04X4cuzCb77ZTFDZsQel9r/kv+Xj6qxL5TCHdf7tchnzms iQtYCGN25yqRAy5NnGfECUG//Lk0OUpjBga+ENrK7glofKr75uKGSAg2O0M+ ku3m2mMeiMD1udYLcnb8KswDEVhVlmeTH2S6YR6IQD806SzZ/dhWzAMRyH5O CiLnTfLBPBBBO//ClXzzhC/mgQiePtQB8tw8X8wDESRMSVcn773ig3kggu3L 10moflY4emIeiAD04Q25tngj5oEIhqXb3iILJS6YByKoaz4cRn7AOWAeiCDp 6TcX8vhsS8wDEbit3G9Invp3fyAC7fNm/citu8dhHoigNUa/mtbDtJBhmAci uDB1bhJZ306EgSqC5eHhnuSidx8MOUsRyETx08i/DIu3tVmJ4L75md+0Ht8u uJ5eayMCj2S3YvLqsREY0CIYleMSSQ55tGVijqMIHuw5YEdeOHYeLmARrO+s HkbOWqB+I85FBP1GOFRSPhQaCr6EueLzfBJHkbe/K9cJcBPBTPdXVuRi26RN W7aIoPrcm37kL+N2X3HyFIGa7MR8yqMB/da2WvmIoGoOs52s9MVhnImfCL5Z GOqQ9Wod1usFiMB34IcGyrsp5WsuKgXifMf2P0o2Lgv4IB0sgrufz5qSjaoS 1flQEfj1v/qN8lSn6dWajjARnGsbf5asyPxzoSFSBAbHFeeT++Q3vCuLFoFO /6CflM+t0x+q5MeKIHy20xly4UZtzAMRLDW9akH+b3+AP5fa0kb571mv2hiZ KILxp85HkKep38QXiAj0vs03IIs9rTFQRRAn41ZB75Ocou4zLqki8P7JeJG9 Na7X22SI4OZ50RCyxmFPJdMsETiO8L1G76eyntkrDXJEsMluzVzyNnflM6r5 Ivjg8PAtvd/kPg+olysQQZHKCT/yZU/J6N4iEQzNqJchT+P7nDqL8eeDTyXS +/JR9IgzTWUiaNJ7MoU8z8CovqIC62/E5if0vh20zFCpoBrr+eI5R7LdkY9O GbUi2Hwn9CO9r0eVLYxPbBBBjZ3KdvI6xU1voptEcMRr0y963xtuNx4V3CKC g/Lrw8nBb3IdfdpEUDJz2Ajy0oU/T7h2iMC+3ess7ReulzZW2XeKYJxqkCb5 wLK9Q6FbBLNrzVNov/Hue8UiI04E5//JmkDOP1EbrsmLYH7dm3Tan6hanngq 3yuCaZrphuT//n+BB88fxpm0v/Eo1zLrluLh65xthuSlyb92t0jzcHuMczrt hwoOH7lTLcdD4W5On5zuX/qzSJ6HUastr9J+Sm3HgwlZCjxkPp2rQR4ZuHFT shIPp7OYeNp/HTlemBSrykOR9orh5INZLxtwAwPT1Lcepv1bX/Opf/y0ePh5 zlBM+7telaF2bno8dCemeJP3u80MczTgYbZu1QfaDx7MVX5kacRDufENB/IQ pQzhVGMerjwzLqT9pF0tb6RlwsMD16OTyWEWfzwVTHkYFvT8HO0/764oui4F PJzR+DmY/G6M2RfWkodVVuIdtF8VRPnptlnxsIz99o72s4NSN3rU2vAQpvN0 PnmYv3x6sT0PbFNoOu1/ZTt39dx15CF+jJ4CuXfEmZkpTjz4vcveQ/vnL61+ oXEuPESM13lP++viDUMqwlx5qPu5fw75TLSLcoAbD6vnFFym/fjmv/sDHsYo fZIi63ZOynXy5GHEzq6NtH9/r3FL2tqHB8vlrU9ofx/R99XFxI+H1PsPxpIn Hm3J1Avgwebavv10Higujh2sHMiDttL4RjovLLn521UmGMd/WKYxuc5CO58P 5SEkYnw0nS8cDgxS/BrGw4DIoM90/ij0TvZrjOTh0fACM7KWNP/qeTTVR9tJ Oq8csB9ifD+Wh/epPe10nqm2fBOXFof3V/jZlKzctlpyLoGH5lVFMXT+uVeV 43I0kYdJ9uda6Hw08uKv2/uSeTjve+xf8vgVk397pfBg+Dg+lM5T3d02sCaV h3bIr6bzVoDf8t12GTwUd7Ia5NzGRSlmWTyUlFp50/nstq7B80k5PHyrzsqj 85vbKr5VLZ8HY5npA8mvdmQxQwt4SN5WbU/nPX67E99bhOPR//BZOg82Lmtn O4txPTxx+Hgd7a++6XNTGV4/23gC+b/+AQ9Pq4186TzZtGFc2sNqHr6ozc+l 8+bVpg3702vx/s/4/qLzqI55jNWFBh4SIAfIboeuDTrWxIP+6H8O0fl1ZWba /X0tOH4qR0rofDv48bnNXm085CweJU3enhcweHUHD1m38q3pPHwyziLRppOH GvPdRy6hfZ2ZCbO7eVD+ZfeMzs+D+59Mn8DhfH6ZPZDsdFxdZwzPw/B+c+fS eXu9VNwpmV5cz9br9tN5XHstLxL9wfotiMu7gFa/fNu/XUoMJ9u6GDq/l9Tr TqqXFkMe7J1EVutz0SiVE8OQl/9upvO+luJi23vyYjh8ckwi9QMa1X5nX1cQ g27UlFrqF1goeq04qySGnpwAWbJjX/zUSFUxdCh2whl6nzWE2ARqikE67YQ/ 9RsiL+snemmJwcFv0w3qR6SvjZm4Vk8MRT7u705TXg7JZuwNxLDmYsIw8p+U U4I5RmIYO/CXBfUz/m4PjMUgn3h0O/U7RmWduKljIgZ9T9uL1A+5opnuqmwq Bg+v2VUn6H0WHGYnB2KoueTcS/2T6iq1XX2WYtgie20C2Vver6HHSgxaN8Y7 Ub/l/pywgM82YpALrAqNpvpzc3JotBeDWkhqOvVn3HZ9dqt0FMPy+3fqqH/z YM/UrMdOOH76P/5E0Xh6m8/OdRHD/Bcr9MkHlg7uS3MVgyT5hwP1f9p1o3sv uomhMf1uAPWH+v14NT1uixhav6ddOII+/GXBx0hPMazerfiE+knGTi4z9vuI Idx9Vjv1m4aZyU/f7ieGzQ9HDyWPOLvp/boAMfC7MqYcRpt7uhg5BIphzunf y6lfFZ/dPdE8WAymStJ7qZ81eode9YSDYvja9/xCKPppSp+GYrgY7Gytiqj/ lbAkQOlPpBg29u77dIDe9zti8tujxTD5H6/B5GIZ60EvY8WQfkxhAvXPxoy+ JLkbJ4Zmr1221F87/3d/IIbizBPbguj9esq4NShRDOucNx+nfpyylE+tazL+ /mb2diDN39eFvpAihlv1s2uof2e2oDhHI1UMm26ZstTfi1FqudqbLoaqrwIF suz6C+aNt8XwPXLrtN2UBxriA3fviqEgJn459QdDlwm9YvLEYMkH+e9CB/Wd 6u/+UAxBz9ROUz/xkmbNHIsirA/xrjs70T9zb08YVSwG2diIGuo/ehQbPewo FYNr9PIe6k/KLnTgH7wQg/vPRnly580+n5Mv8Xmz/kzypTxzmZzl+1oMIW/S ram/meb47pFTPY7nqo/rfKje42TOzn+H9WCeuOtvP3R8jtnsZny+0JYIb3pe SUu6ySd8fp2bCdQ/HaV2rMOsXQzaE39f90RDRG7Xou9ieBJTd4f6rQUW65+4 donh2DKTAurHnoDI9ftYMRzYo1nsTvUa9W/5RZEYLvyOKaP+7eSxq/68+CWG T61h5Zs//b9/IIEV+gPLqd87dqJuhelACTCVQ0o3ok8nvdh4QEYCea/jH1N/ eM3a7mflQyVwY9bN/A2Uz1tOC9RHSuDJH6tM6id/zr/XtUdRAtK6npfXoW+s dMl5N0YCAemjTlH/+REEWVlpSED+lFXoWrS+n/qVvPESqGn840396s8/zV9M 1ZNAUcgcp9X0fs55/+iugQTqj8iYU3/bubR3v8UUCSh3rRy3iupd67xM9TQJ HM41lKJ+uNrzPNetsySg8uFYK/XLLSXWn7rMJbC5aO6zFWhr0WzxQksJ/Lyn lkP99clFsZf8rSRwt1g9cxmaW27X6Gcjgftf5t+lfvyFHM8r8+wl8Fv9ZPFS yr/Wzr4vSyVwwHNQC/Xvo97WfF+zQgJzKpIGk18nqXmmOEsA5rnOdED3Gpbv LVotgaCX83ZR/3/w0Xcqt1wlIPJ1KFiM/pG9ZLHPBglk6oWOIOdfmzCy/yYJ pLINPnaf/r8/kEBzrVMD/X/C/wAHOYY/ "]]}}, {{}, {}}}, InsetBox[ TemplateBox[{ StyleBox["\"CC3\"", FontSize -> 20, StripOnInput -> False], StyleBox["\"CCSD\"", FontSize -> 20, StripOnInput -> False], StyleBox[ "\"BSE@\\!\\(\\*SubscriptBox[\\(G\\), \ \\(0\\)]\\)\\!\\(\\*SubscriptBox[\\(W\\), \\(0\\)]\\)@HF\"", FontSize -> 20, StripOnInput -> False], StyleBox[ "\"BSE@\\!\\(\\*SubscriptBox[\\(G\\), \ \\(0\\)]\\)\\!\\(\\*SubscriptBox[\\(W\\), \\(0\\)]\\)@HF (\[Eta]=1)\"", FontSize -> 20, StripOnInput -> False], StyleBox[ "\"BSE@evGW@HF (\[Eta]=1)\"", FontSize -> 20, StripOnInput -> False]}, "PointLegend", DisplayFunction->(FormBox[ StyleBox[ StyleBox[ PaneBox[ TagBox[ GridBox[{{ TagBox[ GridBox[{{ GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], CapForm["Butt"], AbsoluteThickness[1.6], Thickness[0.18], RGBColor[1, 0.5, 0]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], CapForm["Butt"], AbsoluteThickness[1.6], Thickness[0.18], RGBColor[1, 0.5, 0]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], CapForm["Butt"], AbsoluteThickness[1.6], Thickness[0.18], RGBColor[1, 0, 0]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], CapForm["Butt"], AbsoluteThickness[1.6], Thickness[0.18], RGBColor[1, 0, 0]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], CapForm["Butt"], AbsoluteThickness[1.6], Thickness[0.18], RGBColor[0, 0, 1]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], CapForm["Butt"], AbsoluteThickness[1.6], Thickness[0.18], RGBColor[0, 0, 1]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], CapForm["Butt"], AbsoluteThickness[1.6], Thickness[0.18], GrayLevel[0]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], CapForm["Butt"], AbsoluteThickness[1.6], Thickness[0.18], GrayLevel[0]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #4}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], CapForm["Butt"], AbsoluteThickness[1.6], Thickness[0.18], GrayLevel[0.5]], { LineBox[{{0, 10}, {20, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], CapForm["Butt"], AbsoluteThickness[1.6], Thickness[0.18], GrayLevel[0.5]], {}}}, AspectRatio -> Full, ImageSize -> {20, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #5}}, GridBoxAlignment -> { "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, AutoDelete -> False, GridBoxDividers -> { "Columns" -> {{False}}, "Rows" -> {{False}}}, GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}}, GridBoxSpacings -> { "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], "Grid"], Alignment -> Left, AppearanceElements -> None, ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { FontFamily -> "Times"}, Background -> Automatic, StripOnInput -> False], TraditionalForm]& ), Editable->True, InterpretationFunction:>(RowBox[{"PointLegend", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Directive", "[", RowBox[{ RowBox[{"PointSize", "[", "0.009166666666666668`", "]"}], ",", RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", RowBox[{"Thickness", "[", "0.01`", "]"}], ",", TemplateBox[<|"color" -> RGBColor[1, 0.5, 0]|>, "RGBColorSwatchTemplate"]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"PointSize", "[", "0.009166666666666668`", "]"}], ",", RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", RowBox[{"Thickness", "[", "0.01`", "]"}], ",", TemplateBox[<|"color" -> RGBColor[1, 0, 0]|>, "RGBColorSwatchTemplate"]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"PointSize", "[", "0.009166666666666668`", "]"}], ",", RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", RowBox[{"Thickness", "[", "0.01`", "]"}], ",", TemplateBox[<|"color" -> RGBColor[0, 0, 1]|>, "RGBColorSwatchTemplate"]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"PointSize", "[", "0.009166666666666668`", "]"}], ",", RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", RowBox[{"Thickness", "[", "0.01`", "]"}], ",", TemplateBox[<|"color" -> GrayLevel[0]|>, "GrayLevelColorSwatchTemplate"]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"PointSize", "[", "0.009166666666666668`", "]"}], ",", RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", RowBox[{"Thickness", "[", "0.01`", "]"}], ",", TemplateBox[<|"color" -> GrayLevel[0.5]|>, "GrayLevelColorSwatchTemplate"]}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{#, ",", #2, ",", #3, ",", #4, ",", #5}], "}"}], ",", RowBox[{"LegendMarkers", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"False", ",", "Automatic"}], "}"}], ",", RowBox[{"{", RowBox[{"False", ",", "Automatic"}], "}"}], ",", RowBox[{"{", RowBox[{"False", ",", "Automatic"}], "}"}], ",", RowBox[{"{", RowBox[{"False", ",", "Automatic"}], "}"}], ",", RowBox[{"{", RowBox[{"False", ",", "Automatic"}], "}"}]}], "}"}]}], ",", RowBox[{"Joined", "\[Rule]", RowBox[{"{", RowBox[{ "True", ",", "True", ",", "True", ",", "True", ",", "True"}], "}"}]}], ",", RowBox[{"LabelStyle", "\[Rule]", RowBox[{"{", RowBox[{"FontFamily", "\[Rule]", "\"Times\""}], "}"}]}], ",", RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& )], Scaled[{0.99, 0.99}], ImageScaled[{1, 1}], BaseStyle->{FontSize -> Larger}, FormatType->StandardForm]}, AspectRatio->1, Axes->{False, False}, AxesLabel->{None, None}, AxesOrigin->{1.1000000000000025`, -199.00000000000045`}, BaseStyle->18, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{ FormBox[ StyleBox[ "\"\\!\\(\\*StyleBox[\\\"E\\\",FontSlant->\\\"Italic\\\"]\\)(F-F) \ (hartree)\"", FontSize -> 20, StripOnInput -> False], TraditionalForm], None}, { FormBox[ StyleBox[ "\"\\!\\(\\*SubscriptBox[\\(R\\), \\(F - F\\)]\\) (\[Angstrom])\"", FontSize -> 20, StripOnInput -> False], TraditionalForm], None}}, FrameStyle->Automatic, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{Automatic, Automatic}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImageSize->500, LabelStyle->{FontFamily -> "Times"}, Method->{ "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotRange->{{1.1, 1.65}, {-199., -199.125}}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0, 0}}, Ticks->{Automatic, Automatic}], InterpretTemplate[Legended[ Graphics[{{}, {{{}, {}, { Hue[0.67, 0.6, 0.6], Directive[ PointSize[0.009166666666666668], CapForm["Butt"], AbsoluteThickness[1.6], Thickness[0.01], RGBColor[1, 0.5, 0]], Line[CompressedData[" 1:eJwl13k4VV3bAHA8qBCNSGYKJcmc6SYJCQ2GIkMlZI5MTUiiUk+IiKQokamI EiGaVAohJRV6UCrO2Wemvnu9n39cv2ufvfbea617WEp7w7bvF+Dj4zPg5+Mj /2/ZV7P0vk4DH/n7EtAy6OW0WnZiGqaLRiIk0FPpsWER09PgWsqfqIDmttje fc6ZBssg021riX800+UFaHB7InPEHP170ZBulAgNclTnGjmiP+gXRbxcRIO5 srmOnuhHzhLVSstpMPNmk1owOitMeTJGhQYRFgsfH0b7nhpc2bmaBoEhbPnT aLVcMx9VPRqMus6YXUKzZvJyD5vS4GhbitoN9Jiw47u3G2nQHic0ehfNqdux QM2BBi1xUZEt6NXzKxyOudAgtK2/9zX6+Dz3tB5PGrxx1RT9iJ6+7f5Kw48G X3UjF4+jk6nK+QmhNCh1L/9FoY1HXLf2RdNA+WV/Pv/XgBaJ2O0XNeNp4JDM kBNHC9ZcGziRQoPVp4UiZNDLL25UHPiXBo19c3JXoncsNwlYm0MDvtCZDB10 mW3yneRCGjAdR7zN0aqyKjMfb9GgMK7xrx26KWuJrc4dnJ+fKREu6Jh7u7JS H9BApNz6vg8Z7whtZKiVBq9qGG+D0E5jQ7r6HTSwEMppjEYHcuSTz3bTwL9Q 80giuuTO3f6vH2gAyTViaWihBZdXG42Q+zUPZqOTlvQmnP9BAzHNnFuFaJXm ff2jdBrM/mTcLUMPS2xaazKD78exvlCLbhM+mpouSAe2Y6rFI3R7kdDImBgd BH41tj0j71v03dh8KR1+CfIrdqEjHuukXZSjw1TrQY8P6Lt8Q33fV9BBeIVE 9Aja0GtSxlKLDmu1BsIm0QIfPXdeMqBDyKc3tgz0khidf3+a0+GxDp3vD/k+ ncBmKxs6qGtZ5QgPB7QIzxeayHWiQ9GbZnGJYbIf/hGbcqODjtQBXym0hKKv +iYfOvQLQq4C+thOdfP8ADpcyLGsUENrVzs50MLpsLs7vHAtWl3tg4ttHB3M 7r6KMET7Nz1zK0jE8YxcVAH9PUJ6B3WaDia+Ivc2oWttXtlszqCDu8GkqiO6 3WREv/AyHdIquZEuaBknTznmdTr0vNK/vhtdk2j8x/42HTTTr1TtQ2f2HH5/ rYYOl3nr8gPRDRvly1kP6SAvRvc/iF7Zqxrn0E6H+sdfFsWi+0+eh6JXdNin wMs/jn6zw+Mv+x0dlJU3CCejRTacve/4iQ7MjnuOZ9HnneSDir/R4csy1+h0 9ILjFXLcn3TIOlmaeAnt+Karz4mJ75dgEHUFbWN1NvvGHzpcEp/dWoSeHRjY zROmYHTN7JJSdHBmk8Y2CQrqhgxaK9HZYQazN6UoWKhU5lKLPhK6sX9GgYJp yrX7Afn+C2P129Up2OluZtiMjnmncPWWNgW22zxPtpP3M/mZ9seIgkcDdQ9e oL2fOCU6W1LQQLfr70T/PGhztMyOArgq+akHrW/57hjfdgo2D8q+fI820mUm u7pT8Kls97VPaKZNxcXyvRQwRfq8h9Hh8ZxSgSAKsmdShcfQRQMfnuyMpKAp PirrB5l/123jlUcoCL6YJzaFNmfuXih0koIiY14QhS6+P2vhkUaBT8TFGja6 7YpuzJ2LFFw38R+ZQRfe+FMz5woFodmRPL4R3M9vvVieNyhoOfGAJ4hOlXO2 rK2gIIdv/ehcdNa5oXSROgo4ErRaMbSX4p9xn0cUfKkeDVmAjjgzsKH+KQWn 1aMWLUF7JlzKm/+GAs3GOTel0KoCRvR9/RS8DMpXX45ul3ho1/CZAj9D3cvy aPNSxasLxingyr/iKqEzOwPoflMUpCn7b16Bbo3P3NTEpkB6g+BpdfTzxsKc xfwMKDxWVLcafTv5wsSBeQxQ7t3Yo4Xe/2Hv+paFeN12fGgdmtcglSopw4Bl 788N6KED1ap6g5UZkJak32aIrlXQUG5bxYDZzZ/zjNH9Rckhy3QZ4K91dp8Z uqemvT7MhAGv16yXsSDPc/qP76kVA7TtJpo3oN1jvtvKbmHA2YQ8Z2v02Kqu fyOcGTDa4/TeBr058HLv890MMLQStt+MPqO/SUZhPwNOdT4q34IuTHvnGRXC gM6ouFlH9MUw68KXUQxYst7AbBvaZyjnq9JxBjhLM4J2oIUHOpViTzHgwuK6 0y7oU95jPp3nGfB0VVy2G/rzweEC1UsMYHuaZ+xCm2TtHjx8lQHps+fjPdDN jrRlXSV4fRfl44kOLShyU6tmwNrIUANvtM3J8Kxj9xlgYDf71wdty7erp6eF AaKDhU170VGLPBeuesGAu6t3hfmiXzQcdUroYsBKo5VL/cjvOfXn+gYYEMI/ t8ofPf1a/JXmMAMSU/6YHiDrb5QokvQd57djXnMg+tF6CbsBGgNkOjT0g9Gj b++nrOUxoOCU19UQtO6fY0+T/2HC9N+S2VAy/61eQoOiTJA0EN4ajnZY7rFR ZwkT5mrEZR9ES4tGJqXKMqHjPV9XBFo8/ebjIVUmeFlf+RuJ1qpg8OuvYUJL qKNyFDra28fyrD6O77xkfTT6e8l/CV/NmECxflnFoE+eSm0x3MSENrehDbFk PXnWfOcdmbD/0LB+HNpIWMFi1JUJvQ482cPobSWLE4y9mbB0VJ1NnDmk0nLB nwkrDIOeHUHzlTvxjYUxQdDm8ZmjaEnTJxZmsUzoLJ+/8Rh618O7iZkJTCjg X8Mgfq4h3TaRyoRIa8WC42jfFIagRToTnGLHzOPRmu8222TnMkHr8ol+YpUF 0mcmr+H83J72T0BbmXi+3lDGBIHbelPEGS4yC3PvMoGeax+eiBb1dnL53cCE 7zEG48R33WZyrduYML6R4XaC7C9Q+pz3kgk/+FKb/2fJR6q0Hrz/9i/5JPL7 we5A20Ecf5NGNLFIhvedglF8/hvDJ8TnDXzZ1CS+n42M2EkS7x1fwJ7BBMfK t5uJ5R16U67N4vcJeiQSqzdbvmUJsaDA7kEVsafiymWO4ix4fexHL3Fz+Im9 xZIsELg2TSd2qnYt58qzAGpezksmz/98nblVjQUJtXFSxPQZP8uStSx4WsyT JZ4rUpQ2a8iCxSe3yRDbCru932HBAt/tRySI66ZPqJbZsqBJIm6GjC9nGhXG t40Fou23homdXY7Wu+5igVVMQBuxq1nOTPkeFuzRuF9ArEI9N/8nkAWBHy4d Im6KEz++K4IF7mfmWBMrdwY0VB1mgfb6OQuIt07304WSWDD9X3YvmS+HEY9V u8+yICezLotYqpjyvJvJglXgt5W4TPf6+bn5LLg+cUPo/+fbt9GrmAX8mVH3 yPoYNpuM1ZazYItJrzex9kM1CdF7LDg23C5ITEtW19vTxILs1I3FZL1PKpi7 1j9hwaU1zubEX1ICouZ3suBEF72b7Jc5zSXp+/pYsP2Qyl5iXjuv7MEQC8Ql R36Q/daQ69sqMcaC6jqdcOKNZsPv9v9mgbHrot9kv+ZXHfr2kMWCcioxgLhl ajl9IR8bRDISB8n+ruR7P+s/lw1btBbaEwd8viX0aAEbYl9o15L4mEo7L7Jk GRvS9n2RIt4w77RYoBIbUmcUokk8WdjfEWrRYINw19QbEm/P7RSnluqw4bqc 80riD4J9L4OM2eAxbBdH4jXmaHdO6wY2rFPofk7iOa96qZuUPRtU3k0uIXa8 dlU4ZAcb9Pgve5L4T3EML3nswYY9Nweuk/zgeD9lvbQvG8rbbo+S/JE39K0x JJgNi3ctUCE+1HpmXdshNuT4zfE6ROqJT/Ql6WNsWD95IYvknyeNt36FJLOB M1H+guQn814lw7ZzbOjz9uCS/GVR9jVcOpsNnQ75asQdJuN5IQVsGK0J20by 3dfT+vcf32SDZEZvTBj6xMUXT6Sq2BAw/voyyY8VHsXtwfU4Xt3OBpI/935+ UtvazAaf2ag+kl8LFbSyJZ+zYW7jit9BZL5lPwUEvWXDK5q/IHFTb7dmy3s2 VF8zlST5Oc9eYnjJVzZUPS9SJflb4HhG6oEJNnT4X1kbQOIreLfio2k2CMZr GJJ8HyYdUrqIywZ3cVsTUg8mHxcH+AtwoEi11HQ/eqRy5HqjCAeq386YkPrh PKixc9FiDiQtslq/D21mH5MasJwDct+P6JF6U8B7qduswoHDbiVr9qAP/1Rz l9TkQKH7E1VSn94onuWF6HHgNL13GalfV7IYUk9NOWCsPCDmReqJvX+VvDUH Kv7rnN2NLrb60hrjwIFxi/pJUg+Hjvo4dbmgtTMG3NEXWGNuq704UFXn3U7q Z2NN9MdkPxyvW6FiJ6nHd8Q+fAnlYP/QnUnqbcJU6Q7TGA4Ud8TEupJ4Peho mxPPgYQSCQ9Sn9V1ufVUCgdUZC6bOJN8aVBxfdsFvF9ZSobU89oj/nOrcjhw v+UUk9T7dQIaE2LXOBgv42+3old0TG8MKuWA7yOzUif0xZ7W5R13ODAqlxxP +oWj8rkhGg0cUF/cvMMBPVgWY3z6MQfWFfxYQfqLuljPExMdHOBvFmGS/kMk dbP15h4OZEfJttuR9V8qMFj6kQPe3RMXbNH7PW2uCo9yoPObiSfpXwR8ZP71 meTAcNUijU1kfeSO3K6nOJCrHUptJPUr6wAlOssBhr9jsxU6/dm3A55CXGC5 1Jwm/dGt2t+i5fO5kM/N32GJ9tqd8oG1lAvfXETlSD9V86i810KeCz3+f76Z o29+9J49tZIL+7WjK0n/ZVxTuK1DC++viog2RQdah3WLGHIh7hvdzIRcz3gZ bwtc4HRxBEn/VpZ7b1eSDRfkok6+NCLf77HG56ETF0Y7M9NJv7fnvU7mlBsX tn9WczMg+UfiKU3ZB59300JWH53DP3Z8ewAXZFWHvuiS+lSZZRgfzoWonXw3 dNDWS7tlS2O5cMiqJID0l6KG+VpvE7iw7Fv3am10+GIqmErlgo9Z0i/Sj0aW DfQvTefCli33q9eQ+ZrZEqaXy4WhhRERmmT/z3XU3XqNC4vOV+uSflb/zaDK gVIu/GyJpDRI/F9PHku9wwVf4ds1pP/V7n2n+uABFyIbrMPV0Pv8Oj5yWrkg 9clq1Uqyfq5+YvYd+H2hN76qovVu3Kor7+aCSmhgtgq6a3v6B/mPXEgbzLBV JuvprRh7bYQLZx7IsxVJfHW4/Ks3yQVFIfEbCuiki+sU31NcsG/2cSL9untT zaq0WS7MH5dkyaL5rQcrtwrzYH+8dj7p72NW3y5fIcEDl+QKcxn0g3BFVVFp HnzknBuSRr9eYrqUX4kHrMGuI+R8UC71J37OKh6UasVJSpLx4/x85XV5QP+V VEnOE+/XRz22NuVBtxzNajFaddeqy8esebD5YVvfQpI/+5N/PHHkgdszth85 j6jXptTJ7+QB1zKdEifx/XstL2UPD/RWn4ufj/Y9c/wBfxAPBJMm55DzTENS 5PTZQzwItqs6J0LqxUfxopXHeRBwvHfBPPK+GVs7u1J4MKvknT4HnXbLKPJc Og/U9LZICKON6votlfJ4YCvllUnOT9+dzb87F/OgcY3ryn/QJSeDg9UreJAc o/ec/3/7d+/zvHs8uEaxY/93/rqk8KeyiQcLbhQZ/cXzmdjh4vl7n/CgL1Vv zh/0+M8pZu0rHvy8enuUnN86aYINJT088Pg+t4uHbkz94mr8gQfLA7a84qLv ViW9Dv7CA+1l0X0cdJX/Lzn4jweXZpN/k/NgfbWi7Z0fuD5Lj0oRPzsjs6Vt igd+PjsdWej/A8STdlU= "]]}, { Hue[0.9060679774997897, 0.6, 0.6], Directive[ PointSize[0.009166666666666668], CapForm["Butt"], AbsoluteThickness[1.6], Thickness[0.01], RGBColor[1, 0, 0]], Line[CompressedData[" 1:eJwd13k4lVsXAHAUFYpkikxRhrrpGlKKRRGpEKLMRKmIUimSSiKkZIhGUxki Y0hk7pZKRZIhcylNnPOeGX1rf/7x/J7zvufsvfbea6+l4h1o5yvAx8enx8/H R/4Huc9lDTKngI/8Dfk1cBssy15wpqDy662TgsQ/6umKAjSY23FzSBL9R2JA 94QwDVomjoqqoXv1s4+9kqABc60KVwf9zEGsREWeBndz8vJN0SmBy3+GqNKg 0ny+vC3a51L/yvZVNNgsaWLtjlZPN/JU06OBibjtFn80a/pWeugmGngHZgiE oseFrD+8M6OB/YH05Gg0p9JeXH0nDaTYhpxk9KqFRTvDd9MgXyVqbRb67ALn +E43GiwaCzEsRk89dH6tuZ8GZrBEphYdRT1aeO4IDax0nZ6/QBuOOtp+PEmD 5Q1bLLvQYqfskldH0ODll0+3h9FzyzN7LkTjeHOkW36h5ZPNlHuu0iCeN13H QdvLb/TTTqNB3o+4WMFhv4YCy6jSqAwapBxv1lyMVlumOt2XRwO71Oxby9B1 KZKWOqU0GLJdPaSODnm8NyXmCQ2Mc9xYOmj7MNroQCMNgq4ZDBuhbcYHdPXb aHBUquaOJfoQRzEqrgPno/tltT06t7Sse7iXBl+/Vye4oQXFb65aP0oD1w36 zQfQkZJd5xJ+0CBDxbntKFq1fl/3GB3XI0s9Jww9IrZVe+M0DW7X3rGNQjcL nYlJnEsHh8DatwnolmzB0XFROnyuiVRJI+PNnjA0lqLD/cqFOzLRx5p04pMV 6LAs9PjuAnQZ38DHiRV0MBGsNipHG7j/lDNdQweJPZ/m1qIF+tz23FhHh+vH ugpa0JIhOld/GdOh0aFY+w2Zn86h+i0WdLgz65vUhRZaKPg93YYO6kGcrs/D ZD/MEZ10ooNH/kHWF7SYso/GVk86mBdUsn6hw/doGN/2o0PPsaGPDPTaEpud tCAc35zx5Bm0hnrvbsvTdBBxaftXcMSv4UDdf053z9MhPzS2SBQ9cUzWnrpM B4aX+nxJdIXFawur63SYFM80lUe3bBzVz7hJhxvRrL3L0XI2bgrMLDr8btXa pYkuP284u/0hPv/KUH0tOqkz9FNmOR2y0tX716FrzBQLWU/pIKA9FWiEXtml dnpnCx3E42+MbEF3X0yA7Nd0eFUip2eFfmvv8pf9gQ7r7oT62KKFN8dVW3+m w45dVcGO6AQbxcM5XzC+b955uaLFzxYpcH/RwVfDStcbbf32/UcbJh1Whj34 eQBtsSUu9f4sHRxbv1wJQM/09LjyhChgCM2XCUb7J9Vp7hKjgM9kYcwpdGrg upkHMhSEBTGGwtFhR8y6p5Uo8E5rUIkk8782XmWnQUF11RGrGHTIB6V7eWsp ONv+1/kKGd/GX/Gz6yko6Q+2v472aLU572BKge1Im+4N9K+jFmcKtlHgNTh3 +hZa3/RDOJ8dBZ87VQoz0Ot1mVGOzhS8qFcxu49mWhQlF3pToJw9tyUfHRTB yRc4TMG38LZVj9DZPb2te4IpULANDisj8Xfc9e1RGAVNS/+WVaKNma6LBS9S 8KE3oKMGnVM9Y+IST8HupPqeZ+jmO7ohpckUmG6hXjShM+7Pls+7Q8HdCZGM 52iDd+4st/sUHLos5NGGjlFwMK0ooiBLaUywHZ1yZSBRuJICy6Kc5Pdod+XZ b57PKHDVsRTpQh+L7dlc9ZyC3GfaAZ/Qbudu3Fr4loIfXrV1fWg1gfX0fd0U rFr2e3qA7Dexp9tqBinw/dWiNULGn698T/wbBTe7TCy+kPm1+9H3T1Lw+oOX 3Td0Y0TS1jo2BZwJ9R0/0C9qM9KW8DNAWTZJ7zf6YdS17wcXMMDUNVtkCu3b 672hYTED3Kv2vKejeTUyMdJyDDipWR7FRB9SL+7yX86A2LIyDQ45D0qay5u1 GJBm51TDI/s1OypgqS4DshZkGs6iO8tbqgI3MuB+99V8vlH8PZuvfM+3MOBB req8OWjnkAnLZTsYkFHtai+IHtd6f/WYAwNSXxkmzENbHbrZ9cKVAZcYdVUL 0LH6W+WUfBkQvO7rWxF0RvwHtxMBDNibUP5xITo50Dzj1QkGbJpZ8VoM7TmQ NqxylgFykUYli9FCPe0qpy4xgKbEvbAEfclj3LM9gQGtnS5mUujBoyN31W4w IOmuNyWN3pji2h96jwGDM8kpsuh6a9rS97kMUA88rSWHPnI320m9hAGBNLFy ebTFxaCU8GoGVETv0VZAW/Lt7exsYABjjf09RfQJCbfFWi8ZYPDtr4Ay+mXN GZtz7zG+5e7OKuR5TtWVjz34/rXA+8vRU28WvV49woA/ETpjquiW9eeFIycY oHU+V3oF+tkGsW09NAZ4JrdvWokee1cdrc3D+D3JdVRH686GP4+aw4SXkzo+ GiT+je6C/SJM4G4I8tVE75R3MdORZIJGioezFlpWJDgyZhkTHAX4t6xCL0p8 0DSgxoQL5x2UVqPXFDH49f9hQpGE8x/ikx6epnH6TOh4vLj8H/RE7tdzw0ZM 4BwKO7QGffFSTIPBViYs07khpU3Wk2fOl2DNBGMR3wri9UJKJmOOTHBjjm1d i96Vu+ScoQcTQunSb4iTBlQbrh1gQqoAb+u/aL5CG77xQCaUqCZWEEtvajUx OsUEA0aljA5679Oy80nnmHBLyuoY8QtN2ebvMUwYvGjVQuwTzZhrksiE2c3V C3XRqz9YWaSmM4Fnk2RNrCouG/szkwndD/suEW/Z6PZmcwETrjkmVhJf3y23 OL2MCSttKz4Ti3jY7P5Tw4SbaWbTxGVO0+nmzUz4ob1ZQo/sL1AZvPUK5y9d pPR/Sz9To3VivLdHqRGX9XccsuxnwuK3bcrEwtc9Su+OMaE3M1ySOGGdD5v6 yYTw5jt/yfcbtw3BdgYTBPRWjRAr7uyKzpxhgjd9RS2xRr3pO5YgCzL4E64Q uymvXGq9iAU17vscieuDLnjnSLOgXPiBNLFNiWMhV5EFsYKO7SQ+woNZTFt1 FhjbBIcT06f3m+Zqs+Dd+Iwq8Xzh7PgZA/z8LaORxN9SyOmTvQkL4gRdnIgr py6oFViyoDL2nzGyfgqbTgTy7WKBtUnbQWKH3WeqHPey4Pu8hO9k/R2N0qYL vVgQNXxqH7Eq9cJ4ziEWqL6J7Sb7p+70orN7j7Ggqa3ZnHh5u19NcSgLPHpV H5H9ZjvVTReMZMEsr0CceOeoi5ZrHAvuau8NIPtTJodyK0tigemJNS1kPxfo ZiXMv82CsddaUqv+H2+fWvccFlxaZ+1J9r9B/cbxikIWrC5Lu0/Ox9qn6mIi j1nwHoS/kPNDi9LQ86pjwenBLEXii0rGjlWtLFBJ9LYj520o2u/EwnYWvHTY do6cx3n1uYn7PrIgWMspj5xXXguv4MkACxQl4tvU0DXpPo1i4/i8yLev5Hyb GY188P3DgpMyh2fI+b9dfPzLUxbGQ19qEXHDpDx9MR8bPvh8lSX54hHfp5kD 89lw8cGAAsknfoN5gs/E2aDHnVmmhJ6MTxCWXMqGrx5m0iT/bF5wWfSQChtu dpcuIPnJZHupYIMmG+Ys28Ym+evFNuVJKR029IyLjpL81jv346vDhmyQ2zjz cik65ExHWuNmNryUkisi+fBWiZSTzHY2jITsi5dBW2feEwqwZ8NBr54DJH9G WwflNrmwwaUjDEh+ta6O3iDrw4aaNqslkuT9gS+1Af44fqutoxLo442x/zYf x893HSkm+brb8+QN2XA2eAw1hYijW2vzfgdEsSGAuWUTye/GXSoGzVfY8D1p aprkf5OC4SDZVDa8q371RBTdtvHbrYC7bFju23GM3BfDl/Wrmx7geNMENYTR F5JftsoUs2GRg2/PfHSRS06LfxUbclOnLpH7x3uwtaKxng0PPQvWCpH7RmlN qvQLNsiXXf04l8R72We/w+/YwIzNPEXus7qujtUNn9hg8mNQWoDMb7vYiOQw G6gOq1Jy/wmcvR5z8DsbJDePWPzF+5Hu76r8bIoNWesf9M6gA2UD8iW4uD6V qQen0T+bcvwOCHBgg5wXg4sefTSaVSvMgYrGsrPk/nXo19wjsYQDi4riBNlo o+0hMX7yHNja/+Myua/v8l7p1qtywMWmU4SBDv2l7iy9mgPWQpvjyP3+VjmO F6DHAWX+9fNp6DspDJnnmzjwFh5fmESPbT9QrGiO7zc94ZJ6IWfLUGPITg60 xpgH/UIPnPG0eb+bA+JJe0ZJfXGNNe60yp0D64Zp9hPo2vKTfVH7ObAxWLKJ 1COepaK9Q0c4oLCt7p9x9LnJfPtNIRz47P0rldQvMketLdMiOHCmIWdmFK2h y62iojnA8Rr1IvVO2bqirF3XOOBgkd88ROqPsAPzi9M4EBvEXD6I/ldA87to JgcyPrdFfEavaJsyO5zPgeSElb2knkrubJRvK+XA/sgFOr3oM4rpAZo1HJCu DY4m9Vd/QYjh5SYOrodv70d05Sm3C9/bML6cz1qkXhOOsTK36uSA08znU51o PymB/vw+Dpj+tm0l9Z2vm8U9oTEOJB5fvvgdWsBT7qrnTw6YX7NzJfWgkULY wyqKA+6mww9eo6VTDlIiMxzoi26fJPVj4n9fDroJcuHZPjnDl+i8ij8ihQu5 INTVcuE/Uj+6RveypLhQ2vemrZX0F88Ku0wUudAUoi/Rgn7Q5zFzaSUXNuTz 9pB61bA8Y1fbGi4sCVK+10DqN/PADmEDLti/zh4j9a3h9VcRlsAFVl2UZh26 IP3x3kgLLgiYPw94Subv8o/nUxsuHPHyLX2C9vqkkzTpxAWTJfuoKvQjsee0 5Z5cOO1cv47U02n842ft/LggbRB6qgKt+CjFICIInZ/0hNTf5lIdy/JPceFM iQi3BC1icHvNu3NcsNg5sqGY1O9LKH8qhgsnI2ROF6GDC3q6pRK5IGzxsOoh idf0jkC9dC4I5txhkHrfYb61rm0mF7xTf+vkkX7hbb/qwXwurFC8G/gA3ZYV NR5TyoX4XVR+Dnpt1we1J0+40LN1w1AWet/+tj5OIxcWzPpLZJL1c9wvur2N CwohV03uofXu51UWdnBBpizj0B30e7vEXsU+LlCPMq6R/sTIQ/lU5igXHgdc LUsn56tt91W9n1xw/e3/jvQzkcn/Kn+iuPB17YaJFLRzXblW/AwXdutTf5PQ /Ob9j2yFeJDHu7OY9EMhqx4WrhDjwXDkOqVr6CdBymoisjyYflOnkYB+I7lJ il+FBzM9umvi0YUysxHztHgwkpumHUu+//R+H0VdHjw0+Lma9F+fNpxoMt/E g72X16y8RPqJvVo3w8158OO2h/xF0j90R/1otebBvmMRohfIeauIrlTcw4Nn CxI4EeR8/9HmRXvh73vHjZB+zyf27BP+wzxQPhvyXxjpXyODp+KO80DTxS7v NLq3b1H2yrM8kOTKR4WQ8V63bX8fzYOvzlino+Pz1gdfSeTBzfAwHdJfrq/s NlW5xYPk+R1iR9ETDsYTDjk8WJ2VJhCIzr3o769RxIP9Vm+FA/6/f71f3HrM g838JzUOk/7rhtLsozoe1D2PdzmIFg3NWejdyoPem0tySH/77dcks+I1D26E CwvsR7fT5tbkdvKAeeToCR+Sn2KGHA17ecA6YjlL+uOy4sg3/kM8SA2/etsL XXzgtwJ85cGnm1ttPdFVJcqWpT94UPM8YKkH+r9YuR3Nkzww5hdku6H/BxGr b3I= "]]}, { Hue[0.1421359549995791, 0.6, 0.6], Directive[ PointSize[0.009166666666666668], CapForm["Butt"], AbsoluteThickness[1.6], Thickness[0.01], RGBColor[0, 0, 1]], Line[CompressedData[" 1:eJw12XtYTVsXB2AKIU7oqlJURCGEJBlE6R6lECWVInSTECIkISqSkApFSRTd UIrcki5OKIUohFBrr7X32ruLbwzn+fYf5zzvU3u11ppj/uacwzjPAMf1Uv36 9ZuO/6H/J+81e+9f2QX96NOyocx+/9DNz6u6oM33+/UB6NPacbV3a7vAcZLn lmHodmU3w+z6Lui56jZWAb1orf+p8w1d8PlL82M1dKa4QnCsuQuGt37w0Ear fPVYtqelC4KTfX7poeN1za5vaesCZaWggBloxbsbZNzbu6Db9k+rMfpSWv1a +44uUDcbabsQbdIUWTC/swt2cxlXLNHvfXfLGrBdoOZbJnRAH1lS5K7Jd4Hk tJvxCvTCMOObcj1doBQZHuCO7v/3wRgInK6dtB5d1SBr3ynNgOx5m4LN6NQB bmdbZBj4WCF6vBUdfkDQVivLAH9N93kY2te5Zkq5HAM2y5oeRKBdwzpDcuUZ eH97VM5h9ArG5U6aMgM3X784dgLtXiLVF6fGwIOCYWtPowObBLBfk4GRzjU6 yeijtnr7grUZuJCr+P4S+uaIjFJPXQb8qj4cyUK36Pp2O+ozsC19in4uWjV+ y+xFBgyUzvtTWohe41AcYGjIgEX8cotSdNsNu6vaRgx4XQt6VIH+Jj31o7wJ Xi/m7ILn6E02rqoDgAG3OTWFdWi/Qy+dWDMGjLPl9BvQn2+fjmmzYKDft9Vn 39Pff53xpN6agVu/bg38jHbpkJJ6ZM/AshLlLT/QNlzWvHxHBt4uj6rtQt/r urA93YUBu3ypaTz62sf3eQmuDGS/jz7ah1Z+5Pcr0p0BUa1664CPOB7nzfRC PRnQO3Z3tiza14c+DFiN8Dk0Em2t8/qiix8DTm7qL5XR117FfbDwZ8By6/vR GujosCR1o2AGJjpmu+mgP4/6uUo3lAFGHJmshy69cCxROYyBq36bGqehFTV2 vJIJZ8D68pqRRuj22BvyfAQDrzNWmZuijUUzHNsjGbAN9ty2CC2zTCquIZqB nEHb06zQjhfG1D6NYUDilfjMAa364aBccRwD0488/OmM9pCf45CZgPe7s3v4 GrSOidGJpCQGPKaDnif6aoNzTXQyAykuoaYb0DP9feXC0hhYHnPYzB/9qHuT g186A/tebTMOQbtFeJ1wzWRAx2C+Vhha0mdXY32dgflnP/bsRaeE6MuZ5DJQ q+TxLBJt9anbXj+fgcbLxVFH0d1L7h9XK2bAdfEvozh0Xvq2atkSBpZyvY2n 0YHdGv/0lDFwv7B9y3m6H6u7dh0VDKQfzRGkoXuPW8c0P2VAOshh0xV0dRV9 GHjj+7w+G50uZTaspJYBrUCtaXno/dOybK7XM9AWvXxPIXq9y8CjyQ0MaOav u3cPbR/iVBnTzEBNl9XPcvT8I6eGhLdgPcDwEU/Qs848tfRvYyAx5ZpOFXrG hd9R7u34/keM16+jn58f8sS+g4F5J3dqv6bvxysNgk4GQDdzeBNdf5+SuQHL wL2qW98+oL19hhzU5HE+HkgqbEPvW/z7gVwPA6NtXbd/Q19UfYqRIADJeOHE X2jhkXMLOqUFUFz6rZpBXzEK2tsiI4Cih7mbROjbY61Ka2UFIJxp/6cbPdZC u7dMTgA7Rt2P7vdpQ9mXK39McuUFYLJmgOxA9DCL92FpygKYP0rjwBD0sbH3 i+PUMANmDmOGozcbXeQjNAUg87B6xSj0lSNRRsHaAqguWX9bCQ2qAaGeugJ4 o1Mno4Y2/LIy31FfAOP4EY6a6EO/FrNmBgLINhp/Uhs905A+AtjeOvy5Ln3/ tnawtpEADnZXivXRV4OUcuVNBFC3d43mNLT/JtlOaRCAe+ADk5noE2lSBqyZ AKa96LGfg/5HoWdLm4UAFp6WXTUP/eOBKLveWgAnn/9atQA9IYf7UWEvgIlb MpYtRt99xenlOwqgJ2zGAkt0jjG/Md1FAKO4+PG26L7GnqsJrgLwa3rSfyk6 q0C6PdJdAP2n1tU7oW/XDNMN9RTA246cCyvQquNVMA8EwCmvW7saneCrk+7i h+87y1tlLfrdkmltFv4CiE6Z/dwT3fnIRNsoWACTRK+3+6BrP1p46oYKwCXX XMMPvefcsjTlMAHIV+8v3YLmmNUtMuECWGt3fGUQ2qR9vSYfIQBjgw0dIWib XQHu7ZECuLh1RNgO9KTsHckN0QI4oxrVfzf637CI5qcxAtDUqdq/F231NVqt OE4AhrEfevfTeHfFuWYmCOC1e3nwIfTZJPoIYGhs0MdodOiH1IboZAE80+60 ikGrP7yiHJYmABVV0+xYdNziHBe/dAGIglcOPoWu87qd4JopAK+pZu6J9Pxj 79RbX8fxs5VcP4su2HVf3iRXAO1V+0TJ6NUhFY76+QLod/PV3DT0i6HP4tSK BXCF47dfRsvCi1rZEgG8S/6ecwWtOLJOrqdMAKlXsz5k0Xjvq7fvqBAAo2g8 NAd9/PgbzAN8ns8JU3PRPcZvMQ8EYK5Sbnsbff9es2xJrQBaGu54FtLfX/rB +nq9AOY5HfC/g65mP0YnNwjALUo1sAStltX2NKYZv79tn28ZemHgV5nwFgH8 VM9f/pC85LuFf5sA1oQXGT2m3zf4GeneLoATSUdGPKPn0e2ssO/A+vbX//Ac vWK6QBo6BQC9Zy9Vo+/ZCM0MWAHcM290q0NLQsURmjy+D8svw+vRI271lMn1 CGDQgAe3XqP/bg/6sVC3c7NDI7rSDS8nzYJH5ueWJpqvVYPCW2RYuB0/ZcN7 9FeboSW1siw8n7X4cwt6XvNwvCALGfGTVraiN+4ZiXnAwuLMd2Wf0UEGipgH LGTu9NBsRy9jVDAPWHgpnbf1O3roY3XMAxZKlrws6UAnZ43FPGDB37y89xd6 cKoO5gELLT3hhl1ou4yJmAcsqPjLrhXQ/ZVMxjxgQSnJZx+H9vo8DfOAhdd7 YhNFaBeFWZgHLEiHyV4To70XGGMesLDox6rybnTsRlPMAxZO1+1624tuOLEQ 84CFP5ODhH/QprfM/dssWAjrNVaUat1QVvKv1fV6axZkFr2ePQC9uguXD3sW snrNVw9CKwzD8nNkwW1K9P7B6J/aWM4uLEx8mZI9FN0yB6eHKwuDOqIbh6E7 rXG6ubPAhS0ZIoce44rT15MFSXiDyUj03+2BDwsj+XlB8ujnAXg5PxZMv4Rk KqLtQ/H2/FnYbbWvTRn9ayc+bjAL1ePWaqmiM8Pw9YWyMDNgpJc6OmIHDkcY CznTEzM00Nu34vCG4/U2dnaMRUdv2o95wMJ7xTGztdGFHofwBlmINxqzfzxa yukI5gELa6o7a3XRG82OYx6wMOdtopYe/f2p8ZgH+LyrR22fjD6uchofmAW9 ZR7VU9E2fygPWDC7FzFxOrq+DS+XzEKsWHqfIbqxEm8vjYXZPiE1s9Arc/Fx 0/H+pf5VmoN2OoOvL5OFmBeaLnPRT/ficFxnYf5T15h56Du+OLy5LFgxB+7N R09YiuWSz8J1m3OtC9D/GGP5FbOwsT5VahE6SAvLuYSFvcdOjTZHLx1WjnnA ws+toROX0PsT4nSrYCH/iIWBFTr8I07fpyy8qR0w1Qb94u/+gIWlFrk6duik IrxcLQvaP2zkHdDvLuPt1bNgf79evBSdirur5AYW6h/YNDiim8Px9TWzkMfd zFmOPrUZh6OFhfYVA/a4oCtdcXjbsP6+mS9aSeNlheXSzoJn1rb+rnS9OVh+ HSyknz1ZuBptMRHLuZOFBXdS1rtR/ajQ9MD3N+Ss7Fp0/yE43XgW9kftz/RA q0i6MQ9wvGatAk901o8/+EGP0njhhd75jvKAg02xI53Wo61q8PZkOPgwLqTO Bz26HB9XloNDj80tN6Db8/D1yXGwOvxQ4UZ00WUcDnkOPKxma25CR53G4VXm IFHXee9m9IrDWC5qHPSptL7ZQuMVhuWnycHpMS0TA9DcJixnbQ7cZtkGB6If u+H00OVghYfu7SB0ggNON30Owi8E/QpGe9P0NeDgzW+9cSGt/98fcOC53Ml2 G9XveLycEQdqVd8DQtEvlfD2TDgYtKLr6Hb0xcH4uMCBFueTuoPqQ4Kvz4wD /wyb6zvRCzpwOCw4+OaXkheGlnuPw2vNQYKZ581d6A81WC72HARPOZWxG32j nPKAg336sxL2oHffojzgoGSe+e5wtF065QEHk9dVrN6LVk+kPODg+Zk8w33o jsOUBxycbZUbEIG+G0Z5gF7YXEW220x5wEF7yuIT++n53SgPOLj8Y5vtAfQf O8oDDip1AgccRI+dT3mA42FjWEiumEJ5wMG6tfe9Iymv1CkPOKj2UBh+CH1O lvKAgysOM26Sa8VYfpEcdOqPto+i8fyK5RyNf497+oX8qB6nRwwHFdkLww6j D5XjdIvjwHHZgcHRlF/XcfomcGDbGhNH/m9/wEGu5zrFI+jvBykPODhY03uS fD+A8oCDR5O8hh+lenOlPOAgKCgugixcRHnAwZGMw53klVMoDzgY8czS9Rh6 IW3/cjmQaqwrJWf33cYBwXp4ra0Rg77wpQhvkIOp5fN3kBWq7+EE5sA3SesF +Z98nB5lHAxbW6N+nPLsHOUBBxqjzH3JcRGUBxycyzuQTVb1pTzgIGrB0Q7y GzvKAw5iYqQnn0DvMKI8wHredCqA3KtNecCBoNG0kOwlT3nAwfLGP1Kx6JyB lAdY3xvfOpLfSVqxALG+jrzIIP9kvuKAcKA/r7GP/Oknbk878H2G97rGUb38 +I0TmIM/y+beJYd2CLCgOVAoOKEZT8/bKcI84IDJ6o0inxFSHuDzTDvIkv/b Hwhh2BLt9SfR1sMG4AQRgsWvt43kULXBWDBCsJpwzfEU+vAUPB7JCkHx98ka cpjZCMwDIVy1TFiaQPnqqoATTgiDDG+8IstuU8ECFIJ+zkf305S38eqYB0JQ uzO5gzzp1ljMAyHUu8TuSaT3/1oHJ7AQnA8Okz+Dft0zEQtaCBfM0rLJ/SdM wTwQws04e+skGj/H6ZgHQjgWpNBBloqYhXkghOmfmLizaP6qMU4QIXjXbzE+ h1YuM8WCEcL3OUNayKsfL8Q8EMJDuUeR59FP7uJxy0wIXSvT9JLRq1KtcMIJ IUjhQjV5VIgdFqAQFpvdDbqAFsxehnkghM2fePkUtKR9OeaBEL6yLvlk3SMr cQIL4dbOV86plA+qa7CghfAqMIQji5LWYh4IwfKt4ak0Wl8Ge2EeCGFEgfyM i63/3x8IYfIAhRqyyy08fvgJ4XzFzE2X0P6/N2MeCMFdtG3QZfQ11UDMAyFs Pf8mlfzPrK2YB0JovrVqbjrNx/mhOOGEcMa05yXZ1mgnFiCOn/F9vwy0juZu zAOsh6sX+18hC8MxD4Tw4HBGItn2XgROYCG8aKqcfJXqKeggFrQQJqXJlZNl laIwD4TwtiFkeSY6IzMa80AI7/ZLvpA3TD6GeSCEWSmpO7Jo/rw5jhNECC0h s2WuUT19jsM8EEKr9dFY8lLnBMwDIRiNS1HIpvHSTcI8EMInUdBJ8pnVyTjh 8PerpYdfRw9l0jAPhGCcsTyCnPM9A/MAf77Hu5McZZ6NeYDfdzZ0zaH1WCoP JzBef2p5Kbl+XBHmAf580D8aN9BLLpViHuD9fRi9g9x56BHmgRBmF7dVkf/r Hwjhfby/+k1a70PqMQ/wfW8u9CFr7G3GPBDCtCX3r5FP/2jDPMD3M+7QDzLc +Yl5IITXPbITcml9+CHEPBCCXsPS1eTJ4f2W+LcJ4eWt5UfJwVuH4oZNCLUn lAvIPyoVHtl3CEFrc1ITOfGgJk5gIVRavu0mh6bqLTJghfB4/FulPPQRjdkY +EJQkU6aTK7tW4gbIiGUtiiZkm0X2mMeiOBOqZMlOe/0KswDEYx5+suBfPeG J+aBCFjdKGey77GNmAciWPRefRW5aLI/5oEIBv+44Uq+FhuIeSACM/sFf72w KBDzQASMTPUK8s5L/pgHIlBVWeVEdnb0wzwQQWH4R1tyfYUX5oEInpv4LiYL Ja6YByJwcvhu/Pd+WAfMA3Sx3xSyVp4Z5oEIKne2a5Bn/N0fiKAg1usf8qft 4zAPRDC6r+nv+5m5bzjmgQi6ypd9JU+0FWGgimBBc0Utuazp/VTWTAQD7GYV kbunVmxps8CfK1xKJr81v5Jdb43fn/5PBHn12MMY0Pg8GaGe5H2lPnr5jiIo CmxeSLYcuwgnsAiq4kCTnGs+5mqCqwich6RKqB7uT+W+RLqLwOVN77/kgKbK 8aGe+PzdK//WT4XNBW8fH7xeaO4+8pdx2y+5+Ing8cnry8lS/dw+WfiL4MIF gS5Z+YvDOKNgvN/EAxKqV916Bw/dUBHk7HH7W7/TKtekKIeJ4POyiGSy4dPQ 9zLhIvgm/3sL2aA6eQwfIYL8hxmm5PHNdWvaI0Vgt+7qMLIiM+p8Q7QIcjsE b2n+9Mmta3oaI4L366Ovkj/NuqdaHCeC11UbtpHve+lgHoggaVz8QvJ/+wMR TPAeOJzs90atMTpZBHtPPXhD83XmmGu4gIggLe9ZGlnstwQDVQSxpaqbyPll nYmumSKwLMo3JG/WuPLG+jqOf8rZbsoHjYN+yia5IlDe9uwB+WnX3BX6+SKY NscsmrzFVyVRrVgECt8GOJBlP0u9kS0RQXnUyL95c9FPotRTJoK5ChsaKI9m 8n0uHRUi2HN88HlyacyIxOanIjgiZNzJi/QN3lRVicDTVncceaDTVOWSWhFc NpnYQnlnG/XR5Xq9CH4G7EgiKzy1PJ3cIALTb8p25LWK3q9imkWQeGVQN+Xl 1ABDhfAWEYiyFl8ih78qcPRvE4G7oM6cvMzyV6x7uwhe7Mv5RPl75UljtX2H CMyd3u4k73XaOQw6RfDAz1mW3PSjysqAxff1RPNvnhfH1h/S5HF8NhiPIauZ xT6U6xHBJoeLybQe/PfvCzzI7HJVIW+o1J7XKc3DtR/rYmj9WJbWvb1FhocV aUU9tN6UHIy6VSvLg+x5dx9ydsiTX2VyPDxucqqk9Uo96O6kXHkeDnucmUge GeblnabMg5Pe5Aha36JO3L8Qp8aDjrFcPa2H+3NrGnADA33HFo4j9304OSpY m4cP4x9uoPWzR3WYracuD0+kT2XRervHc06koz4PBRNuf6H1eX+BSqmZAQ85 x7XHkIcoXxfOMESbfLKj9dy2njfQNuKhUfndblr/I+f/8ZM34cF5eP8c2h/c di67Ig08jFe3/0j7iabR874IzHhYvLhCicwdCZ7QZsHD7Ugve9p/DMz02lBv zUNoi/5h2q8MD5HLrrDnIXr5mAra3wzt2NZ125GHXx+NpMg9IxLnpLvwcOnw LjPaD335FByR4MpDlmX7Qdo/VawbUhXpzoOUVvgz2m8lxriqhHri+1cwHUFe /3d/wEPG2PGraL82oWNygYsfD13msy/T/u6dRo7MEn8eThwM7KL94eG+b65G wTzsaf53AVnvaMsN3VAe7tl5xNP+sqIibpBKGA/2DYpfaL+69Fqv++BwHqbt Zk3Ir+frFPMRPHgb95yk/a/D3oGK3yJ5aJeb8ov20/c3pwU3RvNQ+ueQNVlb hq97FsND2+ChmbQ/32s/xPBOHA9r9AuGkGvNXiVkJeD79T26mfb3Km2rJWeT eFhwL7qOzgeF1fmuR5N5MBwxdDZ5ZEr3zV1pPByyXJ9I5wst5ym9m9J5mL3+ HEfnkc5Oa1iTyYOlT/ZScmjw8u2213kotDlzlc4vBY1W6fNysf4U1/bSeefm BP1nk/OxXh72cyB7ruI/qRfj+LrsSabzUl1QLjOshIfpL+rb6TzFB7jwPWU8 hE+UmU5udPoq6KjgYdIGhVA6j4WM8f7c/JSHmcd6Cum89l//gIcLp+4L6TzX vG5c1r1aHjZEuM0gX25etye7noc4x9d+dB4cb3rc4nwDD6qD9VLpvOh5IGPg sWYe+l9c+ZLOkytuZN3Z1YLPN9azP3lQ+dn1m9qwnvZbTKHzZ0BR6KDV7TwI ng10ofNpfML8ZOsOHlZyKbvo/Bq4kpk0t5MH9YGKF+h8O6h/fPYklgcQe5fQ +dflxJjxo3keHtSdaKTzsYd0wsnBPTxcPJ7A0PlZx40Xif7geBqEDiaPuXgz 5Ku0GDoNF4+h8/ajNxMmv5ERw+zRowzpPK7e56rxRFYMtz58sKLzurainU2h nBg2Rl1ft5Xen3pv3hV5MSwfsSuMzvfzFTc5n1EWQ1iY5Sk6/zv2nZ4RrSaG 148Ub1B/QLlhn3WYphg2M58qqX8QfXFi8iZtMRj1u/nVn/LG7biem64Y5v3e PZAcPiSPsdfH69230qH+w5/0k9wCAzH8ClRaTP2Jv9sDQzGck271pv6FQm7s tfFGYojYfuOQH/qSZra7iokYkqt2ZVK/41N4pK0siIGRsnxB/ZDaavVtfWZi CFdVYHxp/ZELbuiyEMNi+RZl8p0FkaGfrcWw8Oe1+dRPKfB0cWi0F0Po1e0+ 1G/x3PbZ84WjGD4tXnTCG313x4zcchcxHH7wTzH1Zx5tNp1b4CoG73FvW6l/ s3fZoL4sdzHsXJcuR/46IaYnxVMMj/cHzluH7vezblaCjxhsIk38qP9z8Iv5 x2g/MdRmh52h/pChi+vsPf5iGGN68bE75dM8uVkBwWIwmJ3HUj9pxBnvd2tD xTD0TJYW2dTP1cAhTAw5nkeXrkGfzuvUMw0Xg/Lp5eHUj1IK0q2dtF8MljMG ZVO/6mF6n4biIXxeo9TGVeikpaHKf6LF0D9dS4Z8Nuh48dcYMUTtiplJ/a6K wUsG1sSJ4dWdlnUr0KOVUiW3E8TQ4al+gvpj5/7uD8RQuXXBPWdaX08aftqd LIaAn7bfqJ+mIu1f754mhuaahUpkhW+WgZAuhhFqmouc0PPMK/I1MvF5atoC qB93XLnlck+2GF78iD+/jPLY47xp400xrAia9Iz6dzc1xHtv3xZD5tqrHPX3 IpyEm44XieFBgZwWeXffyf6+98RwMXStvT06VfPlgvllYrBOSQyj/uCvgpuT FCrEUDStKMOW1ssKg3vtT7De9MpfUj9xqKUDf/c5Pl9MXp81uuNan398jRjK T17SJWu5TskN/FcMu0OvWVM/MsuxqdTlDY7X7EpfS6r3hMFnFjeJIePln3Dq X97Ryp8394MY5G1tYy3oeSUt2UatYlh/8cY56ncqqB9rn/dVDKmvJqUtRsPh gt9WP8RQ9vlOKvVHS+Z7PHD/jfXz0vOsGToWoj12CcSQe37c8YVUr0emV6aI xHBwkWgX9VenjF3153m3GEyftHpB6//7BxJo1v1qTv3YsXoTqkwGSMBjfX8t U/SpC8+99g6WQPXeGbwJeo1b5+PKYRLQ2B72lPq7oT6nuDEjJeBi0xhvjP5c XPh7h6IEgnvsV1A/+OoK1/ym0RLYcaRJ0QhdCrstLDQk4MWFV1P/eGLwmEtF WhIwNDWOmEnf/2X6fIauBL6tGzqV+s1c/rvS2/oSOOTF1FM/euWTnj3zp0lg sFnXtmlU79rnBtfOlEBQ76CRBpRXz4rcNxpLoDzBMGMK2kyypPW3qQQc1oUA 9buXiOaKLc3w/goef6F++JSyuNQQCwlMTtA7PwnNLrdtDLaWwK7elLUT0efz /S4tspeA5+8J06mfrv2po+/LMgm897s/YgL6yNuXP9Y4S+B3wMY+HfS/F9T9 0ldK4HSfjoT68z1TK3eWrZbAKyVGmjzoaJNqjrsEMotq1bTQP/OW2vmvk8DI trKF49DFGZNG9veWgHzSg23U7/9vf4C//+ZVoSb6fyaYDXc= "]]}, { Hue[0.37820393249936934`, 0.6, 0.6], Directive[ PointSize[0.009166666666666668], CapForm["Butt"], AbsoluteThickness[1.6], Thickness[0.01], GrayLevel[0]], Line[CompressedData[" 1:eJw12XtYDd0XB3AKlVBulaQQQghFKC2K0kUlhFLIPVSSkHShi6gIlaQIlagU lUolhCSEqIiSVDioM3POzDmS31re59cf7/t8njpzZvZe+zt7L2PcPB02y/Tq 1Ws2/of+73BCq2FiYRf0op/mbeW/mMG/RhR1wdQQy7+90b57R+r0L+2COW53 rPqjzQbP3S4t74J5O4LDh6BXPnbP/1bRBfoXEvPV0dnxOYrvK7tgXI/Cm7Fo 28P9dz6t7gLFo9VfJqPjtGNq7tR0wYnvVR0z0R2qLvqZtV1gXyf4OI+uv87j zPn6LrCznllpis6QVDCRjV1wzCLxihVarX39skPNXdCnWsfHAX1KxzRrV2sX lNTXzXZCD7+zTc61owtu7bou2IC+nFK7zlbQBe3HLsVuRxu9Dy0w6eyC1dNL Z+xGf9zqr6jHdoGC6+/y/ehjFoWuWnwXiIe6mAWhF/rNzVHq7oKxDi2F4eje /wZKCJFqx8ecQFfXK9p2ygrBYOuqQ3Hoi31czjXLCWGEiUV1EjrgCNNaoygE 4ySnQanorStfTL2nJITEkBizTLSTX6dP7lAhzGO/77iFXiV0LE5RFYKaYHt4 Mdq1VKYnZqQQ9Hcqxt1De71n4LCWEI771MRXoo/bTA7y1hbC2L5FkS/QOcpp ZW46QhCPeujzFt2ss/W3g64Q5O+ydh/Q6qd2zTbTE8LqDgvNVvRauyJPfX0h tCWUNX1Dt95YelXbUAj3SiC2C/1VdtqnoUZCkMy9CTx6h7WTeh8QQtRglaYe tHvYq+WsqRD8zXbs6ftpW/mXvLioVnMhPH6R262Ibn6b9rjWSgheBV/9hqAd BTIyD22FsJcb8lMNbS26ZpzvIIS3p6Y6aqFLupL3pToK4czRubfGo69/+ngz 1kkI2fWz+05Bqz50/xnqKoRxR8bbzET3Pm862ddNCHx436Nz0Fu30I8QdNrf Fpqgrca9veToLoSbFxM+LqLrvYlpMvcQQkLeUokVOsIvQcPQWwgfxzLyy+j+ h/xYo+MrhIDvEQNXocuSI+NV/YTgN2iInAt6uOb+N3IBQqg9flzkhu44eWMo HyyEYxvF9dvQc7mZDh2hQjgf65DrgZZbJhNTHyGE/mMvBvigHZJH1VRG4efl mxb4odWbQpSKYoQgtVTiA9Hrh86xy4jF7/8y/UooepyR4YmEBCG4vDdbfBx9 tX7li4gknE9DucaTaAOPrUp+KUL4ITtvexz64e8ddu6pQhhk2ihIRLsEbzzh lCGErV0/tqSgpT1LX1hlCaF7sGddGvqCj66SUa4Qnl5eZ5KJtmz5baubL4Q3 aXcTc9G/Le5GjywSgvrIE78K0DdT9z5XLBVCfK/nc0vQXr81B3WXC2HZKn+/ e3Q/lneWCiqEYK51LvcR+k+0VVRjpRB8Vus0PUU/r6YfITTKjJN9iU6VMR1Q WiOEIM2To96iD0+/Zp1VK4S113dMe4/e7Nj3eFK9EHwzCmY1o219lldFNWJ9 qe3W/4I2OXZGIaBZCCsk53S+oWedrVzi0SoEDWuDIb/QM5N/hbt2CGH0oPkM Q78/r/DYVoDXN82v4unzp1T6QacQXrWfP/uHrh+ksliPFUJID7NWpmVb+aYt CiFavBB2hxWryqGDFv26r9QthLjAzkpF9CX1SowEBvivsV7KaPGxxAWdsgwY /HJQGo5ON9wd2CzHQGfhi9QR6LzRlmU1igyMtxhgoIkeba79p1yJgfoE+eKx 6Lb0v0a5QxlQyK0w1EEPMP/ol6LKwO3IBVm66MjRd4tiRjLwaYq/+nT0TsNL fLAWA0dj9gUa0PcdCzf01mYgu3hm4xw0qHv6uukwsOxq1vT5aP221fkOugx4 OnX4L0SH/VzEmuoxMOBlS/litIE+/TAwbkBStyV9Pk/bW9uQgWJF1em26Ku7 VXKHGjHw7IW9swPaY4dipyww4LzaKsARfSJFRo81ZWB7qmyCE3rQsO5dreYM MAX+113R3+9zmbVWDEgj8/Pd0BOyRd8rbBkI1Mm+vQV9541ocr4DA0FhW3Ld 0dlz+e2pjgz8yfh4yQPd09B9NdYJxztGJdIbfa1AtiPUlQEvk0G7fGl8XwzQ 8XVjYPONh4v90Orj1TAPGHjbaqwSgI7dOi7V0Z2BL296NQWjP1hMbzX3wPE6 kHwxFN350Ejb0JuBmTXDnSPQNZ/M3XR8cbwatgyKQh9KXJai6sfAttiY4pNo kdC5WS6AAc0+cevOoI06NmvxwQxEjff5E4+2Pujp2hGK8yfRPZOInpS5P6k+ goHEoFLtC+jXfsGNlVEMGBdPzLyEtmyPGFkUw0Bc2q6paTTfXTFOGbEMZC6O TM9An0ugHwYC4kPUs9C+TRfrI5KwXs47huWgNR6kq/qlMGC/XOb7LXTMomxH 91QGHErDl9xGv9yYF+uUwcDAd23JxfT8o4trrbIYCMnQ+lmKLjh4d6hRLgMF ujNn30M7+1Q46OYzcGW95r4K9LP+T2JGFjFgs6Q15zFaEZ7VKJbi+LUc+VyF Hj74pVJ3OQPVen8GPaf5Dqq1FVTg5/Xs9V+io6PrMA8YmNPib1+L7p77DvOA gTCLI1vq0HdLGhVLaxgwGtu09x19v32TVVYtA90GAwI/oJ+znyKS6vH6gf0P N6NHXmutjGpk4LrMu4DP6IVe7XIBzQycLfXb20a2+Gbu0cpAbI5g81f6e70f oa4dDKS817MX0PPodFbYChgoMllk8Au9agYjC524vhomDRGiS6zFpnosA2pZ zV9ZtNRXEqzFM+BSuO0Oh1a+1V2u1M1A7u97YVL0v+1BLxaG7BNY/0FXueDl ZFkImdzRv9dnXK/V/QKa5Vjoo5L/QAbdbt2/tEaRhdNzl/v2RRs3DsQLsqAX e3+sPHr7ocGYByw0TJR90h+9W2845gELseyw7QPRy4RqmAcsuPCcjDK6/yMN zAMWDAwy44agk66NxjxgQf3qjHHD0fIXx2EesDBoxdHrquilaRMxD/B+5+RM Uaf7K52CecCC9oqMdA30xi/TMQ9YWHR1j4YW2nHYLMwDFs7E+B0fg960YC7m AQv6uyaJtNEnt8/HPMDPGwWtmYCuP7EQ84CFTb8DCiei599a7NFqzoI4a/wQ XXTpa8usWisW6hx8tkxFO3fh68OWBflv7vl66GEDsPwcWDi6R+HvDPQPbSxn RxbW/rIzM0A3z8Hl4cRCgIvJ4dnoTitcbq4sdJbW3pmDHuWEy9eNhVvKQzvn of9tD7aw8HilRHM++qknXs6dhUlR4UsAbeuLt+fBwseC0p0L0T8P4ON6s9Dy KvG4GTrDD4fPl4XZn8akLkYH78fp8GPh3Se7Igv0vj04vQEs1NSOr7RER+w4 jHnAgkrx5ZfW6Nvrw/AGWciMefJmKVpm+THMAxZOOcfX2tF8m0ZjHuD9qQ58 voy+f9opzAMWbB9Nvr8cHa0Whw/MwritnTkr0dZ/KQ9YsJa6nFuFrm3FyyWx cG7Gy4A16IYqvL0UFtrL0l2d0atz8XFTWZhx6dNcF/Tyszh8GSz4vw9QXoeu DMTpyGKhwj2wZT26eCtOby4Livafb7ihJ9hjueSzYHf82v5N6EFzsfyK8P41 3hhvofoci+VcykKt7MburWj7AfcwD1gYvnDF7e00fmJcbhUsrKi9umsHOuAT Lt9KFmJK12vtQj/7tz9g4Vn3wWoPdEIhXq6GBblTUh8v9IcreHu1LMChRjVv 9EXcXSXVs7C/bEzhHnRjAA5fI47vyiqHvegzO3E6mlloMn3b4YuucsLpbWVh WNhiv/00X5ZYLh1Y31pqcn50vTlYfgIW9gyyPXEQbT4Ry7mThUvL24ccovpR o+XBwvOfn2MC0L0VcLnxLPBNZgOC0GrS35gHLIzVkTscjL72/S/+sGBVMZU5 jD7wgfJABAohCutD0JYv8PbkRNAzU1AZih5xDx9XUQQ6L99MDUd33MThUxLB EddH0UfRhVdwOoaKYPD70u8R6PA4nF5VEbwxL1l0HL3qKJbLSBE8TbmXEEnz 5YflpyUC7vuzb1Fo0Q4sZ20RrBj/yfAE+pELLg8dEXxd+jvoJDrWDpebrgiy Nms8iqH1TctXTwRpOxfJnf78//2BCGrd9iw6Q/U7Hi9nKIJZSzIOxaJfqeDt GYngiUbbzTj0JXl8XBDBqeZJrfFUH1IcPlMRRJ/2GZyAXiDA6TAXQdmsR/PO oZU+4vRaiWD0Y831ieimF1gutiIotAgIPo++cY/yQAQht1uTk9D+tygPRBCs 4lCYTHmWSnkggrxNj55dQGvEUx6IYOSlhU0X0YKjlAf4++cPBCnoO36UB/j5 bzbiS/T5nZQHIjizelz3ZXp+F8oDEfw9GNNzBf13KeWBCO6tOPMnFT3ahPJA BO9bpkjS0BVTKQ9EYD3BuSud8kqD8gDnS0ur7So6UZHyQATTn+2vy0DXSLD8 QkVwdfq2h9doPtuxnCNE4Gv548Z19MNaXB5RIjivKh+fiQ67h8stRgRqiYV+ WZRfWbh8Y0UgeN3jlP35//sDEajcf2d4A/0thPJABAmbbQbnoO96Uh6IYE/Z 8nbyCCfKAxGkVncW5aLFZpQHIphyUjviJuXFVMoDEQxSEKy4hV5I279cESw2 tBqVh87sycMJwXpQN2khJ7cV4g2KoPjW48v5lN/PS3ABi4Dv3b6hgPIiH5dH uQgi+57XuE15lkh5IML12/aaHBNMeYCfn/I4vBCtvpXyQASO9vPnFKHrllIe iMDbNfwLeb8h5YEIjCI/nyhG/9GmPBBBdsMywzv0/hpKeSCCZ+av3pOz+1Ie 4Hi83nSohPJE+hkLUATKQQoapTRfwnacEBHMsCm/TW75gdtTgQh6zYmwL6N6 +f4LF7AI/Mw2tZF9BQwWtAgueiw7cJeet5PDPBCBV5G9Qjn6rJjyQAQ/td3i yP/tD8Sgkh06+h7aakAfXCBi+LbqTjrZd6Q8FowY3MfITrmPPjoVj0eKYojv 75JF9jNVxjwQw86hT3QfUL46DcMFJ4ZOI4t0suJeNSxAMWiF1GlVUN6e0sA8 EIPk+4FY8qRbozEPxBC4Z5r8Qxr/t+NwAYshV120j/y2eyIWtBiiPz1rJfee MBXzQAyqlYW2j2j+HGZgHojB+nl+PlkmeBbmgRimsBUjHqP5q3NxgYjhiIPG QbJq+XwsGDGMkhE2kJ0fLcQ8EAMnYz67Ev34Dh63TMUwdKXaSfKai5a44MSw h9/WTh7isxQLUAxDfhgaP0Ezs5dhHohBNDM0miztWIF5IIYRVfYfyTrHVuMC FkPAzXO6VZQP6muxoMUwXuDmS+YS1mEeiGHQvowycoL8RswDMcxb7tHn6ef/ 7w/EkB6Ua0F2vIXHD3cxrP7rfZTs8Wsn5oEYLF7cfES+ru6FeSAGv04vmWoa n1l7MA/E8NMty4h8zsQXF5wYrkzY5k22MTyABSiGJKOUNPI4LX/MAzG8SVld /8/iAMwDMTisiZZ7Rn9fEowLWAzKbqYG5LO7Q7Cg8f5LfFzJiirhmAdisNs6 PoyclhGBeSCGVxtXXCdvmxKJeYD1k9v7ObmuLhoXiBjWm639Sfb7EoN5IAZG 8fSA51RPK2MxD8Rgo5g2keysk4B5IAbPhbGm5LPOSbjgxLAme70Tub8wBfNA DAMc5L3I2d/SMA/EEDol8gg5fHEm5oEYKucLzpDPyNzEBSyG2tCJV8i1Ywox D3C8+yzMJVtcLsM8EINp8awScmfYQ8wDMaSm9XtI/q9/IIaXT249JTf61GIe iKFCe34NWTOwEfMA6zvv0ity3PdWzAMx9PFv/Wco/oF5IAZbP5mXZI3vYswD MWy80V1NnhLQy8KjVQwLRr5+RPbe0x83bGJoLQ0tI3+vGvbQViAG+/hheeT4 EC1cwPi86YHpZN+Lk830WDEc/vnoLPmY5mwMfDGY7/wWTq7pWYgbIpyf0d98 yDYLbTEPOJg44NE68s24NZgHHMg3pS0h37nhhnnAwRyrfD3y1sjtmAcc3F7a NYxcOMUD84CDsK9OPM3n9ZNemAccXBklbCAvLPTCPOBA+VtBEfnAZQ/MAw6q bTPiySsd3DEPOKizfrKHXFuxEfOAg+mfVGzJYqkT5gEH7wadmkC+w9phHnDw qnbeH6rXsTdNMQ84GKE/+BV55r/9AQe5k4anklv2jcE84CCu0NyXbBA0EPMA v78pdTF5og2HgcqB3YWZQ8nl7z9OY0050OYEH2l9/Z5WsavVnIPF7bVXye8W p2fWWnFQ6PnNi+w8+igGNAd+J6cakoPKtkzOd+DgmGXyb1rfS0ab4QLmoOOc 8b/1nrt41NVYJ7yfEPlA8t1porZQVw5O95MxIXu+rxrv68ZB8+hJvylPKqyT N23ZwoH/60MF5LYx+y47unNwfI22F1mml0uLuQcHM34aTySrttmNMfTmwCum 6iPll06t3XodXw7MzapPk6dXrb2g6sdBvqypBVm/0vejXAAHxa90JZSPes+T RvHBHDjmRGSQxze+XNsRit933nk1ebhwyPn6CA5Wx6f0JfcobXhfGcVByUXn XMrjllkl6kUxHBQURjiT724ch3nAgXWTbh/yf/sDDnyHmV6nfHevG9kQkYT1 tbranmww6jq+QDg4da2KpfeFxN0CA5WDUMX58eT88s54pwwOBh7UnkPeqZle Z5XFwTTJoTp6/2iGuKsa5XLQFmqzl1zZNW+Vbj5ef8yJweRdW9XiRxZxMPrp 4kx6nyl+kalTLOUg+YjXYvIld6lKdznev5XSB3ofGvA9joIKDraMHruHXBal HN9YyUFmnww5spmuXl11NQcR3OVz9H7tu3yaamkNBy9OzJhCtgn/5JhVy4HV Jq+Sf+/nyiVxSfUcSHzWW5PXDd/0JqqRg0/3ejfQ+3yap/6wgGYO/lqt2EwO eFPg4NHKwTLl1Z20H1i25OdJ1w4OGgYP9COnP254bivgIMFujww5cPmBAdDJ QeSTYxG0v3j/vdpSj8X1GrhciVx0sjZMi+dA1fvZadqPjDQ9+UCpm4Psi7wK +b9/X+DhoOKbs7Sf2Valbdwpy+P7zG0EeVnK733NcjwUxKacpf1PaUj4rRpF Hibkx6iQM30e/yxX4qFKWf807Z80dt+ZlDuUh8tXQweRB/tt3JSiykOef8RR 2m+Fn7ibHDOSB0mkSW/y4dwX9biBgX0NV/bTfq2n6fQQb20eJrqV/KT9XLf6 ABs3HR6UdUI3kg+5zQl10OVh2sS/b2n/d7hArcxUj4fDmydbkhVUs8Qz9XkY 0NSvmPaPNrW8nrYhDyWN2ZPIoSZ/3Yca8RCaZnyW9pt5K8vTZYGHjcY5fcnv Rxi3MaY8rElW8Kb9qeiY94RWcx42Vy/5QPvXvhkbt9Va8XD00S4L8kAfpcwK Wx4qIvfn0P63v2BvV54DD8O1tquRu5Xj56Q64ngegkDaL7e1eAfHOvHQk/67 lfbTFRsUqkNdeYhNTrIkx0c5qfm68WC6YXwW7b83/9sf8NCv85QSeYJgSoGj Ow8tVm1etF//oJktZ+HBw9vdWi9pP3+056uToTcPzZtMppMnH2++oePLQ69x ZtG0/6+oiOmn5sfD3BtTv9P5wP76H1f5AHyefj3m5Lcm44r4YB5+TspLofOE XWDf4V9Dedgxwv43nTfu7kzxbojA6715uZysLce/fBLFQ8baudfpfBJoq6Bf HIN/nxPWm1xj+ib2WiwPi2qKHOk8o9bqLD2XwINByatrdN65/Tzf6XgSD4NV v/2h89DgC79zDqbwkHNEzZ48duXUPztSeRgk45pC56fOTitYm8HDjFPFXXS+ 8vVesc8mi4ehBtMWkgsaLFONc3kobi88QeexnAm6T6bk86CZ5fSBzmtua/gW jSIeLEKGTia/3J0rHFDKw/Rdn/fS+Y73dOS7y3lo3FpVTue/huXtjKCCB0uf yv5kn1GbvjRW8nDg1IfldF78r3/Aw7b7CufpPNm4Ycy1khoe1Pss/UznzSuN Gw5l1vIQvSp9Enn8/Gjz8/U8PChR8zxL93MkrW9kI9anfsotOq+uunGt+GAz D3tKFnB0nu1379zmHa04H47cXLJnoW8/5w4edGUfHqTz76lYkyQrAa6Xexkl dD72Wi2cNK+Th46Tqd10fu7X+1TmJJaH7d6FRmTHE6PGj+B5yNzccuAUer1s 7Gn5bhxvd+3bdP4e58Jz3F8efIMPMnQ+H3Upx6ddVgIL54inkR/WTZhSJyeB VaMubKfzvEaPk+ZjRQncmu57OZrqYfhS69tKEnD2PthI5/8GjT8304dKwLIl exjZZPiOlWdVJRAUpGxD/QKHnriZESMl0HvpxcPUT1CtD7Ly05LAUwvXwmPo iEsTk3ZoS6DRy+oH9R8yXaInu+hIYE7lpjHkAIWbQltdCXxYmrWC+hV/U0+L FuhJoLL3uHDqZ/zbHuhLoOdzZWEY5XHuyevjDSVwiE38Sv2Py1qZrmpGElik nzSC3BIQaqMIElhxsXoJ9Utqnmvs7TGVQLbR5H1H6P2j5F3fZS4Bu74FV6i/ Urwg1PeLlQSM/ni+pP5LgZujXYOtBLy0V/+h/ozb3i9uzxwkINjnMZF8Z//M 3HuOEsiV3nQIpPHcOX9egZMEyq6P96f+TuCyfj3XXCWgcvzRFer/tE+I6r7g JoG8s7HV/uheP17Oit0igeTaUwz1i0LaFn+KcJfA1VYZdbK+o9PsQx5oj8kL qL800Fhplqe3BC56K2w5gFY+u+nDOl8JnOy8cJz6UfPdnfTs/CRwoONHzj50 3M3OyfMDJLDGiXlD/SuV3To1kw5LQM88R0r9rQepPZrDw3A8r4/TIifY+6r+ jZBAxXF7Mx963++OLmqPksCRL/pbqT9WIW/R90UMzlfR82PUPxuhclGaFyuB 9n5jsnejE//tDyQQ+XzyS+q3mZ3Wb/FPksBEZQHjSXkh61HrmoLj83STCnnY 1yVekCoBq96xc6hfZ7y4Il8zQwLPc/ydqJ8Xrdp8pTsTf/9upP9OyuP15+c3 5Eig9JB3EvX/cjQlgXl5eP3EoDJ3dPBy8Y7oQgkcm2neRP1C/57TvbeWSKDN 7MHfbeiLWq8WmJTj/b/gtMg/C3ImDauQQHDtZ6B+47YKvZKOxxJ4sDx8HfUj +y+x4+88lUC3TUvAZrTgeo/HqRcSsFneeJ76l2OdpuZ6vZbAa8nawo3oaw7v yxzrJBCzYNNL6ndGxMqfXfReAkd1hO0bqL7G5hvPa8L1ld2vm/qjxtLmTMPP Ehj+NmUgeZhGZIdxuwRuJD3QoH4qHC34ZfldAgF9d05ypfe1yfr7rr8kEDIw UZ/6rychYv1BRgL38+2N1lK9HptRdYGTgGFP5ALq104dvebv098SaG6zM3P6 /P/+gRQeeCaYUX939OQJ1UZ9pNB4dvvC1egzyU83BspLQdet3Jj6wWtdOh9V DZBC7tOkWY6Uz1vOiEYNloLHm95TqH/8pej2r/3DpeAWKNBagb66yin//Qgp RD1xGUz95jLwNzfXlMLPWyt7OaAneo+6XDhWCmEmtQJ7+vzP+U9n6khh5faG t9S/FuV/KMvTlYKTweYyW/Tqx92HTKZLIe7CvsvU71bWTpSvMZCCwnXlMBvK qyeFrtvnSiHPcfoW6o+bSi0+/5ovBUi7ZGWFtuDmSZaYSmFVkv486qdPLY+5 6GMuBanRZ4MlaHaFTYO3lRQmH86dR/338/nul81spdDumWxtTvnXIuhpWyaF aX2vbaV+/bF3r76vXSmF3qa10YvQr5M13FNXS2HDhFH3qL/fPa3qQLmzFGxv hvSYUl4ff6+e7SqFR1/6W5B/3LRf6rFBClXlN87Rvw8UpU0a3HuTFJzN9kgW fP7//kAK+3at3Ej+H5QkZvE= "]]}, { Hue[0.6142719099991583, 0.6, 0.6], Directive[ PointSize[0.009166666666666668], CapForm["Butt"], AbsoluteThickness[1.6], Thickness[0.01], GrayLevel[0.5]], Line[CompressedData[" 1:eJw12XtYDd0XB3CEUog3KV3RlSivELosQlEpQhJCLqWSJCFJoVQUoQhFCKWk KIUUSkklSReiJApRzcw5Z86R/NbyPr/zB8/nSXNm9l77O3sv49y2O24e0K9f PxP8g/6ua1/kXJXdA/3o0+JRlHlM7fGEHPQCF9lB6C52ZNeY/B7Y8uKQ+zB0 wC5VPdmCHrjZ05ejiJ43ctZWSVEPlN97IVBHryj1zPlW3APP1L/p6qJvnbkt 966sB5K0XBYZou0Pynq/qOiBJc9V185Ax2vFVj+o7oFCs9EbLdAdSmuN02t7 oPjmlDVWdP11PqcvNPSA22ivhfboVHExe6ypB+KDSvSc0Mrt65fub+mBTR9A shZ9Us8yY1tbD5SZvi3cjFZ84CHt2tEDJadP79mGvpJcu86+swdcvvpo70Kb vgvLtejugYhZW58GoT+4B8kZcT1gF3ZoxWF0lHWeqybfA2kVBW+PoucGzrot 34vPI6+87BS6/9+BY2CS/clH59AVDXL23VIMOEZMUr+MvjRw7bkWaQaGP/ri k4oOPsS2Vcsx4NZVdOc22n3Fy8mP5RmwV3vw/R7aJbDbP0uBgdfz34wuRK9k nO4nKzHQ7SE//RnatWBAX6wqAykRW60q0b7vWDioyQBz5ZNNLfqo3cQQPy0G 6u7vt3yHvj3i2iM3PQaWVZpMbkW36Ln/cjRgwOPdSLmvaJWT22bMM2Jg1Ge5 pi70Gof87cbGDDh/07kkRLdlLr6hZcLAZjlr59/or1KGHxVMGfD0cBo08KNH kZeti8pAYGBL/+XXZdGe4TXLOEsGVteBxUj057vx0W1WDFi3jylXQrfUXSut tWFg8rRWGw20U+eAASX2DMgWnC3SRtsK0sxyHBn4GGpuYIB+2JO0O8WJgVsH q6P+Rd/8+CE7zoWBnYVLm03QSiWeP8NcGZg687G+Bbr/BcuJAW4MdHRquM9H u2+hDwPx7z3P2aBttOsuO3kyYC6b8mQJXe9NbLOVDwNv/SqbndCRgQlqJn4M +Cm19ayh+//nxyq9AAb68R28G/pR0rEzSoEMRIxq4jzQihp73kgHMyCzreCz D7rjRKYCH8rAgf7RL/zRs0RTHTvCGOh6ZXMtEC29dEBsQyQDKz8Id4WgHZPU q8uiGcjVjZ0djlZpPiyfH4v1cnMMdxS9XmGmQ2ocA65eJy7HorVNTY4nJDBw zV2w4Az6RsOKl5GJ+P1XpZsvoKf5uMsHJjOQrB3ucxld8svLwTMFx+urL3cd vTZ043GXVAaCmFLfDLSkb/FLmwwGCuHop2z0RX8DedMsBma/um+Xh17U+sve IIeBzmtO6QXoX9aFMar5OF5FrgOeorNTdlXJFTDwR+O1fRna95fG8N4iBtY8 vhNbSfez6MHizmIGeq73e1GD/h1jE91Uht9Xky+pR1dV0IeBZ3Obx75Hpwyw HFpQzcBgga95K/rglDTbjFq8306fJe3ozU6DjiY24HrTb1zVibb3X1Ye3cTA 6BuZq3rQFlGnhwS3MDDDm3EQoqefLVvo08bACf9ks1/oqUldR1w7GNB+/FCz Xyv+/MKQUvtOBn4unS8eiLY4OXowdON60535fAjaPmT0AiMOv2/O2ePD0Zu2 DDmsyeP4Jm6yU0CHzO96It/LgB0k/lFCX1Ypw0hgYaqOZaoaWhh1fk63FAuB y34tGoe+brLjQIs0Cw5Vvq066LtjFz2qlmPhVtxlv4nosVZav4vkWTifekJi iP5y/Y9plgILirKmgcbooVYfApOVWFC7l9xjgj42tjA/VhV//3bxejO0t8ll PlSThZfCK6Vz6Puijpj4abGwLxJ0F6BBZXuAmx4LOR5nghahjb845zga4P2d vlm+GB3+cz5nacRC1dCgEY7oacb0YeHmKxl7J/r9u1p+WiYsKH1aesgFfWPH 6CwFUxaGz1152xXt4yXXLQUsnPyu/MYNfTx5gBFnycLl1vieLejho3q3tVmx MEf31SAv9PcnovRaGxa8c0tHbkfr3hJ8L7ZnQftUoOJO9IM3gok5jiy4P/w6 Yjf61ix+a4oTCyZTFQfuQ/c19t6Ic2HhNNf7MxidlivVEebKQpBU8quDNL4v h+oFuLHAuPZPD0er6ChjHrDADdYIjkLHuWunOHmy8OfloYUx6PfWU9qsfFiI jCmUO4nuLjHVMvHD61u+Ko1DV3+0ctMLYGFcZ15QAnr/+aXJSoEsGB4NmJiI FjCrW6SDWSjQlH11CW3asVmTD2WhInWn71W07b7trh1hLKybcEfmBnpC+p7E hkgWfJPKEm6iXweGNpVFsyA15K5WJnpRe6RqfiwLylt3Xcum+e6JdUmNYyHj 0dDxuehzCfRhoXhIYHw+OqD5UkNkIgtrbAqkCtBqT68rBSazsCukbmsROnb+ LSfPFBbk00vKnqJfbbwb55LKwsTKqLGl9Pxj79faZLDw7JPOjnJ07r5CBdMs Ftq64u9Xolf7Fzsa5OA7p+d9bzW6UvZ5rGo+zm+HxKQWLQeV1XIFLFi++eFV j1Yc+Uq+t4iFTfdyz76l+Q6pte8sZmHw8RWP3qNjYuoxD1iYtKa8qQXdO+st 5gEL1RqK3Cd04cMmuYJqrOfwrIHt9P1Lmm0yalnoN19V/hu6ivsYmdjAwkYn R4UfaNW0trLoJhbEBU4ju9Fzfdulg1tYeByoP4QlW3+z8mlj4cGxUomA/r3R jzDXDha+scZfeHoeve5i+04WFt7e9uIXeuW/rBR0s9D42D+tD/3QVmhpxLFw QX/Rof6fMD8DxKGaPNZ727cVA9Ej7vQWyffi9QWrxkuj/24P+nEwek18xxB0 +Vq8nBQHl5Uu3RiK9q4YHNwizYGb/m43eXS7rWxBtRwHy2NUR/+DNmsahhfk IGBR9NNR6K37R2IecFCxqsJTCb3DSBHzgIMVhQ1yKuiljDLmAQcjArOvqaFl n6lhHnDQF7nKVBOdmDYW84ADta7K5+PQMpe0MQ848EmVd9RGL76mj3nAAZOn UatL91cwCfOAgxvqvxwmoDd+noJ5wEFs/dUSA7TTqOmYBxzsnX9kuiF605xZ mAccGD0ZdmkK+sRWc8wDDu4smTnIGN1wfC7mAQeDugdvno42v7PAp82KA+1L ewtN0AWvF2XU2nAwcsOJUbPRq3vw9WHPwYuptpvM0KOGYvk5cuComHbLAv1D C8vZiYNUmQx2DrplJi4PFw4qhy43nofutsHl5srBo3EXty1Aq7vg8nXjYJ91 zGVr9N/twRYOZILH1SxCv9iOl/PkYEOJc68t2j4Ab8+Hg0j1aePs0T/34uP6 cRAcfmfOEnRqIA5fAAdz+9W7OKJD9+B0BHLwKipp+3L07p04vcEc/Ksre8AJ Hel1EPOAg7U1YyKd0ffWh+MNcuB0vDLaBT1gWRTmAQfqa3Wi19B8W8ZgHnCQ ZTruiCt9v+FJzAMORhk83rceHaMcjw/MwXyDQV5uaNs/lAd4P2Y/lm9C17bh 5RI5UB5XP2sLurEcby+ZgzcXxqp4oJ2z8HFTsL4ynwu2opedxeFL5eCPc02F F7rsAE5HBgfeCbMvbkPfd8fpzeKg0HfAtu1o3SVYLjkc8B8mzNiBHj4Lyy+f A8W22xI/qs/xWM4FHIwJOXPfH71k6GPMAw4G3Hm/K4DGT4jLrZiDl0GHJu1B B3/E5VvGweH3ER/2oiv/7g+wXt/8OLoPnZCHl6vm4MLG7Gn70e+v4u3V4v1G 1DUEoy/h7iqxgQObBS57QtBNwTh8TVifZ80VDqJPe+N0tHAQfTAk9RCtRxec 3jYOoqS0TMNovhZhuXRwsFVVpyycrjcTy68T67k8fEkE2kofy7mbg7fyC2sj qX6UaXlw4Nnpsewouv8QXG48By3rvlYeQytLfmEecGDm+XxeDDrt+x/8cLBf bkjOcfTe95QHAgiZKhkXi170Em9PWgBjq35GnUSPeYyPKycAtw9fuk6hO7Jx +OQFABtbl8Sh867idCgI4OGajxnx6CPxOL1KAqgr/zT4LHplBJaLqgCOZ3xd nUDzFYjlpymAjoFs+jm0wAvLWUsA76v/iM+jn63F5aEnAP+RI+YlouMccLkZ CCDlmVZEEq1vWr5GAgjonv384qf/7w8E0B6zYnAy1a8OXs5EAFzyTriMrhmN t2cqgEsT4vyvoC/L4OOCADp17qdcpfqQ4PBZCqA2vrUmBT2nE6fDSgBrg4b3 XkPLf8DptRHAwTrzcTfQzS+xXOwFYJ3ia5mKznxMeSCAtI5r69LQQXcoD9CX WvbcpDxLoTwQgE2lekw6Wu0M5YEAInxcL2agOyMoDwSw6fDl9FvoB4GUBwJo Hv4tJ5N+35vyQAD7LgY9uE3Pv5byQAC5pckFWeg/iykPBHD6yKqH2eixFpQH AlBovnLvDrp4MuWBAIyrQjLvUl6pUR4IQLC8+0oO+rwc5YEAnHcyp3PR1WIs vzB8/glHDt6j+WzHco4UgNTuW9556JJaXB7R+DxrPJblo8Mf43KLFcC0xrsz 7lN+ZeDyjRNAwY9Tox98+v/+QABfEwax5G+HKQ/w/t8PqXiILtxOeSAAnfxL yQVUby6UB3i9SeU7H6GF8ygPBPBlRrhlIeXFZMoDAcxurB1WhJ5L278sARgq 5L4hp/fdxQkRwNO2Ceceo5O+5OENCkCyeMrqJ5TfVQ9xAQugxv658lPKixxc HkUCsG3nasgx5ykPBOCudCeyGB0bSnkgAK1mKfMStIo75QHWg0V7J7l+MeWB AByunk94ht5jQnkggDUH1s0rRf/WojzA+n059Rt5owLlgQAmxSnGlKFvDaI8 EAD7UtroOeWJ5BMWoABEB4ZUkn8w7TghAjBJUfEoR7f+wO1pJ44fmPZ7QfXy vQsXsAB2OXjFkQM6WSxoAfjWpulV0PN2izAPBHCjSpxLPiukPMD1beE8r/LT //cHQqgf/6yCbDN0IC4QITwPmresiq6nKoMFI4RfttV15IjJeDySE4LXCe+V L9GBliMwD4Qw2kb5DXmJyyhccEIYsPe1QzVabpcyFqAQDNSTSsmpJ9UwD4Rw asYes1foCXfGYh4IYWbJhlvkmDptXMBCUHvuol6DruvVx4IWgpnlxkhyf93J mAdCuDBlH0Me7vgv5gH+/unLzq9p/YdOxzwQgsK2xgdk/sYsXCBCCFZyUqtF KxWZY8EI4UWXfSB59bO5mAf4fIKnb8ilD/C4ZSmE4RNzDN+gV11ahAtOCFLH xoeR//FfjAUohEbVoY1kdsZSzAMhxDXumFiHlnQsxzwQwr8ly/aS9aKccQEL IfNDVgk5SGUNFrQQRugek69HixLWYR4IwfF8qxM5QWYj5oEQ9ljknCf/tz8Q Qqj8wA9kpzt4/PAUgvfwl+oNaJ8ub8wDIcwyHb2afFPFF/NACB1xjXHk4dN3 Yh4IIVBjTBX5nEUALjgh/KytlWpE25nsxQIUwoL8oSZkbc0gzAMhHHhR5P7X wmDMAyGck+uJ+/vvH4biAhZCwt7Ex+SzOw5jQeP9Kj77RpYbfQTzQAimzZ4j 36KvpUZiHgihpe7odLLHpGOYB0Lw6NVfSa6vj8EFIoTcmB0B5MDPsZgHQsiu OH2KvGRFHOaBEJxzT94ir9ZLwDwQQqqtVyn57OpEXHBCuH5M4wNZlknGPBDC kr3pDPnWt2uYB0JIGak46B3l2YJ0zAP0CmdF8ukB2biAcfwXBGiRa8flYR4I Ia3Fx4hsfeUR5oEQMvQsZ5G7w0swD4SwVqV7Dvm//oEQ8vL2WJGb/GsxD4Tw aEDTIrLGgSbMAyH48mNsyfHf2zAPhFCdMNWGDPd/YB4IoeGLjjVZ7bsQ80AI Mc3sXPKk4H7WPm04X4cuzCb77ZTFDZsQel9r/kv+Xj6qxL5TCHdf7tchnzms iQtYCGN25yqRAy5NnGfECUG//Lk0OUpjBga+ENrK7glofKr75uKGSAg2O0M+ ku3m2mMeiMD1udYLcnb8KswDEVhVlmeTH2S6YR6IQD806SzZ/dhWzAMRyH5O CiLnTfLBPBBBO//ClXzzhC/mgQiePtQB8tw8X8wDESRMSVcn773ig3kggu3L 10moflY4emIeiAD04Q25tngj5oEIhqXb3iILJS6YByKoaz4cRn7AOWAeiCDp 6TcX8vhsS8wDEbit3G9Invp3fyAC7fNm/citu8dhHoigNUa/mtbDtJBhmAci uDB1bhJZ306EgSqC5eHhnuSidx8MOUsRyETx08i/DIu3tVmJ4L75md+0Ht8u uJ5eayMCj2S3YvLqsREY0CIYleMSSQ55tGVijqMIHuw5YEdeOHYeLmARrO+s HkbOWqB+I85FBP1GOFRSPhQaCr6EueLzfBJHkbe/K9cJcBPBTPdXVuRi26RN W7aIoPrcm37kL+N2X3HyFIGa7MR8yqMB/da2WvmIoGoOs52s9MVhnImfCL5Z GOqQ9Wod1usFiMB34IcGyrsp5WsuKgXifMf2P0o2Lgv4IB0sgrufz5qSjaoS 1flQEfj1v/qN8lSn6dWajjARnGsbf5asyPxzoSFSBAbHFeeT++Q3vCuLFoFO /6CflM+t0x+q5MeKIHy20xly4UZtzAMRLDW9akH+b3+AP5fa0kb571mv2hiZ KILxp85HkKep38QXiAj0vs03IIs9rTFQRRAn41ZB75Ocou4zLqki8P7JeJG9 Na7X22SI4OZ50RCyxmFPJdMsETiO8L1G76eyntkrDXJEsMluzVzyNnflM6r5 Ivjg8PAtvd/kPg+olysQQZHKCT/yZU/J6N4iEQzNqJchT+P7nDqL8eeDTyXS +/JR9IgzTWUiaNJ7MoU8z8CovqIC62/E5if0vh20zFCpoBrr+eI5R7LdkY9O GbUi2Hwn9CO9r0eVLYxPbBBBjZ3KdvI6xU1voptEcMRr0y963xtuNx4V3CKC g/Lrw8nBb3IdfdpEUDJz2Ajy0oU/T7h2iMC+3ess7ReulzZW2XeKYJxqkCb5 wLK9Q6FbBLNrzVNov/Hue8UiI04E5//JmkDOP1EbrsmLYH7dm3Tan6hanngq 3yuCaZrphuT//n+BB88fxpm0v/Eo1zLrluLh65xthuSlyb92t0jzcHuMczrt hwoOH7lTLcdD4W5On5zuX/qzSJ6HUastr9J+Sm3HgwlZCjxkPp2rQR4ZuHFT shIPp7OYeNp/HTlemBSrykOR9orh5INZLxtwAwPT1Lcepv1bX/Opf/y0ePh5 zlBM+7telaF2bno8dCemeJP3u80MczTgYbZu1QfaDx7MVX5kacRDufENB/IQ pQzhVGMerjwzLqT9pF0tb6RlwsMD16OTyWEWfzwVTHkYFvT8HO0/764oui4F PJzR+DmY/G6M2RfWkodVVuIdtF8VRPnptlnxsIz99o72s4NSN3rU2vAQpvN0 PnmYv3x6sT0PbFNoOu1/ZTt39dx15CF+jJ4CuXfEmZkpTjz4vcveQ/vnL61+ oXEuPESM13lP++viDUMqwlx5qPu5fw75TLSLcoAbD6vnFFym/fjmv/sDHsYo fZIi63ZOynXy5GHEzq6NtH9/r3FL2tqHB8vlrU9ofx/R99XFxI+H1PsPxpIn Hm3J1Avgwebavv10Higujh2sHMiDttL4RjovLLn521UmGMd/WKYxuc5CO58P 5SEkYnw0nS8cDgxS/BrGw4DIoM90/ij0TvZrjOTh0fACM7KWNP/qeTTVR9tJ Oq8csB9ifD+Wh/epPe10nqm2fBOXFof3V/jZlKzctlpyLoGH5lVFMXT+uVeV 43I0kYdJ9uda6Hw08uKv2/uSeTjve+xf8vgVk397pfBg+Dg+lM5T3d02sCaV h3bIr6bzVoDf8t12GTwUd7Ia5NzGRSlmWTyUlFp50/nstq7B80k5PHyrzsqj 85vbKr5VLZ8HY5npA8mvdmQxQwt4SN5WbU/nPX67E99bhOPR//BZOg82Lmtn O4txPTxx+Hgd7a++6XNTGV4/23gC+b/+AQ9Pq4186TzZtGFc2sNqHr6ozc+l 8+bVpg3702vx/s/4/qLzqI55jNWFBh4SIAfIboeuDTrWxIP+6H8O0fl1ZWba /X0tOH4qR0rofDv48bnNXm085CweJU3enhcweHUHD1m38q3pPHwyziLRppOH GvPdRy6hfZ2ZCbO7eVD+ZfeMzs+D+59Mn8DhfH6ZPZDsdFxdZwzPw/B+c+fS eXu9VNwpmV5cz9br9tN5XHstLxL9wfotiMu7gFa/fNu/XUoMJ9u6GDq/l9Tr TqqXFkMe7J1EVutz0SiVE8OQl/9upvO+luJi23vyYjh8ckwi9QMa1X5nX1cQ g27UlFrqF1goeq04qySGnpwAWbJjX/zUSFUxdCh2whl6nzWE2ARqikE67YQ/ 9RsiL+snemmJwcFv0w3qR6SvjZm4Vk8MRT7u705TXg7JZuwNxLDmYsIw8p+U U4I5RmIYO/CXBfUz/m4PjMUgn3h0O/U7RmWduKljIgZ9T9uL1A+5opnuqmwq Bg+v2VUn6H0WHGYnB2KoueTcS/2T6iq1XX2WYtgie20C2Vver6HHSgxaN8Y7 Ub/l/pywgM82YpALrAqNpvpzc3JotBeDWkhqOvVn3HZ9dqt0FMPy+3fqqH/z YM/UrMdOOH76P/5E0Xh6m8/OdRHD/Bcr9MkHlg7uS3MVgyT5hwP1f9p1o3sv uomhMf1uAPWH+v14NT1uixhav6ddOII+/GXBx0hPMazerfiE+knGTi4z9vuI Idx9Vjv1m4aZyU/f7ieGzQ9HDyWPOLvp/boAMfC7MqYcRpt7uhg5BIphzunf y6lfFZ/dPdE8WAymStJ7qZ81eode9YSDYvja9/xCKPppSp+GYrgY7Gytiqj/ lbAkQOlPpBg29u77dIDe9zti8tujxTD5H6/B5GIZ60EvY8WQfkxhAvXPxoy+ JLkbJ4Zmr1221F87/3d/IIbizBPbguj9esq4NShRDOucNx+nfpyylE+tazL+ /mb2diDN39eFvpAihlv1s2uof2e2oDhHI1UMm26ZstTfi1FqudqbLoaqrwIF suz6C+aNt8XwPXLrtN2UBxriA3fviqEgJn459QdDlwm9YvLEYMkH+e9CB/Wd 6u/+UAxBz9ROUz/xkmbNHIsirA/xrjs70T9zb08YVSwG2diIGuo/ehQbPewo FYNr9PIe6k/KLnTgH7wQg/vPRnly580+n5Mv8Xmz/kzypTxzmZzl+1oMIW/S ram/meb47pFTPY7nqo/rfKje42TOzn+H9WCeuOtvP3R8jtnsZny+0JYIb3pe SUu6ySd8fp2bCdQ/HaV2rMOsXQzaE39f90RDRG7Xou9ieBJTd4f6rQUW65+4 donh2DKTAurHnoDI9ftYMRzYo1nsTvUa9W/5RZEYLvyOKaP+7eSxq/68+CWG T61h5Zs//b9/IIEV+gPLqd87dqJuhelACTCVQ0o3ok8nvdh4QEYCea/jH1N/ eM3a7mflQyVwY9bN/A2Uz1tOC9RHSuDJH6tM6id/zr/XtUdRAtK6npfXoW+s dMl5N0YCAemjTlH/+REEWVlpSED+lFXoWrS+n/qVvPESqGn840396s8/zV9M 1ZNAUcgcp9X0fs55/+iugQTqj8iYU3/bubR3v8UUCSh3rRy3iupd67xM9TQJ HM41lKJ+uNrzPNetsySg8uFYK/XLLSXWn7rMJbC5aO6zFWhr0WzxQksJ/Lyn lkP99clFsZf8rSRwt1g9cxmaW27X6Gcjgftf5t+lfvyFHM8r8+wl8Fv9ZPFS yr/Wzr4vSyVwwHNQC/Xvo97WfF+zQgJzKpIGk18nqXmmOEsA5rnOdED3Gpbv LVotgaCX83ZR/3/w0Xcqt1wlIPJ1KFiM/pG9ZLHPBglk6oWOIOdfmzCy/yYJ pLINPnaf/r8/kEBzrVMD/X/C/wAHOYY/ "]]}}}, {{}, {}}}, { DisplayFunction -> Identity, DisplayFunction -> Identity, AspectRatio -> 1, Axes -> {False, False}, AxesLabel -> {None, None}, AxesOrigin -> {1.1000000000000025`, -199.00000000000045`}, BaseStyle -> 18, DisplayFunction :> Identity, Frame -> {{True, True}, {True, True}}, FrameLabel -> {{ Style[ "\!\(\*StyleBox[\"E\",FontSlant->\"Italic\"]\)(F-F) (hartree)", FontSize -> 20], None}, { Style[ "\!\(\*SubscriptBox[\(R\), \(F - F\)]\) (\[Angstrom])", FontSize -> 20], None}}, FrameStyle -> Automatic, FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, GridLines -> {Automatic, Automatic}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], ImageSize -> 500, LabelStyle -> {FontFamily -> "Times"}, Method -> { "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotRange -> {{1.1, 1.65}, {-199., -199.125}}, PlotRangeClipping -> True, PlotRangePadding -> {{0, 0}, {0, 0}}, Ticks -> {Automatic, Automatic}}], Placed[ Unevaluated[ PointLegend[{ Directive[ PointSize[0.009166666666666668], CapForm["Butt"], AbsoluteThickness[1.6], Thickness[0.01], RGBColor[1, 0.5, 0]], Directive[ PointSize[0.009166666666666668], CapForm["Butt"], AbsoluteThickness[1.6], Thickness[0.01], RGBColor[1, 0, 0]], Directive[ PointSize[0.009166666666666668], CapForm["Butt"], AbsoluteThickness[1.6], Thickness[0.01], RGBColor[0, 0, 1]], Directive[ PointSize[0.009166666666666668], CapForm["Butt"], AbsoluteThickness[1.6], Thickness[0.01], GrayLevel[0]], Directive[ PointSize[0.009166666666666668], CapForm["Butt"], AbsoluteThickness[1.6], Thickness[0.01], GrayLevel[0.5]]}, { Style["CC3", FontSize -> 20], Style["CCSD", FontSize -> 20], Style[ "BSE@\!\(\*SubscriptBox[\(G\), \(0\)]\)\!\(\*SubscriptBox[\(W\), \ \(0\)]\)@HF", FontSize -> 20], Style[ "BSE@\!\(\*SubscriptBox[\(G\), \(0\)]\)\!\(\*SubscriptBox[\(W\), \ \(0\)]\)@HF (\[Eta]=1)", FontSize -> 20], Style["BSE@evGW@HF (\[Eta]=1)", FontSize -> 20]}, LegendMarkers -> {{False, Automatic}, {False, Automatic}, { False, Automatic}, {False, Automatic}, {False, Automatic}}, Joined -> {True, True, True, True, True}, LabelStyle -> {FontFamily -> "Times"}, LegendLayout -> "Column"]], { Right, Top}, Identity]]& ], AutoDelete->True, Editable->True, SelectWithContents->False, Selectable->True]], "Output", CellLabel-> "Out[210]=",ExpressionUUID->"ede19c11-5d07-4864-bb51-b02c94eff86a"] }, Open ]] }, Open ]] }, Open ]] }, Closed]] }, WindowSize->{1212, 847}, WindowMargins->{{Automatic, 108}, {Automatic, 0}}, PrintingCopies->1, PrintingPageRange->{1, Automatic}, TaggingRules-><|"TryRealOnly" -> False|>, Magnification:>1.25 Inherited, FrontEndVersion->"13.0 for Mac OS X ARM (64-bit) (December 2, 2021)", StyleDefinitions->"Default.nb", ExpressionUUID->"c947be63-9aef-4192-bf26-b635965432d0" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[580, 22, 210, 4, 84, "Section",ExpressionUUID->"02be5389-c76a-4857-909d-d9a74db06627"], Cell[793, 28, 308, 6, 57, "Input",ExpressionUUID->"d157845e-0bac-4623-9438-6db32c2b348a", InitializationCell->True], Cell[1104, 36, 232, 6, 57, "Input",ExpressionUUID->"466164d7-6b9d-472d-8dbb-051b87d2ab0d", InitializationCell->True], Cell[1339, 44, 574, 12, 84, "Input",ExpressionUUID->"1a76bff9-c9eb-4a64-8550-cf38c809ba22", InitializationCell->True] }, Closed]], Cell[CellGroupData[{ Cell[1950, 61, 88, 0, 65, "Section",ExpressionUUID->"a68e1e90-2158-4da8-9829-76467decd8c9"], Cell[2041, 63, 1276, 35, 90, "Input",ExpressionUUID->"682f75fb-1edd-4aa6-a4ad-b597c5f869c9"], Cell[3320, 100, 1001, 27, 64, "Input",ExpressionUUID->"35c12977-2872-4eab-be4f-329f455172b3"], Cell[CellGroupData[{ Cell[4346, 131, 328, 7, 37, "Input",ExpressionUUID->"59810817-5144-4818-800a-a2ceb8fcd500"], Cell[4677, 140, 4095, 96, 308, "Output",ExpressionUUID->"814e3769-9eaf-4e1a-8956-617c8e61d77e"] }, Open ]], Cell[8787, 239, 1274, 35, 90, "Input",ExpressionUUID->"5f735bd6-ba1a-4987-b9f7-8ff4ac674345"], Cell[10064, 276, 981, 27, 64, "Input",ExpressionUUID->"5928cf25-152d-4cb2-9ce3-3f99ce9557d3"], Cell[CellGroupData[{ Cell[11070, 307, 310, 7, 37, "Input",ExpressionUUID->"33a86cd9-4a3d-4b09-91de-2cbb886a6250"], Cell[11383, 316, 5200, 125, 308, "Output",ExpressionUUID->"d32fbdb3-4ad8-4d05-aa55-4c32ff841fbc"] }, Open ]], Cell[16598, 444, 1275, 35, 90, "Input",ExpressionUUID->"051138e6-33b2-49e1-b570-b5e33fd33d7f"], Cell[17876, 481, 982, 27, 64, "Input",ExpressionUUID->"37bd2bc4-e119-4f55-88d4-845984e63c22"], Cell[18861, 510, 230, 6, 37, "Input",ExpressionUUID->"c2496421-c71c-4de1-a28d-dd9067951fda"], Cell[CellGroupData[{ Cell[19116, 520, 312, 7, 37, "Input",ExpressionUUID->"bbbc4763-dda3-4da9-8ff0-9b7dc9932b23"], Cell[19431, 529, 4933, 120, 306, "Output",ExpressionUUID->"cad1c286-e9fa-457d-9d0f-e5060da9432b"] }, Open ]], Cell[24379, 652, 513, 11, 64, "Input",ExpressionUUID->"c351c0eb-ffe9-41ea-b9a4-ee9c001a879d"], Cell[CellGroupData[{ Cell[24917, 667, 1050, 23, 37, "Input",ExpressionUUID->"3dc691e1-f05a-4c4c-8978-c337f01f76cf"], Cell[25970, 692, 8346, 163, 583, "Output",ExpressionUUID->"dad67ae9-473d-49b3-a4ed-6cc27aca3cc2"] }, Open ]], Cell[CellGroupData[{ Cell[34353, 860, 859, 20, 37, "Input",ExpressionUUID->"e9d7c473-f53c-4be4-9780-1cba856893ff"], Cell[35215, 882, 6570, 149, 308, "Output",ExpressionUUID->"2a2efd1e-215b-4367-831c-d3eaaa63ec02"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[41834, 1037, 162, 3, 65, "Section",ExpressionUUID->"6a704d60-27a2-4628-a61b-b8f4e21f8868"], Cell[41999, 1042, 878, 28, 116, "Input",ExpressionUUID->"6feb960f-bb32-4591-80f4-4f095d8668c2"], Cell[42880, 1072, 316, 9, 40, "Input",ExpressionUUID->"21c50754-febc-41cd-a91a-d483a7bc8140"], Cell[43199, 1083, 1051, 32, 116, "Input",ExpressionUUID->"4dfd87b2-28e1-4b90-98bd-12ef5c33e7cd"], Cell[44253, 1117, 1724, 56, 68, "Input",ExpressionUUID->"f6448161-1952-4500-b5f5-566946f9b807"], Cell[45980, 1175, 1288, 43, 42, "Input",ExpressionUUID->"260633fc-4386-4e7b-a747-77a336ee6b4d"], Cell[47271, 1220, 1348, 44, 79, "Input",ExpressionUUID->"0819721e-8f8a-4961-93d6-77fc2fd42396"] }, Closed]], Cell[CellGroupData[{ Cell[48656, 1269, 264, 4, 65, "Section",ExpressionUUID->"470a82c0-3bf7-49b2-b0a4-e18638c845fc"], Cell[48923, 1275, 845, 16, 131, "Text",ExpressionUUID->"0d18b6aa-4968-4bd0-a62c-7cbf1928b263"], Cell[49771, 1293, 2464, 65, 146, "Input",ExpressionUUID->"de460126-5872-41ad-b94a-2ac25594d244"], Cell[52238, 1360, 94, 0, 44, "Text",ExpressionUUID->"5ddc87f4-cdbc-4e64-b398-e4dd73a164b9"], Cell[52335, 1362, 726, 24, 43, "Input",ExpressionUUID->"13b10e6f-abda-4091-a5ab-9647b9bd5090"], Cell[53064, 1388, 423, 12, 42, "Input",ExpressionUUID->"8fae97ef-b0a1-4939-9bfa-1b576bff870a"], Cell[53490, 1402, 1532, 48, 44, "Input",ExpressionUUID->"a36084fe-8d84-44a2-ab56-752e26abb5c2"], Cell[55025, 1452, 829, 24, 40, "Input",ExpressionUUID->"953e39d9-6625-402e-8c90-8a7cb2cccde3"], Cell[55857, 1478, 970, 30, 43, "Input",ExpressionUUID->"458a09fb-389c-463e-aefa-8294bec583fa"], Cell[56830, 1510, 109, 0, 44, "Text",ExpressionUUID->"c90c48af-9fdf-4ddc-8608-9400c30a5610"], Cell[56942, 1512, 2424, 78, 146, "Input",ExpressionUUID->"3c8afc9a-6104-43d2-8a12-a28ea7c2ad67"], Cell[59369, 1592, 93, 0, 44, "Text",ExpressionUUID->"aafadf45-fa5d-4336-8b76-b63439e28ca0"], Cell[59465, 1594, 1764, 57, 47, "Input",ExpressionUUID->"731e5aa2-2627-4749-89ca-13d707fa2305"], Cell[61232, 1653, 92, 0, 44, "Text",ExpressionUUID->"4d08ac91-7b28-436a-a672-edd3cf5ebb8f"], Cell[61327, 1655, 1709, 56, 47, "Input",ExpressionUUID->"09edbc2e-1fd4-47fa-b54f-e187cfeccc59"], Cell[63039, 1713, 93, 0, 44, "Text",ExpressionUUID->"8e0d45f2-faf4-46af-a8aa-fb7d172b4e8c"], Cell[63135, 1715, 3079, 103, 115, "Input",ExpressionUUID->"f2438676-7819-493d-ac9a-51dc5fb67c04"], Cell[66217, 1820, 2628, 88, 83, "Input",ExpressionUUID->"02baca0b-7f2f-4be6-826c-0d732408f2ad"], Cell[68848, 1910, 2765, 86, 83, "Input",ExpressionUUID->"f1fe5e52-9053-451b-8521-6d393ea4a08f"], Cell[71616, 1998, 92, 0, 44, "Text",ExpressionUUID->"09951dc5-1207-416a-a2ea-cf6c4c6fc44d"], Cell[71711, 2000, 777, 26, 43, "Input",ExpressionUUID->"04e3db48-bd52-4a1d-bdea-7c8f4c20e3f6"], Cell[72491, 2028, 2132, 70, 83, "Input",ExpressionUUID->"ab19d3af-3174-4ce8-86b0-dcc88d1af0ac"], Cell[74626, 2100, 2498, 79, 83, "Input",ExpressionUUID->"5555ca58-25bc-40bf-9d66-0058a15c72a0"], Cell[77127, 2181, 118, 0, 44, "Text",ExpressionUUID->"cf5c443b-a1be-47db-8c90-8d92dc005175"], Cell[77248, 2183, 5152, 158, 84, "Input",ExpressionUUID->"009c187a-6ffb-4145-8afd-433506865326"], Cell[82403, 2343, 84, 0, 44, "Text",ExpressionUUID->"0581ffe5-a1bd-456d-b8ca-274d0988b17f"], Cell[82490, 2345, 4648, 154, 167, "Input",ExpressionUUID->"7bc8daef-44bc-447f-8659-e2e31520db06"], Cell[87141, 2501, 90, 0, 44, "Text",ExpressionUUID->"53ef96ad-c734-44f1-8123-1d211616b540"], Cell[87234, 2503, 1840, 55, 90, "Input",ExpressionUUID->"920b9a14-7358-437b-8b2d-9af272494adb"], Cell[89077, 2560, 185, 3, 44, "Text",ExpressionUUID->"93942955-95fa-4960-8441-d27720ba0dd0"], Cell[89265, 2565, 880, 26, 62, "Input",ExpressionUUID->"47e9290a-cfa8-4af9-a77d-518740bd08e2"], Cell[90148, 2593, 1078, 31, 68, "Input",ExpressionUUID->"ab0fa501-ac3f-4c9c-8066-9fc31c8041bf"], Cell[91229, 2626, 209, 5, 40, "Input",ExpressionUUID->"4498a696-6326-43f3-929f-4540537b631f"], Cell[91441, 2633, 1026, 32, 64, "Input",ExpressionUUID->"9a0c7b03-b777-49f5-bbb5-8250e18341f6"], Cell[CellGroupData[{ Cell[92492, 2669, 1059, 29, 37, "Input",ExpressionUUID->"9aac74ba-b0da-4219-b2f4-760e75b19181"], Cell[93554, 2700, 6028, 159, 187, "Output",ExpressionUUID->"d0dd5be3-43a4-4c53-a5ba-112275dc3ac6"] }, Open ]], Cell[CellGroupData[{ Cell[99619, 2864, 322, 7, 56, "Input",ExpressionUUID->"0fcbabf1-9a31-4e73-9b0f-e3193cf0da0e"], Cell[99944, 2873, 874, 27, 59, "Output",ExpressionUUID->"bd579e22-0bcf-489d-bbb5-ee10d9e3eb82"] }, Open ]], Cell[CellGroupData[{ Cell[100855, 2905, 317, 7, 38, "Input",ExpressionUUID->"a0a20f99-3eda-4ca6-920f-918e1132f616"], Cell[101175, 2914, 247, 5, 43, "Output",ExpressionUUID->"fb8f2b92-e9b5-4bca-bba0-b46f70bfcb93"] }, Open ]], Cell[101437, 2922, 334, 10, 38, "Input",ExpressionUUID->"bba87f46-334f-485b-8c9d-0eb7ff79cc9c"] }, Open ]], Cell[CellGroupData[{ Cell[101808, 2937, 77, 0, 84, "Section",ExpressionUUID->"8a3d16ca-0779-480a-b23d-aa8d77e59793"], Cell[101888, 2939, 92, 0, 37, "Input",ExpressionUUID->"bcdffa1d-f22d-40ee-a1b9-2dc03ba0be9c"], Cell[101983, 2941, 1889, 45, 448, "Input",ExpressionUUID->"d754cecd-0dc1-44bc-aadc-26d9c91dd570", InitializationCell->True], Cell[CellGroupData[{ Cell[103897, 2990, 84, 0, 67, "Subsection",ExpressionUUID->"14db7a36-714c-4139-a9a1-b9adf8150988"], Cell[CellGroupData[{ Cell[104006, 2994, 165, 3, 56, "Subsubsection",ExpressionUUID->"6995328e-6a17-410f-8738-8a1d6809e67a"], Cell[104174, 2999, 1148, 32, 168, "Input",ExpressionUUID->"61300761-bb45-4b64-b105-cf2d5871979f"] }, Open ]], Cell[CellGroupData[{ Cell[105359, 3036, 314, 5, 56, "Subsubsection",ExpressionUUID->"dcd678bb-6dc4-4a3c-9206-61c1204c9bdb"], Cell[CellGroupData[{ Cell[105698, 3045, 2548, 64, 428, "Input",ExpressionUUID->"cd7ca353-7a15-4a03-a45c-503c6b68d417"], Cell[108249, 3111, 101118, 1802, 603, "Output",ExpressionUUID->"ede19c11-5d07-4864-bb51-b02c94eff86a"] }, Open ]] }, Open ]] }, Open ]] }, Closed]] } ] *)