A density-based basis-set correction for weak and strong correlation

I. SIZE CONSISTENCY OF THE BASIS-SET CORRECTION
A. Sufficient condition for size consistency

The basis-set correction is expressed as an integral in real
space
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where all the local quantities n1(r), {(r),s(r), na(r), u(r) are
obtained from the same wave function ¥. In the limit of two
non-overlapping and non-interacting dissociated fragments
A + B, this integral can be rewritten as the sum of the integral
over the region ()4 and the integral over the region Qp
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Therefore, a sufficient condition to obtain size consistency is
that all the local quantities n(r),{(r),s(r), na(r), u(r) are
intensive, i.e. that they locally coincide in the supersystem
A + B and in each isolated fragment X = A or B. Hence, for
r € Qx, we should have

nas(r) = nx(r), (32)
Caw(r) = Ix(r), (3b)
sas(r) = sx(r), (3¢)
n2,a(r) = nox(r), (3d)
pasn(r) = px(r), (3e)

where the left-hand-side quantities are for the supersystem
and the right-hand-side quantities for an isolated fragment.
Such conditions can be difficult to fulfil in the presence of
degeneracies since the system X can be in a different mixed
state (i.e. ensemble) in the supersystem A + B and in the
isolated fragmentl. Here, we will consider the simple case
where the wave function of the supersystem is multiplicatively
separable, i.e.

[¥as) = [Ya) ®[¥s), (4)

where & is the antisymmetric tensor product. In this case, it is
easy to shown that Egs. (3a)-(3c) are valid, as well known, and
it remains to show that Eqgs. (3d) and (3e) are also valid. Before

showing this, we note that even though we do not explicity
consider the case of degeneracies, the lack of size consistency
which could arise from spin-multiplet degeneracies can be
avoided by the same strategy used for imposing the energy
independence on S;, i.e. by using the effective spin polar-
ization (n(r), n2(r)) or a zero spin polarization (r) = 0.
Moreover, the lack of size consistency which could arise from
spatial degeneracies (e.g., coming from atomic p states) can
also be avoided by selecting the same member of the ensemble
in the supersystem and in the isolated fragement. This applies
to the systems treated in this work.

B. Intensivity of the on-top pair density

A crucial ingredient in the type of functionals used in the
present paper together with the definition of the local-range
separation parameter is the on-top pair density defined as
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wave function ¥ 4 | p of the super system A + B can be writ-
ten as a product of two wave functions defined on two non-
overlapping and non-interacting fragments A and B

[¥aip) =[¥a) x[¥p). (6)

Labelling the orbitals of fragment A as pa,ga,74,54 and
of fragment B as pp, q, B, sp and assuming that they don’t
overlap, one can split the two-body density operator as
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(and equivalently for B), and
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Therefore, one can express the two-body density as

Ny wats(r1,12) = 1y waa (11, 12) + 1y w5 (11, 12) + Mygas (11, 12)

(10)
where 11, ga4 (11, 12) and 1y w55 (11, 12) are the two-body den-
sities of the isolated fragments

nywaa(r1,12) = (¥ | Fan(ry,r2) [¥a) (11)



(and equivalently for B), and #yy.as (11, t2) is simply the prod-
uct of the one body densities of the sub systems

Nygas (11, 12) = n4(r1)np(ra) +np(ry)na(rz),  (12)
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(and equivalently for B). As the densities of A and B are by
definition non overlapping, one can express the on-top pair
density as the sum of the on-top pair densities of the isolated
systems

now, (1) =1y yaa(x,1) 4 1y yes (r, 1) (14)

As nyga/a(r) = 0if r € B (and equivalently for 1, /5 (r)
on A), one can conclude that provided that the wave function
is multiplicative, the on-top pair density is a local intensive
quantity.

C. Property of the local-range separation parameter

The local range separation parameter depends on the on-top
pair density at a given point r and on the numerator

fe(rr)= Y ¢p(r)pg(r) VT (x)pu(r). (15)
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As the summations run over all orbitals in the basis set 13, the
quantity fgs(r,r) is orbital invariant and therefore can be
expressed in terms of localized orbitals. In the limit of dissoci-
ated fragments, the coulomb interaction is vanishing between
A and B and therefore any two-electron integral involving
orbitals on both the system A and B vanishes. Therefore, one
can rewrite eq. (15) as

fo,, (1) =fy, (1,1)+ fy,, (1), (16)

with
fe,,(rr) =
Y ppa (1), (D) VAT Ay, (1) (1),
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(17)
(and equivalently for B). As a consequence, the local range-
separation parameter in the super system A + B

u(r¥A8) = VI P (00)
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which, in the case of a multiplicative wave function is nothing
but

(gAY = u(594) + u(r ¥8). (19)

As u(r; ¥4) = 0ifr € B (and equivalently for y(r; ¥5)
on B), u(r; ¥4*B) is an intensive quantity. The conclusion
of this paragraph is that, provided that the wave function
for the system A + B is multiplicative in the limit of the
dissociated fragments, all quantities used for the basis set
correction are intensive and therefore the basis set correction
is size consistent.

Il. COMPUTATIONAL CONSIDERATIONS

The computational cost of the present approach is driven by
two quantities: the computation of the on-top pair density and
the pys(r) on the real-space grid. Within a blind approach,

for each grid point the computational cost is of order n43 and
n’, for the on-top pair density 12y, (r) and the local range
separation parameter jiys (1), respectively. Nevertheless, us-
ing CASSCF wave functions to compute these quantities leads

to significant simplifications which can substantially reduce
the CPU time.

A. Computation of the on-top pair density for a CASSCF
wave function

Given a generic wave function developed on a basis set
with ng basis functions, the evaluation of the on-top pair

density is of order (113)*. Nevertheless, assuming that the
wave function ¥ is of CASSCF type, a lot of simplifications
happen. If the active space is referred as the set of spatial
orbitals A which are labelled by the indices t, u, v, w, and
the doubly occupied orbitals are the set of spatial orbitals
C labeled by the indices i, j, one can write the on-top pair

density of a CASSCF wave function as
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noy, (r) =npa(x) + ne(r)na(r) + (nc(r))”  (20)
where
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is the purely active part of the on-top pair density,

ne(r) = Y (¢i(r))?, (22)
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is the purely active one-body density. Written as in eq. (20),
the leading computational cost is the evaluation of 1, 4(r)
which, according to eq. (21), scales as (nA)4 where n 4 is
the number of active orbitals which is much smaller than the
number of basis functions ng. Therefore, the final computa-
tional scaling of the on-top pair density for a CASSCF wave
function over the whole real-space grid is of (n A)4 ng, where
ng is the number of grid points.

B. Computation of yiys (1)

At a given grid point, the computation of jtys5 (r) needs the

computation of fy (r,r) defined in eq. (15) and the on-top
pair density defined in eq. (5). In the previous paragraph we



gave an explicit form of the on-top pair density in the case
of a CASSCF wave function with a computational scaling of
(n A)4~ In the present paragraph we focus on simplifications
that one can obtain for the computation of fy (r,r) in the
case of a CASSCF wave function.

One can rewrite fy (r,r) as

fe(rr) =) Vi(r) Ni(r) (24)
r,seB
where
Vi)=Y Vigp(r)g(r) (25)
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and
N(x) = ), Thdp(r)gg(r). (26)
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A priori, for a given grid point, the computational scaling of
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eq. (24) is of (n 3)4 and the total computational cost over the
whole grid scales therefore as (13)* 1.

In the case of a CASSCF wave function, it is interesting
to notice that F;f;i vanishes if one index p,q,7,s does not

belong to the set of of doubly occupied or active orbitals
C U A. Therefore, at a given grid point, the matrix N (r) has

only at most (114 + nc)z non-zero elements, which is usually

much smaller than (n 3)2. As a consequence, in the case of a
CASSCF wave function one can rewrite fy (r,r) as

fe(nr) =} V(@) N (r). (27)

r,seCUA

Therefore the final computational cost of fy (r,r) is domi-
nated by that of V$ (r), which scales as (11 4 + nc)2 (1’13)2 ne,
which is much weaker than (13)* n¢.
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