one more reply

This commit is contained in:
Julien Toulouse 2020-03-24 18:21:23 +01:00
parent 881b795807
commit ea2af62df9
2 changed files with 6 additions and 0 deletions

View File

@ -692,6 +692,8 @@ For diatomics with the aug-cc-pVDZ and aug-cc-pVTZ basis sets,~\cite{KenDunHar-J
For the three diatomics, we performed an additional exFCI calculation with the aug-cc-pVQZ basis set at the equilibrium geometry to obtain reliable estimates of the FCI/CBS dissociation energy.
In the case of the \ce{H10} chain, the approximation to the FCI energies together with the estimated exact potential energy curves are obtained from the data of Ref.~\onlinecite{h10_prx} where the authors performed MRCI+Q calculations with a minimal valence active space as reference (see below for the description of the active space).
\alert{We note that, even though we use near-FCI energies in this work, the DFT-based basis-set correction could also be applied to any approximation to FCI such as multireference perturbation theory, similarly to what was done for weakly correlated systems for which the basis-set correction was applied to CCSD(T) calculations~\cite{LooPraSceTouGin-JCPL-19}.}
Regarding the complementary functional, we first perform full-valence CASSCF calculations with the GAMESS-US software~\cite{gamess} to obtain the wave function $\psibasis$. Then, all density-related quantities involved in the functional [density $n(\br{})$, effective spin polarization $\tilde{\zeta}(\br{})$, reduced density gradient $s(\br{})$, and on-top pair density $n_2(\br{})$] together with the local range-separation function $\mu(\br{})$ are calculated with this full-valence CASSCF wave function. The CASSCF calculations are performed with the following active spaces: (10e,10o) for \ce{H10}, (10e,8o) for \ce{N2}, (12e,8o) for \ce{O2}, and (14e,8o) for \ce{F2}. We note that, instead of using CASSCF wave functions for $\psibasis$, one could of course use the same selected-CI wave functions used for calculating the energy but the calculations of $n_2(\br{})$ and $\mu(\br{})$ would then be more costly.
Also, as the frozen-core approximation is used in all our selected-CI calculations, we use the corresponding valence-only complementary functionals (see Subsec.~\ref{sec:FC}). Therefore, all density-related quantities exclude any contribution from the 1s core orbitals, and the range-separation function follows the definition given in Eq.~\eqref{eq:def_mur_val}.

View File

@ -55,7 +55,11 @@ A few very minor remarks:\\
\subsection*{Reply to reviewer 1}
The basis-set correction can indeed be applied to any approximation to FCI such as multireference perturbation theory, similarly to what was done for weakly correlated systems in P.-F. Loos, B. Pradines, A. Scemama, J. Toulouse, and E. Giner, J. Phys. Chem. Lett. 10, 2931 (2019) in which the basis-set correction was applied to CCSD(T) calculations. As for weakly correlated systems, we expect a similar speed-up of the basis convergence and we will report on this in a forthcoming paper. We have added the following sentence in the Computational Details section:\\
{\it We note that, even though we use near-FCI energies in this work, the DFT-based basis-set correction could also be applied to any approximation to FCI such as multireference perturbation theory, similarly to what was done for weakly correlated systems for which the basis-set correction was applied to CCSD(T) calculations [51].}
%We have also corrected the three minor problems seen by the referee. #TO BE DONE
\subsection*{Comments of reviewer 2 and reply}
\subsubsection*{Comments of reviewer 2}