a small change in Intro
This commit is contained in:
parent
5fe3a27ed9
commit
9e5071784b
@ -317,7 +317,7 @@ An alternative way to improve the convergence towards the complete-basis-set (CB
|
|||||||
|
|
||||||
Building on the development of RSDFT, a possible solution to the basis-set convergence problem has been recently proposed by some of the present authors~\cite{GinPraFerAssSavTou-JCP-18} in which RSDFT functionals are used to recover only the correlation effects outside a given basis set. The key point here is to realize that a wave function developed in an incomplete basis set is cuspless and could also originate from a Hamiltonian with a non-divergent long-range electron-electron interaction. Therefore, a mapping with RSDFT can be performed through the introduction of an effective non-divergent interaction representing the usual electron-electron Coulomb interaction projected in an incomplete basis set. First applications to weakly correlated molecular systems have been successfully carried out, \cite{LooPraSceTouGin-JCPL-19} together with extensions of this approach to the calculations of excitation energies \cite{GinSceTouLoo-JCP-19} and ionization potentials. \cite{LooPraSceGinTou-JCTC-20} The goal of the present work is to further develop this approach for the description of strongly correlated systems.
|
Building on the development of RSDFT, a possible solution to the basis-set convergence problem has been recently proposed by some of the present authors~\cite{GinPraFerAssSavTou-JCP-18} in which RSDFT functionals are used to recover only the correlation effects outside a given basis set. The key point here is to realize that a wave function developed in an incomplete basis set is cuspless and could also originate from a Hamiltonian with a non-divergent long-range electron-electron interaction. Therefore, a mapping with RSDFT can be performed through the introduction of an effective non-divergent interaction representing the usual electron-electron Coulomb interaction projected in an incomplete basis set. First applications to weakly correlated molecular systems have been successfully carried out, \cite{LooPraSceTouGin-JCPL-19} together with extensions of this approach to the calculations of excitation energies \cite{GinSceTouLoo-JCP-19} and ionization potentials. \cite{LooPraSceGinTou-JCTC-20} The goal of the present work is to further develop this approach for the description of strongly correlated systems.
|
||||||
|
|
||||||
The paper is organized as follows. In Sec.~\ref{sec:theory}, we recall the mathematical framework of the basis-set correction and we present its extension for strongly correlated systems. In particular, our focus is primarily set on imposing two key formal properties which are highly desirable in the context of strong correlation: spin-multiplet degeneracy and size consistency. To reach these goals, we introduce i) new functionals using different flavours of spin-polarization and on-top pair density, ii) an effective interaction based on multi-configurational wave functions. This generalizes the mathematical framework used in the previous work on weakly correlated systems\cite{LooPraSceTouGin-JCPL-19} where a single-reference based effective interaction was used together with the usual density and spin-polarization.
|
The paper is organized as follows. In Sec.~\ref{sec:theory}, we recall the mathematical framework of the basis-set correction and we present its extension for strongly correlated systems. In particular, our focus is primarily set on imposing two key formal properties which are highly desirable in the context of strong correlation: spin-multiplet degeneracy and size consistency. To do this, we introduce i) new functionals using different flavors of spin polarizations and on-top pair densities, and ii) an effective electron-electron interaction based on a multiconfigurational wave function. This generalizes the method used in previous works on weakly correlated systems\cite{GinPraFerAssSavTou-JCP-18,LooPraSceTouGin-JCPL-19} for which it was sufficient to use an effective interaction based on a single-determinant wave function and a functional depending only on the usual density and spin polarization.
|
||||||
Then, in Sec.~\ref{sec:results}, we apply the method to the calculation of the potential energy curves of the \ce{H10}, \ce{N2}, \ce{O2}, and \ce{F2} molecules up to the dissociation limit. Finally, we conclude in Sec.~\ref{sec:conclusion}.
|
Then, in Sec.~\ref{sec:results}, we apply the method to the calculation of the potential energy curves of the \ce{H10}, \ce{N2}, \ce{O2}, and \ce{F2} molecules up to the dissociation limit. Finally, we conclude in Sec.~\ref{sec:conclusion}.
|
||||||
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
@ -633,7 +633,7 @@ The performance of each of these functionals is tested in the following. Note th
|
|||||||
\includegraphics[width=0.45\linewidth]{data/H10/DFT_vqzE_relat_zoom.pdf}
|
\includegraphics[width=0.45\linewidth]{data/H10/DFT_vqzE_relat_zoom.pdf}
|
||||||
}
|
}
|
||||||
\caption{
|
\caption{
|
||||||
Potential energy curves of the H$_{10}$ chain with equally-spaced atoms calculated with MRCI+Q and basis-set corrected MRCI+Q using the cc-pVDZ (top), cc-pVTZ (center) and cc-pVQZ (bottom) basis sets.
|
Potential energy curves of the H$_{10}$ chain with equally-spaced atoms calculated with MRCI+Q and basis-set corrected MRCI+Q using the cc-pVDZ (top), cc-pVTZ (center), and cc-pVQZ (bottom) basis sets.
|
||||||
The MRCI+Q energies and the estimated exact energies have been extracted from Ref.~\onlinecite{h10_prx}.
|
The MRCI+Q energies and the estimated exact energies have been extracted from Ref.~\onlinecite{h10_prx}.
|
||||||
\label{fig:H10}}
|
\label{fig:H10}}
|
||||||
\end{figure*}
|
\end{figure*}
|
||||||
@ -709,7 +709,6 @@ For the three diatomics, we performed an additional exFCI calculation with the a
|
|||||||
In the case of the \ce{H10} chain, the approximation to the FCI energies together with the estimated exact potential energy curves are obtained from the data of Ref.~\onlinecite{h10_prx} where the authors performed MRCI+Q calculations with a minimal valence active space as reference (see below for the description of the active space).
|
In the case of the \ce{H10} chain, the approximation to the FCI energies together with the estimated exact potential energy curves are obtained from the data of Ref.~\onlinecite{h10_prx} where the authors performed MRCI+Q calculations with a minimal valence active space as reference (see below for the description of the active space).
|
||||||
|
|
||||||
Regarding the complementary functional, we first perform full-valence CASSCF calculations with the GAMESS-US software~\cite{gamess} to obtain the wave function $\psibasis$. Then, all density-related quantities involved in the functional [density $n(\br{})$, effective spin polarization $\tilde{\zeta}(\br{})$, reduced density gradient $s(\br{})$, and on-top pair density $n_2(\br{})$] together with the local range-separation function $\mu(\br{})$ are calculated with this full-valence CASSCF wave function. The CASSCF calculations are performed with the following active spaces: (10e,10o) for \ce{H10}, (10e,8o) for \ce{N2}, (12e,8o) for \ce{O2}, and (14e,8o) for \ce{F2}. We note that, instead of using CASSCF wave functions for $\psibasis$, one could of course use the same selected-CI wave functions used for calculating the energy but the calculations of $n_2(\br{})$ and $\mu(\br{})$ would then be more costly.
|
Regarding the complementary functional, we first perform full-valence CASSCF calculations with the GAMESS-US software~\cite{gamess} to obtain the wave function $\psibasis$. Then, all density-related quantities involved in the functional [density $n(\br{})$, effective spin polarization $\tilde{\zeta}(\br{})$, reduced density gradient $s(\br{})$, and on-top pair density $n_2(\br{})$] together with the local range-separation function $\mu(\br{})$ are calculated with this full-valence CASSCF wave function. The CASSCF calculations are performed with the following active spaces: (10e,10o) for \ce{H10}, (10e,8o) for \ce{N2}, (12e,8o) for \ce{O2}, and (14e,8o) for \ce{F2}. We note that, instead of using CASSCF wave functions for $\psibasis$, one could of course use the same selected-CI wave functions used for calculating the energy but the calculations of $n_2(\br{})$ and $\mu(\br{})$ would then be more costly.
|
||||||
%Another strategy would be to use for $\psibasis$ size-consistent truncated versions of the selected-CI wave functions but we did not explore this possibility in this work.
|
|
||||||
|
|
||||||
Also, as the frozen-core approximation is used in all our selected-CI calculations, we use the corresponding valence-only complementary functionals (see Subsec.~\ref{sec:FC}). Therefore, all density-related quantities exclude any contribution from the 1s core orbitals, and the range-separation function follows the definition given in Eq.~\eqref{eq:def_mur_val}.
|
Also, as the frozen-core approximation is used in all our selected-CI calculations, we use the corresponding valence-only complementary functionals (see Subsec.~\ref{sec:FC}). Therefore, all density-related quantities exclude any contribution from the 1s core orbitals, and the range-separation function follows the definition given in Eq.~\eqref{eq:def_mur_val}.
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user