1st stage cleaning
This commit is contained in:
parent
08bdb0233b
commit
925b8763ba
@ -293,7 +293,7 @@
|
||||
|
||||
|
||||
\begin{abstract}
|
||||
We extend to strongly correlated systems the recently introduced basis-set incompleteness correction based on density-functional theory (DFT) [E. Giner \textit{et al.}, \href{https://doi.org/10.1063/1.5052714}{J. Chem. Phys. \textbf{149}, 194301 (2018)}]. This basis-set correction relies on a mapping between wave-function calculations in a finite basis set and range-separated DFT (RSDFT) through the definition of an effective non-divergent interaction corresponding to the Coulomb electron-electron interaction projected in the finite basis set. This allows to use RSDFT-type \titou{complementary functionals} to recover the dominant part of the short-range correlation effects missing in this finite basis. To model both strong and/or weak correlation regimes we use the potential energy curves of the H$_{10}$, C$_2$, N$_2$, O$_2$, and F$_2$ molecules up to the dissociation limit, and we explore various approximations of \titou{complementary functionals} fulfilling two very desirable properties: \titou{spin-multiplet degeneracy (\ie, invariance with respect to the spin operator $S_z$ expectation value)} and size consistency. Specifically, we systematically investigate the dependence of the functionals on different flavors of on-top pair densities and spin polarizations. The key result of this study is that the explicit dependence on the on-top pair density allows one to completely remove the dependence on any form of spin polarization without any significant loss of accuracy.
|
||||
We extend to strongly correlated systems the recently introduced basis-set incompleteness correction based on density-functional theory (DFT) [E. Giner \textit{et al.}, \href{https://doi.org/10.1063/1.5052714}{J. Chem. Phys. \textbf{149}, 194301 (2018)}]. This basis-set correction relies on a mapping between wave-function calculations in a finite basis set and range-separated DFT (RSDFT) through the definition of an effective non-divergent interaction corresponding to the Coulomb electron-electron interaction projected in the finite basis set. This allows to use RSDFT-type complementary density functionals to recover the dominant part of the short-range correlation effects missing in this finite basis. To model both strong and/or weak correlation regimes we use the potential energy curves of the \ce{H10}, \ce{C2}, \ce{N2}, \ce{O2}, and \ce{F2} molecules up to the dissociation limit, and we explore various approximations of complementary density functionals fulfilling two very desirable properties: spin-multiplet degeneracy (\ie, invariance with respect to the spin operator $S_z$ expectation value) and size consistency. Specifically, we systematically investigate the dependence of the functionals on different flavors of on-top pair densities and spin polarizations. The key result of this study is that the explicit dependence on the on-top pair density allows one to completely remove the dependence on any form of spin polarization without any significant loss of accuracy.
|
||||
In the general context of multiconfigurational DFT, this finding shows that one can avoid the effective spin polarization whose mathematical definition is rather \textit{ad hoc} and which can become complex valued. Quantitatively, we show that the basis-set correction reaches chemical accuracy on atomization energies with triple-$\zeta$ quality basis sets for most of the systems studied here. Also, the present basis-set incompleteness correction provides smooth curves along the whole potential energy surfaces.
|
||||
\end{abstract}
|
||||
|
||||
@ -305,9 +305,9 @@ In the general context of multiconfigurational DFT, this finding shows that one
|
||||
The general goal of quantum chemistry is to provide reliable theoretical tools to explore the rich area of chemistry. More specifically, developments in quantum chemistry primarily aim at accurately computing the electronic structure of molecular systems, but despite intense developments, no definitive solution to this problem has been found. The theoretical challenge to tackle belongs to the quantum many-body problem, due the intrinsic quantum nature of the electrons and the Coulomb repulsion between them. This so-called electronic correlation problem corresponds to finding a solution to the Schr\"odinger equation for a $N$-electron system, and two main roads have emerged to approximate this solution: wave-function theory (WFT) \cite{Pop-RMP-99} and density-functional theory (DFT). \cite{Koh-RMP-99} Although both WFT and DFT spring from the same Schr\"odinger equation, they rely on very different formalisms, as the former deals with the complicated $N$-electron wave function whereas the latter focuses on the much simpler one-electron density. In its Kohn-Sham (KS) formulation, \cite{KohSha-PR-65} the computational cost of DFT is very appealing since it is a simple mean-field procedure. Therefore, although continued efforts have been done to reduce the computational cost of WFT, DFT still remains the workhorse of quantum chemistry.
|
||||
|
||||
The difficulty of obtaining a reliable theoretical description of a given chemical system can be roughly categorized by the strength of the electronic correlation appearing in its electronic structure. The so-called weakly correlated systems, such as closed-shell organic molecules near their equilibrium geometry, are typically dominated by correlation effects which do not affect the qualitative mean-field picture of the system. These weak-correlation effects can be either short range (near the electron-electron coalescence point) or long range (London dispersion interactions). The theoretical description of weakly correlated systems is one of the most concrete achievement of quantum chemistry, and the main remaining issue for these systems is to push the limit of the size of the chemical systems that can be treated. The case of the so-called strongly correlated systems, which are ubiquitous in chemistry, is much more problematic as they exhibit a much more complex electronic structure. For example, transition metal complexes, low-spin open-shell systems, covalent bond breaking situations have all in common that they cannot be even qualitatively described by a single electronic configuration. It is now clear that the usual semilocal density-functional approximations of KS DFT fail to accurately describe these situations and WFT is king for the treatment of strongly correlated systems.
|
||||
\PFL{I think we should add some references in the paragraph above.}
|
||||
%\PFL{I think we should add some references in the paragraph above.}
|
||||
|
||||
In practice, WFT uses a finite one-particle basis set (here denoted as $\basis$) to project the Schr\"odinger equation. The exact solution within this basis set is then provided by full configuration interaction (FCI) which consists in a linear-algebra eigenvalue problem with a dimension scaling exponentially with the system size. Due to this exponential growth of the FCI computational cost, introducing approximations is necessary, with at least two difficulties for strongly correlated systems: i) the qualitative description of the wave function is determined by a primary set of electronic configurations (whose size can scale exponentially in many cases) among which near degeneracies and/or strong interactions appear in the Hamiltonian matrix; ii) the quantitative description of the system requires also to account for weak-correlation effects which involve many other electronic configurations with typically much smaller weights in the wave function. Addressing these two objectives is a rather complicated task for a given approximate WFT method, especially if one adds the requirement of satisfying formal properties, such as \titou{spin-multiplet degeneracy (\ie, invariance with respect to the spin operator $S_z$ expectation value)} and size consistency.
|
||||
In practice, WFT uses a finite one-particle basis set (here denoted as $\basis$) to project the Schr\"odinger equation. The exact solution within this basis set is then provided by full configuration interaction (FCI) which consists in a linear-algebra eigenvalue problem with a dimension scaling exponentially with the system size. Due to this exponential growth of the FCI computational cost, introducing approximations is necessary, with at least two difficulties for strongly correlated systems: i) the qualitative description of the wave function is determined by a primary set of electronic configurations (whose size can scale exponentially in many cases) among which near degeneracies and/or strong interactions appear in the Hamiltonian matrix; ii) the quantitative description of the system requires also to account for weak-correlation effects which involve many other electronic configurations with typically much smaller weights in the wave function. Addressing these two objectives is a rather complicated task for a given approximate WFT method, especially if one adds the requirement of satisfying formal properties, such as spin-multiplet degeneracy (\ie, invariance with respect to the spin operator $S_z$ expectation value) and size consistency.
|
||||
|
||||
%To tackle this complicated problem, many methods have been proposed and an exhaustive review of the zoology of methods for strong correlation goes beyond the scope and purpose of this article.
|
||||
|
||||
@ -327,7 +327,7 @@ In practice, WFT uses a finite one-particle basis set (here denoted as $\basis$)
|
||||
%Among the SCI algorithms, the CI perturbatively selected iteratively (CIPSI) can be considered as a pioneer. The main idea of the CIPSI and other related SCI algorithms is to iteratively select the most important Slater determinants thanks to perturbation theory in order to build a MRCI zeroth-order wave function which automatically concentrate the strongly interacting part of the wave function. On top of this MRCI zeroth-order wave function, a rather simple MRPT approach is used to recover the missing weak correlation and the process is iterated until reaching a given convergence criterion. It is important to notice that in the SCI algorithms, neither the SCI or the MRPT are size extensive \textit{per se}, but the extensivity property is almost recovered by approaching the FCI limit.
|
||||
%When the SCI are affordable, their clear advantage are that they provide near FCI wave functions and energies, whatever the level of knowledge of the user on the specific physical/chemical problem considered. The drawback of SCI is certainly their \textit{intrinsic} exponential scaling due to their linear parametrisation. Nevertheless, such an exponential scaling is lowered by the smart selection of the zeroth-order wave function together with the MRPT calculation.
|
||||
|
||||
Beside the difficulties of accurately describing the molecular electronic structure within a given basis set, a crucial limitation of WFT methods is the slow convergence of the energies and properties with respect to the size of the basis set. As initially shown by the seminal work of Hylleraas \cite{Hyl-ZP-29} and further developed by Kutzelnigg and coworkers, \cite{Kut-TCA-85,KutKlo-JCP-91, NogKut-JCP-94} the main convergence problem originates from the divergence of the Coulomb electron-electron interaction at the coalescence point, which induces a discontinuity in the first derivative of the exact wave function (the so-called electron-electron cusp). Describing such a discontinuity with an incomplete one-electron basis set is impossible and, as a consequence, the convergence of the computed energies and properties are strongly affected. To alleviate this problem, extrapolation techniques have been developed, either based on a partial-wave expansion analysis, \cite{HelKloKocNog-JCP-97,HalHelJorKloKocOlsWil-CPL-98} or more recently based on perturbative arguments. \cite{IrmHulGru-arxiv-19} A more rigorous approach to tackle the basis-set convergence problem is provided by the so-called explicitly correlated F12 (or R12) methods \cite{Ten-TCA-12,TenNog-WIREs-12,HatKloKohTew-CR-12, KonBisVal-CR-12, GruHirOhnTen-JCP-17, MaWer-WIREs-18} which introduce a geminal function depending explicitly on the interelectronic distances. \titou{This ensures a correct representation of the Coulomb correlation hole around the electron-electron coalescence points, and leads to a much faster convergence of the correlation energies than usual WFT methods.} For instance, using the explicitly correlated version of coupled cluster with singles, doubles, and perturbative triples [CCSD(T)] in a triple-$\zeta$ basis set is equivalent to using a quintuple-$\zeta$ basis set with the usual CCSD(T) method, \cite{TewKloNeiHat-PCCP-07} although a computational overhead is introduced by the auxiliary basis set needed to compute the three- and four-electron integrals involved in F12 theory. \cite{BarLoo-JCP-17} In addition to the computational cost, a possible drawback of F12 theory is its rather complex formalism which requires non-trivial developments for adapting it to a new method. For strongly correlated systems, several multi-reference methods have been extended to explicit correlation (see for instance Ref.~\onlinecite{Ten-CPL-07,ShiWer-JCP-10,TorKniWer-JCP-11,DemStanMatTenPitNog-PCCP-12,GuoSivValNee-JCP-17}), including approaches based on the so-called universal F12 theory which are potentially applicable to any electronic-structure computational methods. \cite{TorVal-JCP-09,KonVal-JCP-11,HauMaoMukKlo-CPL-12,BooCleAlaTew-JCP-12}
|
||||
Beside the difficulties of accurately describing the molecular electronic structure within a given basis set, a crucial limitation of WFT methods is the slow convergence of the energies and properties with respect to the size of the basis set. As initially shown by the seminal work of Hylleraas \cite{Hyl-ZP-29} and further developed by Kutzelnigg and coworkers, \cite{Kut-TCA-85,KutKlo-JCP-91, NogKut-JCP-94} the main convergence problem originates from the divergence of the Coulomb electron-electron interaction at the coalescence point, which induces a discontinuity in the first derivative of the exact wave function (the so-called electron-electron cusp). Describing such a discontinuity with an incomplete one-electron basis set is impossible and, as a consequence, the convergence of the computed energies and properties are strongly affected. To alleviate this problem, extrapolation techniques have been developed, either based on a partial-wave expansion analysis, \cite{HelKloKocNog-JCP-97,HalHelJorKloKocOlsWil-CPL-98} or more recently based on perturbative arguments. \cite{IrmHulGru-arxiv-19} A more rigorous approach to tackle the basis-set convergence problem is provided by the so-called explicitly correlated F12 (or R12) methods \cite{Ten-TCA-12,TenNog-WIREs-12,HatKloKohTew-CR-12, KonBisVal-CR-12, GruHirOhnTen-JCP-17, MaWer-WIREs-18} which introduce a geminal function depending explicitly on the interelectronic distances. This ensures a correct representation of the Coulomb correlation hole around the electron-electron coalescence points, and leads to a much faster convergence of the correlation energy than usual WFT methods. For instance, using the explicitly correlated version of coupled cluster with singles, doubles, and perturbative triples [CCSD(T)] in a triple-$\zeta$ basis set is equivalent to using a quintuple-$\zeta$ basis set with the usual CCSD(T) method, \cite{TewKloNeiHat-PCCP-07} although a computational overhead is introduced by the auxiliary basis set needed to compute the three- and four-electron integrals involved in F12 theory. \cite{BarLoo-JCP-17} In addition to the computational cost, a possible drawback of F12 theory is its rather complex formalism which requires non-trivial developments for adapting it to a new method. For strongly correlated systems, several multi-reference methods have been extended to explicit correlation (see for instance Ref.~\onlinecite{Ten-CPL-07,ShiWer-JCP-10,TorKniWer-JCP-11,DemStanMatTenPitNog-PCCP-12,GuoSivValNee-JCP-17}), including approaches based on the so-called universal F12 theory which are potentially applicable to any electronic-structure computational methods. \cite{TorVal-JCP-09,KonVal-JCP-11,HauMaoMukKlo-CPL-12,BooCleAlaTew-JCP-12}
|
||||
|
||||
An alternative way to improve the convergence towards the complete-basis-set (CBS) limit is to treat the short-range correlation effects within DFT and to use WFT methods to deal only with the long-range and/or strong-correlation effects. A rigorous approach achieving this mixing of DFT and WFT is range-separated DFT (RSDFT) (see Ref.~\onlinecite{TouColSav-PRA-04} and references therein) which relies on a splitting of the Coulomb electron-electron interaction in terms of the interelectronic distance thanks to a range-separation parameter $\mu$. The advantage of this approach is at least two-fold: i) the DFT part deals primarily with the short-range part of the Coulomb interaction, and consequently the usual semilocal density-functional approximations are more accurate than for standard KS DFT; ii) the WFT part deals only with a smooth non-divergent interaction, and consequently the wave function has no electron-electron cusp \cite{GorSav-PRA-06} and the basis-set convergence is much faster. \cite{FraMusLupTou-JCP-15} A number of approximate RSDFT schemes have been developed involving single-reference \cite{AngGerSavTou-PRA-05, GolWerSto-PCCP-05, TouGerJanSavAng-PRL-09,JanHenScu-JCP-09, TouZhuSavJanAng-JCP-11, MusReiAngTou-JCP-15,KalTou-JCP-18,KalMusTou-JCP-19} or multi-reference \cite{LeiStoWerSav-CPL-97, FroTouJen-JCP-07, FroCimJen-PRA-10, HedKneKieJenRei-JCP-15, HedTouJen-JCP-18, FerGinTou-JCP-18} WFT methods. Nevertheless, there are still some open issues in RSDFT, such as remaining fractional-charge and fractional-spin errors in the short-range density functionals \cite{MusTou-MP-17} or the dependence of the quality of the results on the value of the range-separation parameter $\mu$.
|
||||
% which can be seen as an empirical parameter.
|
||||
@ -341,7 +341,7 @@ Then, in Sec.~\ref{sec:results}, we apply the method to the calculation of the p
|
||||
\section{Theory}
|
||||
\label{sec:theory}
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
As the theory behind the present basis-set correction has been exposed in details in Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18}, we only briefly recall the main equations and concepts needed for this study in Secs.~\ref{sec:basic}, \ref{sec:wee}, and \ref{sec:mur}. More specifically, in Sec.~\ref{sec:basic} we recall the basic mathematical framework of the present theory by introducing the \titou{complementary functional} to a basis set $\Bas$. Section \ref{sec:wee} introduces the effective non-divergent interaction in the basis set $\Bas$, which leads us to the definition of the effective \textit{local} range-separation parameter in Sec.~\ref{sec:mur}. Then, Sec.~\ref{sec:functional} exposes the new approximate RSDFT-based complementary correlation functionals. The generic form of such functionals is exposed in Sec.~\ref{sec:functional_form}, their properties in the context of the basis-set correction are discussed in Sec.~\ref{sec:functional_prop}, and the specific requirements for strong correlation are discussed in Sec.~\ref{sec:requirements}. Finally, the actual form of the functionals used in this work are introduced in Sec.~\ref{sec:def_func}.
|
||||
As the theory behind the present basis-set correction has been exposed in details in Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18}, we only briefly recall the main equations and concepts needed for this study in Secs.~\ref{sec:basic}, \ref{sec:wee}, and \ref{sec:mur}. More specifically, in Sec.~\ref{sec:basic} we recall the basic mathematical framework of the present theory by introducing the complementary density functional to a basis set $\Bas$. Section \ref{sec:wee} introduces the effective non-divergent interaction in the basis set $\Bas$, which leads us to the definition of the effective \textit{local} range-separation parameter in Sec.~\ref{sec:mur}. Then, Sec.~\ref{sec:functional} exposes the new approximate RSDFT-based complementary correlation functionals. The generic form of such functionals is exposed in Sec.~\ref{sec:functional_form}, their properties in the context of the basis-set correction are discussed in Sec.~\ref{sec:functional_prop}, and the specific requirements for strong correlation are discussed in Sec.~\ref{sec:requirements}. Finally, the actual form of the functionals used in this work are introduced in Sec.~\ref{sec:def_func}.
|
||||
|
||||
\subsection{Basic equations}
|
||||
\label{sec:basic}
|
||||
@ -354,10 +354,10 @@ The exact ground-state energy $E_0$ of a $N$-electron system can in principle be
|
||||
where $v_{ne}(\br{})$ is the nuclei-electron potential, and $F[\den]$ is the universal Levy-Lieb density functional written with the constrained search formalism as~\cite{Lev-PNAS-79,Lie-IJQC-83}
|
||||
\begin{equation}
|
||||
\label{eq:levy_func}
|
||||
F[\den] = \min_{\Psi \rightarrow \den} \mel{\Psi}{\kinop +\weeop}{\Psi},
|
||||
F[\den] = \min_{\Psi \to \den} \mel{\Psi}{\kinop +\weeop}{\Psi},
|
||||
\end{equation}
|
||||
\manu{where $\kinop$ and $\weeop$ are the kinetic and electron-electron coulomb operators, and} the notation $\Psi \rightarrow \den$ means that the wave function $\Psi$ yields the density $n$.
|
||||
The minimizing density $n_0$ in Eq.~\eqref{eq:levy} is the exact ground-state density. Nevertheless, in practical calculations, the accessible densities are necessarily restricted to the set of densities ``representable in a basis set $\Bas$'', \ie, densities coming from wave functions expandable in the Hilbert space generated by the basis set $\Bas$. In the following, we always implicitly consider only such densities representable in $\Bas$. With this restriction, Eq.~\eqref{eq:levy} gives then an upper bound $E_0^\Bas$ of the exact ground-state energy. Since the density has a faster convergence with the size of the basis set than the wave function, this restriction is a rather weak one and we can consider that $E_0^\Bas$ is an \titou{acceptable} approximation to the exact ground-state energy, \ie, $E_0^\Bas \approx E_0$.
|
||||
where $\kinop$ and $\weeop$ are the kinetic and electron-electron Coulomb operators, and the notation $\Psi \to \den$ means that the wave function $\Psi$ yields the density $\den$.
|
||||
The minimizing density $n_0$ in Eq.~\eqref{eq:levy} is the exact ground-state density. Nevertheless, in practical calculations, the accessible densities are necessarily restricted to the set of densities ``representable in a basis set $\Bas$'', \ie, densities coming from wave functions expandable in the Hilbert space generated by the basis set $\Bas$. In the following, we always implicitly consider only such densities representable in $\Bas$. With this restriction, Eq.~\eqref{eq:levy} gives then an upper bound $E_0^\Bas$ of the exact ground-state energy. Since the density has a faster convergence with the size of the basis set than the wave function, this restriction is a rather weak one and we can consider that $E_0^\Bas$ is an acceptable approximation to the exact ground-state energy, \ie, $E_0^\Bas \approx E_0$.
|
||||
|
||||
In the present context, it is important to notice that the wave functions $\Psi$ defined in Eq.~\eqref{eq:levy_func} are not restricted to a finite basis set, \ie, they should be expanded in a complete basis set. In Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18}, it was then proposed to decompose $F[\den]$ as
|
||||
\begin{equation}
|
||||
@ -367,11 +367,11 @@ In the present context, it is important to notice that the wave functions $\Psi$
|
||||
where $\wf{}{\Bas}$ are wave functions expandable in the Hilbert space generated by $\basis$, and
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
\efuncden{\den} = \min_{\Psi \to \den} \mel*{\Psi}{\kinop +\weeop }{\Psi}
|
||||
\efuncden{\den} = \min_{\Psi \to \den} \mel*{\Psi}{\kinop +\weeop }{\Psi}
|
||||
- \min_{\Psi^{\Bas} \to \den} \mel*{\wf{}{\Bas}}{\kinop +\weeop}{\wf{}{\Bas}}
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
is the \titou{complementary density functional} to the basis set $\Bas$.
|
||||
is the complementary density functional to the basis set $\Bas$.
|
||||
Introducing the decomposition in Eq.~\eqref{eq:def_levy_bas} back into Eq.~\eqref{eq:levy} yields
|
||||
\begin{multline}
|
||||
\label{eq:E0basminPsiB}
|
||||
@ -390,7 +390,8 @@ where $\efci$ and $n_\text{FCI}^\Bas$ are the ground-state FCI energy and densit
|
||||
|
||||
\subsection{Effective interaction in a finite basis}
|
||||
\label{sec:wee}
|
||||
As originally shown by Kato, \cite{Kat-CPAM-57} the electron-electron cusp of the exact wave function originates from the divergence of the Coulomb interaction at the coalescence point. Therefore, a cuspless wave function $\wf{}{\Bas}$ could also be obtained from a Hamiltonian with a non-divergent electron-electron interaction. \titou{In other words, the impact of the basis set incompleteness can be understood as the removal of the divergence of the usual Coulomb electron-electron interaction.}
|
||||
As originally shown by Kato, \cite{Kat-CPAM-57} the electron-electron cusp of the exact wave function originates from the divergence of the Coulomb interaction at the coalescence point. Therefore, a cuspless wave function $\wf{}{\Bas}$ could also be obtained from a Hamiltonian with a non-divergent electron-electron interaction.
|
||||
In other words, the impact of the basis set incompleteness can be understood as the removal of the divergence of the usual Coulomb electron-electron interaction.
|
||||
|
||||
As originally derived in Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18} (see Sec.~II D~and Appendices), one can obtain an effective non-divergent electron-electron interaction, here referred to as $\wbasis$, which reproduces the expectation value of the Coulomb electron-electron interaction operator over a given wave function $\wf{}{\Bas}$. As we are interested in the behaviour at the coalescence point, we focus on the opposite-spin part of the electron-electron interaction. More specifically, the effective electron-electron interaction associated to a given wave function $\wf{}{\Bas}$ is defined as
|
||||
\begin{equation}
|
||||
@ -451,7 +452,7 @@ Because of the very definition of $\wbasis$, one has the following property in t
|
||||
which is again fundamental to guarantee the correct behavior of the theory in the CBS limit.
|
||||
|
||||
\subsubsection{Frozen-core approximation}
|
||||
As all WFT calculations in this work are performed within the frozen-core approximation, we use a valence-only version of the various quantities needed for the \titou{complementary density functional} introduced in Ref.~\onlinecite{LooPraSceTouGin-JCPL-19}. We partition the basis set as $\Bas = \Cor \bigcup \BasFC$, where $\Cor$ and $\BasFC$ are the sets of core and active orbitals, respectively, and define the valence-only local range-separation parameter as
|
||||
As all WFT calculations in this work are performed within the frozen-core approximation, we use a valence-only version of the various quantities needed for the complementary density functional introduced in Ref.~\onlinecite{LooPraSceTouGin-JCPL-19}. We partition the basis set as $\Bas = \Cor \bigcup \BasFC$, where $\Cor$ and $\BasFC$ are the sets of core and active orbitals, respectively, and define the valence-only local range-separation parameter as
|
||||
\begin{equation}
|
||||
\label{eq:def_mur_val}
|
||||
\murpsival = \frac{\sqrt{\pi}}{2} \wbasiscoalval{},
|
||||
@ -485,9 +486,8 @@ It is also noteworthy that, with the present definition, $\wbasisval$ still tend
|
||||
\subsubsection{Generic form}
|
||||
\label{sec:functional_form}
|
||||
|
||||
As originally proposed and motivated in Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18}, we approximate the \titou{complementary density functional} $\efuncden{\den}$ by using the so-called correlation energy functional with multideterminant reference (ECMD) introduced by Toulouse \textit{et al.}\cite{TouGorSav-TCA-05} Following the recent work in Ref.~\onlinecite{LooPraSceTouGin-JCPL-19}, we propose to use a Perdew-Burke-Ernzerhof (PBE)-like functional which uses the total density $\denr$, the spin polarization $\zeta(\br{})=[n_\uparrow(\br{})-n_\downarrow(\br{})]/\denr$, the reduced density gradient $s(\br{}) = \nabla \denr/\denr^{4/3}$, and the on-top pair density $\ntwo(\br{})\equiv \ntwo(\br{},\br{})$. In the present work, all these quantities are computed with the same wave function $\psibasis$ used to define $\mur \equiv\murpsi$.
|
||||
\trashPFL{Therefore, a given approximation X of $\efuncden{\den}$ will have the following generic local form}
|
||||
\titou{Therefore, $\efuncden{\den}$ has the following generic form}
|
||||
As originally proposed and motivated in Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18}, we approximate the complementary density functional $\efuncden{\den}$ by using the so-called correlation energy functional with multideterminant reference (ECMD) introduced by Toulouse \textit{et al.}\cite{TouGorSav-TCA-05} Following the recent work in Ref.~\onlinecite{LooPraSceTouGin-JCPL-19}, we propose to use a Perdew-Burke-Ernzerhof (PBE)-like functional which uses the total density $\denr$, the spin polarization $\zeta(\br{})=[n_\uparrow(\br{})-n_\downarrow(\br{})]/\denr$, the reduced density gradient $s(\br{}) = \nabla \denr/\denr^{4/3}$, and the on-top pair density $\ntwo(\br{})\equiv \ntwo(\br{},\br{})$. In the present work, all these quantities are computed with the same wave function $\psibasis$ used to define $\mur \equiv\murpsi$.
|
||||
Therefore, $\efuncden{\den}$ has the following generic form
|
||||
\begin{multline}
|
||||
\label{eq:def_ecmdpbebasis}
|
||||
\efuncdenpbe{\argebasis} =
|
||||
@ -520,22 +520,22 @@ which is the exact large-$\mu$ behavior of the exact ECMD correlation energy. \c
|
||||
Note also that $\ecmd(\argecmd)$ vanishes when $\ntwo$ vanishes
|
||||
\begin{equation}
|
||||
\label{eq:lim_n2}
|
||||
\lim_{\ntwo \rightarrow 0} \ecmd(\argecmd) = 0,
|
||||
\lim_{\ntwo \to 0} \ecmd(\argecmd) = 0,
|
||||
\end{equation}
|
||||
which is expected for systems with a vanishing on-top pair density, such as the totally dissociated H$_2$ molecule which is the archetype of strongly correlated systems. Finally, the function $\ecmd(\argecmd)$ vanishes when $\mu \rightarrow \infty$ like all RSDFT short-range functionals \begin{equation}
|
||||
which is expected for systems with a vanishing on-top pair density, such as the totally dissociated H$_2$ molecule which is the archetype of strongly correlated systems. Finally, the function $\ecmd(\argecmd)$ vanishes when $\mu \to \infty$ like all RSDFT short-range functionals \begin{equation}
|
||||
\label{eq:lim_muinf}
|
||||
\lim_{\mu \rightarrow \infty} \ecmd(\argecmd) = 0.
|
||||
\lim_{\mu \to \infty} \ecmd(\argecmd) = 0.
|
||||
\end{equation}
|
||||
|
||||
\subsubsection{Properties}
|
||||
\label{sec:functional_prop}
|
||||
|
||||
Within the definitions of Eqs.~\eqref{eq:def_mur} and \eqref{eq:def_ecmdpbebasis}, any approximate \titou{complementary basis functional} $\efuncdenpbe{\argebasis}$ satisfies two important properties.
|
||||
Within the definitions of Eqs.~\eqref{eq:def_mur} and \eqref{eq:def_ecmdpbebasis}, any approximate complementary density functional $\efuncdenpbe{\argebasis}$ satisfies two important properties.
|
||||
|
||||
First, thanks to the properties in Eqs.~\eqref{eq:cbs_mu} and~\eqref{eq:lim_muinf}, $\efuncdenpbe{\argebasis}$ vanishes in the CBS limit, independently of the type of wave function $\psibasis$ used to define the local range-separation parameter $\mu(\br{})$ in a given basis set $\Bas$,
|
||||
\begin{equation}
|
||||
\label{eq:lim_ebasis}
|
||||
\lim_{\basis \rightarrow \text{CBS}} \efuncdenpbe{\argebasis} = 0, \quad \forall\, \psibasis,
|
||||
\lim_{\basis \to \text{CBS}} \efuncdenpbe{\argebasis} = 0, \quad \forall\, \psibasis,
|
||||
\end{equation}
|
||||
|
||||
Second, the fact that $\efuncdenpbe{\argebasis}$ vanishes for systems with vanishing on-top pair density guarantees the correct limit for one-electron systems and for the stretched H$_2$ molecule. This property is guaranteed independently by i) the definition of the effective interaction $\wbasis$ [see Eq.~\eqref{eq:wbasis}] together with the condition in Eq.~\eqref{eq:lim_muinf}, ii) the fact that $\ecmd(\argecmd)$ vanishes when the on-top pair density vanishes [see Eq.~\eqref{eq:lim_n2}].
|
||||
@ -571,10 +571,12 @@ An alternative way to eliminate the $S_z$ dependency is to simply set $\zeta=0$,
|
||||
|
||||
\subsubsection{Size consistency}
|
||||
|
||||
Since $\efuncdenpbe{\argebasis}$ is computed via a single integral over $\mathbb{R}^3$ [see Eq.~\eqref{eq:def_ecmdpbebasis}] which involves only local quantities [$n(\br{})$, $\zeta(\br{})$, $s(\br{})$, $n_2(\br{})$, and $\mu(\br{})$], in the case of non-overlapping fragments \ce{A\bond{...}B}, it can be written as the sum of two local contributions: one coming from the integration over the region of subsystem \ce{A} and the other one from the region of subsystem \ce{B}. Therefore, a sufficient condition for size consistency is that these local quantities coincide in the isolated systems and in the subsystems of the supersystem \ce{A\bond{...}B}. Since these local quantities are calculated from the wave function $\psibasis$, a sufficient condition is that the wave function is multiplicatively separable in the limit of non-interacting fragments, \ie, $\Psi_{\ce{A\bond{...}B}}^{\basis} = \Psi_{\ce{A}}^{\basis} \Psi_{\ce{B}}^{\basis}$ \manu{(see SI for more detailed demonstration of that statement)}. In the case where the two subsystems \ce{A} and \ce{B} dissociate in closed-shell systems, a simple RHF wave function ensures this property, but when one or several covalent bonds are broken, a properly chosen CASSCF wave function is sufficient to recover this property. \titou{The underlying active space must however be chosen in such a way that it leads to size-consistent energies in the limit of dissociated fragments.}
|
||||
Since $\efuncdenpbe{\argebasis}$ is computed via a single integral over $\mathbb{R}^3$ [see Eq.~\eqref{eq:def_ecmdpbebasis}] which involves only local quantities [$n(\br{})$, $\zeta(\br{})$, $s(\br{})$, $n_2(\br{})$, and $\mu(\br{})$], in the case of non-overlapping fragments \ce{A\bond{...}B}, it can be written as the sum of two local contributions: one coming from the integration over the region of subsystem \ce{A} and the other one from the region of subsystem \ce{B}. Therefore, a sufficient condition for size consistency is that these local quantities coincide in the isolated systems and in the subsystems of the supersystem \ce{A\bond{...}B}. Since these local quantities are calculated from the wave function $\psibasis$, a sufficient condition is that the wave function is multiplicatively separable in the limit of non-interacting fragments, \ie, $\Psi_{\ce{A\bond{...}B}}^{\basis} = \Psi_{\ce{A}}^{\basis} \Psi_{\ce{B}}^{\basis}$.
|
||||
We refer the interested reader to the {\SI} for a detailed demonstration of the latter statement.
|
||||
In the case where the two subsystems \ce{A} and \ce{B} dissociate in closed-shell systems, a simple RHF wave function ensures this property, but when one or several covalent bonds are broken, a properly chosen CASSCF wave function is sufficient to recover this property. The underlying active space must however be chosen in such a way that it leads to size-consistent energies in the limit of dissociated fragments.
|
||||
|
||||
|
||||
\subsection{\titou{Complementary density functional approximations}}
|
||||
\subsection{Complementary density functional approximations}
|
||||
\label{sec:def_func}
|
||||
%\subsubsection{Definition of the protocol to design functionals}
|
||||
|
||||
@ -651,9 +653,9 @@ The purpose of the present paper being the study of the basis-set correction in
|
||||
In the case of the \ce{N2}, \ce{O2}, and \ce{F2} molecules for the aug-cc-pVXZ (X=D,T), approximations to the FCI energies are obtained using converged frozen-core ($1s$ orbitals are kept frozen) selected CI calculations and the extrapolation scheme for the perturbative correction of Umrigar \textit{et. al.} (see Refs.~\onlinecite{HolUmrSha-JCP-17, SceGarCafLoo-JCTC-18, LooSceBloGarCafJac-JCTC-18, SceBenJacCafLoo-JCP-18, LooBogSceCafJac-JCTC-19, QP2} for more details) using the latest version of Quantum Package\cite{QP2} (exFCI), and the correlation energy extrapolation by intrinsic scaling\cite{BytNagGorRue-JCP-07} (CEEIS) in the case of \ce{F2} for the cc-pVXZ (X=D,T,Q) basis set. The estimated exact potential energy curves are obtained from experimental data in Ref.~\onlinecite{LieCle-JCP-74a} for the \ce{N2} and \ce{O2} molecules, and from extrapolated CEEIS calculations in the case of \ce{F2}. For all geometries and basis sets, the error with respect to the exact FCI energies are estimated to be on the order of $0.5$ mHa. For the \ce{N2}, \ce{O2}, and \ce{F2} molecules, we also performed single-point exFCI calculations in the aug-cc-pVQZ basis set at the equilibrium geometry to obtain estimations of the FCI dissociation energies in these basis sets.
|
||||
In the case of the \ce{H10} chain, the approximation to the FCI energies together with the estimated exact potential energy curves are obtained from the data of Ref.~\onlinecite{h10_prx} where the authors performed MRCI+Q calculations with a minimal valence active space as reference (see below for the description of the active space).
|
||||
|
||||
Regarding the \titou{complementary density functional}, we first perform full-valence complete-active-space self-consistent-field (CASSCF) calculations with the GAMESS-US software\cite{gamess} to obtain the wave function $\psibasis$. Then, all density-like quantities involved in the functional [density $n(\br{})$, spin polarization $\zeta(\br{})$, reduced density gradient $s(\br{})$, and on-top pair density $n_2(\br{})$] together with the local range-separation function $\mu(\br{})$ of Eq.~\eqref{eq:def_mur} are calculated with this full-valence CASSCF wave function. The CASSCF calculations have been performed with the following active spaces: (10e,10o) for \ce{H10}, (10e,8o) for \ce{N2}, (12e,8o) for \ce{O2}, and (14e,8o) for \ce{F2}.
|
||||
Regarding the complementary density functional, we first perform full-valence complete-active-space self-consistent-field (CASSCF) calculations with the GAMESS-US software\cite{gamess} to obtain the wave function $\psibasis$. Then, all density-like quantities involved in the functional [density $n(\br{})$, spin polarization $\zeta(\br{})$, reduced density gradient $s(\br{})$, and on-top pair density $n_2(\br{})$] together with the local range-separation function $\mu(\br{})$ of Eq.~\eqref{eq:def_mur} are calculated with this full-valence CASSCF wave function. The CASSCF calculations have been performed with the following active spaces: (10e,10o) for \ce{H10}, (10e,8o) for \ce{N2}, (12e,8o) for \ce{O2}, and (14e,8o) for \ce{F2}.
|
||||
|
||||
Also, as the frozen-core approximation is used in all our selected CI calculations, we use the corresponding valence-only \titou{complementary functionals}. Therefore, all density-like quantities exclude any contribution from the $1s$ core orbitals, and the range-separation function is taken as the one defined in Eq.~\eqref{eq:def_mur_val}.
|
||||
Also, as the frozen-core approximation is used in all our selected CI calculations, we use the corresponding valence-only complementary density functionals. Therefore, all density-like quantities exclude any contribution from the $1s$ core orbitals, and the range-separation function is taken as the one defined in Eq.~\eqref{eq:def_mur_val}.
|
||||
|
||||
Regarding the computational cost of the present approach, it should be stressed (see supplementary information) that the basis set correction represents, for all systems and basis sets studied here, a much smaller computational cost than any of the selected CI calculations. We thus believe that this approach is a significant step towards the routine calculation of near-CBS energetic quantities in strongly correlated systems.
|
||||
|
||||
@ -719,11 +721,11 @@ Regarding the computational cost of the present approach, it should be stressed
|
||||
|
||||
The study of the \ce{H10} chain with equally distant atoms is a good prototype of strongly-correlated systems as it consists in the simultaneous breaking of 10 covalent $\sigma$ bonds which all interact with each other. Also, being a relatively small system, benchmark calculations at near-CBS values can be obtained (see Ref.~\onlinecite{h10_prx} for a detailed study of this problem).
|
||||
|
||||
We report in Fig.~\ref{fig:H10} the potential energy curves computed using the cc-pVXZ (X $=$ D, T, and Q) basis sets for different levels of approximation. The computation of the atomization energies $D_0$ for each level of theory is reported in Table \ref{tab:d0}. A general trend that can be observed from these data is that, in a given basis set, the quality of the potential energy curves are globally improved by adding the basis-set correction, independently of the approximation level of \titou{$\efuncbasis$}. Also, no erratic behavior is found when stretching the bonds, which shows that the present procedure (\textit{i.e.} the determination of the range-separation parameter and the definition of the functionals) is robust when reaching the strong-correlation regime.
|
||||
We report in Fig.~\ref{fig:H10} the potential energy curves computed using the cc-pVXZ (X $=$ D, T, and Q) basis sets for different levels of approximation. The computation of the atomization energies $D_0$ for each level of theory is reported in Table \ref{tab:d0}. A general trend that can be observed from these data is that, in a given basis set, the quality of the potential energy curves are globally improved by adding the basis-set correction, independently of the approximation level of $\efuncbasis$. Also, no erratic behavior is found when stretching the bonds, which shows that the present procedure (\textit{i.e.} the determination of the range-separation parameter and the definition of the functionals) is robust when reaching the strong-correlation regime.
|
||||
In other words, smooth potential energy surfaces are obtained with the present basis-set correction.
|
||||
More quantitatively, the values of $D_0$ are within chemical accuracy (\ie, an error below $1.4$ mHa) from the cc-pVTZ basis set when using the $\pbeontXi$ and $\pbeontns$ functionals, whereas such an accuracy is not even reached at the standard MRCI+Q/cc-pVQZ level of theory.
|
||||
|
||||
Analyzing more carefully the performance of the different types of approximate density functionals, the results show that $\pbeontXi$ and $\pbeontns$ are very similar (the maximal difference on $D_0$ being 0.3 mHa), and that they give slightly more accurate results than $\pbeuegXi$. These findings provide two important clues on the role of the different physical ingredients used in these functionals: i) the explicit use of the on-top pair density coming from the \titou{CASSCF} wave function [see Eq.~\eqref{eq:def_n2extrap}] is preferable over the use of the UEG on-top pair density [see Eq.~\eqref{eq:def_n2ueg}] which is somehow understandable, and ii) removing the dependency on any kind of spin polarization does not lead to significant loss of accuracy providing that one employs a qualitatively correct on-top pair density. The latter point is crucial as it shows that the spin polarization in density-functional approximations essentially plays the same role as the on-top pair density.
|
||||
Analyzing more carefully the performance of the different types of approximate density functionals, the results show that $\pbeontXi$ and $\pbeontns$ are very similar (the maximal difference on $D_0$ being 0.3 mHa), and that they give slightly more accurate results than $\pbeuegXi$. These findings provide two important clues on the role of the different physical ingredients used in these functionals: i) the explicit use of the on-top pair density coming from the CASSCF wave function [see Eq.~\eqref{eq:def_n2extrap}] is preferable over the use of the UEG on-top pair density [see Eq.~\eqref{eq:def_n2ueg}] which is somehow understandable, and ii) removing the dependency on any kind of spin polarization does not lead to significant loss of accuracy providing that one employs a qualitatively correct on-top pair density. The latter point is crucial as it shows that the spin polarization in density-functional approximations essentially plays the same role as the on-top pair density.
|
||||
This could have significant implications for the construction of more robust families of density-functional approximations within DFT.
|
||||
%\PFL{Why can't we see the effect of dispersion in that system?}
|
||||
|
||||
@ -782,23 +784,23 @@ $^1$: CEEIS calculations obtained from non-relativistic calculations of Ref.~\on
|
||||
|
||||
The \ce{N2}, \ce{O2} and \ce{F2} molecules are complementary to the \ce{H10} system for the present study as the level of strong correlation in these diatomics also increases while stretching the bond similarly to the case of \ce{H10}. In addition, these molecules exhibit more important and versatile types of weak correlations due to the larger number of electrons. Indeed, the short-range correlation effects are known to play a strong differential effect on the computation of $D_0$, while the shape of the curve far from the equilibrium geometry is governed by dispersion interactions which are medium to long-range weak-correlation effects. The dispersion forces in \ce{H10} play a much minor role in the PES due to the much smaller number of near-neighboring electron pairs compared to \ce{N2}, \ce{O2} or \ce{F2}. Also, \ce{O2} has a triplet ground state and is therefore a good candidate for checking the spin-polarization dependence of the various functionals proposed here.
|
||||
|
||||
We report in Figs~\ref{fig:N2}, \ref{fig:O2} the potential energy curves of \ce{N2}, \ce{O2}, and computed at various approximation levels using the aug-cc-pVDZ and aug-cc-pVTZ basis sets, and in Fig~\ref{fig:F2} the potential energy surface of \ce{F2} using the cc-pVXZ (X=D,T,Q) basis set. The computation of the atomization energies $D_0$ at each level of theory is reported in Table \ref{tab:d0}.
|
||||
We report in Figs.~\ref{fig:N2} and \ref{fig:O2} the potential energy curves of \ce{N2}, \ce{O2}, and computed at various approximation levels using the aug-cc-pVDZ and aug-cc-pVTZ basis sets, and in Fig~\ref{fig:F2} the potential energy surface of \ce{F2} using the cc-pVXZ (X=D,T,Q) basis set. The computation of the atomization energies $D_0$ at each level of theory is reported in Table \ref{tab:d0}.
|
||||
|
||||
Just as in \ce{H10}, the quality of $D_0$ is globally improved by adding the basis-set correction and it is remarkable that $\pbeontXi$ and $\pbeontns$ provide again very similar results. The latter observation confirms that the dependency on the on-top pair density allows one to remove the dependency of any kind of spin polarization for a quite wide range of electron density and also for \titou{open-shell} systems like \ce{O2}. More quantitatively, an error below 1.0 mHa on the estimated exact valence-only $D_0$ is found for \ce{N2}, \ce{O2}, and \ce{F2} with the aug-cc-pVTZ basis set using the $\pbeontns$ functional, whereas such a feat is far from being reached within the same basis set at the near-FCI level. In the case of \ce{F2} it is clear that the presence of diffuse functions in for double- and triple-zeta types basis sets strongly improves the results, which is somehow understandable due to the strong breathing-orbital effect in this molecule induced by the ionic valence bond forms\cite{HibHumByrLen-JCP-94}.
|
||||
Just as in \ce{H10}, the quality of $D_0$ is globally improved by adding the basis-set correction and it is remarkable that $\pbeontXi$ and $\pbeontns$ provide again very similar results. The latter observation confirms that the dependency on the on-top pair density allows one to remove the dependency of any kind of spin polarization for a quite wide range of electron density and also for open-shell systems like \ce{O2}. More quantitatively, an error below 1.0 mHa on the estimated exact valence-only $D_0$ is found for \ce{N2}, \ce{O2}, and \ce{F2} with the aug-cc-pVTZ basis set using the $\pbeontns$ functional, whereas such a feat is far from being reached within the same basis set at the near-FCI level. In the case of \ce{F2} it is clear that the presence of diffuse functions in for double- and triple-zeta types basis sets strongly improves the results, which is somehow understandable due to the strong breathing-orbital effect in this molecule induced by the ionic valence bond forms. \cite{HibHumByrLen-JCP-94}
|
||||
It should be also noticed that when reaching the aug-cc-pVQZ basis set for \ce{N2}, the quality of $D_0$ slightly deteriorates for the $\pbeontXi$ and $\pbeontns$ functionals, but it remains nevertheless more accurate than the estimated FCI $D_0$ and very close the to chemical accuracy.
|
||||
|
||||
Regarding now the performance of the basis-set correction along the whole potential energy curve, it is interesting to notice that it fails to provide a noticeable improvement far from the equilibrium geometry. Acknowledging that the weak-correlation effects in these regions are dominated by dispersion interactions which are long-range effects, the failure of the present approximations for the \titou{complementary basis functionals} can be understood easily. Indeed, the whole scheme designed here is based on the physics of correlation near the electron-electron coalescence point: the local range-separation function $\mu(\br{})$ is designed thanks to the universal condition provided by the electron-electron cusp and the ECMD functionals are suited for short-range correlation effects. Therefore, the failure of the present basis-set correction to describe dispersion interactions is theoretically expected and predictable.
|
||||
\titou{We hope to report further on this in the near future.}
|
||||
Regarding now the performance of the basis-set correction along the whole potential energy curve, it is interesting to notice that it fails to provide a noticeable improvement far from the equilibrium geometry. Acknowledging that the weak-correlation effects in these regions are dominated by dispersion interactions which are long-range effects, the failure of the present approximations for the complementary density functionals can be understood easily. Indeed, the whole scheme designed here is based on the physics of correlation near the electron-electron coalescence point: the local range-separation function $\mu(\br{})$ is designed thanks to the universal condition provided by the electron-electron cusp and the ECMD functionals are suited for short-range correlation effects. Therefore, the failure of the present basis-set correction to describe dispersion interactions is theoretically expected and predictable.
|
||||
We hope to report further on this in the near future.
|
||||
|
||||
\section{Conclusion}
|
||||
\label{sec:conclusion}
|
||||
|
||||
In the present paper we have extended the recently proposed DFT-based basis-set correction to strongly correlated systems. We studied the \ce{H10}, \ce{N2}, \ce{O2}, and \ce{F2} molecules up to the dissociation limit at near-FCI level in increasing-large basis sets, and investigated how the basis-set correction affects the convergence toward the CBS limit of the potential energy curves of these molecular systems.
|
||||
|
||||
The DFT-based basis-set correction relies on three aspects: i) the definition of an effective non-divergent electron-electron interaction obtained from the expectation value over a wave function $\psibasis$ of the Coulomb interaction projected into an incomplete basis set $\basis$, ii) the fit of this effective interaction with the long-range interaction used in RS-DFT, and iii) the use of a short-range, complementary correlation functional from RS-DFT. In the present paper, we investigated i) and iii) in the context of strong correlation and focused on potential energy curves and atomization energies. More precisely, we proposed a new scheme to design functionals fulfilling i) spin-multiplet degeneracy, and ii) size consistency. To fulfil such requirements we proposed to use \titou{CASSCF} wave functions leading to size-consistent energies, and to develop functionals using only $S_z$-independent density-like quantities.
|
||||
The DFT-based basis-set correction relies on three aspects: i) the definition of an effective non-divergent electron-electron interaction obtained from the expectation value over a wave function $\psibasis$ of the Coulomb interaction projected into an incomplete basis set $\basis$, ii) the fit of this effective interaction with the long-range interaction used in RS-DFT, and iii) the use of a short-range, complementary correlation functional from RS-DFT. In the present paper, we investigated i) and iii) in the context of strong correlation and focused on potential energy curves and atomization energies. More precisely, we proposed a new scheme to design functionals fulfilling i) spin-multiplet degeneracy, and ii) size consistency. To fulfil such requirements we proposed to use CASSCF wave functions leading to size-consistent energies, and to develop functionals using only $S_z$-independent density-like quantities.
|
||||
|
||||
The development of new $S_z$-independent and size-consistent functionals has lead us to investigate the role of two related quantities: the spin polarization and the on-top pair density. One important result of the present study is that by using functionals \textit{explicitly} depending on the on-top pair density, one can eschew its spin polarization dependency without loss of accuracy. This avoids the commonly used effective spin polarization originally proposed in Ref.~\onlinecite{BecSavSto-TCA-95} which has the disadvantage of possibly becoming complex-valued in the multideterminant case. From a more fundamental aspect, this shows that, in a DFT framework, the spin polarization mimics the role of the on-top pair density.
|
||||
\titou{Consequently, we believe that one could potentially develop new families of density functional approximations where the spin polarization is abondonned and replaced by the on-top pair density.}
|
||||
Consequently, we believe that one could potentially develop new families of density functional approximations where the spin polarization is abondonned and replaced by the on-top pair density.
|
||||
|
||||
Regarding the results of the present approach, the basis-set correction systematically improves the near-FCI calculations in a given basis set. More quantitatively, it is shown that with only triple-$\zeta$ quality basis sets chemically accurate atomization energies, $D_0$, are obtained for all systems whereas the uncorrected near-FCI results are far from this accuracy within the same basis set.
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user