minor modifs

This commit is contained in:
Pierre-Francois Loos 2022-02-23 16:57:14 +01:00
parent 7aa8db44d2
commit a693058d28

View File

@ -321,7 +321,7 @@ Similar notations will be employed for the $(\Ne\pm1)$-electron configurations.
In Fig.~\ref{fig:H2}, we report the variation of the quasiparticle energies of the four orbitals as functions of the internuclear distance $\RHH$.
One can easily diagnose two problematic regions showing obvious discontinuities around $\RHH = \SI{1.2}{\angstrom}$ for the LUMO$+1$ ($p = 3$) and $\RHH = \SI{0.5}{\angstrom}$ for the LUMO$+2$ ($p = 4$).
As thoroughly explained in Ref.~\onlinecite{Veril_2018}, if one relies on the linearization of the quasiparticle equation \eqref{eq:qp_eq} to compute the quasiparticle energies, \ie, $\eps{p}{\GW} = \eps{p}{\HF} + Z_{p} \SigC{p}(\eps{p}{\HF})$, these discontinuities are transformed into irregularities as the renormalization factor cancels out the singularities of the self-energy.
As thoroughly explained in Ref.~\onlinecite{Veril_2018}, if one relies on the linearization of the quasiparticle equation \eqref{eq:qp_eq} to compute the quasiparticle energies, \ie, $\eps{p}{\GW} \approx \eps{p}{\HF} + Z_{p} \SigC{p}(\eps{p}{\HF})$, these discontinuities are transformed into irregularities as the renormalization factor cancels out the singularities of the self-energy.
Figure \ref{fig:H2_zoom} shows the evolution of the quasiparticle energy, the energetically close-by satellites and their corresponding weights as functions of $\RHH$.
Let us first look more closely at the region around $\RHH = \SI{1.2}{\angstrom}$ involving the LUMO$+1$ (left panel of Fig.~\ref{fig:H2_zoom}).
@ -331,8 +331,8 @@ By construction, the quasiparticle solution diabatically follows the reference d
A similar scenario is at play in the region around $\RHH = \SI{0.5}{\angstrom}$ for the LUMO$+2$ (right panel of Fig.~\ref{fig:H2_zoom}) but it now involves three solutions ($s = 5$, $s = 6$, and $s = 7$).
The electronic configurations of the Slater determinant involved are the $\ket*{1\Bar{1}4}$ reference determinant as well as two external determinants of configuration $\ket*{1\Bar{2}3}$ and $\ket*{12\Bar{3}}$.
These forms two avoided crossings in rapid successions, which create two discontinuities in the energy surface (see Fig.~\ref{fig:H2}).
In this region, although the ground-state wave function is well described by the $\Ne$-electron HF determinant, a situation that can be safely labeled as single-reference, one can see that the $(\Ne+1)$-electron state involves three Slater determinants and can then be labeled as a multi-reference (or strongly-correlated) situation with near-degenerate electronic configurations.
These states form two avoided crossings in rapid successions, which create two discontinuities in the energy surface (see Fig.~\ref{fig:H2}).
In this region, although the ground-state wave function is well described by the $\Ne$-electron HF determinant, a situation that can be safely labeled as single-reference, one can see that the $(\Ne+1)$-electron wave function involves three Slater determinants and can then be labeled as a multi-reference (or strongly-correlated) situation with near-degenerate electronic configurations.
Therefore, one can conclude that this downfall of $GW$ is a key signature of strong correlation in the $(\Ne\pm1)$-electron states that yields a significant redistribution of weights amongst electronic configurations.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@ -360,7 +360,7 @@ Therefore, one can conclude that this downfall of $GW$ is a key signature of str
\includegraphics[width=\linewidth]{fig4}
\caption{
\label{fig:H2reg}
Difference between regularized and non-regularized quasiparticle energies $\reps{p}{\GW} - \eps{p}{\GW}$ as functions of the internuclear distance $\RHH$ (in \si{\angstrom}) of \ce{H2} at the {\GOWO}@HF/6-31G level.
Difference between regularized and non-regularized quasiparticle energies $\reps{p}{\GW} - \eps{p}{\GW}$ computed with $\eta = 1$ as functions of the internuclear distance $\RHH$ (in \si{\angstrom}) of \ce{H2} at the {\GOWO}@HF/6-31G level.
}
\end{figure}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@ -418,14 +418,14 @@ For $\eta = 0.1$, we have the opposite scenario where $\eta$ is too small and so
We have found that $\eta = 1$ is a good compromise that does not alter significantly the quasiparticle energies while providing a smooth transition between the two solutions.
This value can be certainly refined for specific applications.
To further evidence this, Fig.~\ref{fig:H2reg} reports the difference between regularized and non-regularized quasiparticle energies as functions of $\RHH$ for each orbital.
The principal observation is that, in the absence of intruder states, the regularization induces an error below \SI{10}{\milli\eV} for the HOMO and LUMO ($p = 1$ and $p = 2$), which is practically viable.
Of course, in the troublesome regions ($p = 3$ and $p = 4$), the correction brought by the regularization procedure is larger but it has the undeniable advantage to provide smooth curves.
To further evidence this, Fig.~\ref{fig:H2reg} reports the difference between regularized (computed at $\eta = 1$) and non-regularized quasiparticle energies as functions of $\RHH$ for each orbital.
The principal observation is that, in the absence of intruder states, the regularization induces an error below \SI{10}{\milli\eV} for the HOMO ($p = 1$) and LUMO ($p = 2$), which is practically viable.
Of course, in the troublesome regions ($p = 3$ and $p = 4$), the correction brought by the regularization procedure is larger (as it should) but it has the undeniable advantage to provide smooth curves.
As a final example, we report in Fig.~\ref{fig:F2} the ground-state potential energy surface of the \ce{F2} molecule obtained at various levels of theory with the cc-pVDZ basis.
In particular, we compute, with and without regularization, the total energy at the Bethe-Salpeter equation (BSE) level \cite{Salpeter_1951,Strinati_1988,Blase_2018,Blase_2020} within the adiabatic connection fluctuation dissipation formalism \cite{Maggio_2016,Holzer_2018b,Loos_2020e} following the same protocol detailed in Ref.~\onlinecite{Loos_2020e}.
These results are compared to high-level coupled-cluster calculations \cite{Purvis_1982,Christiansen_1995b} extracted from the same work.
As already shown in Ref.~\onlinecite{Loos_2020e}, the potential energy surface of \ce{F2} at the BSE@{\GOWO}@HF (blue curve) is very ``bumpy'' around the equilibrium bond length and it is clear that the regularization scheme (black curve) allows to smooth it out without significantly altering the overall accuracy.
As already shown in Ref.~\onlinecite{Loos_2020e}, the potential energy surface of \ce{F2} at the BSE@{\GOWO}@HF (blue curve) is very ``bumpy'' around the equilibrium bond length and it is clear that the regularization scheme (black curve computed with $\eta = 1$) allows to smooth it out without significantly altering the overall accuracy.
Moreover, while it is extremely challenging to perform self-consistent $GW$ calculations without regularization, it is now straightforward to compute the BSE@ev$GW$@HF potential energy surface (gray curve).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%