working on equations ...

This commit is contained in:
Emmanuel Giner 2019-10-13 19:00:39 +08:00
parent 7dba9d8a2a
commit e1fc184d3d
5 changed files with 200 additions and 86 deletions

View File

@ -67,20 +67,26 @@
\citation{FerGinTou-JCP-18}
\citation{GritMeePer-PRA-18}
\citation{CarTruGag-JPCA-17}
\bibdata{srDFT_SCNotes,srDFT_SC}
\bibcite{Thom-PRL-10}{{1}{2010}{{Thom}}{{}}}
\newlabel{eq:cbs_wbasis}{{10}{4}{}{equation.2.10}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {C}Definition of a range-separation parameter varying in real space}{4}{section*.7}}
\newlabel{sec:mur}{{II\tmspace +\thinmuskip {.1667em}C}{4}{}{section*.7}{}}
\newlabel{eq:weelr}{{11}{4}{}{equation.2.11}{}}
\newlabel{eq:def_mur}{{12}{4}{}{equation.2.12}{}}
\newlabel{eq:cbs_mu}{{14}{4}{}{equation.2.14}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {D}Approximation for $\mathaccentV {bar}916{E}^\mathcal {B}[{n}({\bf r})]$ : link with RSDFT}{4}{section*.8}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {1}Generic form and properties of the approximations for $\mathaccentV {bar}916{E}^\mathcal {B}[{n}({\bf r})]$ }{4}{section*.9}}
\@writefile{toc}{\contentsline {subsection}{\numberline {D}Generic form and properties of the approximations for $\mathaccentV {bar}916{E}^\mathcal {B}[{n}({\bf r})]$ }{4}{section*.8}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {1}Generic form of the approximated functionals}{4}{section*.9}}
\newlabel{eq:def_ecmdpbebasis}{{15}{4}{}{equation.2.15}{}}
\newlabel{eq:def_ecmdpbe}{{16}{4}{}{equation.2.16}{}}
\newlabel{eq:lim_muinf}{{19}{4}{}{equation.2.19}{}}
\newlabel{eq:lim_ebasis}{{20}{4}{}{equation.2.20}{}}
\newlabel{eq:def_beta}{{17}{4}{}{equation.2.17}{}}
\newlabel{eq:lim_mularge}{{19}{4}{}{equation.2.19}{}}
\newlabel{eq:lim_n2}{{20}{4}{}{equation.2.20}{}}
\newlabel{eq:lim_muinf}{{21}{4}{}{equation.2.21}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {2}Properties of approximated functionals}{4}{section*.10}}
\newlabel{eq:lim_ebasis}{{22}{4}{}{equation.2.22}{}}
\citation{GarBulHenScu-PCCP-15}
\citation{LooPraSceTouGin}
\bibdata{srDFT_SCNotes,srDFT_SC}
\bibcite{Thom-PRL-10}{{1}{2010}{{Thom}}{{}}}
\bibcite{ScoTho-JCP-17}{{2}{2017}{{Scott\ and\ Thom}}{{}}}
\bibcite{SpeNeuVigFraTho-JCP-18}{{3}{2018}{{Spencer\ \emph {et~al.}}}{{Spencer, Neufeld, Vigor, Franklin,\ and\ Thom}}}
\bibcite{DeuEmiShePie-PRL-17}{{4}{2017}{{Deustua, Shen,\ and\ Piecuch}}{{}}}
@ -92,24 +98,34 @@
\bibcite{WerKno-JCP-88}{{10}{1988}{{Werner\ and\ Knowles}}{{}}}
\bibcite{KnoWer-CPL-88}{{11}{1988}{{Knowles\ and\ Werner}}{{}}}
\bibcite{BenErn-PhysRev-1969}{{12}{1969}{{Bender\ and\ Davidson}}{{}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {E}Approximations for the strong correlation regime}{5}{section*.11}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {1}Requirements: separability of the energies and $S_z$ invariance}{5}{section*.12}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {2}Condition for the functional $\mathaccentV {bar}916{E}_{\text {PBE}}^\mathcal {B}[{n},\xi ,s,n^{(2)},\mu _{\Psi ^{\mathcal {B}}}]$ to obtain $S_z$ invariance}{5}{section*.13}}
\newlabel{eq:def_effspin}{{23}{5}{}{equation.2.23}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3}Functionals for strong correlation}{5}{section*.14}}
\newlabel{eq:def_pbeueg}{{24}{5}{}{equation.2.24}{}}
\newlabel{eq:def_n2ueg}{{25}{5}{}{equation.2.25}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {F}Requirement on $\Psi ^{\mathcal {B}}$ for the extensivity of $\mu ({\bf r};\Psi _{}^{\mathcal {B}})$}{5}{section*.15}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {1}Introduction of the effective spin-density}{5}{section*.16}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {2}Requirement for $\Psi _{}^{\mathcal {B}}$ for size extensivity}{5}{section*.17}}
\@writefile{toc}{\contentsline {section}{\numberline {III}Results}{5}{section*.18}}
\newlabel{sec:results}{{III}{5}{}{section*.18}{}}
\@writefile{toc}{\contentsline {section}{\numberline {IV}Conclusion}{5}{section*.19}}
\newlabel{sec:conclusion}{{IV}{5}{}{section*.19}{}}
\bibcite{WhiHac-JCP-1969}{{13}{1969}{{Whitten\ and\ Hackmeyer}}{{}}}
\bibcite{HurMalRan-1973}{{14}{1973}{{Huron, Malrieu,\ and\ Rancurel}}{{}}}
\bibcite{EvaDauMal-ChemPhys-83}{{15}{1983}{{Evangelisti, Daudey,\ and\ Malrieu}}{{}}}
\bibcite{Cim-JCP-1985}{{16}{1985}{{Cimiraglia}}{{}}}
\bibcite{Cim-JCC-1987}{{17}{1987}{{Cimiraglia\ and\ Persico}}{{}}}
\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces N$_2$, aug-cc-pvdz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{5}{figure.1}}
\newlabel{fig:N2_avdz}{{1}{5}{N$_2$, aug-cc-pvdz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.1}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {2}Introduction of the effective spin-density}{5}{section*.10}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3}Requirement for $\Psi _{}^{\mathcal {B}}$ for size extensivity}{5}{section*.11}}
\@writefile{toc}{\contentsline {section}{\numberline {III}Results}{5}{section*.12}}
\newlabel{sec:results}{{III}{5}{}{section*.12}{}}
\@writefile{toc}{\contentsline {section}{\numberline {IV}Conclusion}{5}{section*.13}}
\newlabel{sec:conclusion}{{IV}{5}{}{section*.13}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces N$_2$, aug-cc-pvtz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{5}{figure.2}}
\newlabel{fig:N2_avtz}{{2}{5}{N$_2$, aug-cc-pvtz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.2}{}}
\bibcite{IllRubRic-JCP-88}{{18}{1988}{{Illas, Rubio,\ and\ Ricart}}{{}}}
\bibcite{PovRubIll-TCA-92}{{19}{1992}{{Povill, Rubio,\ and\ Illas}}{{}}}
\bibcite{BunCarRam-JCP-06}{{20}{2006}{{Bunge\ and\ Carb{\'o}-Dorca}}{{}}}
\@writefile{lot}{\contentsline {table}{\numberline {I}{\ignorespaces Total energies (in Hartree) for HF and $E$ in aug-cc-pvdz for the He atom, F$_2$ (with F-F=1.411 angstroms) and the super non interacting system He--F$_2$. }}{6}{table.1}}
\newlabel{conv_He_table}{{I}{6}{Total energies (in Hartree) for HF and $E$ in aug-cc-pvdz for the He atom, F$_2$ (with F-F=1.411 angstroms) and the super non interacting system He--F$_2$}{table.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces N$_2$, aug-cc-pvdz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{6}{figure.1}}
\newlabel{fig:N2_avdz}{{1}{6}{N$_2$, aug-cc-pvdz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces N$_2$, aug-cc-pvtz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{6}{figure.2}}
\newlabel{fig:N2_avtz}{{2}{6}{N$_2$, aug-cc-pvtz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.2}{}}
\bibcite{AbrSheDav-CPL-05}{{21}{2005}{{Abrams\ and\ Sherrill}}{{}}}
\bibcite{MusEngels-JCC-06}{{22}{2006}{{Musch\ and\ Engels}}{{}}}
\bibcite{BytRue-CP-09}{{23}{2009}{{Bytautas\ and\ Ruedenberg}}{{}}}
@ -132,11 +148,11 @@
\bibcite{LooSceBloGarCafJac-JCTC-18}{{40}{2018}{{Loos\ \emph {et~al.}}}{{Loos, Scemama, Blondel, Garniron, Caffarel,\ and\ Jacquemin}}}
\bibcite{GarSceGinCaffLoo-JCP-18}{{41}{2018}{{Garniron\ \emph {et~al.}}}{{Garniron, Scemama, Giner, Caffarel,\ and\ Loos}}}
\bibcite{SceGarCafLoo-JCTC-18}{{42}{2018{}}{{Scemama\ \emph {et~al.}}}{{Scemama, Garniron, Caffarel,\ and\ Loos}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces F$_2$, aug-cc-pvdz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{6}{figure.3}}
\newlabel{fig:F2_avdz}{{3}{6}{F$_2$, aug-cc-pvdz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.3}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces F$_2$, aug-cc-pvtz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{6}{figure.4}}
\newlabel{fig:F2_avtz}{{4}{6}{F$_2$, aug-cc-pvtz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.4}{}}
\bibcite{GarGinMalSce-JCP-16}{{43}{2017}{{Garniron\ \emph {et~al.}}}{{Garniron, Giner, Malrieu,\ and\ Scemama}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces F$_2$, aug-cc-pvdz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{7}{figure.3}}
\newlabel{fig:F2_avdz}{{3}{7}{F$_2$, aug-cc-pvdz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.3}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces F$_2$, aug-cc-pvtz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{7}{figure.4}}
\newlabel{fig:F2_avtz}{{4}{7}{F$_2$, aug-cc-pvtz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.4}{}}
\bibcite{LooBogSceCafJac-JCTC-19}{{44}{2019{}}{{Loos\ \emph {et~al.}}}{{Loos, Boggio-Pasqua, Scemama, Caffarel,\ and\ Jacquemin}}}
\bibcite{Hyl-ZP-29}{{45}{1929}{{Hylleraas}}{{}}}
\bibcite{Kut-TCA-85}{{46}{1985}{{Kutzelnigg}}{{}}}
@ -157,13 +173,13 @@
\bibcite{GolWerSto-PCCP-05}{{61}{2005}{{Goll, Werner,\ and\ Stoll}}{{}}}
\bibcite{TouGerJanSavAng-PRL-09}{{62}{2009}{{Toulouse\ \emph {et~al.}}}{{Toulouse, Gerber, Jansen, Savin,\ and\ \'Angy\'an}}}
\bibcite{JanHenScu-JCP-09}{{63}{2009}{{Janesko, Henderson,\ and\ Scuseria}}{{}}}
\@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces H$_{10}$, cc-pvdz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{7}{figure.5}}
\newlabel{fig:H10_vdz}{{5}{7}{H$_{10}$, cc-pvdz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.5}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces H$_{10}$, cc-pvtz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{7}{figure.6}}
\newlabel{fig:H10_vtz}{{6}{7}{H$_{10}$, cc-pvtz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.6}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces H$_{10}$, cc-pvqz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{7}{figure.7}}
\newlabel{fig:H10_vqz}{{7}{7}{H$_{10}$, cc-pvqz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.7}{}}
\bibcite{TouZhuSavJanAng-JCP-11}{{64}{2011}{{Toulouse\ \emph {et~al.}}}{{Toulouse, Zhu, Savin, Jansen,\ and\ \'Angy\'an}}}
\@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces H$_{10}$, cc-pvdz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{8}{figure.5}}
\newlabel{fig:H10_vdz}{{5}{8}{H$_{10}$, cc-pvdz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.5}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces H$_{10}$, cc-pvtz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{8}{figure.6}}
\newlabel{fig:H10_vtz}{{6}{8}{H$_{10}$, cc-pvtz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.6}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces H$_{10}$, cc-pvqz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{8}{figure.7}}
\newlabel{fig:H10_vqz}{{7}{8}{H$_{10}$, cc-pvqz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.7}{}}
\bibcite{MusReiAngTou-JCP-15}{{65}{2015}{{Mussard\ \emph {et~al.}}}{{Mussard, Reinhardt, \'Angy\'an,\ and\ Toulouse}}}
\bibcite{LeiStoWerSav-CPL-97}{{66}{1997}{{Leininger\ \emph {et~al.}}}{{Leininger, Stoll, Werner,\ and\ Savin}}}
\bibcite{FroTouJen-JCP-07}{{67}{2007}{{Fromager, Toulouse,\ and\ Jensen}}{{}}}
@ -179,8 +195,9 @@
\bibcite{PazMorGorBac-PRB-06}{{77}{2006}{{Paziani\ \emph {et~al.}}}{{Paziani, Moroni, Gori-Giorgi,\ and\ Bachelet}}}
\bibcite{GritMeePer-PRA-18}{{78}{2018}{{Gritsenko, van Meer,\ and\ Pernal}}{{}}}
\bibcite{CarTruGag-JPCA-17}{{79}{2017}{{Carlson, Truhlar,\ and\ Gagliardi}}{{}}}
\bibcite{GarBulHenScu-PCCP-15}{{80}{2015}{{Garza\ \emph {et~al.}}}{{Garza, Bulik, Henderson,\ and\ Scuseria}}}
\bibstyle{aipnum4-1}
\citation{REVTEX41Control}
\citation{aip41Control}
\newlabel{LastBibItem}{{79}{8}{}{section*.13}{}}
\newlabel{LastPage}{{}{8}{}{}{}}
\newlabel{LastBibItem}{{80}{9}{}{section*.19}{}}
\newlabel{LastPage}{{}{9}{}{}{}}

View File

@ -6,7 +6,7 @@
%Control: page (0) single
%Control: year (1) truncated
%Control: production of eprint (0) enabled
\begin{thebibliography}{79}%
\begin{thebibliography}{80}%
\makeatletter
\providecommand \@ifxundefined [1]{%
\@ifx{#1\undefined}
@ -844,4 +844,15 @@
{Gagliardi}},\ }\href@noop {} {\bibfield {journal} {\bibinfo {journal} {J.
Phys. Chem. A}\ }\textbf {\bibinfo {volume} {121}},\ \bibinfo {pages} {5540}
(\bibinfo {year} {2017})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Garza}\ \emph {et~al.}(2015)\citenamefont {Garza},
\citenamefont {Bulik}, \citenamefont {Henderson},\ and\ \citenamefont
{Scuseria}}]{GarBulHenScu-PCCP-15}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {A.~J.}\ \bibnamefont
{Garza}}, \bibinfo {author} {\bibfnamefont {I.~W.}\ \bibnamefont {Bulik}},
\bibinfo {author} {\bibfnamefont {T.~M.}\ \bibnamefont {Henderson}}, \ and\
\bibinfo {author} {\bibfnamefont {G.~E.}\ \bibnamefont {Scuseria}},\
}\href@noop {} {\bibfield {journal} {\bibinfo {journal} {Phys. Chem. Chem.
Phys.}\ }\textbf {\bibinfo {volume} {17}},\ \bibinfo {pages} {22412}
(\bibinfo {year} {2015})}\BibitemShut {NoStop}%
\end{thebibliography}%

View File

@ -14,6 +14,7 @@ Database file #2: srDFT_SC.bib
Warning--I didn't find a database entry for "exicted"
Warning--I didn't find a database entry for "excited"
Warning--I didn't find a database entry for "kato"
Warning--I didn't find a database entry for "LooPraSceTouGin"
control{REVTEX41Control}, control.key{N/A}, control.author{N/A}, control.editor{N/A}, control.title{N/A}, control.pages{N/A}, control.year{N/A}, control.eprint{N/A},
control{aip41Control}, control.key{N/A}, control.author{N/A}, control.editor{N/A}, control.title{}, control.pages{0}, control.year{N/A}, control.eprint{N/A},
Warning--jnrlst (dependency: not reversed) set 1
@ -27,45 +28,45 @@ Control: page (0) single
Control: year (1) truncated
Control: production of eprint (0) enabled
Warning--missing journal in CafAplGinScem-arxiv-16
You've used 81 entries,
You've used 82 entries,
5918 wiz_defined-function locations,
2185 strings with 31117 characters,
and the built_in function-call counts, 83825 in all, are:
= -- 5372
> -- 2749
< -- 512
+ -- 853
- -- 699
* -- 12928
:= -- 8630
add.period$ -- 80
call.type$ -- 81
change.case$ -- 319
chr.to.int$ -- 78
cite$ -- 82
duplicate$ -- 7458
empty$ -- 5945
format.name$ -- 1413
if$ -- 16624
2192 strings with 31260 characters,
and the built_in function-call counts, 84952 in all, are:
= -- 5441
> -- 2788
< -- 519
+ -- 865
- -- 709
* -- 13106
:= -- 8744
add.period$ -- 81
call.type$ -- 82
change.case$ -- 323
chr.to.int$ -- 79
cite$ -- 83
duplicate$ -- 7558
empty$ -- 6026
format.name$ -- 1434
if$ -- 16850
int.to.chr$ -- 4
int.to.str$ -- 88
missing$ -- 985
newline$ -- 289
num.names$ -- 237
pop$ -- 3194
int.to.str$ -- 89
missing$ -- 998
newline$ -- 292
num.names$ -- 240
pop$ -- 3236
preamble$ -- 1
purify$ -- 395
purify$ -- 400
quote$ -- 0
skip$ -- 2958
skip$ -- 2995
stack$ -- 0
substring$ -- 2189
swap$ -- 7251
text.length$ -- 255
substring$ -- 2218
swap$ -- 7349
text.length$ -- 259
text.prefix$ -- 0
top$ -- 10
type$ -- 1136
type$ -- 1151
warning$ -- 2
while$ -- 314
while$ -- 318
width$ -- 0
write$ -- 694
(There were 5 warnings)
write$ -- 702
(There were 6 warnings)

View File

@ -5,9 +5,15 @@
\BOOKMARK [2][-]{section*.5}{Basic formal equations}{section*.4}% 5
\BOOKMARK [2][-]{section*.6}{Definition of an effective interaction within B}{section*.4}% 6
\BOOKMARK [2][-]{section*.7}{Definition of a range-separation parameter varying in real space}{section*.4}% 7
\BOOKMARK [2][-]{section*.8}{Approximation for B[n\(r\)] : link with RSDFT}{section*.4}% 8
\BOOKMARK [3][-]{section*.9}{Generic form and properties of the approximations for B[n\(r\)] }{section*.8}% 9
\BOOKMARK [3][-]{section*.10}{Introduction of the effective spin-density}{section*.8}% 10
\BOOKMARK [3][-]{section*.11}{Requirement for B for size extensivity}{section*.8}% 11
\BOOKMARK [1][-]{section*.12}{Results}{section*.2}% 12
\BOOKMARK [1][-]{section*.13}{Conclusion}{section*.2}% 13
\BOOKMARK [2][-]{section*.8}{Generic form and properties of the approximations for B[n\(r\)] }{section*.4}% 8
\BOOKMARK [3][-]{section*.9}{Generic form of the approximated functionals}{section*.8}% 9
\BOOKMARK [3][-]{section*.10}{Properties of approximated functionals}{section*.8}% 10
\BOOKMARK [2][-]{section*.11}{Approximations for the strong correlation regime}{section*.4}% 11
\BOOKMARK [3][-]{section*.12}{Requirements: separability of the energies and Sz invariance}{section*.11}% 12
\BOOKMARK [3][-]{section*.13}{Condition for the functional PBEB[n,,s,n\(2\),B] to obtain Sz invariance}{section*.11}% 13
\BOOKMARK [3][-]{section*.14}{Functionals for strong correlation}{section*.11}% 14
\BOOKMARK [2][-]{section*.15}{Requirement on B for the extensivity of \(r;B\)}{section*.4}% 15
\BOOKMARK [3][-]{section*.16}{Introduction of the effective spin-density}{section*.15}% 16
\BOOKMARK [3][-]{section*.17}{Requirement for B for size extensivity}{section*.15}% 17
\BOOKMARK [1][-]{section*.18}{Results}{section*.2}% 18
\BOOKMARK [1][-]{section*.19}{Conclusion}{section*.2}% 19

View File

@ -69,8 +69,11 @@
\newcommand{\efuncdenpbe}[1]{\bar{E}_{\text{PBE}}^\Bas[#1]}
\newcommand{\ecompmodel}[0]{\bar{E}^\Bas[\denmodel]}
\newcommand{\argepbe}[0]{\den,\xi,s}
\newcommand{\argebasis}[0]{\den,\xi,s,n^{2},\mu_{\Psi^{\basis}}}
\newcommand{\argrebasis}[0]{\denr,\xi(\br{}),s,n^{2}(\br{}),\mu_{\Psi^{\basis}}(\br{})}
\newcommand{\argebasis}[0]{\den,\xi,s,\ntwo,\mu_{\Psi^{\basis}}}
\newcommand{\argecmd}[0]{\den,\xi,s,\ntwo,\mu}
\newcommand{\argepbeueg}[0]{\den,\xi,s,\ntwo_{\text{UEG}},\mu_{\Psi^{\basis}}}
\newcommand{\argepbeuegspin}[0]{\den,\Xi,s,\ntwo_{\text{UEG}},\mu_{\Psi^{\basis}}}
\newcommand{\argrebasis}[0]{\denr,\xi(\br{}),s,\ntwo(\br{}),\mu_{\Psi^{\basis}}(\br{})}
\newcommand{\ecmubis}[0]{\bar{E}_{\text{c,md}}^{\text{sr}}[\denr;\,\mu]}
\newcommand{\ecmubisldapbe}[0]{\bar{E}_{\text{c,md}\,\text{PBE}}^{\text{sr}}[\denr;\,\mu]}
\newcommand{\ecmuapprox}[0]{\bar{E}_{\text{c,md-}\mathcal{X}}^{\text{sr}}[\den;\,\mu]}
@ -102,6 +105,7 @@
% effective interaction
\newcommand{\twodm}[4]{\elemm{\Psi}{\psixc{#4}\psixc{#3} \psix{#2}\psix{#1}}{\Psi}}
\newcommand{\murpsi}[0]{\mu({\bf r};\wf{}{\Bas})}
\newcommand{\ntwo}[0]{n^{(2)}}
\newcommand{\mur}[0]{\mu({\bf r})}
\newcommand{\murr}[1]{\mu({\bf r}_{#1})}
\newcommand{\murval}[0]{\mu_{\text{val}}({\bf r})}
@ -215,6 +219,7 @@
\newcommand{\br}[1]{{\mathbf{r}_{#1}}}
\newcommand{\bx}[1]{\mathbf{x}_{#1}}
\newcommand{\dbr}[1]{d\br{#1}}
\newcommand{\PBEspin}{PBEspin}
\newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\'e de Toulouse, CNRS, UPS, France}
\newcommand{\LCT}{Laboratoire de Chimie Th\'eorique, Universit\'e Pierre et Marie Curie, Sorbonne Universit\'e, CNRS, Paris, France}
@ -393,10 +398,10 @@ Because of the very definition of $\wbasis$, one has the following properties at
\end{equation}
which is fundamental to guarantee the good behaviour of the theory at the CBS limit.
\subsection{Approximation for $\efuncden{\denr}$ : link with RSDFT}
\subsubsection{Generic form and properties of the approximations for $\efuncden{\denr}$ }
\subsection{Generic form and properties of the approximations for $\efuncden{\denr}$ }
\subsubsection{Generic form of the approximated functionals}
As originally proposed and motivated in Ref. \onlinecite{GinPraFerAssSavTou-JCP-18}, we approximate the complementary basis set functional $\efuncden{\denr}$ by using the so-called multi-determinant correlation functional (ECMD) introduced by Toulouse and co-workers\cite{TouGorSav-TCA-05}.
Following the recent work of some of the present authors\cite{LooPraSceTouGin-JCPL-19}, we propose to use a PBE-like functional which uses the total density $\denr$, the spin polarisation $\xi(\br{}) = n_{\alpha}(\br{}) - n_{\beta}(\br{})$, reduced density gradient $s(\br{}) = \nabla \denr/\denr^{4/3}$ and the on-top pair density $n^{2}(\br{})$. In the present work, unless explicitly stated the quantities $\denr$, $\xi(\br{})$, $s(\br{})$ and $n^{2}(\br{})$ will be computed from the wave function $\psibasis$ used to define $\murpsi$.
Following the recent work of some of the present authors\cite{LooPraSceTouGin-JCPL-19}, we propose to use a PBE-like functional which uses the total density $\denr$, the spin polarisation $\xi(\br{}) = n_{\alpha}(\br{}) - n_{\beta}(\br{})$, reduced density gradient $s(\br{}) = \nabla \denr/\denr^{4/3}$ and the on-top pair density $n^{2}(\br{})$. In the present work, the quantities $\denr$, $\xi(\br{})$, $s(\br{})$ and $n^{2}(\br{})$ are be computed from the same wave function $\psibasis$ used to define $\murpsi$.
The generic form for the approximations to $\efuncden{\denr}$ proposed here reads
\begin{equation}
\begin{aligned}
@ -404,37 +409,111 @@ The generic form for the approximations to $\efuncden{\denr}$ proposed here read
\efuncdenpbe{\argebasis} = &\int d\br{} \,\denr \\ & \ecmd(\argrebasis)
\end{aligned}
\end{equation}
where $\ecmd(\argebasis)$ is the ECMD correlation energy density defined as
where $\ecmd(\argecmd)$ is the ECMD correlation energy density defined as
\begin{equation}
\label{eq:def_ecmdpbe}
\ecmd(\argebasis) = \frac{\varepsilon_{\text{c,PBE}}(\argepbe)}{1+ \mu^3 \beta(\argepbe)}
\ecmd(\argecmd) = \frac{\varepsilon_{\text{c,PBE}}(\argepbe)}{1+ \mu^3 \beta(\argepbe)}
\end{equation}
with
\begin{equation}
\label{eq:def_beta}
\beta(\argepbe) = \frac{3}{2\sqrt{\pi}(1 - \sqrt{2})}\frac{\varepsilon_{\text{c,PBE}}(\argepbe)}{n^{2}/\den},
\end{equation}
and where $\varepsilon_{\text{c,PBE}}(\argepbe)$ is the usual PBE correlation energy density\cite{PerBurErn-PRL-96}.
The actual functional form of $\ecmd(\argebasis)$ have been originally proposed by some of the present authors in the context of RSDFT~\cite{FerGinTou-JCP-18} in order to fulfill the two following limits
The actual functional form of $\ecmd(\argecmd)$ have been originally proposed by some of the present authors in the context of RSDFT~\cite{FerGinTou-JCP-18} in order to fulfill the two following limits
\begin{equation}
\lim_{\mu \rightarrow 0} \ecmd(\argebasis) = \varepsilon_{\text{c,PBE}}(\argepbe),
\lim_{\mu \rightarrow 0} \ecmd(\argecmd) = \varepsilon_{\text{c,PBE}}(\argepbe),
\end{equation}
which can be qualified as the weak correlation regime, and
which can be qualified as the weak correlation regime, and the large $\mu$ limit
\begin{equation}
\label{eq:lim_mularge}
\ecmd(\argecmd) = \frac{1}{\mu^3} n^{2} + o(\frac{1}{\mu^5}),
\end{equation}
which, as it was previously shown\cite{TouColSav-PRA-04, GoriSav-PRA-06,PazMorGorBac-PRB-06} by various authors, is the exact expression for the ECMD in the limit of large $\mu$, provided that $n^{2}$ is the \textit{exact} on-top pair density of the system.
In the context of RSDFT, some of the present authors have illustrated in Ref.~\onlinecite{FerGinTou-JCP-18} that the on-top pair density involved in eq. \eqref{eq:def_ecmdpbe} plays a crucial role when reaching the strong correlation regime. The importance of the on-top pair density in the strong correlation regime have been also acknowledged by Pernal and co-workers\cite{GritMeePer-PRA-18} and Gagliardi and co-workers\cite{CarTruGag-JPCA-17}.
Also, $\ecmd(\argecmd) $ vanishes when $\ntwo$ vanishes
\begin{equation}
\label{eq:lim_n2}
\lim_{\ntwo \rightarrow 0} \ecmd(\argecmd) = 0
\end{equation}
which is exact for systems with vanishing spin density, such as the totally dissociated H$_2$ which is the archetype of strongly correlated systems.
Of course, as all RSDFT functionals the function $\ecmd(\argecmd)$ vanishes when $\mu \rightarrow \infty$
\begin{equation}
\label{eq:lim_muinf}
\lim_{\mu \rightarrow \infty} \ecmd(\argebasis) = \frac{1}{\mu^3} n^{2} + o(\frac{1}{\mu^5}),
\lim_{\mu \rightarrow \infty} \ecmd(\argecmd) = 0.
\end{equation}
which, as it was previously shown\cite{TouColSav-PRA-04, GoriSav-PRA-06,PazMorGorBac-PRB-06} by various authors, is the exact expression for the ECMD in the limit of large $\mu$.% provided that $n^{2}$ is the \textit{exact} on-top pair density of the system.
In the context of RSDFT, some of the present authors have illustrated in Ref.~\cite{FerGinTou-JCP-18} that the on-top pair density involved in eq. \eqref{eq:def_ecmdpbe} plays a crucial role when reaching the strong correlation regime. The importance of the on-top pair density in the strong correlation regime have been also acknowledged by Pernal and co-workers\cite{GritMeePer-PRA-18} and Gagliardi and co-workers\cite{CarTruGag-JPCA-17}.
For equation \eqref{eq:lim_muinf} to be exact, the \textit{exact} on-top pair density $n^{2}$ of the physical system is needed, which is of course rarely affordable and therefore, in the present work, it will be approximated by that computed by an approximated wave function $\psibasis$.
%For equation \eqref{eq:lim_muinf} to be exact, the \textit{exact} on-top pair density $n^{2}$ of the physical system is needed, which is of course rarely affordable and therefore, in the present work, it will be approximated by that computed by an approximated wave function $\psibasis$.
Within the definition of \eqref{eq:def_mur} and \eqref{eq:def_ecmdpbebasis}, the approximated complementary basis set functionals $\efuncdenpbe{\argebasis}$ satisfies two important properties.
Because of the properties \eqref{eq:cbs_mu} and \eqref{eq:lim_muinf}, $\efuncdenpbe{\argebasis}$ vanishes when reaching the complete basis set limit, whatever the wave function $\psibasis$ used to define the range separation parameter $\mu_{\Psi^{\basis}}$:
\subsubsection{Properties of approximated functionals}
Within the definition of \eqref{eq:def_mur} and \eqref{eq:def_ecmdpbebasis}, the approximated complementary basis set functionals $\efuncdenpbe{\argecmd}$ satisfies two important properties.
Because of the properties \eqref{eq:cbs_mu} and \eqref{eq:lim_muinf}, $\efuncdenpbe{\argecmd}$ vanishes when reaching the complete basis set limit, whatever the wave function $\psibasis$ used to define the range separation parameter $\mu_{\Psi^{\basis}}$:
\begin{equation}
\label{eq:lim_ebasis}
\lim_{\basis \rightarrow \text{CBS}} \efuncdenpbe{\argebasis} = 0\quad \forall\, \psibasis.
\lim_{\basis \rightarrow \text{CBS}} \efuncdenpbe{\argecmd} = 0\quad \forall\, \psibasis,
\end{equation}
which guarantees an unaltered limit when reaching the CBS limit.
Also, because of eq. \eqref{eq:lim_muinf}, $\efuncdenpbe{\argebasis}$ vanishes for systems with vanishing on-top pair density, which guarantees the good limit in the case of stretched H$_2$ and for one-electron system.
Also, the $\efuncdenpbe{\argecmd}$ vanishes for systems with vanishing on-top pair density, which guarantees the good limit in the case of stretched H$_2$ and for one-electron system.
Such a property is guaranteed independently by i) the definition of the effective interaction $\wbasis$ (see equation \eqref{eq:wbasis}) together with the condition \eqref{eq:lim_muinf}, ii) the fact that the $\ecmd(\argecmd)$ vanishes when the on-top pair density vanishes (see equation \eqref{eq:lim_n2}).
\subsection{Approximations for the strong correlation regime}
\subsubsection{Requirements: separability of the energies and $S_z$ invariance}
An important requirement for any electronic structure method is the extensivity of the energy, \textit{i. e.} the additivity of the energies in the case of non interacting fragments, which is particularly important to avoid any ambiguity in computing interaction energies.
When two subsystems $A$ and $B$ dissociate in closed shell systems, as in the case of weak interactions for instance, a simple HF wave function leads to extensive energies.
When the two subsystems dissociate in open shell systems, such as in covalent bond breaking, it is well known that the HF approach fail and an alternative is to use a CASSCF wave function which, provided that the active space has been properly chosen, leads to additives energies.
Another important requirement is the independence of the energy with respect to the $S_z$ component of a given spin state.
Such a property is also important in the context of covalent bond breaking where the ground state of the super system $A+B$ is in general of low spin while the ground states of the fragments $A$ and $B$ are in high spin which can have multiple $S_z$ components.
\subsubsection{Condition for the functional $\efuncdenpbe{\argebasis}$ to obtain $S_z$ invariance}
A sufficient condition to achieve $S_z$ invariance is to eliminate all dependency to any quantity related to $S_z$, which is the spin density $s(\b{})$ in the case of the definition $\ecmd(\argecmd)$.
The spin density is involved in the usual PBE correlation functional $\varepsilon_{\text{c,PBE}}(\argepbe)$ which contributes to the definition of $\ecmd(\argecmd)$ (see equation \eqref{eq:def_ecmdpbe}). A possible way to eliminate the $S_z$ dependency would be then to simply set $\xi(\br{})=0$, but this would lower the accuracy of the usual PBE correlation functional $\varepsilon_{\text{c,PBE}}(\argepbe)$. Therefore, we use the proposal by Scuseria and co-workers\cite{GarBulHenScu-PCCP-15} which introduce an effective spin density depending on the on-top pair density and the total density
\begin{equation}
\label{eq:def_effspin}
\Xi(n,\ntwo) =
\begin{cases}
\sqrt{ n^2 - 4 \ntwo }. & \text{if $n^2 - 4 \ntwo > 0$,} \\
0 & \text{otherwise.}
\end{cases}
\end{equation}
The definition of equation \eqref{eq:def_effspin} is exact when $n$ and $\ntwo$ are obtained from a single Slater determinant.
With this definition, the $\Xi(n,\ntwo)$ depends only on $S_z$ invariants quantities, which naturally makes it $S_z$ invariant.
We also propose
\subsubsection{Functionals for strong correlation}
The first one, referred as the \PBEspin functional, is a natural extension with effective spin density of the previously introduced PBE\cite{LooPraSceTouGin},
\begin{equation}
\label{eq:def_pbeueg}
\begin{aligned}
\efuncdenpbe{\argepbeuegspin} = &\int d\br{} \,\denr \\ & \ecmd(\argepbeuegspin)
\end{aligned}
\end{equation}
where $\ntwo_{\text{UEG}}$ is the on-top pair density of the UEG defined as
\begin{equation}
\label{eq:def_n2ueg}
\ntwo_{\text{UEG}}(n,\xi) = n^2(1-\xi)g_0(n).
\end{equation}
Therefore, such a functional used the on-top pair density of the UEG computed with the total density and effective spin density which depends on the on-top pair density.
\subsection{Requirement on $\psibasis$ for the extensivity of $\murpsi$}
\begin{table*}
\caption{Total energies (in Hartree) for HF and $E$ in aug-cc-pvdz for the He atom, F$_2$ (with F-F=1.411 angstroms) and the super non interacting system He--F$_2$. }
\begin{tabular}{lcc}
%\hline
System & HF & $E$ \\
\hline
F$_2$ & -2.85570466771188 & -0.0112667838948910 \\
He & -198.698792752661 & -0.1596345827582842 \\
He $\ldots$ F$_2$ & -201.554497420371 & -0.1709013666531826 \\
\hline
Error to additivity & 1.2 $\times 10^{-12}$ & 7 $\times 10^{-15}$ \\
\end{tabular}
\label{conv_He_table}
\end{table*}
In the case of the present basis set correction, as $\murpsi$ is a local quantity, one of the necessary but not sufficient requirements for extensivity is that $\murpsi$ must be the same on the system $A$ that in the subsystem $A$ of the super system $A+B$ in the limit of non interacting fragments.
\subsubsection{Introduction of the effective spin-density}
\subsubsection{Requirement for $\wf{}{\Bas}$ for size extensivity}
%%%%%%%%%%%%%%%%%%%%%%%%