This commit is contained in:
EnzoMonino 2022-04-15 16:26:11 +02:00
parent 5632225377
commit a2e50cd21e
8 changed files with 114 additions and 16 deletions

BIN
Manuscript/eta_0_1.pdf Normal file

Binary file not shown.

BIN
Manuscript/eta_1.pdf Normal file

Binary file not shown.

BIN
Manuscript/eta_10.pdf Normal file

Binary file not shown.

BIN
Manuscript/kappa_0_1.pdf Normal file

Binary file not shown.

BIN
Manuscript/kappa_10.pdf Normal file

Binary file not shown.

98
Manuscript/ufGW-SI.tex Normal file
View File

@ -0,0 +1,98 @@
\documentclass[aip,jcp,reprint,onecolumn,noshowkeys,superscriptaddress]{revtex4-1}
\usepackage{graphicx,dcolumn,bm,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,longtable,wrapfig,txfonts,siunitx}
\usepackage[version=4]{mhchem}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{txfonts}
\usepackage{siunitx}
\usepackage{soul}
\DeclareSIUnit[number-unit-product = {\,}]
\cal{cal}
\DeclareSIUnit\kcal{\kilo\cal}
\newcommand{\kcalmol}{\si{\kcal\per\mole}}
\usepackage[
colorlinks=true,
citecolor=blue,
breaklinks=true
]{hyperref}
\urlstyle{same}
\usepackage[normalem]{ulem}
% methods
\newcommand{\GW}{\text{$GW$}}
\newcommand{\evGW}{ev$GW$}
\newcommand{\qsGW}{qs$GW$}
\newcommand{\GOWO}{$G_0W_0$}
\newcommand{\Hxc}{\text{Hxc}}
\newcommand{\xc}{\text{xc}}
\newcommand{\Ha}{\text{H}}
\newcommand{\co}{\text{c}}
\newcommand{\x}{\text{x}}
\newcommand{\KS}{\text{KS}}
\newcommand{\HF}{\text{HF}}
\newcommand{\RPA}{\text{RPA}}
% orbital energies
\newcommand{\eps}[2]{\epsilon_{#1}^{#2}}
\newcommand{\reps}[2]{\Tilde{\epsilon}_{#1}^{#2}}
\newcommand{\Om}[2]{\Omega_{#1}^{#2}}
\newcommand{\RHH}{R_{\ce{H-H}}}
% addresses
\newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\'e de Toulouse, CNRS, UPS, France}
\begin{document}
\title{Supporting Information for ``Unphysical Discontinuities, Intruder States and Regularization in $GW$ Methods''}
\author{Enzo \surname{Monino}}
\affiliation{\LCPQ}
\author{Pierre-Fran\c{c}ois \surname{Loos}}
\email{loos@irsamc.ups-tlse.fr}
\affiliation{\LCPQ}
\maketitle
%%%%%%%%%%%%%%%%%%%%%%%%
\section{Energy differences}
%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{$\eta$ shift}
\begin{figure}
\includegraphics[width=0.6\linewidth]{eta_0_1}
\caption{Difference between non-regularized and regularized quasiparticle energies $\eps{p}{\GW}-\reps{p}{\GW}$ computed with $\eta = 0.1$ as functions of the internuclear distance $\RHH$ (in \si{\angstrom}) of \ce{H2} at the {\GOWO}@HF/6-31G level. }
\end{figure}
\begin{figure}
\includegraphics[width=0.6\linewidth]{eta_1}
\caption{Difference between non-regularized and regularized quasiparticle energies $\eps{p}{\GW}-\reps{p}{\GW}$ computed with $\eta = 1$ as functions of the internuclear distance $\RHH$ (in \si{\angstrom}) of \ce{H2} at the {\GOWO}@HF/6-31G level. }
\end{figure}
\begin{figure}
\includegraphics[width=0.6\linewidth]{eta_10}
\caption{Difference between non-regularized and regularized quasiparticle energies $\eps{p}{\GW}-\reps{p}{\GW}$ computed with $\eta = 10$ as functions of the internuclear distance $\RHH$ (in \si{\angstrom}) of \ce{H2} at the {\GOWO}@HF/6-31G level. }
\end{figure}
\subsection{$\kappa$ shift}
\begin{figure}
\includegraphics[width=0.6\linewidth]{kappa_0_1}
\caption{Difference between non-regularized and regularized quasiparticle energies $\eps{p}{\GW}-\reps{p}{\GW}$ computed with $\kappa = 0.1$ as functions of the internuclear distance $\RHH$ (in \si{\angstrom}) of \ce{H2} at the {\GOWO}@HF/6-31G level. }
\end{figure}
\begin{figure}
\includegraphics[width=0.6\linewidth]{kappa_10}
\caption{Difference between non-regularized and regularized quasiparticle energies $\eps{p}{\GW}-\reps{p}{\GW}$ computed with $\kappa = 10$ as functions of the internuclear distance $\RHH$ (in \si{\angstrom}) of \ce{H2} at the {\GOWO}@HF/6-31G level. }
\end{figure}
%%%%%%%%%%%%%%%%%%%%%%%%
\bibliography{ufGW}
%%%%%%%%%%%%%%%%%%%%%%%%
\end{document}

View File

@ -10,10 +10,10 @@
NotebookFileLineBreakTest NotebookFileLineBreakTest
NotebookFileLineBreakTest NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7] NotebookDataPosition[ 158, 7]
NotebookDataLength[ 218174, 5054] NotebookDataLength[ 218181, 5054]
NotebookOptionsPosition[ 209419, 4919] NotebookOptionsPosition[ 209419, 4919]
NotebookOutlinePosition[ 209943, 4939] NotebookOutlinePosition[ 209949, 4939]
CellTagsIndexPosition[ 209900, 4936] CellTagsIndexPosition[ 209906, 4936]
WindowFrame->Normal*) WindowFrame->Normal*)
(* Beginning of Notebook Content *) (* Beginning of Notebook Content *)
@ -4915,15 +4915,15 @@ pLINPnaf/r8/kEBzrVMD/X/C/wAHOYY/
}, Open ]] }, Open ]]
}, Open ]] }, Open ]]
}, Open ]] }, Open ]]
}, Closed]] }, Open ]]
}, },
WindowSize->{1212, 847}, WindowSize->{1212, 847},
WindowMargins->{{Automatic, 108}, {Automatic, 0}}, WindowMargins->{{Automatic, 108}, {Automatic, 0}},
PrintingCopies->1, PrintingCopies->1,
PrintingPageRange->{1, Automatic}, PrintingPageRange->{1, Automatic},
TaggingRules-><|"TryRealOnly" -> False|>, TaggingRules->Association["TryRealOnly" -> False],
Magnification:>1.25 Inherited, Magnification:>1.25 Inherited,
FrontEndVersion->"13.0 for Mac OS X ARM (64-bit) (December 2, 2021)", FrontEndVersion->"12.1 for Mac OS X x86 (64-bit) (June 19, 2020)",
StyleDefinitions->"Default.nb", StyleDefinitions->"Default.nb",
ExpressionUUID->"c947be63-9aef-4192-bf26-b635965432d0" ExpressionUUID->"c947be63-9aef-4192-bf26-b635965432d0"
] ]
@ -4944,13 +4944,13 @@ Cell[793, 28, 308, 6, 57, "Input",ExpressionUUID->"d157845e-0bac-4623-9438-6db32
InitializationCell->True], InitializationCell->True],
Cell[1104, 36, 232, 6, 57, "Input",ExpressionUUID->"466164d7-6b9d-472d-8dbb-051b87d2ab0d", Cell[1104, 36, 232, 6, 57, "Input",ExpressionUUID->"466164d7-6b9d-472d-8dbb-051b87d2ab0d",
InitializationCell->True], InitializationCell->True],
Cell[1339, 44, 574, 12, 84, "Input",ExpressionUUID->"1a76bff9-c9eb-4a64-8550-cf38c809ba22", Cell[1339, 44, 574, 12, 110, "Input",ExpressionUUID->"1a76bff9-c9eb-4a64-8550-cf38c809ba22",
InitializationCell->True] InitializationCell->True]
}, Closed]], }, Closed]],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[1950, 61, 88, 0, 65, "Section",ExpressionUUID->"a68e1e90-2158-4da8-9829-76467decd8c9"], Cell[1950, 61, 88, 0, 65, "Section",ExpressionUUID->"a68e1e90-2158-4da8-9829-76467decd8c9"],
Cell[2041, 63, 1276, 35, 90, "Input",ExpressionUUID->"682f75fb-1edd-4aa6-a4ad-b597c5f869c9"], Cell[2041, 63, 1276, 35, 90, "Input",ExpressionUUID->"682f75fb-1edd-4aa6-a4ad-b597c5f869c9"],
Cell[3320, 100, 1001, 27, 64, "Input",ExpressionUUID->"35c12977-2872-4eab-be4f-329f455172b3"], Cell[3320, 100, 1001, 27, 90, "Input",ExpressionUUID->"35c12977-2872-4eab-be4f-329f455172b3"],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[4346, 131, 328, 7, 37, "Input",ExpressionUUID->"59810817-5144-4818-800a-a2ceb8fcd500"], Cell[4346, 131, 328, 7, 37, "Input",ExpressionUUID->"59810817-5144-4818-800a-a2ceb8fcd500"],
Cell[4677, 140, 4095, 96, 308, "Output",ExpressionUUID->"814e3769-9eaf-4e1a-8956-617c8e61d77e"] Cell[4677, 140, 4095, 96, 308, "Output",ExpressionUUID->"814e3769-9eaf-4e1a-8956-617c8e61d77e"]
@ -4985,7 +4985,7 @@ Cell[42880, 1072, 316, 9, 40, "Input",ExpressionUUID->"21c50754-febc-41cd-a91a-d
Cell[43199, 1083, 1051, 32, 116, "Input",ExpressionUUID->"4dfd87b2-28e1-4b90-98bd-12ef5c33e7cd"], Cell[43199, 1083, 1051, 32, 116, "Input",ExpressionUUID->"4dfd87b2-28e1-4b90-98bd-12ef5c33e7cd"],
Cell[44253, 1117, 1724, 56, 68, "Input",ExpressionUUID->"f6448161-1952-4500-b5f5-566946f9b807"], Cell[44253, 1117, 1724, 56, 68, "Input",ExpressionUUID->"f6448161-1952-4500-b5f5-566946f9b807"],
Cell[45980, 1175, 1288, 43, 42, "Input",ExpressionUUID->"260633fc-4386-4e7b-a747-77a336ee6b4d"], Cell[45980, 1175, 1288, 43, 42, "Input",ExpressionUUID->"260633fc-4386-4e7b-a747-77a336ee6b4d"],
Cell[47271, 1220, 1348, 44, 79, "Input",ExpressionUUID->"0819721e-8f8a-4961-93d6-77fc2fd42396"] Cell[47271, 1220, 1348, 44, 78, "Input",ExpressionUUID->"0819721e-8f8a-4961-93d6-77fc2fd42396"]
}, Closed]], }, Closed]],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[48656, 1269, 264, 4, 65, "Section",ExpressionUUID->"470a82c0-3bf7-49b2-b0a4-e18638c845fc"], Cell[48656, 1269, 264, 4, 65, "Section",ExpressionUUID->"470a82c0-3bf7-49b2-b0a4-e18638c845fc"],
@ -5018,13 +5018,13 @@ Cell[82490, 2345, 4648, 154, 167, "Input",ExpressionUUID->"7bc8daef-44bc-447f-86
Cell[87141, 2501, 90, 0, 44, "Text",ExpressionUUID->"53ef96ad-c734-44f1-8123-1d211616b540"], Cell[87141, 2501, 90, 0, 44, "Text",ExpressionUUID->"53ef96ad-c734-44f1-8123-1d211616b540"],
Cell[87234, 2503, 1840, 55, 90, "Input",ExpressionUUID->"920b9a14-7358-437b-8b2d-9af272494adb"], Cell[87234, 2503, 1840, 55, 90, "Input",ExpressionUUID->"920b9a14-7358-437b-8b2d-9af272494adb"],
Cell[89077, 2560, 185, 3, 44, "Text",ExpressionUUID->"93942955-95fa-4960-8441-d27720ba0dd0"], Cell[89077, 2560, 185, 3, 44, "Text",ExpressionUUID->"93942955-95fa-4960-8441-d27720ba0dd0"],
Cell[89265, 2565, 880, 26, 62, "Input",ExpressionUUID->"47e9290a-cfa8-4af9-a77d-518740bd08e2"], Cell[89265, 2565, 880, 26, 61, "Input",ExpressionUUID->"47e9290a-cfa8-4af9-a77d-518740bd08e2"],
Cell[90148, 2593, 1078, 31, 68, "Input",ExpressionUUID->"ab0fa501-ac3f-4c9c-8066-9fc31c8041bf"], Cell[90148, 2593, 1078, 31, 67, "Input",ExpressionUUID->"ab0fa501-ac3f-4c9c-8066-9fc31c8041bf"],
Cell[91229, 2626, 209, 5, 40, "Input",ExpressionUUID->"4498a696-6326-43f3-929f-4540537b631f"], Cell[91229, 2626, 209, 5, 40, "Input",ExpressionUUID->"4498a696-6326-43f3-929f-4540537b631f"],
Cell[91441, 2633, 1026, 32, 64, "Input",ExpressionUUID->"9a0c7b03-b777-49f5-bbb5-8250e18341f6"], Cell[91441, 2633, 1026, 32, 64, "Input",ExpressionUUID->"9a0c7b03-b777-49f5-bbb5-8250e18341f6"],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[92492, 2669, 1059, 29, 37, "Input",ExpressionUUID->"9aac74ba-b0da-4219-b2f4-760e75b19181"], Cell[92492, 2669, 1059, 29, 37, "Input",ExpressionUUID->"9aac74ba-b0da-4219-b2f4-760e75b19181"],
Cell[93554, 2700, 6028, 159, 187, "Output",ExpressionUUID->"d0dd5be3-43a4-4c53-a5ba-112275dc3ac6"] Cell[93554, 2700, 6028, 159, 183, "Output",ExpressionUUID->"d0dd5be3-43a4-4c53-a5ba-112275dc3ac6"]
}, Open ]], }, Open ]],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[99619, 2864, 322, 7, 56, "Input",ExpressionUUID->"0fcbabf1-9a31-4e73-9b0f-e3193cf0da0e"], Cell[99619, 2864, 322, 7, 56, "Input",ExpressionUUID->"0fcbabf1-9a31-4e73-9b0f-e3193cf0da0e"],
@ -5039,7 +5039,7 @@ Cell[101437, 2922, 334, 10, 38, "Input",ExpressionUUID->"bba87f46-334f-485b-8c9d
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[101808, 2937, 77, 0, 84, "Section",ExpressionUUID->"8a3d16ca-0779-480a-b23d-aa8d77e59793"], Cell[101808, 2937, 77, 0, 84, "Section",ExpressionUUID->"8a3d16ca-0779-480a-b23d-aa8d77e59793"],
Cell[101888, 2939, 92, 0, 37, "Input",ExpressionUUID->"bcdffa1d-f22d-40ee-a1b9-2dc03ba0be9c"], Cell[101888, 2939, 92, 0, 37, "Input",ExpressionUUID->"bcdffa1d-f22d-40ee-a1b9-2dc03ba0be9c"],
Cell[101983, 2941, 1889, 45, 448, "Input",ExpressionUUID->"d754cecd-0dc1-44bc-aadc-26d9c91dd570", Cell[101983, 2941, 1889, 45, 474, "Input",ExpressionUUID->"d754cecd-0dc1-44bc-aadc-26d9c91dd570",
InitializationCell->True], InitializationCell->True],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[103897, 2990, 84, 0, 67, "Subsection",ExpressionUUID->"14db7a36-714c-4139-a9a1-b9adf8150988"], Cell[103897, 2990, 84, 0, 67, "Subsection",ExpressionUUID->"14db7a36-714c-4139-a9a1-b9adf8150988"],
@ -5055,7 +5055,7 @@ Cell[108249, 3111, 101118, 1802, 603, "Output",ExpressionUUID->"ede19c11-5d07-48
}, Open ]] }, Open ]]
}, Open ]] }, Open ]]
}, Open ]] }, Open ]]
}, Closed]] }, Open ]]
} }
] ]
*) *)

View File

@ -95,7 +95,7 @@ Otherwise it all is a bit incomprehensible.}
It seems to me that the difference between the values of qp energies before and post shifting are of the same order of magnitude for both regularizers. It seems to me that the difference between the values of qp energies before and post shifting are of the same order of magnitude for both regularizers.
Could authors elaborate what they see differently and what my untrained eyes could not see?} Could authors elaborate what they see differently and what my untrained eyes could not see?}
\\ \\
\alert{ \alert{We had additionnal graphs for different values of $\eta$, i.e., the traditional shift, and $\kappa$, i.e., the Evangelista shift.
} }
\item \item
@ -204,7 +204,7 @@ So, why doesn't the curve with $\eta=0.01$ jump abruptly to the solutions comput
\item \item
{For all plots, the authors should include the units for $\eta$.} {For all plots, the authors should include the units for $\eta$.}
\\ \\
\alert{ \alert{We specified the units for the $\eta$ and $\kappa$.
} }
\item \item