SI
This commit is contained in:
parent
5632225377
commit
a2e50cd21e
BIN
Manuscript/eta_0_1.pdf
Normal file
BIN
Manuscript/eta_0_1.pdf
Normal file
Binary file not shown.
BIN
Manuscript/eta_1.pdf
Normal file
BIN
Manuscript/eta_1.pdf
Normal file
Binary file not shown.
BIN
Manuscript/eta_10.pdf
Normal file
BIN
Manuscript/eta_10.pdf
Normal file
Binary file not shown.
BIN
Manuscript/kappa_0_1.pdf
Normal file
BIN
Manuscript/kappa_0_1.pdf
Normal file
Binary file not shown.
BIN
Manuscript/kappa_10.pdf
Normal file
BIN
Manuscript/kappa_10.pdf
Normal file
Binary file not shown.
98
Manuscript/ufGW-SI.tex
Normal file
98
Manuscript/ufGW-SI.tex
Normal file
@ -0,0 +1,98 @@
|
|||||||
|
\documentclass[aip,jcp,reprint,onecolumn,noshowkeys,superscriptaddress]{revtex4-1}
|
||||||
|
\usepackage{graphicx,dcolumn,bm,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,longtable,wrapfig,txfonts,siunitx}
|
||||||
|
\usepackage[version=4]{mhchem}
|
||||||
|
|
||||||
|
\usepackage[utf8]{inputenc}
|
||||||
|
\usepackage[T1]{fontenc}
|
||||||
|
\usepackage{txfonts}
|
||||||
|
\usepackage{siunitx}
|
||||||
|
\usepackage{soul}
|
||||||
|
\DeclareSIUnit[number-unit-product = {\,}]
|
||||||
|
\cal{cal}
|
||||||
|
\DeclareSIUnit\kcal{\kilo\cal}
|
||||||
|
\newcommand{\kcalmol}{\si{\kcal\per\mole}}
|
||||||
|
|
||||||
|
\usepackage[
|
||||||
|
colorlinks=true,
|
||||||
|
citecolor=blue,
|
||||||
|
breaklinks=true
|
||||||
|
]{hyperref}
|
||||||
|
\urlstyle{same}
|
||||||
|
|
||||||
|
\usepackage[normalem]{ulem}
|
||||||
|
|
||||||
|
% methods
|
||||||
|
\newcommand{\GW}{\text{$GW$}}
|
||||||
|
\newcommand{\evGW}{ev$GW$}
|
||||||
|
\newcommand{\qsGW}{qs$GW$}
|
||||||
|
\newcommand{\GOWO}{$G_0W_0$}
|
||||||
|
\newcommand{\Hxc}{\text{Hxc}}
|
||||||
|
\newcommand{\xc}{\text{xc}}
|
||||||
|
\newcommand{\Ha}{\text{H}}
|
||||||
|
\newcommand{\co}{\text{c}}
|
||||||
|
\newcommand{\x}{\text{x}}
|
||||||
|
\newcommand{\KS}{\text{KS}}
|
||||||
|
\newcommand{\HF}{\text{HF}}
|
||||||
|
\newcommand{\RPA}{\text{RPA}}
|
||||||
|
|
||||||
|
|
||||||
|
% orbital energies
|
||||||
|
\newcommand{\eps}[2]{\epsilon_{#1}^{#2}}
|
||||||
|
\newcommand{\reps}[2]{\Tilde{\epsilon}_{#1}^{#2}}
|
||||||
|
\newcommand{\Om}[2]{\Omega_{#1}^{#2}}
|
||||||
|
|
||||||
|
\newcommand{\RHH}{R_{\ce{H-H}}}
|
||||||
|
|
||||||
|
% addresses
|
||||||
|
\newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\'e de Toulouse, CNRS, UPS, France}
|
||||||
|
|
||||||
|
\begin{document}
|
||||||
|
|
||||||
|
\title{Supporting Information for ``Unphysical Discontinuities, Intruder States and Regularization in $GW$ Methods''}
|
||||||
|
|
||||||
|
|
||||||
|
\author{Enzo \surname{Monino}}
|
||||||
|
\affiliation{\LCPQ}
|
||||||
|
\author{Pierre-Fran\c{c}ois \surname{Loos}}
|
||||||
|
\email{loos@irsamc.ups-tlse.fr}
|
||||||
|
\affiliation{\LCPQ}
|
||||||
|
|
||||||
|
\maketitle
|
||||||
|
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
\section{Energy differences}
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
|
||||||
|
\subsection{$\eta$ shift}
|
||||||
|
|
||||||
|
\begin{figure}
|
||||||
|
\includegraphics[width=0.6\linewidth]{eta_0_1}
|
||||||
|
\caption{Difference between non-regularized and regularized quasiparticle energies $\eps{p}{\GW}-\reps{p}{\GW}$ computed with $\eta = 0.1$ as functions of the internuclear distance $\RHH$ (in \si{\angstrom}) of \ce{H2} at the {\GOWO}@HF/6-31G level. }
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
\begin{figure}
|
||||||
|
\includegraphics[width=0.6\linewidth]{eta_1}
|
||||||
|
\caption{Difference between non-regularized and regularized quasiparticle energies $\eps{p}{\GW}-\reps{p}{\GW}$ computed with $\eta = 1$ as functions of the internuclear distance $\RHH$ (in \si{\angstrom}) of \ce{H2} at the {\GOWO}@HF/6-31G level. }
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
\begin{figure}
|
||||||
|
\includegraphics[width=0.6\linewidth]{eta_10}
|
||||||
|
\caption{Difference between non-regularized and regularized quasiparticle energies $\eps{p}{\GW}-\reps{p}{\GW}$ computed with $\eta = 10$ as functions of the internuclear distance $\RHH$ (in \si{\angstrom}) of \ce{H2} at the {\GOWO}@HF/6-31G level. }
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
\subsection{$\kappa$ shift}
|
||||||
|
|
||||||
|
\begin{figure}
|
||||||
|
\includegraphics[width=0.6\linewidth]{kappa_0_1}
|
||||||
|
\caption{Difference between non-regularized and regularized quasiparticle energies $\eps{p}{\GW}-\reps{p}{\GW}$ computed with $\kappa = 0.1$ as functions of the internuclear distance $\RHH$ (in \si{\angstrom}) of \ce{H2} at the {\GOWO}@HF/6-31G level. }
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
\begin{figure}
|
||||||
|
\includegraphics[width=0.6\linewidth]{kappa_10}
|
||||||
|
\caption{Difference between non-regularized and regularized quasiparticle energies $\eps{p}{\GW}-\reps{p}{\GW}$ computed with $\kappa = 10$ as functions of the internuclear distance $\RHH$ (in \si{\angstrom}) of \ce{H2} at the {\GOWO}@HF/6-31G level. }
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
\bibliography{ufGW}
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
\end{document}
|
@ -10,10 +10,10 @@
|
|||||||
NotebookFileLineBreakTest
|
NotebookFileLineBreakTest
|
||||||
NotebookFileLineBreakTest
|
NotebookFileLineBreakTest
|
||||||
NotebookDataPosition[ 158, 7]
|
NotebookDataPosition[ 158, 7]
|
||||||
NotebookDataLength[ 218174, 5054]
|
NotebookDataLength[ 218181, 5054]
|
||||||
NotebookOptionsPosition[ 209419, 4919]
|
NotebookOptionsPosition[ 209419, 4919]
|
||||||
NotebookOutlinePosition[ 209943, 4939]
|
NotebookOutlinePosition[ 209949, 4939]
|
||||||
CellTagsIndexPosition[ 209900, 4936]
|
CellTagsIndexPosition[ 209906, 4936]
|
||||||
WindowFrame->Normal*)
|
WindowFrame->Normal*)
|
||||||
|
|
||||||
(* Beginning of Notebook Content *)
|
(* Beginning of Notebook Content *)
|
||||||
@ -4915,15 +4915,15 @@ pLINPnaf/r8/kEBzrVMD/X/C/wAHOYY/
|
|||||||
}, Open ]]
|
}, Open ]]
|
||||||
}, Open ]]
|
}, Open ]]
|
||||||
}, Open ]]
|
}, Open ]]
|
||||||
}, Closed]]
|
}, Open ]]
|
||||||
},
|
},
|
||||||
WindowSize->{1212, 847},
|
WindowSize->{1212, 847},
|
||||||
WindowMargins->{{Automatic, 108}, {Automatic, 0}},
|
WindowMargins->{{Automatic, 108}, {Automatic, 0}},
|
||||||
PrintingCopies->1,
|
PrintingCopies->1,
|
||||||
PrintingPageRange->{1, Automatic},
|
PrintingPageRange->{1, Automatic},
|
||||||
TaggingRules-><|"TryRealOnly" -> False|>,
|
TaggingRules->Association["TryRealOnly" -> False],
|
||||||
Magnification:>1.25 Inherited,
|
Magnification:>1.25 Inherited,
|
||||||
FrontEndVersion->"13.0 for Mac OS X ARM (64-bit) (December 2, 2021)",
|
FrontEndVersion->"12.1 for Mac OS X x86 (64-bit) (June 19, 2020)",
|
||||||
StyleDefinitions->"Default.nb",
|
StyleDefinitions->"Default.nb",
|
||||||
ExpressionUUID->"c947be63-9aef-4192-bf26-b635965432d0"
|
ExpressionUUID->"c947be63-9aef-4192-bf26-b635965432d0"
|
||||||
]
|
]
|
||||||
@ -4944,13 +4944,13 @@ Cell[793, 28, 308, 6, 57, "Input",ExpressionUUID->"d157845e-0bac-4623-9438-6db32
|
|||||||
InitializationCell->True],
|
InitializationCell->True],
|
||||||
Cell[1104, 36, 232, 6, 57, "Input",ExpressionUUID->"466164d7-6b9d-472d-8dbb-051b87d2ab0d",
|
Cell[1104, 36, 232, 6, 57, "Input",ExpressionUUID->"466164d7-6b9d-472d-8dbb-051b87d2ab0d",
|
||||||
InitializationCell->True],
|
InitializationCell->True],
|
||||||
Cell[1339, 44, 574, 12, 84, "Input",ExpressionUUID->"1a76bff9-c9eb-4a64-8550-cf38c809ba22",
|
Cell[1339, 44, 574, 12, 110, "Input",ExpressionUUID->"1a76bff9-c9eb-4a64-8550-cf38c809ba22",
|
||||||
InitializationCell->True]
|
InitializationCell->True]
|
||||||
}, Closed]],
|
}, Closed]],
|
||||||
Cell[CellGroupData[{
|
Cell[CellGroupData[{
|
||||||
Cell[1950, 61, 88, 0, 65, "Section",ExpressionUUID->"a68e1e90-2158-4da8-9829-76467decd8c9"],
|
Cell[1950, 61, 88, 0, 65, "Section",ExpressionUUID->"a68e1e90-2158-4da8-9829-76467decd8c9"],
|
||||||
Cell[2041, 63, 1276, 35, 90, "Input",ExpressionUUID->"682f75fb-1edd-4aa6-a4ad-b597c5f869c9"],
|
Cell[2041, 63, 1276, 35, 90, "Input",ExpressionUUID->"682f75fb-1edd-4aa6-a4ad-b597c5f869c9"],
|
||||||
Cell[3320, 100, 1001, 27, 64, "Input",ExpressionUUID->"35c12977-2872-4eab-be4f-329f455172b3"],
|
Cell[3320, 100, 1001, 27, 90, "Input",ExpressionUUID->"35c12977-2872-4eab-be4f-329f455172b3"],
|
||||||
Cell[CellGroupData[{
|
Cell[CellGroupData[{
|
||||||
Cell[4346, 131, 328, 7, 37, "Input",ExpressionUUID->"59810817-5144-4818-800a-a2ceb8fcd500"],
|
Cell[4346, 131, 328, 7, 37, "Input",ExpressionUUID->"59810817-5144-4818-800a-a2ceb8fcd500"],
|
||||||
Cell[4677, 140, 4095, 96, 308, "Output",ExpressionUUID->"814e3769-9eaf-4e1a-8956-617c8e61d77e"]
|
Cell[4677, 140, 4095, 96, 308, "Output",ExpressionUUID->"814e3769-9eaf-4e1a-8956-617c8e61d77e"]
|
||||||
@ -4985,7 +4985,7 @@ Cell[42880, 1072, 316, 9, 40, "Input",ExpressionUUID->"21c50754-febc-41cd-a91a-d
|
|||||||
Cell[43199, 1083, 1051, 32, 116, "Input",ExpressionUUID->"4dfd87b2-28e1-4b90-98bd-12ef5c33e7cd"],
|
Cell[43199, 1083, 1051, 32, 116, "Input",ExpressionUUID->"4dfd87b2-28e1-4b90-98bd-12ef5c33e7cd"],
|
||||||
Cell[44253, 1117, 1724, 56, 68, "Input",ExpressionUUID->"f6448161-1952-4500-b5f5-566946f9b807"],
|
Cell[44253, 1117, 1724, 56, 68, "Input",ExpressionUUID->"f6448161-1952-4500-b5f5-566946f9b807"],
|
||||||
Cell[45980, 1175, 1288, 43, 42, "Input",ExpressionUUID->"260633fc-4386-4e7b-a747-77a336ee6b4d"],
|
Cell[45980, 1175, 1288, 43, 42, "Input",ExpressionUUID->"260633fc-4386-4e7b-a747-77a336ee6b4d"],
|
||||||
Cell[47271, 1220, 1348, 44, 79, "Input",ExpressionUUID->"0819721e-8f8a-4961-93d6-77fc2fd42396"]
|
Cell[47271, 1220, 1348, 44, 78, "Input",ExpressionUUID->"0819721e-8f8a-4961-93d6-77fc2fd42396"]
|
||||||
}, Closed]],
|
}, Closed]],
|
||||||
Cell[CellGroupData[{
|
Cell[CellGroupData[{
|
||||||
Cell[48656, 1269, 264, 4, 65, "Section",ExpressionUUID->"470a82c0-3bf7-49b2-b0a4-e18638c845fc"],
|
Cell[48656, 1269, 264, 4, 65, "Section",ExpressionUUID->"470a82c0-3bf7-49b2-b0a4-e18638c845fc"],
|
||||||
@ -5018,13 +5018,13 @@ Cell[82490, 2345, 4648, 154, 167, "Input",ExpressionUUID->"7bc8daef-44bc-447f-86
|
|||||||
Cell[87141, 2501, 90, 0, 44, "Text",ExpressionUUID->"53ef96ad-c734-44f1-8123-1d211616b540"],
|
Cell[87141, 2501, 90, 0, 44, "Text",ExpressionUUID->"53ef96ad-c734-44f1-8123-1d211616b540"],
|
||||||
Cell[87234, 2503, 1840, 55, 90, "Input",ExpressionUUID->"920b9a14-7358-437b-8b2d-9af272494adb"],
|
Cell[87234, 2503, 1840, 55, 90, "Input",ExpressionUUID->"920b9a14-7358-437b-8b2d-9af272494adb"],
|
||||||
Cell[89077, 2560, 185, 3, 44, "Text",ExpressionUUID->"93942955-95fa-4960-8441-d27720ba0dd0"],
|
Cell[89077, 2560, 185, 3, 44, "Text",ExpressionUUID->"93942955-95fa-4960-8441-d27720ba0dd0"],
|
||||||
Cell[89265, 2565, 880, 26, 62, "Input",ExpressionUUID->"47e9290a-cfa8-4af9-a77d-518740bd08e2"],
|
Cell[89265, 2565, 880, 26, 61, "Input",ExpressionUUID->"47e9290a-cfa8-4af9-a77d-518740bd08e2"],
|
||||||
Cell[90148, 2593, 1078, 31, 68, "Input",ExpressionUUID->"ab0fa501-ac3f-4c9c-8066-9fc31c8041bf"],
|
Cell[90148, 2593, 1078, 31, 67, "Input",ExpressionUUID->"ab0fa501-ac3f-4c9c-8066-9fc31c8041bf"],
|
||||||
Cell[91229, 2626, 209, 5, 40, "Input",ExpressionUUID->"4498a696-6326-43f3-929f-4540537b631f"],
|
Cell[91229, 2626, 209, 5, 40, "Input",ExpressionUUID->"4498a696-6326-43f3-929f-4540537b631f"],
|
||||||
Cell[91441, 2633, 1026, 32, 64, "Input",ExpressionUUID->"9a0c7b03-b777-49f5-bbb5-8250e18341f6"],
|
Cell[91441, 2633, 1026, 32, 64, "Input",ExpressionUUID->"9a0c7b03-b777-49f5-bbb5-8250e18341f6"],
|
||||||
Cell[CellGroupData[{
|
Cell[CellGroupData[{
|
||||||
Cell[92492, 2669, 1059, 29, 37, "Input",ExpressionUUID->"9aac74ba-b0da-4219-b2f4-760e75b19181"],
|
Cell[92492, 2669, 1059, 29, 37, "Input",ExpressionUUID->"9aac74ba-b0da-4219-b2f4-760e75b19181"],
|
||||||
Cell[93554, 2700, 6028, 159, 187, "Output",ExpressionUUID->"d0dd5be3-43a4-4c53-a5ba-112275dc3ac6"]
|
Cell[93554, 2700, 6028, 159, 183, "Output",ExpressionUUID->"d0dd5be3-43a4-4c53-a5ba-112275dc3ac6"]
|
||||||
}, Open ]],
|
}, Open ]],
|
||||||
Cell[CellGroupData[{
|
Cell[CellGroupData[{
|
||||||
Cell[99619, 2864, 322, 7, 56, "Input",ExpressionUUID->"0fcbabf1-9a31-4e73-9b0f-e3193cf0da0e"],
|
Cell[99619, 2864, 322, 7, 56, "Input",ExpressionUUID->"0fcbabf1-9a31-4e73-9b0f-e3193cf0da0e"],
|
||||||
@ -5039,7 +5039,7 @@ Cell[101437, 2922, 334, 10, 38, "Input",ExpressionUUID->"bba87f46-334f-485b-8c9d
|
|||||||
Cell[CellGroupData[{
|
Cell[CellGroupData[{
|
||||||
Cell[101808, 2937, 77, 0, 84, "Section",ExpressionUUID->"8a3d16ca-0779-480a-b23d-aa8d77e59793"],
|
Cell[101808, 2937, 77, 0, 84, "Section",ExpressionUUID->"8a3d16ca-0779-480a-b23d-aa8d77e59793"],
|
||||||
Cell[101888, 2939, 92, 0, 37, "Input",ExpressionUUID->"bcdffa1d-f22d-40ee-a1b9-2dc03ba0be9c"],
|
Cell[101888, 2939, 92, 0, 37, "Input",ExpressionUUID->"bcdffa1d-f22d-40ee-a1b9-2dc03ba0be9c"],
|
||||||
Cell[101983, 2941, 1889, 45, 448, "Input",ExpressionUUID->"d754cecd-0dc1-44bc-aadc-26d9c91dd570",
|
Cell[101983, 2941, 1889, 45, 474, "Input",ExpressionUUID->"d754cecd-0dc1-44bc-aadc-26d9c91dd570",
|
||||||
InitializationCell->True],
|
InitializationCell->True],
|
||||||
Cell[CellGroupData[{
|
Cell[CellGroupData[{
|
||||||
Cell[103897, 2990, 84, 0, 67, "Subsection",ExpressionUUID->"14db7a36-714c-4139-a9a1-b9adf8150988"],
|
Cell[103897, 2990, 84, 0, 67, "Subsection",ExpressionUUID->"14db7a36-714c-4139-a9a1-b9adf8150988"],
|
||||||
@ -5055,7 +5055,7 @@ Cell[108249, 3111, 101118, 1802, 603, "Output",ExpressionUUID->"ede19c11-5d07-48
|
|||||||
}, Open ]]
|
}, Open ]]
|
||||||
}, Open ]]
|
}, Open ]]
|
||||||
}, Open ]]
|
}, Open ]]
|
||||||
}, Closed]]
|
}, Open ]]
|
||||||
}
|
}
|
||||||
]
|
]
|
||||||
*)
|
*)
|
||||||
|
@ -95,7 +95,7 @@ Otherwise it all is a bit incomprehensible.}
|
|||||||
It seems to me that the difference between the values of qp energies before and post shifting are of the same order of magnitude for both regularizers.
|
It seems to me that the difference between the values of qp energies before and post shifting are of the same order of magnitude for both regularizers.
|
||||||
Could authors elaborate what they see differently and what my untrained eyes could not see?}
|
Could authors elaborate what they see differently and what my untrained eyes could not see?}
|
||||||
\\
|
\\
|
||||||
\alert{
|
\alert{We had additionnal graphs for different values of $\eta$, i.e., the traditional shift, and $\kappa$, i.e., the Evangelista shift.
|
||||||
}
|
}
|
||||||
|
|
||||||
\item
|
\item
|
||||||
@ -204,7 +204,7 @@ So, why doesn't the curve with $\eta=0.01$ jump abruptly to the solutions comput
|
|||||||
\item
|
\item
|
||||||
{For all plots, the authors should include the units for $\eta$.}
|
{For all plots, the authors should include the units for $\eta$.}
|
||||||
\\
|
\\
|
||||||
\alert{
|
\alert{We specified the units for the $\eta$ and $\kappa$.
|
||||||
}
|
}
|
||||||
|
|
||||||
\item
|
\item
|
||||||
|
Loading…
Reference in New Issue
Block a user