
A density-based basis-set correction for weak and strong correlation

I. SIZE CONSISTENCY OF THE BASIS-SET CORRECTION

A. Su�icient condition for size consistency

�e basis-set correction is expressed as an integral in real
space

ĒB [n, ζ, n2, µ] =∫
dr n(r)ε̄sr,PBEc,md (n(r), ζ(r), s(r), n2(r), µ(r)),

(1)

where all the local quantities n(r), ζ(r), s(r), n2(r), µ(r) are
obtained from the same wave function Ψ. In the limit of two
non-overlapping and non-interacting dissociated fragments
A+ B, this integral can be rewri�en as the sum of the integral
over the region ΩA and the integral over the region ΩB

ĒBA+B[n, ζ, n2, µ] =∫
ΩA

dr n(r)ε̄sr,PBEc,md (n(r), ζ(r), s(r), n2(r), µ(r))

+
∫

ΩB
dr n(r)ε̄sr,PBEc,md (n(r), ζ(r), s(r), n2(r), µ(r)).

(2)

�erefore, a su�cient condition to obtain size consistency is
that all the local quantities n(r), ζ(r), s(r), n2(r), µ(r) are
intensive, i.e. that they locally coincide in the supersystem
A+ B and in each isolated fragment X = A or B. Hence, for
r ∈ ΩX, we should have

nA+B(r) = nX(r), (3a)

ζA+B(r) = ζX(r), (3b)

sA+B(r) = sX(r), (3c)

n2,A+B(r) = n2,X(r), (3d)

µA+B(r) = µX(r), (3e)

where the le�-hand-side quantities are for the supersystem
and the right-hand-side quantities for an isolated fragment.
Such conditions can be di�cult to ful�l in the presence of
degeneracies since the system X can be in a di�erent mixed
state (i.e. ensemble) in the supersystem A + B and in the
isolated fragment1. Here, we will consider the simple case
where the wave function of the supersystem ismultiplicatively
separable, i.e.

|ΨA+B〉 = |ΨA〉 ⊗ |ΨB〉 , (4)

where⊗ is the antisymmetric tensor product. In this case, it is
easy to shown that Eqs. (3a)-(3c) are valid, as well known, and
it remains to show that Eqs. (3d) and (3e) are also valid. Before

showing this, we note that even though we do not explicity
consider the case of degeneracies, the lack of size consistency
which could arise from spin-multiplet degeneracies can be
avoided by the same strategy used for imposing the energy
independence on Sz, i.e. by using the e�ective spin polar-
ization ζ̃(n(r), n2(r)) or a zero spin polarization ζ(r) = 0.
Moreover, the lack of size consistency which could arise from
spatial degeneracies (e.g., coming from atomic p states) can
also be avoided by selecting the same member of the ensemble
in the supersystem and in the isolated fragement. �is applies
to the systems treated in this work.

B. Intensivity of the on-top pair density

A crucial ingredient in the type of functionals used in the
present paper together with the de�nition of the local-range
separation parameter is the on-top pair density de�ned as

n2(r) = ∑
pqrs

φp(r)φq(r)Γrs
pqφr(r)φs(r), (5)

with Γrs
pq = 2 〈Ψ|â†

r↓ â
†
s↑ âq↑ âp↓ |Ψ〉. Assume now that the

wave function ΨA+B of the super system A + B can be writ-
ten as a product of two wave functions de�ned on two non-
overlapping and non-interacting fragments A and B∣∣ΨA+B

〉
= |ΨA〉 × |ΨB〉 . (6)

Labelling the orbitals of fragment A as pA, qA, rA, sA and
of fragment B as pB, qB, rB, sB and assuming that they don’t
overlap, one can split the two-body density operator as

Γ̂(r1, r2) = Γ̂AA(r1, r2) + Γ̂BB(r1, r2) + Γ̂AB(r1, r2) (7)

with

Γ̂AA(r1, r2) = ∑
pA ,qA ,rA ,sA

φrA(r1)φsA(r2)φpA(r1)φqA(r2)

â†
rA,↓ â

†
sA,↑ âqA,↑ âpA,↓ ,

(8)
(and equivalently for B), and

Γ̂AB = ∑
pA ,qB ,rA ,sB

φrA(r1)φsB(r2)φpA(r1)φqB(r2)(
â†

rA,↓ âpA,↓ â
†
sB,↑ âqB,↑ + â†

sB,↑ âqB,↑ â
†
rA,↓ âpA,↓

)
.

(9)
�erefore, one can express the two-body density as

n2,ΨA+B(r1, r2) = n2,ΨAA(r1, r2)+n2,ΨBB(r1, r2)+n2ΨAB(r1, r2)
(10)

where n2,ΨAA(r1, r2) and n2,ΨBB(r1, r2) are the two-body den-
sities of the isolated fragments

n2,ΨAA(r1, r2) = 〈ΨA| Γ̂AA(r1, r2) |ΨA〉 (11)



2

(and equivalently for B), and n2ΨAB(r1, r2) is simply the prod-
uct of the one body densities of the sub systems

n2ΨAB(r1, r2) = nA(r1)nB(r2) + nB(r1)nA(r2), (12)

nA(r) = ∑
pArA

φpA(r) 〈ΨA| â†
sA,↑ âqA,↑ |ΨA〉 φrA(r), (13)

(and equivalently for B). As the densities of A and B are by
de�nition non overlapping, one can express the on-top pair
density as the sum of the on-top pair densities of the isolated
systems

n2,ΨA+B
(r) = n2,ΨAA(r, r) + n2,ΨBB(r, r) (14)

As n2,ΨA/A(r) = 0 if r ∈ B (and equivalently for n2,ΨB/B(r)
on A), one can conclude that provided that the wave function
is multiplicative, the on-top pair density is a local intensive
quantity.

C. Property of the local-range separation parameter

�e local range separation parameter depends on the on-top
pair density at a given point r and on the numerator

fΨ (r, r) = ∑
pqrstu∈B

φp(r)φq(r)Vrs
pqΓtu

rs φt(r)φu(r). (15)

As the summations run over all orbitals in the basis set B, the
quantity fΨB (r, r) is orbital invariant and therefore can be
expressed in terms of localized orbitals. In the limit of dissoci-
ated fragments, the coulomb interaction is vanishing between
A and B and therefore any two-electron integral involving
orbitals on both the system A and B vanishes. �erefore, one
can rewrite eq. (15) as

fΨA+B
(r, r) = fΨAA

(r, r) + fΨBB
(r, r), (16)

with
fΨAA

(r, r) =

∑
pAqArAsAtAuA

φpA(r)φqA(r)V
rAsA
pAqA ΓtAuA

rAsA φtA(r)φuA(r),

(17)
(and equivalently for B). As a consequence, the local range-
separation parameter in the super system A + B

µ(r; ΨA+B) =

√
π

2

fΨA+B
(r, r)

n2,ΨA+B
(r)

(18)

which, in the case of a multiplicative wave function is nothing
but

µ(r; ΨA+B) = µ(r; ΨA) + µ(r; ΨB). (19)

As µ(r; ΨA) = 0 if r ∈ B (and equivalently for µ(r; ΨB)
on B), µ(r; ΨA+B) is an intensive quantity. �e conclusion
of this paragraph is that, provided that the wave function
for the system A + B is multiplicative in the limit of the
dissociated fragments, all quantities used for the basis set
correction are intensive and therefore the basis set correction
is size consistent.

II. COMPUTATIONAL CONSIDERATIONS

�e computational cost of the present approach is driven by
two quantities: the computation of the on-top pair density and
the µΨB (r) on the real-space grid. Within a blind approach,
for each grid point the computational cost is of order n4

B and
n6
B for the on-top pair density n2,ΨB (r) and the local range

separation parameter µΨB (r), respectively. Nevertheless, us-
ing CASSCF wave functions to compute these quantities leads
to signi�cant simpli�cations which can substantially reduce
the CPU time.

A. Computation of the on-top pair density for a CASSCF
wave function

Given a generic wave function developed on a basis set
with nB basis functions, the evaluation of the on-top pair
density is of order (nB)

4. Nevertheless, assuming that the
wave function ΨB is of CASSCF type, a lot of simpli�cations
happen. If the active space is referred as the set of spatial
orbitals A which are labelled by the indices t, u, v, w, and
the doubly occupied orbitals are the set of spatial orbitals
C labeled by the indices i, j, one can write the on-top pair
density of a CASSCF wave function as

n2,ΨB (r) = n2,A(r) + nC(r)nA(r) + (nC(r))
2 (20)

where

n2,A(r) = ∑
t,u,v,w∈A

2 〈ΨB |â†
t↓ â

†
u↑ âv↑ âw↓ |Ψ

B〉 φt(r)φu(r)φv(r)φw(r)

(21)
is the purely active part of the on-top pair density,

nC(r) = ∑
i∈C

(φi(r))
2 , (22)

and

nA(r) = ∑
t,u∈A

φt(r)φu(r) 〈ΨB |â†
t↓ âu↓ + â†

t↑ âu↑ |Ψ
B〉 (23)

is the purely active one-body density. Wri�en as in eq. (20),
the leading computational cost is the evaluation of n2,A(r)
which, according to eq. (21), scales as (nA)

4 where nA is
the number of active orbitals which is much smaller than the
number of basis functions nB . �erefore, the �nal computa-
tional scaling of the on-top pair density for a CASSCF wave
function over the whole real-space grid is of (nA)

4 nG , where
nG is the number of grid points.

B. Computation of µΨB (r)

At a given grid point, the computation of µΨB (r) needs the
computation of fΨ (r, r) de�ned in eq. (15) and the on-top
pair density de�ned in eq. (5). In the previous paragraph we
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gave an explicit form of the on-top pair density in the case
of a CASSCF wave function with a computational scaling of
(nA)

4. In the present paragraph we focus on simpli�cations
that one can obtain for the computation of fΨ (r, r) in the
case of a CASSCF wave function.

One can rewrite fΨ (r, r) as

fΨ (r, r) = ∑
r,s∈B

V s
r (r)N s

r (r) (24)

where

V s
r (r) = ∑

p,q∈B
Vrs

pqφp(r)φq(r) (25)

and

N s
r (r) = ∑

p,q∈B
Γrs

pqφp(r)φq(r). (26)

A priori, for a given grid point, the computational scaling of

eq. (24) is of (nB)
4 and the total computational cost over the

whole grid scales therefore as (nB)
4 nG .

In the case of a CASSCF wave function, it is interesting
to notice that Γrs

pq vanishes if one index p, q, r, s does not
belong to the set of of doubly occupied or active orbitals
C ∪A. �erefore, at a given grid point, the matrixN s

r (r) has
only at most (nA + nC)

2 non-zero elements, which is usually
much smaller than (nB)

2. As a consequence, in the case of a
CASSCF wave function one can rewrite fΨ (r, r) as

fΨ (r, r) = ∑
r,s∈C∪A

V s
r (r)N s

r (r). (27)

�erefore the �nal computational cost of fΨ (r, r) is domi-
nated by that of V s

r (r), which scales as (nA + nC)
2 (nB)

2 nG ,
which is much weaker than (nB)

4 nG .
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