505 lines
25 KiB
TeX
505 lines
25 KiB
TeX
|
||
\documentclass[aip,jcp,reprint,noshowkeys]{revtex4-1}
|
||
|
||
%\documentclass[aip,jcp,noshowkeys]{revtex4-1}
|
||
\usepackage{graphicx,dcolumn,bm,xcolor,microtype,multirow,amsmath,amssymb,amsfonts,physics,mhchem,xspace}
|
||
|
||
\usepackage{mathpazo,libertine}
|
||
\usepackage[normalem]{ulem}
|
||
\newcommand{\alert}[1]{\textcolor{red}{#1}}
|
||
\definecolor{darkgreen}{RGB}{0, 180, 0}
|
||
\newcommand{\beurk}[1]{\textcolor{darkgreen}{#1}}
|
||
\newcommand{\trash}[1]{\textcolor{red}{\sout{#1}}}
|
||
\usepackage{xspace}
|
||
|
||
\usepackage{hyperref}
|
||
\hypersetup{
|
||
colorlinks=true,
|
||
linkcolor=blue,
|
||
filecolor=blue,
|
||
urlcolor=blue,
|
||
citecolor=blue
|
||
}
|
||
\newcommand{\cdash}{\multicolumn{1}{c}{---}}
|
||
\newcommand{\mc}{\multicolumn}
|
||
\newcommand{\fnm}{\footnotemark}
|
||
\newcommand{\fnt}{\footnotetext}
|
||
\newcommand{\tabc}[1]{\multicolumn{1}{c}{#1}}
|
||
\newcommand{\mr}{\multirow}
|
||
\newcommand{\SI}{\textcolor{blue}{supporting information}}
|
||
|
||
% second quantized operators
|
||
\newcommand{\psix}[1]{\hat{\Psi}\left({\bf X}_{#1}\right)}
|
||
\newcommand{\psixc}[1]{\hat{\Psi}^{\dagger}\left({\bf X}_{#1}\right)}
|
||
\newcommand{\ai}[1]{\hat{a}_{#1}}
|
||
\newcommand{\aic}[1]{\hat{a}^{\dagger}_{#1}}
|
||
\newcommand{\vijkl}[0]{V_{ij}^{kl}}
|
||
\newcommand{\phix}[2]{\phi_{#1}(\bfr{#2})}
|
||
\newcommand{\phixprim}[2]{\phi_{#1}(\bfr{#2}')}
|
||
|
||
\newcommand{\CBS}{\text{CBS}}
|
||
|
||
|
||
%operators
|
||
\newcommand{\elemm}[3]{{\ensuremath{\bra{#1}{#2}\ket{#3}}\xspace}}
|
||
\newcommand{\ovrlp}[2]{{\ensuremath{\langle #1|#2\rangle}\xspace}}
|
||
|
||
%\newcommand{\ket}[1]{{\ensuremath{|#1\rangle}\xspace}}
|
||
%\newcommand{\bra}[1]{{\ensuremath{\langle #1|}\xspace}}
|
||
|
||
%
|
||
|
||
|
||
% energies
|
||
\newcommand{\Ec}{E_\text{c}}
|
||
\newcommand{\EPT}{E_\text{PT2}}
|
||
\newcommand{\EsCI}{E_\text{sCI}}
|
||
\newcommand{\EDMC}{E_\text{DMC}}
|
||
\newcommand{\EexFCI}{E_\text{exFCI}}
|
||
\newcommand{\EexFCIbasis}{E_\text{exFCI}^{\Bas}}
|
||
\newcommand{\EexFCIinfty}{E_\text{exFCI}^{\infty}}
|
||
\newcommand{\EexDMC}{E_\text{exDMC}}
|
||
\newcommand{\Ead}{\Delta E_\text{ad}}
|
||
\newcommand{\efci}[0]{E_{\text{FCI}}^{\Bas}}
|
||
\newcommand{\emodel}[0]{E_{\model}^{\Bas}}
|
||
\newcommand{\emodelcomplete}[0]{E_{\model}^{\infty}}
|
||
\newcommand{\efcicomplete}[0]{E_{\text{FCI}}^{\infty}}
|
||
\newcommand{\ecccomplete}[0]{E_{\text{CCSD(T)}}^{\infty}}
|
||
\newcommand{\ecc}[0]{E_{\text{CCSD(T)}}^{\Bas}}
|
||
\newcommand{\efuncbasisFCI}[0]{\bar{E}^\Bas[\denFCI]}
|
||
\newcommand{\efuncbasisfci}[0]{\bar{E}^\Bas[\denfci]}
|
||
\newcommand{\efuncbasis}[0]{\bar{E}^\Bas[\den]}
|
||
\newcommand{\efuncden}[1]{\bar{E}^\Bas[#1]}
|
||
\newcommand{\efuncdenpbe}[1]{\bar{E}_{\text{}}^\Bas[#1]}
|
||
\newcommand{\efuncdenpbeAB}[1]{\bar{E}_{\text{A}+\text{B}}^\Bas[#1]}
|
||
\newcommand{\ecompmodel}[0]{\bar{E}^\Bas[\denmodel]}
|
||
\newcommand{\ecmubis}[0]{\bar{E}_{\text{c,md}}^{\text{sr}}[\denr;\,\mu]}
|
||
\newcommand{\ecmubisldapbe}[0]{\bar{E}_{\text{c,md}\,\text{PBE}}^{\text{sr}}[\denr;\,\mu]}
|
||
\newcommand{\ecmuapprox}[0]{\bar{E}_{\text{c,md-}\mathcal{X}}^{\text{sr}}[\den;\,\mu]}
|
||
\newcommand{\ecmuapproxmur}[0]{\bar{E}_{\text{c,md-}\mathcal{X}}^{\text{sr}}[\den;\,\mur]}
|
||
\newcommand{\ecmuapproxmurfci}[0]{\bar{E}_{\text{c,md-}\mathcal{X}}^{\text{sr}}[\denfci;\,\mur]}
|
||
\newcommand{\ecmuapproxmurmodel}[0]{\bar{E}_{\text{c,md-}\mathcal{X}}^{\text{sr}}[\denmodel;\,\mur]}
|
||
\newcommand{\ecompmodellda}[0]{\bar{E}_{\text{LDA}}^{\Bas,\wf{}{\Bas}}[\denmodel]}
|
||
\newcommand{\ecompmodelldaval}[0]{\bar{E}_{\text{LDA, val}}^{\Bas,\wf{}{\Bas}}[\den]}
|
||
\newcommand{\ecompmodelpbe}[0]{\bar{E}_{\text{PBE}}^{\Bas,\wf{}{\Bas}}[\den]}
|
||
\newcommand{\ecompmodelpbeval}[0]{\bar{E}_{\text{PBE, val}}^{\Bas,\wf{}{\Bas}}[\den]}
|
||
\newcommand{\emulda}[0]{\bar{\varepsilon}^{\text{sr},\text{unif}}_{\text{c,md}}\left(\denr;\mu({\bf r};\wf{}{\Bas})\right)}
|
||
\newcommand{\emuldamodel}[0]{\bar{\varepsilon}^{\text{sr},\text{unif}}_{\text{c,md}}\left(\denmodelr;\mu({\bf r};\wf{}{\Bas})\right)}
|
||
\newcommand{\emuldaval}[0]{\bar{\varepsilon}^{\text{sr},\text{unif}}_{\text{c,md}}\left(\denval ({\bf r});\murval;\wf{}{\Bas})\right)}
|
||
\newcommand{\ecmd}[0]{\bar{\varepsilon}_{\text{c,md}}^{\text{sr},\text{PBE}}}
|
||
\newcommand{\psibasis}[0]{\Psi^{\basis}}
|
||
\newcommand{\BasFC}{\mathcal{A}}
|
||
|
||
%pbeuegxiHF
|
||
\newcommand{\pbeuegxihf}{\text{PBE-UEG-}\zeta\text{-HF}^\Bas}
|
||
\newcommand{\argpbeuegxihf}[0]{\den,\zeta,s,n_{2}^{\text{UEG}},\mu_{\text{HF}}^{\basis}}
|
||
\newcommand{\argrpbeuegxihf}[0]{\den(\br{}),\zeta(\br{}),s(\br{}),n_{2}^{\text{UEG}}(\br{}),\mu_{\text{HF}}^{\basis}(\br{})}
|
||
%pbeuegxiCAS
|
||
\newcommand{\pbeuegxi}{\text{PBE-UEG-}\zeta\text{-CAS}^\Bas}
|
||
\newcommand{\argpbeuegxicas}[0]{\den,\zeta,s,n_{2}^{\text{UEG}},\mu_{\text{CAS}}^{\basis}}
|
||
\newcommand{\argrpbeuegxicas}[0]{\den(\br{}),\zeta(\br{}),s(\br{}),n_{2}^{\text{UEG}}(\br{}),\mu_{\text{CAS}}^{\basis}(\br{})}
|
||
%pbeuegXiCAS
|
||
\newcommand{\pbeuegXi}{\text{PBE-UEG-}\tilde{\zeta}}
|
||
\newcommand{\argpbeuegXi}[0]{\den,\tilde{\zeta},s,n_{2}^{\text{UEG}},\mu_{\text{CAS}}^{\basis}}
|
||
\newcommand{\argrpbeuegXi}[0]{\den(\br{}),\tilde{\zeta}(\br{}),s(\br{}),n_{2}^{\text{UEG}}(\br{}),\mu_{\text{CAS}}^{\basis}(\br{})}
|
||
%pbeontxiCAS
|
||
\newcommand{\pbeontxi}{\text{PBE-ot-}\zeta}
|
||
\newcommand{\argpbeontxi}[0]{\den,\zeta,s,\ntwoextrapcas,\mu_{\text{CAS}}^{\basis}}
|
||
\newcommand{\argrpbeontxi}[0]{\den(\br{}),\zeta(\br{}),s(\br{}),\ntwoextrapcas(\br{}),\mu_{\text{CAS}}^{\basis}(\br{})}
|
||
%pbeontXiCAS
|
||
\newcommand{\pbeontXi}{\text{PBE-ot-}\tilde{\zeta}}
|
||
\newcommand{\argpbeontXi}[0]{\den,\tilde{\zeta},s,\ntwoextrapcas,\mu_{\text{CAS}}^{\basis}}
|
||
\newcommand{\argrpbeontXi}[0]{\den(\br{}),\tilde{\zeta}(\br{}),s(\br{}),\ntwoextrapcas(\br{}),\mu_{\text{CAS}}^{\basis}(\br{})}
|
||
%pbeont0xiCAS
|
||
\newcommand{\pbeontns}{\text{PBE-ot-}0\zeta}
|
||
\newcommand{\argpbeontns}[0]{\den,0,s,\ntwoextrapcas,\mu_{\text{CAS}}^{\basis}}
|
||
\newcommand{\argrpbeontns}[0]{\den(\br{}),0,s(\br{}),\ntwoextrapcas(\br{}),\mu_{\text{CAS}}^{\basis}(\br{})}
|
||
|
||
%%%%%% arguments
|
||
|
||
\newcommand{\argepbe}[0]{\den,\zeta,s}
|
||
\newcommand{\argebasis}[0]{\den,\zeta,\ntwo,\mu}
|
||
\newcommand{\argecmd}[0]{\den,\zeta,s,\ntwo,\mu}
|
||
\newcommand{\argepbeueg}[0]{\den,\zeta,s,\ntwo^{\text{UEG}},\mu_{\Psi^{\basis}}}
|
||
\newcommand{\argepbeontxicas}[0]{\den,\zeta,s,\ntwoextrapcas,\mu_{\text{CAS}}^{\basis}}
|
||
\newcommand{\argepbeuegXihf}[0]{\den,\tilde{\zeta},s,\ntwo^{\text{UEG}},\mu_{\Psi^{\basis}}}
|
||
\newcommand{\argrebasis}[0]{\denr,\zeta(\br{}),s(\br{}),\ntwo(\br{}),\mu(\br{})}
|
||
\newcommand{\argrebasisab}[0]{\denr,\zeta(\br{}),s,\ntwo(\br{}),\mu_{\Psi^{\basis}}(\br{})}
|
||
|
||
|
||
% numbers
|
||
\newcommand{\rnum}[0]{{\rm I\!R}}
|
||
\newcommand{\bfr}[1]{{\bf r}_{#1}}
|
||
\newcommand{\dr}[1]{\text{d}\bfr{#1}}
|
||
\newcommand{\rr}[2]{\bfr{#1}, \bfr{#2}}
|
||
\newcommand{\rrrr}[4]{\bfr{#1}, \bfr{#2},\bfr{#3},\bfr{#4} }
|
||
|
||
|
||
|
||
% effective interaction
|
||
\newcommand{\twodm}[4]{\elemm{\Psi}{\psixc{#4}\psixc{#3} \psix{#2}\psix{#1}}{\Psi}}
|
||
\newcommand{\murpsibas}[0]{\mu_{\wf{}{\Bas}}({\bf r})}
|
||
\newcommand{\murpsi}[0]{\mu({\bf r};\wf{}{A+B})}
|
||
\newcommand{\murpsia}[0]{\mu({\bf r};\wf{}{A})}
|
||
\newcommand{\murpsib}[0]{\mu({\bf r};\wf{}{B})}
|
||
\newcommand{\ntwo}[0]{n_{2}}
|
||
\newcommand{\ntwohf}[0]{n^{(2),\text{HF}}}
|
||
\newcommand{\ntwophi}[0]{n^{(2)}_{\phi}}
|
||
\newcommand{\ntwoextrap}[0]{\mathring{n}^{(2)}_{\psibasis}}
|
||
\newcommand{\ntwoextrapcas}[0]{\mathring{n}^{(2)\,\basis}_{\text{CAS}}}
|
||
\newcommand{\mur}[0]{\mu({\bf r})}
|
||
\newcommand{\murr}[1]{\mu({\bf r}_{#1})}
|
||
\newcommand{\murval}[0]{\mu_{\text{val}}({\bf r})}
|
||
\newcommand{\murpsival}[0]{\mu_{\text{val}}({\bf r};\wf{}{\Bas})}
|
||
\newcommand{\murrval}[1]{\mu_{\text{val}}({\bf r}_{#1})}
|
||
\newcommand{\weeopmu}[0]{\hat{W}_{\text{ee}}^{\text{lr},\mu}}
|
||
|
||
|
||
\newcommand{\wbasis}[0]{W_{\wf{}{\Bas}}(\bfr{1},\bfr{2})}
|
||
\newcommand{\wbasiscoal}[0]{W_{\wf{}{\Bas}}(\bfr{},\bfr{})}
|
||
\newcommand{\wbasisval}[0]{W_{\wf{}{\Bas}}^{\text{val}}(\bfr{1},\bfr{2})}
|
||
\newcommand{\fbasis}[0]{f_{\wf{}{\Bas}}(\bfr{1},\bfr{2})}
|
||
\newcommand{\fbasisval}[0]{f_{\wf{}{\Bas}}^{\text{val}}(\bfr{1},\bfr{2})}
|
||
\newcommand{\ontop}[2]{ n^{(2)}_{#1}({\bf #2}_1)}
|
||
\newcommand{\twodmrpsi}[0]{ n^{2,\wf{}{\Bas}}(\rrrr{1}{2}{2}{1})}
|
||
\newcommand{\twodmrdiagpsi}[0]{ n_{2,{\wf{}{\Bas}}}(\rr{1}{2})}
|
||
\newcommand{\twodmrdiagpsitot}[0]{ n_{2,\wf{}{A+B}}(\rr{1}{2})}
|
||
\newcommand{\twodmrdiagpsiaa}[0]{ n_{2,\wf{}{AA}}(\rr{1}{2})}
|
||
\newcommand{\twodmrdiagpsiaad}[0]{ n_{2,\wf{}{AA}}(\rr{}{})}
|
||
\newcommand{\twodmrdiagpsibb}[0]{ n_{2,\wf{}{BB}}(\rr{1}{2})}
|
||
\newcommand{\twodmrdiagpsibbd}[0]{ n_{2,\wf{}{BB}}(\rr{}{})}
|
||
\newcommand{\twodmrdiagpsiab}[0]{ n_{2\wf{}{AB}}(\rr{1}{2})}
|
||
\newcommand{\twodmrdiagpsival}[0]{ n_{2\wf{}{\Bas},\,\text{val}}(\rr{1}{2})}
|
||
\newcommand{\gammamnpq}[1]{\Gamma_{mn}^{pq}[#1]}
|
||
\newcommand{\gammamnkl}[0]{\Gamma_{mn}^{kl}}
|
||
\newcommand{\gammaklmn}[1]{\Gamma_{kl}^{mn}[#1]}
|
||
%\newcommand{\wbasiscoal}[1]{W_{\wf{}{\Bas}}({\bf r}_{#1})}
|
||
\newcommand{\ontoppsi}[1]{ n_{2,\wf{}{\Bas}}(\bfr{#1},\barr{#1},\barr{#1},\bfr{#1})}
|
||
\newcommand{\wbasiscoalval}[1]{W_{\wf{}{\Bas}}^{\text{val}}({\bf r}_{#1})}
|
||
\newcommand{\ontoppsival}[1]{ n^{(2)}_{\wf{}{\Bas}}^{\text{val}}(\bfr{#1},\barr{#1},\barr{#1},\bfr{#1})}
|
||
|
||
|
||
|
||
\newcommand{\ex}[4]{$^{#1}#2_{#3}^{#4}$}
|
||
\newcommand{\ra}{\rightarrow}
|
||
\newcommand{\De}{D_\text{e}}
|
||
|
||
% MODEL
|
||
\newcommand{\model}[0]{\mathcal{Y}}
|
||
|
||
% densities
|
||
\newcommand{\denmodel}[0]{\den_{\model}^\Bas}
|
||
\newcommand{\denmodelr}[0]{\den_{\model}^\Bas ({\bf r})}
|
||
\newcommand{\denfci}[0]{\den_{\psifci}}
|
||
\newcommand{\denFCI}[0]{\den^{\Bas}_{\text{FCI}}}
|
||
\newcommand{\denhf}[0]{\den_{\text{HF}}^\Bas}
|
||
\newcommand{\denrfci}[0]{\denr_{\psifci}}
|
||
\newcommand{\dencipsir}[0]{{n}_{\text{CIPSI}}^\Bas({\bf r})}
|
||
\newcommand{\dencipsi}[0]{{n}_{\text{CIPSI}}^\Bas}
|
||
\newcommand{\den}[0]{{n}}
|
||
\newcommand{\denval}[0]{{n}^{\text{val}}}
|
||
\newcommand{\denr}[0]{{n}({\bf r})}
|
||
\newcommand{\onedmval}[0]{\rho_{ij,\sigma}^{\text{val}}}
|
||
|
||
% wave functions
|
||
\newcommand{\psifci}[0]{\Psi^{\Bas}_{\text{FCI}}}
|
||
\newcommand{\psimu}[0]{\Psi^{\mu}}
|
||
% operators
|
||
\newcommand{\weeopbasis}[0]{\hat{W}_{\text{ee}}^\Bas}
|
||
\newcommand{\kinop}[0]{\hat{T}}
|
||
|
||
\newcommand{\weeopbasisval}[0]{\hat{W}_{\text{ee}}^{\Basval}}
|
||
\newcommand{\weeop}[0]{\hat{W}_{\text{ee}}}
|
||
|
||
|
||
% units
|
||
\newcommand{\IneV}[1]{#1 eV}
|
||
\newcommand{\InAU}[1]{#1 a.u.}
|
||
\newcommand{\InAA}[1]{#1 \AA}
|
||
|
||
|
||
% methods
|
||
\newcommand{\UEG}{\text{UEG}}
|
||
\newcommand{\LDA}{\text{LDA}}
|
||
\newcommand{\PBE}{\text{PBE}}
|
||
\newcommand{\FCI}{\text{FCI}}
|
||
\newcommand{\CCSDT}{\text{CCSD(T)}}
|
||
\newcommand{\lr}{\text{lr}}
|
||
\newcommand{\sr}{\text{sr}}
|
||
|
||
\newcommand{\Nel}{N}
|
||
\newcommand{\V}[2]{V_{#1}^{#2}}
|
||
|
||
|
||
\newcommand{\n}[2]{n_{#1}^{#2}}
|
||
\newcommand{\E}[2]{E_{#1}^{#2}}
|
||
\newcommand{\bE}[2]{\Bar{E}_{#1}^{#2}}
|
||
\newcommand{\bEc}[1]{\Bar{E}_\text{c}^{#1}}
|
||
\newcommand{\e}[2]{\varepsilon_{#1}^{#2}}
|
||
\newcommand{\be}[2]{\Bar{\varepsilon}_{#1}^{#2}}
|
||
\newcommand{\bec}[1]{\Bar{e}^{#1}}
|
||
\newcommand{\wf}[2]{\Psi_{#1}^{#2}}
|
||
\newcommand{\W}[2]{W_{#1}^{#2}}
|
||
\newcommand{\w}[2]{w_{#1}^{#2}}
|
||
\newcommand{\hn}[2]{\Hat{n}_{#1}^{#2}}
|
||
\newcommand{\rsmu}[2]{\mu_{#1}^{#2}}
|
||
\newcommand{\SO}[2]{\phi_{#1}(\br{#2})}
|
||
|
||
\newcommand{\modX}{\text{X}}
|
||
\newcommand{\modY}{\text{Y}}
|
||
|
||
% basis sets
|
||
\newcommand{\setdenbasis}{\mathcal{N}_{\Bas}}
|
||
\newcommand{\Bas}{\mathcal{B}}
|
||
\newcommand{\basis}{\mathcal{B}}
|
||
\newcommand{\Basval}{\mathcal{B}_\text{val}}
|
||
\newcommand{\Val}{\mathcal{V}}
|
||
\newcommand{\Cor}{\mathcal{C}}
|
||
|
||
% operators
|
||
\newcommand{\hT}{\Hat{T}}
|
||
\newcommand{\hWee}[1]{\Hat{W}_\text{ee}^{#1}}
|
||
\newcommand{\f}[2]{f_{#1}^{#2}}
|
||
\newcommand{\Gam}[2]{\Gamma_{#1}^{#2}}
|
||
|
||
% coordinates
|
||
\newcommand{\br}[1]{{\mathbf{r}_{#1}}}
|
||
\newcommand{\bx}[1]{\mathbf{x}_{#1}}
|
||
\newcommand{\dbr}[1]{d\br{#1}}
|
||
\newcommand{\PBEspin}{PBEspin}
|
||
\newcommand{\PBEueg}{PBE-UEG-{$\tilde{\zeta}$}}
|
||
|
||
\newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\'e de Toulouse, CNRS, UPS, France}
|
||
\newcommand{\LCT}{Laboratoire de Chimie Th\'eorique, Universit\'e Pierre et Marie Curie, Sorbonne Universit\'e, CNRS, Paris, France}
|
||
|
||
\begin{document}
|
||
|
||
\title{A density-based basis-set correction for weak and strong correlation}
|
||
|
||
|
||
\begin{abstract}
|
||
|
||
\end{abstract}
|
||
|
||
\maketitle
|
||
|
||
|
||
\section{Size consistency of the basis-set correction}
|
||
|
||
\subsection{General considerations}
|
||
|
||
The following paragraph gives a proof of the size consistency of the basis-set correction. The basis-set correction is expressed as an integral in real space
|
||
\begin{equation}
|
||
\label{eq:def_ecmdpbebasis}
|
||
\begin{aligned}
|
||
& \efuncdenpbe{\argebasis} = \\ & \int \text{d}\br{} \,\denr \ecmd(\argrebasis),
|
||
\end{aligned}
|
||
\end{equation}
|
||
where all the local quantities $\argrebasis$ are obtained from the same wave function $\Psi$. In the limit of two dissociated fragments $\text{A}+\text{B}$, this integral can be rewritten as the sum of the integral over the region $\Omega_\text{A}$ and the integral over the region $\Omega_\text{B}$
|
||
\begin{equation}
|
||
\label{eq:def_ecmdpbebasis}
|
||
\begin{aligned}
|
||
& \efuncdenpbeAB{\argebasis} = \\ & \int_{\Omega_\text{A}} \text{d}\br{} \,\denr \ecmd(\argrebasis) \\ & + \int_{\Omega_\text{B}} \text{d}\br{} \,\denr \ecmd(\argrebasis).
|
||
\end{aligned}
|
||
\end{equation}
|
||
Therefore, a sufficient condition to obtain size consistency is that all the local quantities $\argrebasis$ are \textit{intensive}, i.e. that they \textit{locally} coincide in the supersystem $\text{A}+\text{B}$ and in each isolated fragment $\text{X}=\text{A}$ or $\text{B}$. Hence, for $\br{} \in \Omega_\text{X}$, we should have
|
||
\begin{subequations}
|
||
\begin{equation}
|
||
n_\text{A+B}(\br{}) = n_\text{X}(\br{}),
|
||
\label{nAB}
|
||
\end{equation}
|
||
\begin{equation}
|
||
\zeta_\text{A+B}(\br{}) = \zeta_\text{X}(\br{}),
|
||
\label{zAB}
|
||
\end{equation}
|
||
\begin{equation}
|
||
s_\text{A+B}(\br{}) = s_\text{X}(\br{}),
|
||
\label{sAB}
|
||
\end{equation}
|
||
\begin{equation}
|
||
n_{2,\text{A+B}}(\br{}) = n_{2,\text{X}}(\br{}),
|
||
\label{n2AB}
|
||
\end{equation}
|
||
\begin{equation}
|
||
\mu_{\text{A+B}}(\br{}) = \mu_{\text{X}}(\br{}),
|
||
\label{muAB}
|
||
\end{equation}
|
||
\end{subequations}
|
||
where the left-hand-side quantities are for the supersystem and the right-hand-side quantities for an isolated fragment. Such conditions can be difficult to fulfil in the presence of degeneracies since the system X can be in a different mixed state (i.e. ensemble) in the supersystem $\text{A}+\text{B}$ and in the isolated fragment~\cite{Sav-CP-09}. Here, we will consider the simple case where the wave function of the supersystem is multiplicatively separable, i.e.
|
||
\begin{equation}
|
||
\ket{\wf{\text{A}+\text{B}}{}} = \ket{\wf{\text{A}}{}} \otimes \ket{\wf{\text{B}}{}},
|
||
\end{equation}
|
||
where $\otimes$ is the antisymmetric tensor product. In this case, it is well known that Eqs.~(\ref{nAB})-(\ref{sAB}) are valid and it remains to show that Eqs.~(\ref{n2AB}) and~(\ref{muAB}) are also valid.
|
||
|
||
For spatial degeneracies such as different p states, by selected the same member of the ensemble in the supersystem and the isolated fragements.
|
||
|
||
applies to the systems treated in this work.
|
||
|
||
Even though this does deal with the case of degeneracies,
|
||
|
||
To avoid difficulties arising from spin-multiplet degeneracy, we can use the effective spin polarization $\tilde{\zeta}(n(\br{}),n_{2}(\br{}))$ depending only on $n(\br{})$ and $n_{2}(\br{})$ or a zero spin polarization $\zeta(\br{}) = 0$.
|
||
|
||
|
||
Regarding the density and its gradients, these are necessary intensive quantities. The remaining questions are therefore the local range-separation parameter $\murpsi$ and the on-top pair density.
|
||
|
||
|
||
\subsection{Property of the on-top pair density}
|
||
A crucial ingredient in the type of functionals used in the present paper together with the definition of the local-range separation parameter is the on-top pair density defined as
|
||
\begin{equation}
|
||
\label{eq:def_n2}
|
||
n_{2,\wf{}{}}(\br{}) = \sum_{pqrs} \SO{p}{} \SO{q}{} \Gam{pq}{rs} \SO{r}{} \SO{s}{},
|
||
\end{equation}
|
||
with $\Gam{pq}{rs} = 2 \mel*{\wf{}{}}{ \aic{r_\downarrow}\aic{s_\uparrow}\ai{q_\uparrow}\ai{p_\downarrow}}{\wf{}{}}$.
|
||
Assume now that the wave function $\wf{A+B}{}$ of the super system $A+B$ can be written as a product of two wave functions defined on two non-overlapping and non-interacting fragments $A$ and $B$
|
||
\begin{equation}
|
||
\ket{\wf{A+B}{}} = \ket{\wf{A}{}} \times \ket{\wf{B}{}}.
|
||
\end{equation}
|
||
Labelling the orbitals of fragment $A$ as $p_A,q_A,r_A,s_A$ and of fragment $B$ as $p_B,q_B,r_B,s_B$ and assuming that they don't overlap, one can split the two-body density operator as
|
||
\begin{equation}
|
||
\begin{aligned}
|
||
\hat{\Gamma}(\br{1},\br{2}) = \hat{\Gamma}_{AA}{}(\br{1},\br{2}) + \hat{\Gamma}_{BB}{}(\br{1},\br{2}) + \hat{\Gamma}_{AB}{}(\br{1},\br{2})
|
||
\end{aligned}
|
||
\end{equation}
|
||
with
|
||
\begin{equation}
|
||
\begin{aligned}
|
||
\hat{\Gamma}_{AA}(\br{1},\br{2}) = \sum_{p_A,q_A,r_A,s_A}& \SO{r_A}{1} \SO{s_A}{2} \SO{p_A}{1} \SO{q_A}{2} \\ & \aic{r_{A,\downarrow}}\aic{s_{A,\uparrow}}\ai{q_{A,\uparrow}}\ai{p_{A,\downarrow}} ,
|
||
\end{aligned}
|
||
\end{equation}
|
||
(and equivalently for $B$),
|
||
%\begin{equation}
|
||
% \begin{aligned}
|
||
% \hat{\Gamma}_{BB} = \sum_{p_B,q_B,r_B,s_B} \aic{r_{B,\downarrow}}\aic{s_{B,\uparrow}}\ai{q_{B,\uparrow}}\ai{p_{B,\downarrow}},
|
||
% \end{aligned}
|
||
%\end{equation}
|
||
and
|
||
\begin{equation}
|
||
\begin{aligned}
|
||
\hat{\Gamma}_{AB} = \sum_{p_A,q_B,r_A,s_B} & \SO{r_A}{1} \SO{s_B}{2} \SO{p_A}{1} \SO{q_B}{2} \\ & \left( \aic{r_{A,\downarrow}}\ai{p_{A,\downarrow}} \aic{s_{B,\uparrow}}\ai{q_{B,\uparrow}} + \aic{s_{B,\uparrow}}\ai{q_{B,\uparrow}} \aic{r_{A,\downarrow}}\ai{p_{A,\downarrow}} \right) .
|
||
\end{aligned}
|
||
\end{equation}
|
||
Therefore, one can express the two-body density as
|
||
\begin{equation}
|
||
\twodmrdiagpsitot = \twodmrdiagpsiaa + \twodmrdiagpsibb + \twodmrdiagpsiab
|
||
\end{equation}
|
||
where $\twodmrdiagpsiaa$ and $\twodmrdiagpsibb$ are the two-body densities of the isolated fragments
|
||
\begin{equation}
|
||
\begin{aligned}
|
||
& \twodmrdiagpsiaa = \bra{\wf{A}{}} \hat{\Gamma}_{AA}(\br{1},\br{2}) \ket{\wf{A}{}}
|
||
\end{aligned}
|
||
\end{equation}
|
||
(and equivalently for $B$),
|
||
and $\twodmrdiagpsiab$ is simply the product of the one body densities of the sub systems
|
||
\begin{equation}
|
||
\begin{aligned}
|
||
& \twodmrdiagpsiab = n_{A}(\br{1}) n_B(\br{2}) + n_{B}(\br{1}) n_A(\br{2}),
|
||
\end{aligned}
|
||
\end{equation}
|
||
\begin{equation}
|
||
\begin{aligned}
|
||
& n_{A}(\br{}) = \sum_{p_A r_A} \SO{p_A}{} \bra{\wf{A}{}}\aic{s_{A,\uparrow}}\ai{q_{A,\uparrow}}\ket{\wf{A}{}} \SO{r_A}{} ,
|
||
\end{aligned}
|
||
\end{equation}
|
||
(and equivalently for $B$).
|
||
As the densities of $A$ and $B$ are by definition non overlapping, one can express the on-top pair density as the sum of the on-top pair densities of the isolated systems
|
||
\begin{equation}
|
||
\begin{aligned}
|
||
n_{2,\wf{A+B}{}}(\br{}) = \twodmrdiagpsiaad + \twodmrdiagpsibbd
|
||
\end{aligned}
|
||
\end{equation}
|
||
As $n_{2,\wf{}{A/A}}(\br{}) = 0 \text{ if }\br{} \in B$ (and equivalently for $n_{2,\wf{}{B/B}}(\br{}) $ on $A$), one can conclude that provided that the wave function is multiplicative, the on-top pair density is a local intensive quantity.
|
||
\subsection{Property of the local-range separation parameter}
|
||
The local range separation parameter depends on the on-top pair density at a given point $\br{}$ and on the numerator
|
||
\begin{equation}
|
||
\label{eq:def_f}
|
||
f_{\wf{}{}}(\bfr{},\bfr{}) = \sum_{pqrstu\in \Bas} \SO{p}{ } \SO{q}{ } \V{pq}{rs} \Gam{rs}{tu} \SO{t}{ } \SO{u}{ }.
|
||
\end{equation}
|
||
As the summations run over all orbitals in the basis set $\Bas$, the quantity $f_{\wf{}{\Bas}}(\bfr{},\bfr{})$ is orbital invariant and therefore can be expressed in terms of localized orbitals.
|
||
In the limit of dissociated fragments, the coulomb interaction is vanishing between $A$ and $B$ and therefore any two-electron integral involving orbitals on both the system $A$ and $B$ vanishes.
|
||
Therefore, one can rewrite eq. \eqref{eq:def_f} as
|
||
\begin{equation}
|
||
\label{eq:def_fa+b}
|
||
f_{\wf{A+B}{}}(\bfr{},\bfr{}) = f_{\wf{AA}{}}(\bfr{},\bfr{}) + f_{\wf{BB}{}}(\bfr{},\bfr{}),
|
||
\end{equation}
|
||
with
|
||
\begin{equation}
|
||
\begin{aligned}
|
||
\label{eq:def_faa}
|
||
& f_{\wf{AA}{}}(\bfr{},\bfr{}) = \\ & \sum_{p_A q_A r_A s_A t_A u_A} \SO{p_A }{ } \SO{q_A}{ } \V{p_A q_A}{r_A s_A} \Gam{r_A s_A}{t_A u_A} \SO{t_A}{ } \SO{u_A}{ },
|
||
\end{aligned}
|
||
\end{equation}
|
||
(and equivalently for $B$).
|
||
%\begin{equation}
|
||
% \begin{aligned}
|
||
% \label{eq:def_faa}
|
||
% & f_{\wf{BB}{}}(\bfr{},\bfr{}) = \\ &\sum_{p_B q_B r_B s_B t_B u_B} \SO{p_B }{ } \SO{q_B}{ } \V{p_B q_B}{r_B s_B} \Gam{r_B s_B}{t_B u_B} \SO{t_B}{ } \SO{u_B}{ }.
|
||
% \end{aligned}
|
||
%\end{equation}
|
||
As a consequence, the local range-separation parameter in the super system $A+B$
|
||
\begin{equation}
|
||
\label{eq:def_mur}
|
||
\murpsi = \frac{\sqrt{\pi}}{2} \frac{f_{\wf{A+B}{}}(\bfr{},\bfr{})}{n_{2,\wf{A+B}{}}(\br{})}
|
||
\end{equation}
|
||
which, in the case of a multiplicative wave function is nothing but
|
||
\begin{equation}
|
||
\label{eq:def_mur}
|
||
\murpsi = \murpsia + \murpsib.
|
||
\end{equation}
|
||
As $\murpsia = 0 \text{ if }\br{} \in B$ (and equivalently for $\murpsib $ on $B$), $\murpsi$ is an intensive quantity. The conclusion of this paragraph is that, provided that the wave function for the system $A+B$ is multiplicative in the limit of the dissociated fragments, all quantities used for the basis set correction are intensive and therefore the basis set correction is size consistent.
|
||
|
||
\section{Computational considerations}
|
||
The computational cost of the present approach is driven by two quantities: the computation of the on-top pair density and the $\murpsibas$ on the real-space grid. Within a blind approach, for each grid point the computational cost is of order $n_{\Bas}^4$ and $n_{\Bas}^6$ for the on-top pair density $n_{2,\wf{\Bas}{}}(\br{})$ and the local range separation parameter $\murpsibas$, respectively.
|
||
Nevertheless, using CASSCF wave functions to compute these quantities leads to significant simplifications which can substantially reduce the CPU time.
|
||
\subsection{Computation of the on-top pair density for a CASSCF wave function}
|
||
Given a generic wave function developed on a basis set with $n_{\Bas}$ basis functions, the evaluation of the on-top pair density is of order $\left(n_{\Bas}\right)^4$.
|
||
Nevertheless, assuming that the wave function $\Psi^{\Bas}$ is of CASSCF type, a lot of simplifications happen.
|
||
If the active space is referred as the set of spatial orbitals $\mathcal{A}$ which are labelled by the indices $t,u,v,w$, and the doubly occupied orbitals are the set of spatial orbitals $\mathcal{C}$ labeled by the indices $i,j$, one can write the on-top pair density of a CASSCF wave function as
|
||
\begin{equation}
|
||
\label{def_n2_good}
|
||
n_{2,\wf{\Bas}{}}(\br{}) = n_{2,\mathcal{A}}(\br{}) + n_{\mathcal{C}}(\br{}) n_{\mathcal{A}}(\br{}) + \left( n_{\mathcal{C}}(\br{})\right)^2
|
||
\end{equation}
|
||
where
|
||
\begin{equation}
|
||
\label{def_n2_act}
|
||
n_{2,\mathcal{A}}(\br{}) = \sum_{t,u,v,w \, \in \mathcal{A}} 2 \mel*{\wf{}{\Bas}}{ \aic{t_\downarrow}\aic{u_\uparrow}\ai{v_\uparrow}\ai{w_\downarrow}}{\wf{}{\Bas}} \phi_t (\br{}) \phi_u (\br{}) \phi_v (\br{}) \phi_w (\br{})
|
||
\end{equation}
|
||
is the purely active part of the on-top pair density,
|
||
\begin{equation}
|
||
n_{\mathcal{C}}(\br{}) = \sum_{i\, \in \mathcal{C}} \left(\phi_i (\br{}) \right)^2,
|
||
\end{equation}
|
||
and
|
||
\begin{equation}
|
||
n_{\mathcal{A}}(\br{}) = \sum_{t,u\, \in \mathcal{A}} \phi_t (\br{}) \phi_u (\br{})
|
||
\mel*{\wf{}{\Bas}}{ \aic{t_\downarrow}\ai{u_\downarrow} + \aic{t_\uparrow}\ai{u_\uparrow}}{\wf{}{\Bas}}
|
||
\end{equation}
|
||
is the purely active one-body density.
|
||
Written as in eq. \eqref{def_n2_good}, the leading computational cost is the evaluation of $n_{2,\mathcal{A}}(\br{})$ which, according to eq. \eqref{def_n2_act}, scales as $\left( n_{\mathcal{A}}\right) ^4$ where $n_{\mathcal{A}}$ is the number of active orbitals which is much smaller than the number of basis functions $n_{\Bas}$. Therefore, the final computational scaling of the on-top pair density for a CASSCF wave function over the whole real-space grid is of $\left( n_{\mathcal{A}}\right) ^4 n_G$, where $n_G$ is the number of grid points.
|
||
\subsection{Computation of $\murpsibas$}
|
||
At a given grid point, the computation of $\murpsibas$ needs the computation of $f_{\wf{}{}}(\bfr{},\bfr{}) $ defined in eq. \eqref{eq:def_f} and the on-top pair density defined in eq. \eqref{eq:def_n2}. In the previous paragraph we gave an explicit form of the on-top pair density in the case of a CASSCF wave function with a computational scaling of $\left( n_{\mathcal{A}}\right)^4$. In the present paragraph we focus on simplifications that one can obtain for the computation of $f_{\wf{}{}}(\bfr{},\bfr{}) $ in the case of a CASSCF wave function.
|
||
|
||
One can rewrite $f_{\wf{}{}}(\bfr{},\bfr{}) $ as
|
||
\begin{equation}
|
||
\label{eq:f_good}
|
||
f_{\wf{}{}}(\bfr{},\bfr{}) = \sum_{r,s \in \Bas} \mathcal{V}_r^s(\bfr{}) \, \mathcal{N}_{r}^s(\bfr{})
|
||
\end{equation}
|
||
where
|
||
\begin{equation}
|
||
\mathcal{V}_r^s(\bfr{}) = \sum_{p,q \in \Bas} V_{pq}^{rs} \phi_p(\br{}) \phi_q(\br{})
|
||
\end{equation}
|
||
and
|
||
\begin{equation}
|
||
\mathcal{N}_{r}^s(\bfr{}) = \sum_{p,q \in \Bas} \Gam{pq}{rs} \phi_p(\br{}) \phi_q(\br{}) .
|
||
\end{equation}
|
||
\textit{A priori}, for a given grid point, the computational scaling of eq. \eqref{eq:f_good} is of $\left(n_{\Bas}\right)^4$ and the total computational cost over the whole grid scales therefore as $\left(n_{\Bas}\right)^4 n_G$.
|
||
|
||
In the case of a CASSCF wave function, it is interesting to notice that $\Gam{pq}{rs}$ vanishes if one index $p,q,r,s$ does not belong
|
||
to the set of of doubly occupied or active orbitals $\mathcal{C}\cup \mathcal{A}$. Therefore, at a given grid point, the matrix $\mathcal{N}_{r}^s(\bfr{})$ has only at most $\left(n_{\mathcal{A}}+n_{\mathcal{C}}\right)^2$ non-zero elements, which is usually much smaller than $\left(n_{\Bas}\right)^2$.
|
||
As a consequence, in the case of a CASSCF wave function one can rewrite $f_{\wf{}{}}(\bfr{},\bfr{})$ as
|
||
\begin{equation}
|
||
f_{\wf{}{}}(\bfr{},\bfr{}) = \sum_{r,s \in \mathcal{C}\cup\mathcal{A}} \mathcal{V}_r^s(\bfr{}) \, \mathcal{N}_{r}^s(\bfr{}).
|
||
\end{equation}
|
||
Therefore the final computational cost of $f_{\wf{}{}}(\bfr{},\bfr{})$ is dominated by that of $\mathcal{V}_r^s(\bfr{})$, which scales as $\left(n_{\mathcal{A}}+n_{\mathcal{C}}\right)^2 \left( n_{\Bas} \right)^2 n_G$, which is much weaker than $\left(n_{\Bas}\right)^4 n_G$.
|
||
\bibliography{../srDFT_SC}
|
||
|
||
\end{document}
|