\documentclass[aip,jcp,reprint,noshowkeys,superscriptaddress]{revtex4-1} \usepackage{graphicx,dcolumn,bm,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,longtable,wrapfig,txfonts} \usepackage[version=4]{mhchem} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage{txfonts} \usepackage[ colorlinks=true, citecolor=blue, breaklinks=true ]{hyperref} \urlstyle{same} \newcommand{\ie}{\textit{i.e.}} \newcommand{\eg}{\textit{e.g.}} \newcommand{\alert}[1]{\textcolor{red}{#1}} \usepackage[normalem]{ulem} \newcommand{\titou}[1]{\textcolor{red}{#1}} \newcommand{\trashPFL}[1]{\textcolor{r\ed}{\sout{#1}}} \newcommand{\PFL}[1]{\titou{(\underline{\bf PFL}: #1)}} \newcommand{\mc}{\multicolumn} \newcommand{\fnm}{\footnotemark} \newcommand{\fnt}{\footnotetext} \newcommand{\tabc}[1]{\multicolumn{1}{c}{#1}} \newcommand{\SI}{\textcolor{blue}{supporting information}} \newcommand{\QP}{\textsc{quantum package}} \newcommand{\T}[1]{#1^{\intercal}} % coordinates \newcommand{\br}{\boldsymbol{r}} \newcommand{\bx}{\boldsymbol{x}} \newcommand{\dbr}{d\br} \newcommand{\dbx}{d\bx} % methods \newcommand{\GW}{\text{$GW$}} \newcommand{\evGW}{ev$GW$} \newcommand{\qsGW}{qs$GW$} \newcommand{\GOWO}{$G_0W_0$} \newcommand{\Hxc}{\text{Hxc}} \newcommand{\xc}{\text{xc}} \newcommand{\Ha}{\text{H}} \newcommand{\co}{\text{c}} \newcommand{\x}{\text{x}} \newcommand{\KS}{\text{KS}} \newcommand{\HF}{\text{HF}} \newcommand{\RPA}{\text{RPA}} \newcommand{\ppRPA}{\text{pp-RPA}} \newcommand{\BSE}{\text{BSE}} \newcommand{\dBSE}{\text{dBSE}} \newcommand{\stat}{\text{stat}} \newcommand{\dyn}{\text{dyn}} \newcommand{\TDA}{\text{TDA}} % \newcommand{\Norb}{N} \newcommand{\Nocc}{O} \newcommand{\Nvir}{V} % operators \newcommand{\hH}{\Hat{H}} \newcommand{\hS}{\Hat{S}} % energies \newcommand{\Enuc}{E^\text{nuc}} \newcommand{\Ec}[1]{E_\text{c}^{#1}} \newcommand{\EHF}{E^\text{HF}} % orbital energies \newcommand{\eps}[2]{\epsilon_{#1}^{#2}} \newcommand{\Om}[2]{\Omega_{#1}^{#2}} % Matrix elements \newcommand{\Sig}[2]{\Sigma_{#1}^{#2}} \newcommand{\SigC}[1]{\Sigma^\text{c}_{#1}} \newcommand{\SigX}[1]{\Sigma^\text{x}_{#1}} \newcommand{\SigXC}[1]{\Sigma^\text{xc}_{#1}} \newcommand{\MO}[1]{\phi_{#1}} \newcommand{\SO}[1]{\psi_{#1}} \newcommand{\ERI}[2]{(#1|#2)} \newcommand{\rbra}[1]{(#1|} \newcommand{\rket}[1]{|#1)} % Matrices \newcommand{\bO}{\boldsymbol{0}} \newcommand{\bI}{\boldsymbol{1}} \newcommand{\bH}{\boldsymbol{H}} \newcommand{\bvc}{\boldsymbol{v}} \newcommand{\bSig}[1]{\boldsymbol{\Sigma}^{#1}} \newcommand{\be}{\boldsymbol{\epsilon}} \newcommand{\bOm}[1]{\boldsymbol{\Omega}^{#1}} \newcommand{\bA}[2]{\boldsymbol{A}_{#1}^{#2}} \newcommand{\bB}[2]{\boldsymbol{B}_{#1}^{#2}} \newcommand{\bC}[2]{\boldsymbol{C}_{#1}^{#2}} \newcommand{\bV}[2]{\boldsymbol{V}_{#1}^{#2}} \newcommand{\bX}[2]{\boldsymbol{X}_{#1}^{#2}} \newcommand{\bY}[2]{\boldsymbol{Y}_{#1}^{#2}} \newcommand{\bZ}[2]{\boldsymbol{Z}_{#1}^{#2}} \newcommand{\bc}[2]{\boldsymbol{c}_{#1}^{#2}} % orbitals, gaps, etc \newcommand{\IP}{I} \newcommand{\EA}{A} \newcommand{\HOMO}{\text{HOMO}} \newcommand{\LUMO}{\text{LUMO}} \newcommand{\Eg}{E_\text{g}} \newcommand{\EgFun}{\Eg^\text{fund}} \newcommand{\EgOpt}{\Eg^\text{opt}} \newcommand{\EB}{E_B} \newcommand{\sig}{\sigma} \newcommand{\bsig}{{\Bar{\sigma}}} \newcommand{\sigp}{{\sigma'}} \newcommand{\bsigp}{{\Bar{\sigma}'}} \newcommand{\taup}{{\tau'}} \newcommand{\up}{\uparrow} \newcommand{\dw}{\downarrow} \newcommand{\upup}{\uparrow\uparrow} \newcommand{\updw}{\uparrow\downarrow} \newcommand{\dwup}{\downarrow\uparrow} \newcommand{\dwdw}{\downarrow\downarrow} % addresses \newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\'e de Toulouse, CNRS, UPS, France} \begin{document} \title{The $GW$ conundrum} \author{Pierre-Fran\c{c}ois \surname{Loos}} \email{loos@irsamc.ups-tlse.fr} \affiliation{\LCPQ} \begin{abstract} %\bigskip %\begin{center} % \boxed{\includegraphics[width=0.5\linewidth]{TOC}} %\end{center} %\bigskip \end{abstract} \maketitle %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Introduction} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% We consider {\GOWO} for the sake of simplicity but the same analysis can be performed in the case of (partially) self-consistent schemes. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Downfold: The non-linear $GW$ problem} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Here, for the sake of simplicity, we consider a Hartree-Fock (HF) starting point. Within the {\GOWO} approximation, in order to obtain the quasiparticle energies and the corresponding satellites, one solve, for each spatial orbital $p$, the following (non-linear) quasiparticle equation \begin{equation} \label{eq:qp_eq} \omega = \eps{p}{\HF} + \SigC{p}(\omega) \end{equation} where $\eps{p}{\HF}$ is the $p$th HF orbital energy and the correlation part of the {\GOWO} self-energy reads \begin{equation} \SigC{p}(\omega) = \sum_{im} \frac{2\ERI{pi}{m}^2}{\omega - \eps{i}{\HF} + \Om{m}{\RPA} - i \eta} + \sum_{am} \frac{2\ERI{pa}{m}^2}{\omega - \eps{a}{\HF} - \Om{m}{\RPA} + i \eta} \end{equation} Within the Tamm-Dancoff approximation, the screened two-electron integrals are given by \begin{equation} \ERI{pq}{m} = \sum_{ia} \ERI{pq}{ia} X_{ia,m}^\RPA \end{equation} where $\Om{m}{\RPA}$ and $\bX{m}{\RPA}$ are respectively the $m$th eigenvalue and eigenvector of the RPA problem in the Tamm-Dancoff approximation, \ie, \begin{equation} \bA{}{\RPA} \cdot \bX{m}{\RPA} = \Om{m}{\RPA} \bX{m}{\RPA} \end{equation} with \begin{equation} A_{ia,jb}^{\RPA} = (\eps{a}{\HF} - \eps{i}{\HF}) \delta_{ij} \delta_{ab} + \ERI{ia}{bj} \end{equation} As a non-linear equation, Eq.~\eqref{eq:qp_eq} has many solutions $\eps{p,s}{}$ and their corresponding weight is given by the value of the so-called renormalization factor \begin{equation} 0 \le Z_{p,s} = \qty[ 1 - \eval{\pdv{\SigC{p}(\omega)}{\omega}}_{\omega = \eps{p,s}{}} ]^{-1} \le 1 \end{equation} In a well-behaved case, one of the solution (the so-called quasiparticle) $\eps{p}{} \equiv \eps{p,s=0}{}$ has a large weight $Z_{} \equiv Z_{p,=0}$ Note that we have the following important conservation rules \begin{align} \sum_{s} Z_{p,s} & = 1 & \sum_{s} Z_{p,s} \eps{p,s}{} & = \eps{p}{\HF} \end{align} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Upfolding: the linear $GW$ problem} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% The non-linear quasiparticle equation \eqref{eq:qp_eq} can be transformed into a larger linear problem via an upfolding process where the 2h1p and 2p1h sectors is downfolded on the 1h and 1p sectors via their interaction with the 2h1p and 2p1h sectors: \begin{equation} \bH^{(p)} \bc{}{(p,s)} = \eps{p,s}{} \bc{}{(p,s)} \end{equation} with \begin{equation} \label{eq:Hp} \bH^{(p)} = \begin{pmatrix} \eps{p}{\HF} & \bV{p}{\text{2h1p}} & \bV{p}{\text{2p1h}} \\ \T{(\bV{p}{\text{2h1p}})} & \bC{}{\text{2h1p}} & \bO \\ \T{(\bV{p}{\text{2p1h}})} & \bO & \bC{}{\text{2p1h}} \end{pmatrix} \end{equation} where \begin{align} C^\text{2h1p}_{ija,kcl} & = \qty[ \qty( \eps{i}{\HF} + \eps{j}{\HF} - \eps{a}{\HF}) \delta_{jl} \delta_{ac} - 2 \ERI{ja}{cl} ] \delta_{ik} \\ C^\text{2p1h}_{iab,kcd} & = \qty[ \qty( \eps{a}{\HF} + \eps{b}{\HF} - \eps{i}{\HF}) \delta_{ik} \delta_{ac} + 2 \ERI{ai}{kc} ] \delta_{bd} \end{align} and the corresponding coupling blocks read \begin{align} V^\text{2h1p}_{p,kld} & = \sqrt{2} \ERI{pk}{cl} & V^\text{2p1h}_{p,cld} & = \sqrt{2} \ERI{pd}{kc} \end{align} The size of this eigenvalue problem is $N = 1 + N^\text{2h1p} + N^\text{2p1h} = 1 + O^2 V + O V^2$. Because the renormalization factor corresponds to the projection of the vector $\bc{}{(p,s)}$ onto the reference space, the weight of a solution $(p,s)$ is given by the the first coefficient of their corresponding eigenvector $\bc{}{(p,s)}$, \ie, \begin{equation} Z_{p,s} = \qty[ c_{1}^{(p,s)} ]^{2} \end{equation} It is important to understand that diagonalizing $\bH^{(p)}$ in Eq.~\eqref{eq:Hp} is completely equivalent to solving the quasiparticle equation \eqref{eq:qp_eq}. The main difference between the two approaches is that, by diagonalizing Eq.~\eqref{eq:Hp}, one has directly access to the eigenvectors associated with each quasiparticle and satellites. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Introducing regularized $GW$ methods} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% One way to hamper such issues is to resort to regularization of the $GW$ self-energy. Of course, the way of regularizing the self-energy is not unique but here we consider 3 different ways directly imported from MP2 theory. This helps greatly convergence for (partially) self-consistent $GW$ methods. %%%%%%%%%%%%%%%%%%%%%%%% \acknowledgements{ This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No.~863481).} %%%%%%%%%%%%%%%%%%%%%%%% \end{document}