This commit is contained in:
Pierre-Francois Loos 2022-02-14 22:22:11 +01:00
parent ed0798260f
commit 4cd336196d
3 changed files with 16526 additions and 44 deletions

16266
Manuscript/ufGW.bib Normal file

File diff suppressed because it is too large Load Diff

View File

@ -1,5 +1,5 @@
\documentclass[aip,jcp,reprint,noshowkeys,superscriptaddress]{revtex4-1}
\usepackage{graphicx,dcolumn,bm,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,longtable,wrapfig,txfonts}
\usepackage{graphicx,dcolumn,bm,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,longtable,wrapfig,txfonts,siunitx}
\usepackage[version=4]{mhchem}
\usepackage[utf8]{inputenc}
@ -25,7 +25,6 @@
\newcommand{\fnm}{\footnotemark}
\newcommand{\fnt}{\footnotetext}
\newcommand{\tabc}[1]{\multicolumn{1}{c}{#1}}
\newcommand{\SI}{\textcolor{blue}{supporting information}}
\newcommand{\QP}{\textsc{quantum package}}
\newcommand{\T}[1]{#1^{\intercal}}
@ -112,25 +111,15 @@
\newcommand{\EgOpt}{\Eg^\text{opt}}
\newcommand{\EB}{E_B}
\newcommand{\sig}{\sigma}
\newcommand{\bsig}{{\Bar{\sigma}}}
\newcommand{\sigp}{{\sigma'}}
\newcommand{\bsigp}{{\Bar{\sigma}'}}
\newcommand{\taup}{{\tau'}}
\newcommand{\RHH}{R_{\ce{H-H}}}
\newcommand{\up}{\uparrow}
\newcommand{\dw}{\downarrow}
\newcommand{\upup}{\uparrow\uparrow}
\newcommand{\updw}{\uparrow\downarrow}
\newcommand{\dwup}{\downarrow\uparrow}
\newcommand{\dwdw}{\downarrow\downarrow}
% addresses
\newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\'e de Toulouse, CNRS, UPS, France}
\begin{document}
\title{The $GW$ conundrum}
\title{Unphysical Discontinuities in $GW$ Methods and the Role of Intruder States}
\author{Enzo \surname{Monino}}
\affiliation{\LCPQ}
@ -157,11 +146,11 @@ We consider {\GOWO} for the sake of simplicity but the same analysis can be perf
\section{Downfold: The non-linear $GW$ problem}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Here, for the sake of simplicity, we consider a Hartree-Fock (HF) starting point.
Here, for the sake of simplicity, we consider a restricted Hartree-Fock (HF) starting point but the present analysis can be straightforwardly extended to a Kohn-Sham (KS) starting point.
Within the {\GOWO} approximation, in order to obtain the quasiparticle energies and the corresponding satellites, one solve, for each spatial orbital $p$, the following (non-linear) quasiparticle equation
\begin{equation}
\label{eq:qp_eq}
\omega = \eps{p}{\HF} + \SigC{p}(\omega)
\eps{p}{\HF} + \SigC{p}(\omega) - \omega = 0
\end{equation}
where $\eps{p}{\HF}$ is the $p$th HF orbital energy and the correlation part of the {\GOWO} self-energy reads
\begin{equation}
@ -197,7 +186,8 @@ Note that we have the following important conservation rules
\section{Upfolding: the linear $GW$ problem}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
The non-linear quasiparticle equation \eqref{eq:qp_eq} can be transformed into a larger linear problem via an upfolding process where the 2h1p and 2p1h sectors
is downfolded on the 1h and 1p sectors via their interaction with the 2h1p and 2p1h sectors:
are upfolded from the 1h and 1p sectors.
For each orbital $p$, this yields a linear eigenvalue problem of the form
\begin{equation}
\bH^{(p)} \bc{}{(p,s)} = \eps{p,s}{} \bc{}{(p,s)}
\end{equation}
@ -225,15 +215,54 @@ and the corresponding coupling blocks read
&
V^\text{2p1h}_{p,cld} & = \sqrt{2} \ERI{pd}{kc}
\end{align}
The size of this eigenvalue problem is $N = 1 + N^\text{2h1p} + N^\text{2p1h} = 1 + O^2 V + O V^2$.
The size of this eigenvalue problem is $N = 1 + N^\text{2h1p} + N^\text{2p1h} = 1 + O^2 V + O V^2$, and this eigenvalue problem has to be solved for each orbital that one wants to correct.
Because the renormalization factor corresponds to the projection of the vector $\bc{}{(p,s)}$ onto the reference space, the weight of a solution $(p,s)$ is given by the the first coefficient of their corresponding eigenvector $\bc{}{(p,s)}$, \ie,
\begin{equation}
Z_{p,s} = \qty[ c_{1}^{(p,s)} ]^{2}
\end{equation}
It is important to understand that diagonalizing $\bH^{(p)}$ in Eq.~\eqref{eq:Hp} is completely equivalent to solving the quasiparticle equation \eqref{eq:qp_eq}.
This can be further illustrate by expanding the secular equation associated with Eq.~\eqref{eq:Hp}
\begin{equation}
\det[ \bH^{(p)} - \omega \bI ] = 0
\end{equation}
and comparing it with Eq.~\eqref{eq:qp_eq} by setting
\begin{multline}
\SigC{p}(\omega)
= \bV{p}{\text{2h1p}} \cdot \qty(\omega \bI - \bC{}{\text{2h1p}} )^{-1} \cdot \T{\qty(\bV{p}{\text{2h1p}})}
\\
+ \bV{p}{\text{2p1h}} \cdot \qty(\omega \bI - \bC{}{\text{2p1h}} )^{-1} \cdot \T{\qty(\bV{p}{\text{2p1h}})}
\end{multline}
The main difference between the two approaches is that, by diagonalizing Eq.~\eqref{eq:Hp}, one has directly access to the eigenvectors associated with each quasiparticle and satellites.
One can see this downfolding process as the construction of an frequency-dependent effective Hamiltonian where the reference (zeroth-order) space is composed by a single determinant of the 1h or 1p sector and the external (first-order) space by all the singly-excited states built from to this reference electronic configuration.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{An illustrative example}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Multiple solution issues in $GW$ appears all the time, especially for orbitals that are far in energy from the Fermi level.
Therefore, such issues are ubiquitous when one wants to compute core ionized states for example.
In order to illustrate the appearance and the origin of these multiple solutions, we consider the hydrogen molecule in the 6-31G basis set which corresponds to a system with 2 electrons and 4 spatial orbitals (one occupied and three virtual).
This example was already considered in our previous work but here we provide further insights on the origin of the appearances of these multiple solutions.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% FIGURE 1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{figure*}
% \includegraphics[width=\linewidth]{fig1a}
% \includegraphics[width=\linewidth]{fig1b}
\caption{
\label{fig:H2}
Quasiparticle energies (left), correlation part of the self-energy (center) and renormalization factor (right) as functions of the internuclear distance $\RHH$ (in \si{\angstrom}) for various orbitals of \ce{H2} at the {\GOWO}@HF/6-31G level.
}
\end{figure*}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Figure \ref{fig:H2} shows the evolution of the quasiparticle energies at the {\GOWO}@HF/6-31G level as a function on the internuclear distance $\RHH$.
As one can see there are two problematic regions showing obvious discontinuities around $\RHH = \SI{1}{\AA}$ and $\RHH = \SI{1}{\AA}$
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Introducing regularized $GW$ methods}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@ -248,5 +277,8 @@ This helps greatly convergence for (partially) self-consistent $GW$ methods.
This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No.~863481).}
%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%
\bibliography{ufGW}
%%%%%%%%%%%%%%%%%%%%%%%%
\end{document}

View File

@ -10,10 +10,10 @@
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 42511, 1034]
NotebookOptionsPosition[ 40318, 991]
NotebookOutlinePosition[ 40770, 1009]
CellTagsIndexPosition[ 40727, 1006]
NotebookDataLength[ 48297, 1218]
NotebookOptionsPosition[ 45590, 1169]
NotebookOutlinePosition[ 46070, 1188]
CellTagsIndexPosition[ 46027, 1185]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
@ -987,12 +987,191 @@ Cell[BoxData[
CellChangeTimes->{{3.85122542357023*^9, 3.851225434992806*^9}, {
3.851225486314489*^9, 3.851225493333332*^9}},
CellLabel->"Out[34]=",ExpressionUUID->"2a2efd1e-215b-4367-831c-d3eaaa63ec02"]
}, Open ]]
}, Open ]],
Cell[BoxData[
RowBox[{
SuperscriptBox["H",
RowBox[{"(", "p", ")"}]], "=",
RowBox[{"(", "\[NoBreak]", GridBox[{
{
SubsuperscriptBox["\[Epsilon]", "p", "HF"],
SubsuperscriptBox["V", "p",
RowBox[{"2", "h1p"}]],
SubsuperscriptBox["V", "p",
RowBox[{"2", "p1h"}]]},
{
RowBox[{
RowBox[{"(",
SubsuperscriptBox["V", "p",
RowBox[{"2", "h1p"}]], ")"}], "\[Transpose]"}],
SuperscriptBox["C",
RowBox[{"2", "h1p"}]], "0"},
{
RowBox[{
RowBox[{"(",
SubsuperscriptBox["V", "p",
RowBox[{"2", "p1h"}]], ")"}], "\[Transpose]"}], "0",
SuperscriptBox["C",
RowBox[{"2", "p1h"}]]}
}], "\[NoBreak]", ")"}]}]], "Input",
CellChangeTimes->{{3.853860765989546*^9,
3.853860843155305*^9}},ExpressionUUID->"6feb960f-bb32-4591-80f4-\
4f095d8668c2"],
Cell[BoxData[
RowBox[{
RowBox[{"Det", "[",
RowBox[{
SuperscriptBox["H",
RowBox[{"(", "p", ")"}]], "-",
RowBox[{"\[Omega]", " ", "1"}]}], "]"}], "==", "0"}]], "Input",
CellChangeTimes->{{3.853860845482641*^9,
3.8538608764071417`*^9}},ExpressionUUID->"21c50754-febc-41cd-a91a-\
d483a7bc8140"],
Cell[BoxData[
RowBox[{
RowBox[{"Det", "[",
RowBox[{"(", "\[NoBreak]", GridBox[{
{
RowBox[{
SubsuperscriptBox["\[Epsilon]", "p", "HF"], "-", "\[Omega]"}],
SubsuperscriptBox["V", "p",
RowBox[{"2", "h1p"}]],
SubsuperscriptBox["V", "p",
RowBox[{"2", "p1h"}]]},
{
RowBox[{
RowBox[{"(",
SubsuperscriptBox["V", "p",
RowBox[{"2", "h1p"}]], ")"}], "\[Transpose]"}],
RowBox[{
SuperscriptBox["C",
RowBox[{"2", "h1p"}]], "-",
RowBox[{"\[Omega]", " ", "1"}]}], "0"},
{
RowBox[{
RowBox[{"(",
SubsuperscriptBox["V", "p",
RowBox[{"2", "p1h"}]], ")"}], "\[Transpose]"}], "0",
RowBox[{
SuperscriptBox["C",
RowBox[{"2", "p1h"}]], "-",
RowBox[{"\[Omega]", " ", "1"}]}]}
}], "\[NoBreak]", ")"}], "]"}], "==", "0"}]], "Input",
CellChangeTimes->{{3.853860882936471*^9,
3.853860914930173*^9}},ExpressionUUID->"4dfd87b2-28e1-4b90-98bd-\
12ef5c33e7cd"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
SubsuperscriptBox["\[Epsilon]", "p", "HF"], "-", "\[Omega]"}], ")"}],
RowBox[{"Det", "[",
RowBox[{"(", "\[NoBreak]", GridBox[{
{
RowBox[{
SuperscriptBox["C",
RowBox[{"2", "h1p"}]], "-",
RowBox[{"\[Omega]", " ", "1"}]}], "0"},
{"0",
RowBox[{
SuperscriptBox["C",
RowBox[{"2", "p1h"}]], "-",
RowBox[{"\[Omega]", " ", "1"}]}]}
}], "\[NoBreak]", ")"}], "]"}]}], "-",
RowBox[{
RowBox[{
RowBox[{"(",
SubsuperscriptBox["V", "p",
RowBox[{"2", "h1p"}]], ")"}], "\[Transpose]"}],
RowBox[{"(", "\[NoBreak]", GridBox[{
{
SubsuperscriptBox["V", "p",
RowBox[{"2", "h1p"}]],
SubsuperscriptBox["V", "p",
RowBox[{"2", "p1h"}]]},
{"0",
RowBox[{
SuperscriptBox["C",
RowBox[{"2", "p1h"}]], "-",
RowBox[{"\[Omega]", " ", "1"}]}]}
}], "\[NoBreak]", ")"}]}], "+",
RowBox[{
RowBox[{
RowBox[{"(",
SubsuperscriptBox["V", "p",
RowBox[{"2", "p1h"}]], ")"}], "\[Transpose]"}],
RowBox[{"(", "\[NoBreak]", GridBox[{
{
SubsuperscriptBox["V", "p",
RowBox[{"2", "h1p"}]],
SubsuperscriptBox["V", "p",
RowBox[{"2", "p1h"}]]},
{
RowBox[{
SuperscriptBox["C",
RowBox[{"2", "h1p"}]], "-",
RowBox[{"\[Omega]", " ", "1"}]}], "0"}
}], "\[NoBreak]", ")"}]}]}], "=", "0"}]], "Input",
CellChangeTimes->{{3.853860944854035*^9,
3.853860994667194*^9}},ExpressionUUID->"f6448161-1952-4500-b5f5-\
566946f9b807"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
SubsuperscriptBox["\[Epsilon]", "p", "HF"], "-", "\[Omega]"}], ")"}],
RowBox[{"(",
RowBox[{
SuperscriptBox["C",
RowBox[{"2", "h1p"}]], "-",
RowBox[{"\[Omega]", " ", "1"}]}], ")"}],
RowBox[{"(",
RowBox[{
SuperscriptBox["C",
RowBox[{"2", "p1h"}]], "-",
RowBox[{"\[Omega]", " ", "1"}]}], ")"}]}], "-",
RowBox[{
RowBox[{
RowBox[{"(",
SubsuperscriptBox["V", "p",
RowBox[{"2", "h1p"}]], ")"}], "\[Transpose]"}],
RowBox[{"(",
RowBox[{
SuperscriptBox["C",
RowBox[{"2", "p1h"}]], "-",
RowBox[{"\[Omega]", " ", "1"}]}], ")"}],
SubsuperscriptBox["V", "p",
RowBox[{"2", "h1p"}]]}], "-",
RowBox[{
RowBox[{
RowBox[{"(",
SubsuperscriptBox["V", "p",
RowBox[{"2", "p1h"}]], ")"}], "\[Transpose]"}],
RowBox[{"(",
RowBox[{
SuperscriptBox["C",
RowBox[{"2", "h1p"}]], "-",
RowBox[{"\[Omega]", " ", "1"}]}], ")"}],
SubsuperscriptBox["V", "p",
RowBox[{"2", "p1h"}]]}]}], "=", "0"}]], "Input",
CellChangeTimes->{{3.853861004235111*^9,
3.8538610705718946`*^9}},ExpressionUUID->"260633fc-4386-4e7b-a747-\
77a336ee6b4d"]
},
WindowSize->{808, 911},
WindowMargins->{{Automatic, 710}, {Automatic, 181}},
WindowSize->{1440, 847},
WindowMargins->{{0, Automatic}, {Automatic, 0}},
PrintingCopies->1,
PrintingPageRange->{1, Automatic},
Magnification:>1.25 Inherited,
FrontEndVersion->"13.0 for Mac OS X ARM (64-bit) (December 2, 2021)",
StyleDefinitions->"Default.nb",
ExpressionUUID->"c947be63-9aef-4192-bf26-b635965432d0"
@ -1008,34 +1187,39 @@ CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[558, 20, 1276, 35, 94, "Input",ExpressionUUID->"682f75fb-1edd-4aa6-a4ad-b597c5f869c9"],
Cell[1837, 57, 1001, 27, 73, "Input",ExpressionUUID->"35c12977-2872-4eab-be4f-329f455172b3"],
Cell[558, 20, 1276, 35, 117, "Input",ExpressionUUID->"682f75fb-1edd-4aa6-a4ad-b597c5f869c9"],
Cell[1837, 57, 1001, 27, 91, "Input",ExpressionUUID->"35c12977-2872-4eab-be4f-329f455172b3"],
Cell[CellGroupData[{
Cell[2863, 88, 328, 7, 30, "Input",ExpressionUUID->"59810817-5144-4818-800a-a2ceb8fcd500"],
Cell[3194, 97, 4095, 96, 247, "Output",ExpressionUUID->"814e3769-9eaf-4e1a-8956-617c8e61d77e"]
Cell[2863, 88, 328, 7, 37, "Input",ExpressionUUID->"59810817-5144-4818-800a-a2ceb8fcd500"],
Cell[3194, 97, 4095, 96, 308, "Output",ExpressionUUID->"814e3769-9eaf-4e1a-8956-617c8e61d77e"]
}, Open ]],
Cell[7304, 196, 1274, 35, 94, "Input",ExpressionUUID->"5f735bd6-ba1a-4987-b9f7-8ff4ac674345"],
Cell[8581, 233, 981, 27, 73, "Input",ExpressionUUID->"5928cf25-152d-4cb2-9ce3-3f99ce9557d3"],
Cell[7304, 196, 1274, 35, 117, "Input",ExpressionUUID->"5f735bd6-ba1a-4987-b9f7-8ff4ac674345"],
Cell[8581, 233, 981, 27, 91, "Input",ExpressionUUID->"5928cf25-152d-4cb2-9ce3-3f99ce9557d3"],
Cell[CellGroupData[{
Cell[9587, 264, 310, 7, 30, "Input",ExpressionUUID->"33a86cd9-4a3d-4b09-91de-2cbb886a6250"],
Cell[9900, 273, 5200, 125, 248, "Output",ExpressionUUID->"d32fbdb3-4ad8-4d05-aa55-4c32ff841fbc"]
Cell[9587, 264, 310, 7, 37, "Input",ExpressionUUID->"33a86cd9-4a3d-4b09-91de-2cbb886a6250"],
Cell[9900, 273, 5200, 125, 310, "Output",ExpressionUUID->"d32fbdb3-4ad8-4d05-aa55-4c32ff841fbc"]
}, Open ]],
Cell[15115, 401, 1275, 35, 94, "Input",ExpressionUUID->"051138e6-33b2-49e1-b570-b5e33fd33d7f"],
Cell[16393, 438, 982, 27, 73, "Input",ExpressionUUID->"37bd2bc4-e119-4f55-88d4-845984e63c22"],
Cell[17378, 467, 230, 6, 30, "Input",ExpressionUUID->"c2496421-c71c-4de1-a28d-dd9067951fda"],
Cell[15115, 401, 1275, 35, 117, "Input",ExpressionUUID->"051138e6-33b2-49e1-b570-b5e33fd33d7f"],
Cell[16393, 438, 982, 27, 91, "Input",ExpressionUUID->"37bd2bc4-e119-4f55-88d4-845984e63c22"],
Cell[17378, 467, 230, 6, 37, "Input",ExpressionUUID->"c2496421-c71c-4de1-a28d-dd9067951fda"],
Cell[CellGroupData[{
Cell[17633, 477, 312, 7, 30, "Input",ExpressionUUID->"bbbc4763-dda3-4da9-8ff0-9b7dc9932b23"],
Cell[17948, 486, 4933, 120, 246, "Output",ExpressionUUID->"cad1c286-e9fa-457d-9d0f-e5060da9432b"]
Cell[17633, 477, 312, 7, 37, "Input",ExpressionUUID->"bbbc4763-dda3-4da9-8ff0-9b7dc9932b23"],
Cell[17948, 486, 4933, 120, 307, "Output",ExpressionUUID->"cad1c286-e9fa-457d-9d0f-e5060da9432b"]
}, Open ]],
Cell[22896, 609, 513, 11, 52, "Input",ExpressionUUID->"c351c0eb-ffe9-41ea-b9a4-ee9c001a879d"],
Cell[22896, 609, 513, 11, 65, "Input",ExpressionUUID->"c351c0eb-ffe9-41ea-b9a4-ee9c001a879d"],
Cell[CellGroupData[{
Cell[23434, 624, 1050, 23, 52, "Input",ExpressionUUID->"3dc691e1-f05a-4c4c-8978-c337f01f76cf"],
Cell[24487, 649, 8346, 163, 468, "Output",ExpressionUUID->"dad67ae9-473d-49b3-a4ed-6cc27aca3cc2"]
Cell[23434, 624, 1050, 23, 65, "Input",ExpressionUUID->"3dc691e1-f05a-4c4c-8978-c337f01f76cf"],
Cell[24487, 649, 8346, 163, 583, "Output",ExpressionUUID->"dad67ae9-473d-49b3-a4ed-6cc27aca3cc2"]
}, Open ]],
Cell[CellGroupData[{
Cell[32870, 817, 859, 20, 52, "Input",ExpressionUUID->"e9d7c473-f53c-4be4-9780-1cba856893ff"],
Cell[33732, 839, 6570, 149, 248, "Output",ExpressionUUID->"2a2efd1e-215b-4367-831c-d3eaaa63ec02"]
}, Open ]]
Cell[32870, 817, 859, 20, 37, "Input",ExpressionUUID->"e9d7c473-f53c-4be4-9780-1cba856893ff"],
Cell[33732, 839, 6570, 149, 308, "Output",ExpressionUUID->"2a2efd1e-215b-4367-831c-d3eaaa63ec02"]
}, Open ]],
Cell[40317, 991, 878, 28, 116, "Input",ExpressionUUID->"6feb960f-bb32-4591-80f4-4f095d8668c2"],
Cell[41198, 1021, 316, 9, 40, "Input",ExpressionUUID->"21c50754-febc-41cd-a91a-d483a7bc8140"],
Cell[41517, 1032, 1051, 32, 116, "Input",ExpressionUUID->"4dfd87b2-28e1-4b90-98bd-12ef5c33e7cd"],
Cell[42571, 1066, 1724, 56, 68, "Input",ExpressionUUID->"f6448161-1952-4500-b5f5-566946f9b807"],
Cell[44298, 1124, 1288, 43, 42, "Input",ExpressionUUID->"260633fc-4386-4e7b-a747-77a336ee6b4d"]
}
]
*)