working on equations
This commit is contained in:
parent
db3931a9b2
commit
8bdbfa5d11
@ -66,6 +66,7 @@
|
||||
\citation{TouColSav-PRA-04,GoriSav-PRA-06,PazMorGorBac-PRB-06}
|
||||
\citation{FerGinTou-JCP-18}
|
||||
\citation{GritMeePer-PRA-18}
|
||||
\citation{CarTruGag-JPCA-17}
|
||||
\bibdata{srDFT_SCNotes,srDFT_SC}
|
||||
\bibcite{Thom-PRL-10}{{1}{2010}{{Thom}}{{}}}
|
||||
\bibcite{ScoTho-JCP-17}{{2}{2017}{{Scott\ and\ Thom}}{{}}}
|
||||
@ -75,6 +76,23 @@
|
||||
\bibcite{DeuEmiYumShePie-JCP-19}{{6}{2019}{{Deustua\ \emph {et~al.}}}{{Deustua, Yuwono, Shen,\ and\ Piecuch}}}
|
||||
\bibcite{QiuHenZhaScu-JCP-17}{{7}{2017}{{Qiu\ \emph {et~al.}}}{{Qiu, Henderson, Zhao,\ and\ Scuseria}}}
|
||||
\bibcite{QiuHenZhaScu-JCP-18}{{8}{2018}{{Qiu\ \emph {et~al.}}}{{Qiu, Henderson, Zhao,\ and\ Scuseria}}}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {C}Definition of a range-separation parameter varying in real space}{4}{section*.7}}
|
||||
\newlabel{sec:mur}{{II\tmspace +\thinmuskip {.1667em}C}{4}{}{section*.7}{}}
|
||||
\newlabel{eq:weelr}{{11}{4}{}{equation.2.11}{}}
|
||||
\newlabel{eq:def_mur}{{12}{4}{}{equation.2.12}{}}
|
||||
\newlabel{eq:cbs_mu}{{14}{4}{}{equation.2.14}{}}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {D}Approximation for $\mathaccentV {bar}916{E}^\mathcal {B}[{n}({\bf r})]$ : link with RSDFT}{4}{section*.8}}
|
||||
\@writefile{toc}{\contentsline {subsubsection}{\numberline {1}Generic form and properties of the approximations for functionals $\mathaccentV {bar}916{E}^\mathcal {B}[{n}({\bf r})]$ }{4}{section*.9}}
|
||||
\newlabel{eq:def_ecmdpbebasis}{{15}{4}{}{equation.2.15}{}}
|
||||
\newlabel{eq:def_ecmdpbe}{{16}{4}{}{equation.2.16}{}}
|
||||
\newlabel{eq:lim_muinf}{{19}{4}{}{equation.2.19}{}}
|
||||
\newlabel{eq:lim_ebasis}{{20}{4}{}{equation.2.20}{}}
|
||||
\@writefile{toc}{\contentsline {subsubsection}{\numberline {2}Introduction of the effective spin-density}{4}{section*.10}}
|
||||
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3}Requirement for $\Psi _{}^{\mathcal {B}}$ for size extensivity}{4}{section*.11}}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {III}Results}{4}{section*.12}}
|
||||
\newlabel{sec:results}{{III}{4}{}{section*.12}{}}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {IV}Conclusion}{4}{section*.13}}
|
||||
\newlabel{sec:conclusion}{{IV}{4}{}{section*.13}{}}
|
||||
\bibcite{GomHenScu-JCP-19}{{9}{2019}{{Gomez, Henderson,\ and\ Scuseria}}{{}}}
|
||||
\bibcite{WerKno-JCP-88}{{10}{1988}{{Werner\ and\ Knowles}}{{}}}
|
||||
\bibcite{KnoWer-CPL-88}{{11}{1988}{{Knowles\ and\ Werner}}{{}}}
|
||||
@ -92,19 +110,6 @@
|
||||
\bibcite{BytRue-CP-09}{{23}{2009}{{Bytautas\ and\ Ruedenberg}}{{}}}
|
||||
\bibcite{GinSceCaf-CJC-13}{{24}{2013}{{Giner, Scemama,\ and\ Caffarel}}{{}}}
|
||||
\bibcite{CafGinScemRam-JCTC-14}{{25}{2014}{{Caffarel\ \emph {et~al.}}}{{Caffarel, Giner, Scemama,\ and\ Ram{\'\i }rez-Sol{\'\i }s}}}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {C}Definition of an range-separation parameter varying in real space}{4}{section*.7}}
|
||||
\newlabel{sec:mur}{{II\tmspace +\thinmuskip {.1667em}C}{4}{}{section*.7}{}}
|
||||
\newlabel{eq:weelr}{{11}{4}{}{equation.2.11}{}}
|
||||
\newlabel{eq:cbs_mu}{{14}{4}{}{equation.2.14}{}}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {D}Approximation for $\mathaccentV {bar}916{E}^\mathcal {B}[{n}({\bf r})]$ : link with RSDFT}{4}{section*.8}}
|
||||
\@writefile{toc}{\contentsline {subsubsection}{\numberline {1}Generic form of the approximations for functionals $\mathaccentV {bar}916{E}^\mathcal {B}[{n}({\bf r})]$}{4}{section*.9}}
|
||||
\newlabel{eq:lim_muinf}{{19}{4}{}{equation.2.19}{}}
|
||||
\@writefile{toc}{\contentsline {subsubsection}{\numberline {2}Introduction of the effective spin-density}{4}{section*.10}}
|
||||
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3}Requirement for $\Psi _{}^{\mathcal {B}}$ for size extensivity}{4}{section*.11}}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {III}Results}{4}{section*.12}}
|
||||
\newlabel{sec:results}{{III}{4}{}{section*.12}{}}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {IV}Conclusion}{4}{section*.13}}
|
||||
\newlabel{sec:conclusion}{{IV}{4}{}{section*.13}{}}
|
||||
\bibcite{GinSceCaf-JCP-15}{{26}{2015}{{Giner, Scemama,\ and\ Caffarel}}{{}}}
|
||||
\bibcite{CafAplGinScem-arxiv-16}{{27}{2016{}}{{Caffarel\ \emph {et~al.}}}{{Caffarel, Applencourt, Giner,\ and\ Scemama}}}
|
||||
\bibcite{CafAplGinSce-JCP-16}{{28}{2016{}}{{Caffarel\ \emph {et~al.}}}{{Caffarel, Applencourt, Giner,\ and\ Scemama}}}
|
||||
@ -113,6 +118,10 @@
|
||||
\bibcite{HolUmrSha-JCP-17}{{31}{2017}{{Holmes, Umrigar,\ and\ Sharma}}{{}}}
|
||||
\bibcite{ShaHolJeaAlaUmr-JCTC-17}{{32}{2017}{{Sharma\ \emph {et~al.}}}{{Sharma, Holmes, Jeanmairet, Alavi,\ and\ Umrigar}}}
|
||||
\bibcite{SchEva-JCTC-17}{{33}{2017}{{Schriber\ and\ Evangelista}}{{}}}
|
||||
\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces N$_2$, aug-cc-pvdz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{5}{figure.1}}
|
||||
\newlabel{fig:N2_avdz}{{1}{5}{N$_2$, aug-cc-pvdz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.1}{}}
|
||||
\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces N$_2$, aug-cc-pvtz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{5}{figure.2}}
|
||||
\newlabel{fig:N2_avtz}{{2}{5}{N$_2$, aug-cc-pvtz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.2}{}}
|
||||
\bibcite{PerCle-JCP-17}{{34}{2017}{{Per\ and\ Cleland}}{{}}}
|
||||
\bibcite{OhtJun-JCP-17}{{35}{2017}{{Ohtsuka\ and\ ya~Hasegawa}}{{}}}
|
||||
\bibcite{Zim-JCP-17}{{36}{2017}{{Zimmerman}}{{}}}
|
||||
@ -126,10 +135,6 @@
|
||||
\bibcite{LooBogSceCafJac-JCTC-19}{{44}{2019{}}{{Loos\ \emph {et~al.}}}{{Loos, Boggio-Pasqua, Scemama, Caffarel,\ and\ Jacquemin}}}
|
||||
\bibcite{Hyl-ZP-29}{{45}{1929}{{Hylleraas}}{{}}}
|
||||
\bibcite{Kut-TCA-85}{{46}{1985}{{Kutzelnigg}}{{}}}
|
||||
\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces N$_2$, aug-cc-pvdz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{5}{figure.1}}
|
||||
\newlabel{fig:N2_avdz}{{1}{5}{N$_2$, aug-cc-pvdz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.1}{}}
|
||||
\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces N$_2$, aug-cc-pvtz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{5}{figure.2}}
|
||||
\newlabel{fig:N2_avtz}{{2}{5}{N$_2$, aug-cc-pvtz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.2}{}}
|
||||
\bibcite{KutKlo-JCP-91}{{47}{1991}{{Kutzelnigg\ and\ Klopper}}{{}}}
|
||||
\bibcite{NogKut-JCP-94}{{48}{1994}{{Noga\ and\ Kutzelnigg}}{{}}}
|
||||
\bibcite{HalHelJorKloKocOlsWil-CPL-98}{{49}{1998}{{Halkier\ \emph {et~al.}}}{{Halkier, Helgaker, J{\o }rgensen, Klopper, Koch, Olsen,\ and\ Wilson}}}
|
||||
@ -141,6 +146,10 @@
|
||||
\bibcite{GruHirOhnTen-JCP-17}{{55}{2017}{{Gr\"uneis\ \emph {et~al.}}}{{Gr\"uneis, Hirata, Ohnishi,\ and\ Ten-no}}}
|
||||
\bibcite{MaWer-WIREs-18}{{56}{2018}{{Ma\ and\ Werner}}{{}}}
|
||||
\bibcite{TewKloNeiHat-PCCP-07}{{57}{2007}{{Tew\ \emph {et~al.}}}{{Tew, Klopper, Neiss,\ and\ Hattig}}}
|
||||
\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces F$_2$, aug-cc-pvdz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{6}{figure.3}}
|
||||
\newlabel{fig:F2_avdz}{{3}{6}{F$_2$, aug-cc-pvdz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.3}{}}
|
||||
\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces F$_2$, aug-cc-pvtz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{6}{figure.4}}
|
||||
\newlabel{fig:F2_avtz}{{4}{6}{F$_2$, aug-cc-pvtz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.4}{}}
|
||||
\bibcite{TouColSav-PRA-04}{{58}{2004}{{Toulouse, Colonna,\ and\ Savin}}{{}}}
|
||||
\bibcite{FraMusLupTou-JCP-15}{{59}{2015}{{Franck\ \emph {et~al.}}}{{Franck, Mussard, Luppi,\ and\ Toulouse}}}
|
||||
\bibcite{AngGerSavTou-PRA-05}{{60}{2005}{{\'Angy\'an\ \emph {et~al.}}}{{\'Angy\'an, Gerber, Savin,\ and\ Toulouse}}}
|
||||
@ -152,28 +161,25 @@
|
||||
\bibcite{LeiStoWerSav-CPL-97}{{66}{1997}{{Leininger\ \emph {et~al.}}}{{Leininger, Stoll, Werner,\ and\ Savin}}}
|
||||
\bibcite{FroTouJen-JCP-07}{{67}{2007}{{Fromager, Toulouse,\ and\ Jensen}}{{}}}
|
||||
\bibcite{FroCimJen-PRA-10}{{68}{2010}{{Fromager, Cimiraglia,\ and\ Jensen}}{{}}}
|
||||
\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces F$_2$, aug-cc-pvdz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{6}{figure.3}}
|
||||
\newlabel{fig:F2_avdz}{{3}{6}{F$_2$, aug-cc-pvdz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.3}{}}
|
||||
\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces F$_2$, aug-cc-pvtz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{6}{figure.4}}
|
||||
\newlabel{fig:F2_avtz}{{4}{6}{F$_2$, aug-cc-pvtz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.4}{}}
|
||||
\bibcite{HedKneKieJenRei-JCP-15}{{69}{2015}{{Hedeg{\r a}rd\ \emph {et~al.}}}{{Hedeg{\r a}rd, Knecht, Kielberg, Jensen,\ and\ Reiher}}}
|
||||
\bibcite{HedTouJen-JCP-18}{{70}{2018}{{Hedeg{\r a}rd, Toulouse,\ and\ Jensen}}{{}}}
|
||||
\bibcite{FerGinTou-JCP-18}{{71}{2019}{{Fert{\'e}, Giner,\ and\ Toulouse}}{{}}}
|
||||
\bibcite{GinPraFerAssSavTou-JCP-18}{{72}{2018}{{Giner\ \emph {et~al.}}}{{Giner, Pradines, Fert\'e, Assaraf, Savin,\ and\ Toulouse}}}
|
||||
\bibcite{LooPraSceTouGin-JCPL-19}{{73}{2019{}}{{Loos\ \emph {et~al.}}}{{Loos, Pradines, Scemama, Toulouse,\ and\ Giner}}}
|
||||
\bibcite{TouGorSav-TCA-05}{{74}{2005}{{Toulouse, Gori-Giorgi,\ and\ Savin}}{{}}}
|
||||
\bibcite{PerBurErn-PRL-96}{{75}{1996}{{Perdew, Burke,\ and\ Ernzerhof}}{{}}}
|
||||
\bibcite{GoriSav-PRA-06}{{76}{2006}{{Gori-Giorgi\ and\ Savin}}{{}}}
|
||||
\bibcite{PazMorGorBac-PRB-06}{{77}{2006}{{Paziani\ \emph {et~al.}}}{{Paziani, Moroni, Gori-Giorgi,\ and\ Bachelet}}}
|
||||
\bibcite{GritMeePer-PRA-18}{{78}{2018}{{Gritsenko, van Meer,\ and\ Pernal}}{{}}}
|
||||
\bibstyle{aipnum4-1}
|
||||
\citation{REVTEX41Control}
|
||||
\citation{aip41Control}
|
||||
\@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces H$_{10}$, cc-pvdz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{7}{figure.5}}
|
||||
\newlabel{fig:H10_vdz}{{5}{7}{H$_{10}$, cc-pvdz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.5}{}}
|
||||
\@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces H$_{10}$, cc-pvtz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{7}{figure.6}}
|
||||
\newlabel{fig:H10_vtz}{{6}{7}{H$_{10}$, cc-pvtz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.6}{}}
|
||||
\@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces H$_{10}$, cc-pvqz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{7}{figure.7}}
|
||||
\newlabel{fig:H10_vqz}{{7}{7}{H$_{10}$, cc-pvqz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.7}{}}
|
||||
\newlabel{LastBibItem}{{78}{7}{}{section*.13}{}}
|
||||
\newlabel{LastPage}{{}{7}{}{}{}}
|
||||
\bibcite{PerBurErn-PRL-96}{{75}{1996}{{Perdew, Burke,\ and\ Ernzerhof}}{{}}}
|
||||
\bibcite{GoriSav-PRA-06}{{76}{2006}{{Gori-Giorgi\ and\ Savin}}{{}}}
|
||||
\bibcite{PazMorGorBac-PRB-06}{{77}{2006}{{Paziani\ \emph {et~al.}}}{{Paziani, Moroni, Gori-Giorgi,\ and\ Bachelet}}}
|
||||
\bibcite{GritMeePer-PRA-18}{{78}{2018}{{Gritsenko, van Meer,\ and\ Pernal}}{{}}}
|
||||
\bibcite{CarTruGag-JPCA-17}{{79}{2017}{{Carlson, Truhlar,\ and\ Gagliardi}}{{}}}
|
||||
\bibstyle{aipnum4-1}
|
||||
\citation{REVTEX41Control}
|
||||
\citation{aip41Control}
|
||||
\newlabel{LastBibItem}{{79}{8}{}{section*.13}{}}
|
||||
\newlabel{LastPage}{{}{8}{}{}{}}
|
||||
|
@ -6,7 +6,7 @@
|
||||
%Control: page (0) single
|
||||
%Control: year (1) truncated
|
||||
%Control: production of eprint (0) enabled
|
||||
\begin{thebibliography}{78}%
|
||||
\begin{thebibliography}{79}%
|
||||
\makeatletter
|
||||
\providecommand \@ifxundefined [1]{%
|
||||
\@ifx{#1\undefined}
|
||||
@ -835,4 +835,13 @@
|
||||
{\doibase 10.1103/PhysRevA.98.062510} {\bibfield {journal} {\bibinfo
|
||||
{journal} {Phys. Rev. A}\ }\textbf {\bibinfo {volume} {98}},\ \bibinfo
|
||||
{pages} {062510} (\bibinfo {year} {2018})}\BibitemShut {NoStop}%
|
||||
\bibitem [{\citenamefont {Carlson}, \citenamefont {Truhlar},\ and\
|
||||
\citenamefont {Gagliardi}(2017)}]{CarTruGag-JPCA-17}%
|
||||
\BibitemOpen
|
||||
\bibfield {author} {\bibinfo {author} {\bibfnamefont {R.~K.}\ \bibnamefont
|
||||
{Carlson}}, \bibinfo {author} {\bibfnamefont {D.~G.}\ \bibnamefont
|
||||
{Truhlar}}, \ and\ \bibinfo {author} {\bibfnamefont {L.}~\bibnamefont
|
||||
{Gagliardi}},\ }\href@noop {} {\bibfield {journal} {\bibinfo {journal} {J.
|
||||
Phys. Chem. A}\ }\textbf {\bibinfo {volume} {121}},\ \bibinfo {pages} {5540}
|
||||
(\bibinfo {year} {2017})}\BibitemShut {NoStop}%
|
||||
\end{thebibliography}%
|
||||
|
@ -12657,4 +12657,3 @@ eprint = {https://doi.org/10.1021/acs.jpclett.9b01176}
|
||||
doi = {10.1103/PhysRevA.98.062510},
|
||||
url = {https://link.aps.org/doi/10.1103/PhysRevA.98.062510}
|
||||
}
|
||||
|
||||
|
@ -27,45 +27,45 @@ Control: page (0) single
|
||||
Control: year (1) truncated
|
||||
Control: production of eprint (0) enabled
|
||||
Warning--missing journal in CafAplGinScem-arxiv-16
|
||||
You've used 80 entries,
|
||||
You've used 81 entries,
|
||||
5918 wiz_defined-function locations,
|
||||
2180 strings with 31028 characters,
|
||||
and the built_in function-call counts, 82782 in all, are:
|
||||
= -- 5304
|
||||
> -- 2712
|
||||
< -- 506
|
||||
+ -- 842
|
||||
- -- 690
|
||||
* -- 12769
|
||||
:= -- 8522
|
||||
add.period$ -- 79
|
||||
call.type$ -- 80
|
||||
change.case$ -- 315
|
||||
chr.to.int$ -- 77
|
||||
cite$ -- 81
|
||||
duplicate$ -- 7366
|
||||
empty$ -- 5871
|
||||
format.name$ -- 1395
|
||||
if$ -- 16416
|
||||
2185 strings with 31117 characters,
|
||||
and the built_in function-call counts, 83825 in all, are:
|
||||
= -- 5372
|
||||
> -- 2749
|
||||
< -- 512
|
||||
+ -- 853
|
||||
- -- 699
|
||||
* -- 12928
|
||||
:= -- 8630
|
||||
add.period$ -- 80
|
||||
call.type$ -- 81
|
||||
change.case$ -- 319
|
||||
chr.to.int$ -- 78
|
||||
cite$ -- 82
|
||||
duplicate$ -- 7458
|
||||
empty$ -- 5945
|
||||
format.name$ -- 1413
|
||||
if$ -- 16624
|
||||
int.to.chr$ -- 4
|
||||
int.to.str$ -- 87
|
||||
missing$ -- 973
|
||||
newline$ -- 286
|
||||
num.names$ -- 234
|
||||
pop$ -- 3151
|
||||
int.to.str$ -- 88
|
||||
missing$ -- 985
|
||||
newline$ -- 289
|
||||
num.names$ -- 237
|
||||
pop$ -- 3194
|
||||
preamble$ -- 1
|
||||
purify$ -- 390
|
||||
purify$ -- 395
|
||||
quote$ -- 0
|
||||
skip$ -- 2923
|
||||
skip$ -- 2958
|
||||
stack$ -- 0
|
||||
substring$ -- 2163
|
||||
swap$ -- 7163
|
||||
text.length$ -- 252
|
||||
substring$ -- 2189
|
||||
swap$ -- 7251
|
||||
text.length$ -- 255
|
||||
text.prefix$ -- 0
|
||||
top$ -- 10
|
||||
type$ -- 1122
|
||||
type$ -- 1136
|
||||
warning$ -- 2
|
||||
while$ -- 310
|
||||
while$ -- 314
|
||||
width$ -- 0
|
||||
write$ -- 686
|
||||
write$ -- 694
|
||||
(There were 5 warnings)
|
||||
|
@ -4,9 +4,9 @@
|
||||
\BOOKMARK [1][-]{section*.4}{Theory}{section*.2}% 4
|
||||
\BOOKMARK [2][-]{section*.5}{Basic formal equations}{section*.4}% 5
|
||||
\BOOKMARK [2][-]{section*.6}{Definition of an effective interaction within B}{section*.4}% 6
|
||||
\BOOKMARK [2][-]{section*.7}{Definition of an range-separation parameter varying in real space}{section*.4}% 7
|
||||
\BOOKMARK [2][-]{section*.7}{Definition of a range-separation parameter varying in real space}{section*.4}% 7
|
||||
\BOOKMARK [2][-]{section*.8}{Approximation for B[n\(r\)] : link with RSDFT}{section*.4}% 8
|
||||
\BOOKMARK [3][-]{section*.9}{Generic form of the approximations for functionals B[n\(r\)]}{section*.8}% 9
|
||||
\BOOKMARK [3][-]{section*.9}{Generic form and properties of the approximations for functionals B[n\(r\)] }{section*.8}% 9
|
||||
\BOOKMARK [3][-]{section*.10}{Introduction of the effective spin-density}{section*.8}% 10
|
||||
\BOOKMARK [3][-]{section*.11}{Requirement for B for size extensivity}{section*.8}% 11
|
||||
\BOOKMARK [1][-]{section*.12}{Results}{section*.2}% 12
|
||||
|
@ -368,7 +368,7 @@ As it was shown in \cite{GinPraFerAssSavTou-JCP-18}, the effective interaction $
|
||||
\lim_{\Bas \rightarrow \text{CBS}} \wbasis = \frac{1}{|\br{1}-\br{2}|}.
|
||||
\end{equation}
|
||||
The condition of equation \eqref{eq:cbs_wbasis} is fundamental as it guarantees the good behaviour of all the theory in the limit of a complete basis set.
|
||||
\subsection{Definition of an range-separation parameter varying in real space}
|
||||
\subsection{Definition of a range-separation parameter varying in real space}
|
||||
\label{sec:mur}
|
||||
As the effective interaction within a basis set $\wbasis$ is non divergent, one can fit such a function with a long-range interaction defined in the framework of RSDFT which depends on the range-separation parameter $\mu$
|
||||
\begin{equation}
|
||||
@ -377,6 +377,7 @@ As the effective interaction within a basis set $\wbasis$ is non divergent, one
|
||||
\end{equation}
|
||||
As originally proposed in \cite{GinPraFerAssSavTou-JCP-18}, we introduce a range-separation parameter $\murpsi$ varying in real space
|
||||
\begin{equation}
|
||||
\label{eq:def_mur}
|
||||
\murpsi = \frac{\sqrt{\pi}}{2} \wbasiscoal
|
||||
\end{equation}
|
||||
such that
|
||||
@ -391,17 +392,19 @@ Because of the very definition of $\wbasis$, one has the following properties at
|
||||
which is fundamental to guarantee the good behaviour of the theory at the CBS limit.
|
||||
|
||||
\subsection{Approximation for $\efuncden{\denr}$ : link with RSDFT}
|
||||
\subsubsection{Generic form of the approximations for functionals $\efuncden{\denr}$}
|
||||
As originally proposed in Ref. \onlinecite{GinPraFerAssSavTou-JCP-18}, we approximate the complementary basis set functional $\efuncden{\denr}$ by using the so-called multi-determinant correlation functional (ECMD)\cite{TouGorSav-TCA-05}.
|
||||
Here, we extend the recent work\cite{LooPraSceTouGin-JCPL-19} and propose to use a PBE-like functional which uses the total density $\denr$, the spin polarisation $\xi(\br{}) = n_{\alpha}(\br{}) - n_{\beta}(\br{})$, reduced gradient $s(\br{}) = \nabla \denr/\denr^{4/3}$ and the on-top pair density $n^{2}(\br{})$ taken from a given wave function $\psibasis$.
|
||||
\subsubsection{Generic form and properties of the approximations for functionals $\efuncden{\denr}$ }
|
||||
As originally proposed and motivated in Ref. \onlinecite{GinPraFerAssSavTou-JCP-18}, we approximate the complementary basis set functional $\efuncden{\denr}$ by using the so-called multi-determinant correlation functional (ECMD) introduced by Toulouse and co-workers\cite{TouGorSav-TCA-05}.
|
||||
Following the recent work of some of the present authors\cite{LooPraSceTouGin-JCPL-19}, we propose to use a PBE-like functional which uses the total density $\denr$, the spin polarisation $\xi(\br{}) = n_{\alpha}(\br{}) - n_{\beta}(\br{})$, reduced gradient $s(\br{}) = \nabla \denr/\denr^{4/3}$ and the on-top pair density $n^{2}(\br{})$ taken from a given wave function $\psibasis$.
|
||||
Therefore, we take the following form for the approximation of $\efuncden{\denr}$:
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
\label{eq:def_ecmdpbebasis}
|
||||
\efuncdenpbe{\argebasis} = &\int d\br{} \,\denr \\ & \ecmd(\argrebasis)
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
where $\ecmd(\argebasis)$ is the correlation energy density defined as
|
||||
\begin{equation}
|
||||
\label{eq:def_ecmdpbe}
|
||||
\ecmd(\argebasis) = \frac{\varepsilon_{\text{c,PBE}}(\argepbe)}{1+ \mu^3 \beta(\argepbe)}
|
||||
\end{equation}
|
||||
with
|
||||
@ -409,15 +412,27 @@ with
|
||||
\beta(\argepbe) = \frac{3}{2\sqrt{\pi}(1 - \sqrt{2})}\frac{\varepsilon_{\text{c,PBE}}(\argepbe)}{n^{2}/\den},
|
||||
\end{equation}
|
||||
and where $\varepsilon_{\text{c,PBE}}(\argepbe)$ is the usual PBE correlation density\cite{PerBurErn-PRL-96}.
|
||||
As initially proposed by some of the authors~\cite{FerGinTou-JCP-18}, such a correlation energy density admits the two following limits
|
||||
The function $\ecmd(\argebasis)$ have been originally proposed by some of the authors~\cite{FerGinTou-JCP-18}, in order to fulfill the two following limits
|
||||
\begin{equation}
|
||||
\lim_{\mu \rightarrow 0} \ecmd(\argebasis) = \varepsilon_{\text{c,PBE}}(\argepbe)
|
||||
\end{equation}
|
||||
which can be qualified as the weak correlation regime, and
|
||||
\begin{equation}
|
||||
\label{eq:lim_muinf}
|
||||
\lim_{\mu \rightarrow \infty} \ecmd(\argebasis) = \frac{1}{\mu^3} n^{2}.
|
||||
\lim_{\mu \rightarrow \infty} \ecmd(\argebasis) = \frac{1}{\mu^3} n^{2} + o(\frac{1}{\mu^5})
|
||||
\end{equation}
|
||||
As it was previously shown\cite{TouColSav-PRA-04, GoriSav-PRA-06,PazMorGorBac-PRB-06}, the condition \eqref{eq:lim_muinf} is exact for the ECMD in the limit of large $\mu$ provided that $n^{2}$ is the \textit{exact} on-top pair density of the system. Therefore, in the present work we will approximate the \textit{exact} on-top pair density of the system by that computed by an approximated wave function $\psibasis$. In the context of RSDFT, some of the present authors have illustrated in Ref.~\cite{FerGinTou-JCP-18} that the on-top pair density plays a crucial role when reaching strong correlation limit, which have been also found in a related context by Pernal and co-workers\cite{GritMeePer-PRA-18}.
|
||||
which, as it was previously shown\cite{TouColSav-PRA-04, GoriSav-PRA-06,PazMorGorBac-PRB-06} by various authors, is the exact expression for the ECMD in the limit of large $\mu$ provided that $n^{2}$ is the \textit{exact} on-top pair density of the system.
|
||||
In the context of RSDFT, some of the present authors have illustrated in Ref.~\cite{FerGinTou-JCP-18} that the on-top pair density involved in eq. \eqref{eq:def_ecmdpbe} plays a crucial role when reaching strong correlation limit. The importance of the on-top pair density in the strong correlation regime have been also acknowledged by Pernal and co-workers\cite{GritMeePer-PRA-18} and Gagliardi and co-workers\cite{CarTruGag-JPCA-17}.
|
||||
Of course, the \textit{exact} on-top pair density of a system is rarely affordable and therefore, in the present work, we will approximate it by that computed by an approximated wave function $\psibasis$.
|
||||
|
||||
Within the definition of \eqref{eq:def_mur} and \eqref{eq:def_ecmdpbebasis}, the approximated complementary basis set functionals $\efuncdenpbe{\argebasis}$ satisfies two important properties.
|
||||
Because of the properties \eqref{eq:cbs_mu} and \eqref{eq:lim_muinf}, $\efuncdenpbe{\argebasis}$ vanishes when reaching the complete basis set limit, whatever the wave function $\psibasis$ used to define the range separation parameter $\mu_{\Psi^{\basis}}$:
|
||||
\begin{equation}
|
||||
\label{eq:lim_ebasis}
|
||||
\lim_{\basis \rightarrow \text{CBS}} \efuncdenpbe{\argebasis} = 0\quad \forall\, \psibasis.
|
||||
\end{equation}
|
||||
which guarantees an unaltered limit when reaching the CBS limit.
|
||||
Also, because of eq. \eqref{eq:lim_muinf}, $\efuncdenpbe{\argebasis}$ vanishes for systems with vanishing on-top pair density, which guarantees the good limit in the case of stretched H$_2$ and for one-electron system.
|
||||
\subsubsection{Introduction of the effective spin-density}
|
||||
\subsubsection{Requirement for $\wf{}{\Bas}$ for size extensivity}
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
Loading…
Reference in New Issue
Block a user