tex
This commit is contained in:
parent
ce39d4f44f
commit
1585ea1e96
222
Manuscript/ufGW.tex
Normal file
222
Manuscript/ufGW.tex
Normal file
@ -0,0 +1,222 @@
|
||||
\documentclass[aip,jcp,reprint,noshowkeys,superscriptaddress]{revtex4-1}
|
||||
\usepackage{graphicx,dcolumn,bm,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,longtable,wrapfig,txfonts}
|
||||
\usepackage[version=4]{mhchem}
|
||||
|
||||
\usepackage[utf8]{inputenc}
|
||||
\usepackage[T1]{fontenc}
|
||||
\usepackage{txfonts}
|
||||
|
||||
\usepackage[
|
||||
colorlinks=true,
|
||||
citecolor=blue,
|
||||
breaklinks=true
|
||||
]{hyperref}
|
||||
\urlstyle{same}
|
||||
|
||||
\newcommand{\ie}{\textit{i.e.}}
|
||||
\newcommand{\eg}{\textit{e.g.}}
|
||||
\newcommand{\alert}[1]{\textcolor{red}{#1}}
|
||||
\usepackage[normalem]{ulem}
|
||||
\newcommand{\titou}[1]{\textcolor{red}{#1}}
|
||||
\newcommand{\trashPFL}[1]{\textcolor{r\ed}{\sout{#1}}}
|
||||
\newcommand{\PFL}[1]{\titou{(\underline{\bf PFL}: #1)}}
|
||||
|
||||
\newcommand{\mc}{\multicolumn}
|
||||
\newcommand{\fnm}{\footnotemark}
|
||||
\newcommand{\fnt}{\footnotetext}
|
||||
\newcommand{\tabc}[1]{\multicolumn{1}{c}{#1}}
|
||||
\newcommand{\SI}{\textcolor{blue}{supporting information}}
|
||||
\newcommand{\QP}{\textsc{quantum package}}
|
||||
\newcommand{\T}[1]{#1^{\intercal}}
|
||||
|
||||
% coordinates
|
||||
\newcommand{\br}{\boldsymbol{r}}
|
||||
\newcommand{\bx}{\boldsymbol{x}}
|
||||
\newcommand{\dbr}{d\br}
|
||||
\newcommand{\dbx}{d\bx}
|
||||
|
||||
% methods
|
||||
\newcommand{\GW}{\text{$GW$}}
|
||||
\newcommand{\evGW}{ev$GW$}
|
||||
\newcommand{\qsGW}{qs$GW$}
|
||||
\newcommand{\GOWO}{$G_0W_0$}
|
||||
\newcommand{\Hxc}{\text{Hxc}}
|
||||
\newcommand{\xc}{\text{xc}}
|
||||
\newcommand{\Ha}{\text{H}}
|
||||
\newcommand{\co}{\text{c}}
|
||||
\newcommand{\x}{\text{x}}
|
||||
\newcommand{\KS}{\text{KS}}
|
||||
\newcommand{\HF}{\text{HF}}
|
||||
\newcommand{\RPA}{\text{RPA}}
|
||||
\newcommand{\ppRPA}{\text{pp-RPA}}
|
||||
\newcommand{\BSE}{\text{BSE}}
|
||||
\newcommand{\dBSE}{\text{dBSE}}
|
||||
\newcommand{\stat}{\text{stat}}
|
||||
\newcommand{\dyn}{\text{dyn}}
|
||||
\newcommand{\TDA}{\text{TDA}}
|
||||
|
||||
%
|
||||
\newcommand{\Norb}{N}
|
||||
\newcommand{\Nocc}{O}
|
||||
\newcommand{\Nvir}{V}
|
||||
|
||||
% operators
|
||||
\newcommand{\hH}{\Hat{H}}
|
||||
\newcommand{\hS}{\Hat{S}}
|
||||
|
||||
% energies
|
||||
\newcommand{\Enuc}{E^\text{nuc}}
|
||||
\newcommand{\Ec}[1]{E_\text{c}^{#1}}
|
||||
\newcommand{\EHF}{E^\text{HF}}
|
||||
|
||||
% orbital energies
|
||||
\newcommand{\eps}[2]{\epsilon_{#1}^{#2}}
|
||||
\newcommand{\Om}[2]{\Omega_{#1}^{#2}}
|
||||
|
||||
% Matrix elements
|
||||
\newcommand{\Sig}[2]{\Sigma_{#1}^{#2}}
|
||||
\newcommand{\SigC}[1]{\Sigma^\text{c}_{#1}}
|
||||
\newcommand{\SigX}[1]{\Sigma^\text{x}_{#1}}
|
||||
\newcommand{\SigXC}[1]{\Sigma^\text{xc}_{#1}}
|
||||
\newcommand{\MO}[1]{\phi_{#1}}
|
||||
\newcommand{\SO}[1]{\psi_{#1}}
|
||||
\newcommand{\ERI}[2]{(#1|#2)}
|
||||
\newcommand{\rbra}[1]{(#1|}
|
||||
\newcommand{\rket}[1]{|#1)}
|
||||
|
||||
%% bold in Table
|
||||
\newcommand{\bb}[1]{\textbf{#1}}
|
||||
\newcommand{\rb}[1]{\textbf{\textcolor{red}{#1}}}
|
||||
\newcommand{\gb}[1]{\textbf{\textcolor{darkgreen}{#1}}}
|
||||
|
||||
% Matrices
|
||||
\newcommand{\bO}{\boldsymbol{0}}
|
||||
\newcommand{\bI}{\boldsymbol{1}}
|
||||
\newcommand{\bH}{\boldsymbol{H}}
|
||||
\newcommand{\bvc}{\boldsymbol{v}}
|
||||
\newcommand{\bSig}[1]{\boldsymbol{\Sigma}^{#1}}
|
||||
\newcommand{\be}{\boldsymbol{\epsilon}}
|
||||
\newcommand{\bOm}[1]{\boldsymbol{\Omega}^{#1}}
|
||||
\newcommand{\bA}[2]{\boldsymbol{A}_{#1}^{#2}}
|
||||
\newcommand{\bB}[2]{\boldsymbol{B}_{#1}^{#2}}
|
||||
\newcommand{\bC}[2]{\boldsymbol{C}_{#1}^{#2}}
|
||||
\newcommand{\bV}[2]{\boldsymbol{V}_{#1}^{#2}}
|
||||
\newcommand{\bX}[2]{\boldsymbol{X}_{#1}^{#2}}
|
||||
\newcommand{\bY}[2]{\boldsymbol{Y}_{#1}^{#2}}
|
||||
\newcommand{\bZ}[2]{\boldsymbol{Z}_{#1}^{#2}}
|
||||
|
||||
% orbitals, gaps, etc
|
||||
\newcommand{\IP}{I}
|
||||
\newcommand{\EA}{A}
|
||||
\newcommand{\HOMO}{\text{HOMO}}
|
||||
\newcommand{\LUMO}{\text{LUMO}}
|
||||
\newcommand{\Eg}{E_\text{g}}
|
||||
\newcommand{\EgFun}{\Eg^\text{fund}}
|
||||
\newcommand{\EgOpt}{\Eg^\text{opt}}
|
||||
\newcommand{\EB}{E_B}
|
||||
|
||||
\newcommand{\sig}{\sigma}
|
||||
\newcommand{\bsig}{{\Bar{\sigma}}}
|
||||
\newcommand{\sigp}{{\sigma'}}
|
||||
\newcommand{\bsigp}{{\Bar{\sigma}'}}
|
||||
\newcommand{\taup}{{\tau'}}
|
||||
|
||||
\newcommand{\up}{\uparrow}
|
||||
\newcommand{\dw}{\downarrow}
|
||||
\newcommand{\upup}{\uparrow\uparrow}
|
||||
\newcommand{\updw}{\uparrow\downarrow}
|
||||
\newcommand{\dwup}{\downarrow\uparrow}
|
||||
\newcommand{\dwdw}{\downarrow\downarrow}
|
||||
|
||||
% addresses
|
||||
\newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\'e de Toulouse, CNRS, UPS, France}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\title{The $GW$ conundrum}
|
||||
|
||||
\author{Pierre-Fran\c{c}ois \surname{Loos}}
|
||||
\email{loos@irsamc.ups-tlse.fr}
|
||||
\affiliation{\LCPQ}
|
||||
|
||||
\begin{abstract}
|
||||
%\bigskip
|
||||
%\begin{center}
|
||||
% \boxed{\includegraphics[width=0.5\linewidth]{TOC}}
|
||||
%\end{center}
|
||||
%\bigskip
|
||||
\end{abstract}
|
||||
|
||||
\maketitle
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\section{Downfold: The non-linear $GW$ problem}
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
Here, for the sake of simplicity, we consider a Hartree-Fock (HF) starting point.
|
||||
Within the {\GOWO} approximation, in order to obtain the quasiparticle energies and the corresponding satellites, one solve, for each spatial orbital $p$, the following (non-linear) quasiparticle equation
|
||||
\begin{equation}
|
||||
\label{eq:qp_eq}
|
||||
\omega = \eps{p}{\HF} + \SigC{p}(\omega)
|
||||
\end{equation}
|
||||
where $\eps{p}{\HF}$ is the $p$th HF orbital energy and the correlation part of the {\GOWO} self-energy reads
|
||||
\begin{equation}
|
||||
\SigC{p}(\omega)
|
||||
= \sum_{im} \frac{\ERI{pi}{m}^2}{\omega - \eps{i}{\HF} + \Om{m}{\RPA} - i \eta}
|
||||
+ \sum_{am} \frac{\ERI{pa}{m}^2}{\omega - \eps{a}{\HF} - \Om{m}{\RPA} + i \eta}
|
||||
\end{equation}
|
||||
Within the Tamm-Dancoff approximation, the screened two-electron integrals are given by
|
||||
\begin{equation}
|
||||
\ERI{pq}{m} = \sum_{ia} \ERI{pq}{ia} X_{ia,m}^\RPA
|
||||
\end{equation}
|
||||
where $\Om{m}{\RPA}$ and $\bX{m}{\RPA}$ are respectively the $m$th eigenvalue and eigenvector of the RPA problem in the Tamm-Dancoff approximation, \ie,
|
||||
\begin{equation}
|
||||
\bA{}{\RPA} \cdot \bX{m}{\RPA} = \Om{m}{\RPA} \bX{m}{\RPA}
|
||||
\end{equation}
|
||||
with
|
||||
\begin{equation}
|
||||
A_{ia,jb}^{\RPA} = (\eps{a}{\HF} - \eps{i}{\HF}) \delta_{ij} \delta_{ab} + \ERI{ia}{bj}
|
||||
\end{equation}
|
||||
As a non-linear equation, Eq.~\eqref{eq:qp_eq} has many solutions $\eps{p,\ell}{\GW}$ and their corresponding weight is given by the value of the so-called renormalization factor
|
||||
\begin{equation}
|
||||
0 \le Z_{p,\ell} = \qty[ 1 - \eval{\pdv{\SigC{p}(\omega)}{\omega}}_{\omega = \eps{p,\ell}{\GW}} ]^{-1} \le 1
|
||||
\end{equation}
|
||||
In a well-behaved case, one of the solution (the so-called quasiparticle) $\eps{p}{\GW} \equiv \eps{p,\ell=0}{\GW}$ has a large weight $Z_{\ell} \equiv Z_{p,\ell=0}$
|
||||
Note that we have the following important conservation rules
|
||||
\begin{align}
|
||||
\sum_{\ell} Z_{p,\ell} & = 1
|
||||
&
|
||||
\sum_{\ell} Z_{p,\ell} \eps{p,\ell}{\GW} & = \eps{p}{\HF}
|
||||
\end{align}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\section{Upfolding: the linear $GW$ problem}
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
The non-linear quasiparticle equation \eqref{eq:qp_ep} can be transformed into a larger linear problem via an upfolding process:
|
||||
\begin{equation}
|
||||
C^\text{1h1p}_{iajb,kcld} = \qty[ \qty( \eps{b}{\GW} + \eps{a}{\HF} - \eps{i}{\GW} - \eps{j}{\HF} ) \delta_{jl} \delta_{ac} + 2 \ERI{ja}{cl} ] \delta_{ik} \delta_{bd}
|
||||
\end{equation}
|
||||
\begin{align}
|
||||
V^\text{2h1p}_{p,kld} & = \ERI{pk}{ld}
|
||||
&
|
||||
V^\text{2h1p}_{p,cld} & = \ERI{pc}{ld}
|
||||
\end{align}
|
||||
|
||||
\begin{equation}
|
||||
\bH =
|
||||
\begin{pmatrix}
|
||||
\Tilde{\bA{}{}} & \bV{}{(1)} & \bV{}{(2)}
|
||||
\\
|
||||
\T{(\bV{}{(1)})} & \bC{}{} & \bO
|
||||
\\
|
||||
\T{(\bV{}{(2)})} & \bO & \bC{}{}
|
||||
\end{pmatrix}
|
||||
\end{equation}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\acknowledgements{
|
||||
This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No.~863481).}
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
|
||||
\end{document}
|
Loading…
Reference in New Issue
Block a user