added some more stuffs for extensivity

This commit is contained in:
Emmanuel Giner 2019-10-13 23:22:30 +08:00
parent 0dc8ce505e
commit 6b9ed78ede
11 changed files with 1458 additions and 92 deletions

View File

@ -84,7 +84,17 @@
\@writefile{toc}{\contentsline {subsubsection}{\numberline {2}Properties of approximated functionals}{4}{section*.10}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {2}Properties of approximated functionals}{4}{section*.10}}
\newlabel{eq:lim_ebasis}{{22}{4}{}{equation.2.22}{}} \newlabel{eq:lim_ebasis}{{22}{4}{}{equation.2.22}{}}
\citation{GarBulHenScu-PCCP-15} \citation{GarBulHenScu-PCCP-15}
\citation{LooPraSceTouGin} \citation{LooPraSceTouGin-JCPL-19}
\citation{GorSav-PRA-06}
\@writefile{toc}{\contentsline {subsection}{\numberline {E}Requirements for the approximated functionals in the strong correlation }{5}{section*.11}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {1}Requirements: separability of the energies and $S_z$ invariance}{5}{section*.12}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {2}Condition for the functional $\mathaccentV {bar}916{E}_{\text {PBE}}^\mathcal {B}[{n},\xi ,s,n^{(2)},\mu _{\Psi ^{\mathcal {B}}}]$ to obtain $S_z$ invariance}{5}{section*.13}}
\newlabel{eq:def_effspin}{{23}{5}{}{equation.2.23}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {F}Requirement on $\Psi ^{\mathcal {B}}$ for the extensivity}{5}{section*.14}}
\@writefile{toc}{\contentsline {subsection}{\numberline {G}Approximations for the strong correlation regime}{5}{section*.15}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {1}Definition of the different types of functionals}{5}{section*.16}}
\newlabel{eq:def_pbeueg}{{24}{5}{}{equation.2.24}{}}
\newlabel{eq:def_n2ueg}{{25}{5}{}{equation.2.25}{}}
\bibdata{srDFT_SCNotes,srDFT_SC} \bibdata{srDFT_SCNotes,srDFT_SC}
\bibcite{Thom-PRL-10}{{1}{2010}{{Thom}}{{}}} \bibcite{Thom-PRL-10}{{1}{2010}{{Thom}}{{}}}
\bibcite{ScoTho-JCP-17}{{2}{2017}{{Scott\ and\ Thom}}{{}}} \bibcite{ScoTho-JCP-17}{{2}{2017}{{Scott\ and\ Thom}}{{}}}
@ -98,20 +108,6 @@
\bibcite{WerKno-JCP-88}{{10}{1988}{{Werner\ and\ Knowles}}{{}}} \bibcite{WerKno-JCP-88}{{10}{1988}{{Werner\ and\ Knowles}}{{}}}
\bibcite{KnoWer-CPL-88}{{11}{1988}{{Knowles\ and\ Werner}}{{}}} \bibcite{KnoWer-CPL-88}{{11}{1988}{{Knowles\ and\ Werner}}{{}}}
\bibcite{BenErn-PhysRev-1969}{{12}{1969}{{Bender\ and\ Davidson}}{{}}} \bibcite{BenErn-PhysRev-1969}{{12}{1969}{{Bender\ and\ Davidson}}{{}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {E}Approximations for the strong correlation regime}{5}{section*.11}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {1}Requirements: separability of the energies and $S_z$ invariance}{5}{section*.12}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {2}Condition for the functional $\mathaccentV {bar}916{E}_{\text {PBE}}^\mathcal {B}[{n},\xi ,s,n^{(2)},\mu _{\Psi ^{\mathcal {B}}}]$ to obtain $S_z$ invariance}{5}{section*.13}}
\newlabel{eq:def_effspin}{{23}{5}{}{equation.2.23}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3}Functionals for strong correlation}{5}{section*.14}}
\newlabel{eq:def_pbeueg}{{24}{5}{}{equation.2.24}{}}
\newlabel{eq:def_n2ueg}{{25}{5}{}{equation.2.25}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {F}Requirement on $\Psi ^{\mathcal {B}}$ for the extensivity of $\mu ({\bf r};\Psi _{}^{\mathcal {B}})$}{5}{section*.15}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {1}Introduction of the effective spin-density}{5}{section*.16}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {2}Requirement for $\Psi _{}^{\mathcal {B}}$ for size extensivity}{5}{section*.17}}
\@writefile{toc}{\contentsline {section}{\numberline {III}Results}{5}{section*.18}}
\newlabel{sec:results}{{III}{5}{}{section*.18}{}}
\@writefile{toc}{\contentsline {section}{\numberline {IV}Conclusion}{5}{section*.19}}
\newlabel{sec:conclusion}{{IV}{5}{}{section*.19}{}}
\bibcite{WhiHac-JCP-1969}{{13}{1969}{{Whitten\ and\ Hackmeyer}}{{}}} \bibcite{WhiHac-JCP-1969}{{13}{1969}{{Whitten\ and\ Hackmeyer}}{{}}}
\bibcite{HurMalRan-1973}{{14}{1973}{{Huron, Malrieu,\ and\ Rancurel}}{{}}} \bibcite{HurMalRan-1973}{{14}{1973}{{Huron, Malrieu,\ and\ Rancurel}}{{}}}
\bibcite{EvaDauMal-ChemPhys-83}{{15}{1983}{{Evangelisti, Daudey,\ and\ Malrieu}}{{}}} \bibcite{EvaDauMal-ChemPhys-83}{{15}{1983}{{Evangelisti, Daudey,\ and\ Malrieu}}{{}}}
@ -120,12 +116,6 @@
\bibcite{IllRubRic-JCP-88}{{18}{1988}{{Illas, Rubio,\ and\ Ricart}}{{}}} \bibcite{IllRubRic-JCP-88}{{18}{1988}{{Illas, Rubio,\ and\ Ricart}}{{}}}
\bibcite{PovRubIll-TCA-92}{{19}{1992}{{Povill, Rubio,\ and\ Illas}}{{}}} \bibcite{PovRubIll-TCA-92}{{19}{1992}{{Povill, Rubio,\ and\ Illas}}{{}}}
\bibcite{BunCarRam-JCP-06}{{20}{2006}{{Bunge\ and\ Carb{\'o}-Dorca}}{{}}} \bibcite{BunCarRam-JCP-06}{{20}{2006}{{Bunge\ and\ Carb{\'o}-Dorca}}{{}}}
\@writefile{lot}{\contentsline {table}{\numberline {I}{\ignorespaces Total energies (in Hartree) for HF and $E$ in aug-cc-pvdz for the He atom, F$_2$ (with F-F=1.411 angstroms) and the super non interacting system He--F$_2$. }}{6}{table.1}}
\newlabel{conv_He_table}{{I}{6}{Total energies (in Hartree) for HF and $E$ in aug-cc-pvdz for the He atom, F$_2$ (with F-F=1.411 angstroms) and the super non interacting system He--F$_2$}{table.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces N$_2$, aug-cc-pvdz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{6}{figure.1}}
\newlabel{fig:N2_avdz}{{1}{6}{N$_2$, aug-cc-pvdz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces N$_2$, aug-cc-pvtz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{6}{figure.2}}
\newlabel{fig:N2_avtz}{{2}{6}{N$_2$, aug-cc-pvtz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.2}{}}
\bibcite{AbrSheDav-CPL-05}{{21}{2005}{{Abrams\ and\ Sherrill}}{{}}} \bibcite{AbrSheDav-CPL-05}{{21}{2005}{{Abrams\ and\ Sherrill}}{{}}}
\bibcite{MusEngels-JCC-06}{{22}{2006}{{Musch\ and\ Engels}}{{}}} \bibcite{MusEngels-JCC-06}{{22}{2006}{{Musch\ and\ Engels}}{{}}}
\bibcite{BytRue-CP-09}{{23}{2009}{{Bytautas\ and\ Ruedenberg}}{{}}} \bibcite{BytRue-CP-09}{{23}{2009}{{Bytautas\ and\ Ruedenberg}}{{}}}
@ -144,15 +134,21 @@
\bibcite{Zim-JCP-17}{{36}{2017}{{Zimmerman}}{{}}} \bibcite{Zim-JCP-17}{{36}{2017}{{Zimmerman}}{{}}}
\bibcite{LiOttHolShaUmr-JCP-2018}{{37}{2018}{{Li\ \emph {et~al.}}}{{Li, Otten, Holmes, Sharma,\ and\ Umrigar}}} \bibcite{LiOttHolShaUmr-JCP-2018}{{37}{2018}{{Li\ \emph {et~al.}}}{{Li, Otten, Holmes, Sharma,\ and\ Umrigar}}}
\bibcite{ChiHolOttUmrShaZim-JPCA-18}{{38}{2018}{{Chien\ \emph {et~al.}}}{{Chien, Holmes, Otten, Umrigar, Sharma,\ and\ Zimmerman}}} \bibcite{ChiHolOttUmrShaZim-JPCA-18}{{38}{2018}{{Chien\ \emph {et~al.}}}{{Chien, Holmes, Otten, Umrigar, Sharma,\ and\ Zimmerman}}}
\@writefile{lot}{\contentsline {table}{\numberline {I}{\ignorespaces Total energies (in Hartree) for HF and $E$ in aug-cc-pvdz for the He atom, F$_2$ (with F-F=1.411 angstroms) and the super non interacting system He--F$_2$. }}{6}{table.1}}
\newlabel{conv_He_table}{{I}{6}{Total energies (in Hartree) for HF and $E$ in aug-cc-pvdz for the He atom, F$_2$ (with F-F=1.411 angstroms) and the super non interacting system He--F$_2$}{table.1}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {2}Introduction of the effective spin-density}{6}{section*.17}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3}Requirement for $\Psi _{}^{\mathcal {B}}$ for size extensivity}{6}{section*.18}}
\@writefile{toc}{\contentsline {section}{\numberline {III}Results}{6}{section*.19}}
\newlabel{sec:results}{{III}{6}{}{section*.19}{}}
\@writefile{toc}{\contentsline {section}{\numberline {IV}Conclusion}{6}{section*.20}}
\newlabel{sec:conclusion}{{IV}{6}{}{section*.20}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces N$_2$, aug-cc-pvdz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{6}{figure.1}}
\newlabel{fig:N2_avdz}{{1}{6}{N$_2$, aug-cc-pvdz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.1}{}}
\bibcite{SceBenJacCafLoo-JCP-18}{{39}{2018{}}{{Scemama\ \emph {et~al.}}}{{Scemama, Benali, Jacquemin, Caffarel,\ and\ Loos}}} \bibcite{SceBenJacCafLoo-JCP-18}{{39}{2018{}}{{Scemama\ \emph {et~al.}}}{{Scemama, Benali, Jacquemin, Caffarel,\ and\ Loos}}}
\bibcite{LooSceBloGarCafJac-JCTC-18}{{40}{2018}{{Loos\ \emph {et~al.}}}{{Loos, Scemama, Blondel, Garniron, Caffarel,\ and\ Jacquemin}}} \bibcite{LooSceBloGarCafJac-JCTC-18}{{40}{2018}{{Loos\ \emph {et~al.}}}{{Loos, Scemama, Blondel, Garniron, Caffarel,\ and\ Jacquemin}}}
\bibcite{GarSceGinCaffLoo-JCP-18}{{41}{2018}{{Garniron\ \emph {et~al.}}}{{Garniron, Scemama, Giner, Caffarel,\ and\ Loos}}} \bibcite{GarSceGinCaffLoo-JCP-18}{{41}{2018}{{Garniron\ \emph {et~al.}}}{{Garniron, Scemama, Giner, Caffarel,\ and\ Loos}}}
\bibcite{SceGarCafLoo-JCTC-18}{{42}{2018{}}{{Scemama\ \emph {et~al.}}}{{Scemama, Garniron, Caffarel,\ and\ Loos}}} \bibcite{SceGarCafLoo-JCTC-18}{{42}{2018{}}{{Scemama\ \emph {et~al.}}}{{Scemama, Garniron, Caffarel,\ and\ Loos}}}
\bibcite{GarGinMalSce-JCP-16}{{43}{2017}{{Garniron\ \emph {et~al.}}}{{Garniron, Giner, Malrieu,\ and\ Scemama}}} \bibcite{GarGinMalSce-JCP-16}{{43}{2017}{{Garniron\ \emph {et~al.}}}{{Garniron, Giner, Malrieu,\ and\ Scemama}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces F$_2$, aug-cc-pvdz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{7}{figure.3}}
\newlabel{fig:F2_avdz}{{3}{7}{F$_2$, aug-cc-pvdz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.3}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces F$_2$, aug-cc-pvtz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{7}{figure.4}}
\newlabel{fig:F2_avtz}{{4}{7}{F$_2$, aug-cc-pvtz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.4}{}}
\bibcite{LooBogSceCafJac-JCTC-19}{{44}{2019{}}{{Loos\ \emph {et~al.}}}{{Loos, Boggio-Pasqua, Scemama, Caffarel,\ and\ Jacquemin}}} \bibcite{LooBogSceCafJac-JCTC-19}{{44}{2019{}}{{Loos\ \emph {et~al.}}}{{Loos, Boggio-Pasqua, Scemama, Caffarel,\ and\ Jacquemin}}}
\bibcite{Hyl-ZP-29}{{45}{1929}{{Hylleraas}}{{}}} \bibcite{Hyl-ZP-29}{{45}{1929}{{Hylleraas}}{{}}}
\bibcite{Kut-TCA-85}{{46}{1985}{{Kutzelnigg}}{{}}} \bibcite{Kut-TCA-85}{{46}{1985}{{Kutzelnigg}}{{}}}
@ -170,34 +166,41 @@
\bibcite{TouColSav-PRA-04}{{58}{2004}{{Toulouse, Colonna,\ and\ Savin}}{{}}} \bibcite{TouColSav-PRA-04}{{58}{2004}{{Toulouse, Colonna,\ and\ Savin}}{{}}}
\bibcite{FraMusLupTou-JCP-15}{{59}{2015}{{Franck\ \emph {et~al.}}}{{Franck, Mussard, Luppi,\ and\ Toulouse}}} \bibcite{FraMusLupTou-JCP-15}{{59}{2015}{{Franck\ \emph {et~al.}}}{{Franck, Mussard, Luppi,\ and\ Toulouse}}}
\bibcite{AngGerSavTou-PRA-05}{{60}{2005}{{\'Angy\'an\ \emph {et~al.}}}{{\'Angy\'an, Gerber, Savin,\ and\ Toulouse}}} \bibcite{AngGerSavTou-PRA-05}{{60}{2005}{{\'Angy\'an\ \emph {et~al.}}}{{\'Angy\'an, Gerber, Savin,\ and\ Toulouse}}}
\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces N$_2$, aug-cc-pvtz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{7}{figure.2}}
\newlabel{fig:N2_avtz}{{2}{7}{N$_2$, aug-cc-pvtz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces F$_2$, aug-cc-pvdz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{7}{figure.3}}
\newlabel{fig:F2_avdz}{{3}{7}{F$_2$, aug-cc-pvdz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.3}{}}
\bibcite{GolWerSto-PCCP-05}{{61}{2005}{{Goll, Werner,\ and\ Stoll}}{{}}} \bibcite{GolWerSto-PCCP-05}{{61}{2005}{{Goll, Werner,\ and\ Stoll}}{{}}}
\bibcite{TouGerJanSavAng-PRL-09}{{62}{2009}{{Toulouse\ \emph {et~al.}}}{{Toulouse, Gerber, Jansen, Savin,\ and\ \'Angy\'an}}} \bibcite{TouGerJanSavAng-PRL-09}{{62}{2009}{{Toulouse\ \emph {et~al.}}}{{Toulouse, Gerber, Jansen, Savin,\ and\ \'Angy\'an}}}
\bibcite{JanHenScu-JCP-09}{{63}{2009}{{Janesko, Henderson,\ and\ Scuseria}}{{}}} \bibcite{JanHenScu-JCP-09}{{63}{2009}{{Janesko, Henderson,\ and\ Scuseria}}{{}}}
\bibcite{TouZhuSavJanAng-JCP-11}{{64}{2011}{{Toulouse\ \emph {et~al.}}}{{Toulouse, Zhu, Savin, Jansen,\ and\ \'Angy\'an}}} \bibcite{TouZhuSavJanAng-JCP-11}{{64}{2011}{{Toulouse\ \emph {et~al.}}}{{Toulouse, Zhu, Savin, Jansen,\ and\ \'Angy\'an}}}
\@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces H$_{10}$, cc-pvdz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{8}{figure.5}}
\newlabel{fig:H10_vdz}{{5}{8}{H$_{10}$, cc-pvdz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.5}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces H$_{10}$, cc-pvtz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{8}{figure.6}}
\newlabel{fig:H10_vtz}{{6}{8}{H$_{10}$, cc-pvtz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.6}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces H$_{10}$, cc-pvqz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{8}{figure.7}}
\newlabel{fig:H10_vqz}{{7}{8}{H$_{10}$, cc-pvqz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.7}{}}
\bibcite{MusReiAngTou-JCP-15}{{65}{2015}{{Mussard\ \emph {et~al.}}}{{Mussard, Reinhardt, \'Angy\'an,\ and\ Toulouse}}} \bibcite{MusReiAngTou-JCP-15}{{65}{2015}{{Mussard\ \emph {et~al.}}}{{Mussard, Reinhardt, \'Angy\'an,\ and\ Toulouse}}}
\bibcite{LeiStoWerSav-CPL-97}{{66}{1997}{{Leininger\ \emph {et~al.}}}{{Leininger, Stoll, Werner,\ and\ Savin}}} \bibcite{LeiStoWerSav-CPL-97}{{66}{1997}{{Leininger\ \emph {et~al.}}}{{Leininger, Stoll, Werner,\ and\ Savin}}}
\bibcite{FroTouJen-JCP-07}{{67}{2007}{{Fromager, Toulouse,\ and\ Jensen}}{{}}} \bibcite{FroTouJen-JCP-07}{{67}{2007}{{Fromager, Toulouse,\ and\ Jensen}}{{}}}
\bibcite{FroCimJen-PRA-10}{{68}{2010}{{Fromager, Cimiraglia,\ and\ Jensen}}{{}}} \bibcite{FroCimJen-PRA-10}{{68}{2010}{{Fromager, Cimiraglia,\ and\ Jensen}}{{}}}
\bibcite{HedKneKieJenRei-JCP-15}{{69}{2015}{{Hedeg{\r a}rd\ \emph {et~al.}}}{{Hedeg{\r a}rd, Knecht, Kielberg, Jensen,\ and\ Reiher}}} \bibcite{HedKneKieJenRei-JCP-15}{{69}{2015}{{Hedeg{\r a}rd\ \emph {et~al.}}}{{Hedeg{\r a}rd, Knecht, Kielberg, Jensen,\ and\ Reiher}}}
\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces F$_2$, aug-cc-pvtz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{8}{figure.4}}
\newlabel{fig:F2_avtz}{{4}{8}{F$_2$, aug-cc-pvtz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.4}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces H$_{10}$, cc-pvdz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{8}{figure.5}}
\newlabel{fig:H10_vdz}{{5}{8}{H$_{10}$, cc-pvdz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.5}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces H$_{10}$, cc-pvtz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{8}{figure.6}}
\newlabel{fig:H10_vtz}{{6}{8}{H$_{10}$, cc-pvtz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.6}{}}
\bibcite{HedTouJen-JCP-18}{{70}{2018}{{Hedeg{\r a}rd, Toulouse,\ and\ Jensen}}{{}}} \bibcite{HedTouJen-JCP-18}{{70}{2018}{{Hedeg{\r a}rd, Toulouse,\ and\ Jensen}}{{}}}
\bibcite{FerGinTou-JCP-18}{{71}{2019}{{Fert{\'e}, Giner,\ and\ Toulouse}}{{}}} \bibcite{FerGinTou-JCP-18}{{71}{2019}{{Fert{\'e}, Giner,\ and\ Toulouse}}{{}}}
\bibcite{GinPraFerAssSavTou-JCP-18}{{72}{2018}{{Giner\ \emph {et~al.}}}{{Giner, Pradines, Fert\'e, Assaraf, Savin,\ and\ Toulouse}}} \bibcite{GinPraFerAssSavTou-JCP-18}{{72}{2018}{{Giner\ \emph {et~al.}}}{{Giner, Pradines, Fert\'e, Assaraf, Savin,\ and\ Toulouse}}}
\bibcite{LooPraSceTouGin-JCPL-19}{{73}{2019{}}{{Loos\ \emph {et~al.}}}{{Loos, Pradines, Scemama, Toulouse,\ and\ Giner}}} \bibcite{LooPraSceTouGin-JCPL-19}{{73}{2019{}}{{Loos\ \emph {et~al.}}}{{Loos, Pradines, Scemama, Toulouse,\ and\ Giner}}}
\bibcite{TouGorSav-TCA-05}{{74}{2005}{{Toulouse, Gori-Giorgi,\ and\ Savin}}{{}}} \bibcite{TouGorSav-TCA-05}{{74}{2005}{{Toulouse, Gori-Giorgi,\ and\ Savin}}{{}}}
\bibcite{PerBurErn-PRL-96}{{75}{1996}{{Perdew, Burke,\ and\ Ernzerhof}}{{}}} \bibcite{PerBurErn-PRL-96}{{75}{1996}{{Perdew, Burke,\ and\ Ernzerhof}}{{}}}
\bibcite{GoriSav-PRA-06}{{76}{2006}{{Gori-Giorgi\ and\ Savin}}{{}}} \bibcite{GoriSav-PRA-06}{{76}{2006{}}{{Gori-Giorgi\ and\ Savin}}{{}}}
\bibcite{PazMorGorBac-PRB-06}{{77}{2006}{{Paziani\ \emph {et~al.}}}{{Paziani, Moroni, Gori-Giorgi,\ and\ Bachelet}}} \bibcite{PazMorGorBac-PRB-06}{{77}{2006}{{Paziani\ \emph {et~al.}}}{{Paziani, Moroni, Gori-Giorgi,\ and\ Bachelet}}}
\bibcite{GritMeePer-PRA-18}{{78}{2018}{{Gritsenko, van Meer,\ and\ Pernal}}{{}}} \bibcite{GritMeePer-PRA-18}{{78}{2018}{{Gritsenko, van Meer,\ and\ Pernal}}{{}}}
\bibcite{CarTruGag-JPCA-17}{{79}{2017}{{Carlson, Truhlar,\ and\ Gagliardi}}{{}}} \bibcite{CarTruGag-JPCA-17}{{79}{2017}{{Carlson, Truhlar,\ and\ Gagliardi}}{{}}}
\bibcite{GarBulHenScu-PCCP-15}{{80}{2015}{{Garza\ \emph {et~al.}}}{{Garza, Bulik, Henderson,\ and\ Scuseria}}} \bibcite{GarBulHenScu-PCCP-15}{{80}{2015}{{Garza\ \emph {et~al.}}}{{Garza, Bulik, Henderson,\ and\ Scuseria}}}
\bibcite{GorSav-PRA-06}{{81}{2006{}}{{Gori-Giorgi\ and\ Savin}}{{}}}
\bibstyle{aipnum4-1} \bibstyle{aipnum4-1}
\citation{REVTEX41Control} \citation{REVTEX41Control}
\citation{aip41Control} \citation{aip41Control}
\newlabel{LastBibItem}{{80}{9}{}{section*.19}{}} \@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces H$_{10}$, cc-pvqz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{9}{figure.7}}
\newlabel{fig:H10_vqz}{{7}{9}{H$_{10}$, cc-pvqz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.7}{}}
\newlabel{LastBibItem}{{81}{9}{}{section*.20}{}}
\newlabel{LastPage}{{}{9}{}{}{}} \newlabel{LastPage}{{}{9}{}{}{}}

View File

@ -6,7 +6,7 @@
%Control: page (0) single %Control: page (0) single
%Control: year (1) truncated %Control: year (1) truncated
%Control: production of eprint (0) enabled %Control: production of eprint (0) enabled
\begin{thebibliography}{80}% \begin{thebibliography}{81}%
\makeatletter \makeatletter
\providecommand \@ifxundefined [1]{% \providecommand \@ifxundefined [1]{%
\@ifx{#1\undefined} \@ifx{#1\undefined}
@ -808,13 +808,14 @@
}\textbf {\bibinfo {volume} {77}},\ \bibinfo {pages} {3865} (\bibinfo {year} }\textbf {\bibinfo {volume} {77}},\ \bibinfo {pages} {3865} (\bibinfo {year}
{1996})}\BibitemShut {NoStop}% {1996})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Gori-Giorgi}\ and\ \citenamefont \bibitem [{\citenamefont {Gori-Giorgi}\ and\ \citenamefont
{Savin}(2006)}]{GoriSav-PRA-06}% {Savin}(2006{\natexlab{a}})}]{GoriSav-PRA-06}%
\BibitemOpen \BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {P.}~\bibnamefont \bibfield {author} {\bibinfo {author} {\bibfnamefont {P.}~\bibnamefont
{Gori-Giorgi}}\ and\ \bibinfo {author} {\bibfnamefont {A.}~\bibnamefont {Gori-Giorgi}}\ and\ \bibinfo {author} {\bibfnamefont {A.}~\bibnamefont
{Savin}},\ }\href {\doibase 10.1103/PhysRevA.73.032506} {\bibfield {journal} {Savin}},\ }\href {\doibase 10.1103/PhysRevA.73.032506} {\bibfield {journal}
{\bibinfo {journal} {Phys. Rev. A}\ }\textbf {\bibinfo {volume} {73}},\ {\bibinfo {journal} {Phys. Rev. A}\ }\textbf {\bibinfo {volume} {73}},\
\bibinfo {pages} {032506} (\bibinfo {year} {2006})}\BibitemShut {NoStop}% \bibinfo {pages} {032506} (\bibinfo {year} {2006}{\natexlab{a}})}\BibitemShut
{NoStop}%
\bibitem [{\citenamefont {Paziani}\ \emph {et~al.}(2006)\citenamefont \bibitem [{\citenamefont {Paziani}\ \emph {et~al.}(2006)\citenamefont
{Paziani}, \citenamefont {Moroni}, \citenamefont {Gori-Giorgi},\ and\ {Paziani}, \citenamefont {Moroni}, \citenamefont {Gori-Giorgi},\ and\
\citenamefont {Bachelet}}]{PazMorGorBac-PRB-06}% \citenamefont {Bachelet}}]{PazMorGorBac-PRB-06}%
@ -855,4 +856,13 @@
}\href@noop {} {\bibfield {journal} {\bibinfo {journal} {Phys. Chem. Chem. }\href@noop {} {\bibfield {journal} {\bibinfo {journal} {Phys. Chem. Chem.
Phys.}\ }\textbf {\bibinfo {volume} {17}},\ \bibinfo {pages} {22412} Phys.}\ }\textbf {\bibinfo {volume} {17}},\ \bibinfo {pages} {22412}
(\bibinfo {year} {2015})}\BibitemShut {NoStop}% (\bibinfo {year} {2015})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Gori-Giorgi}\ and\ \citenamefont
{Savin}(2006{\natexlab{b}})}]{GorSav-PRA-06}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {P.}~\bibnamefont
{Gori-Giorgi}}\ and\ \bibinfo {author} {\bibfnamefont {A.}~\bibnamefont
{Savin}},\ }\href {\doibase 10.1103/PhysRevA.73.032506} {\bibfield {journal}
{\bibinfo {journal} {Phys. Rev. A}\ }\textbf {\bibinfo {volume} {73}},\
\bibinfo {pages} {032506} (\bibinfo {year} {2006}{\natexlab{b}})}\BibitemShut
{NoStop}%
\end{thebibliography}% \end{thebibliography}%

View File

@ -14,7 +14,6 @@ Database file #2: srDFT_SC.bib
Warning--I didn't find a database entry for "exicted" Warning--I didn't find a database entry for "exicted"
Warning--I didn't find a database entry for "excited" Warning--I didn't find a database entry for "excited"
Warning--I didn't find a database entry for "kato" Warning--I didn't find a database entry for "kato"
Warning--I didn't find a database entry for "LooPraSceTouGin"
control{REVTEX41Control}, control.key{N/A}, control.author{N/A}, control.editor{N/A}, control.title{N/A}, control.pages{N/A}, control.year{N/A}, control.eprint{N/A}, control{REVTEX41Control}, control.key{N/A}, control.author{N/A}, control.editor{N/A}, control.title{N/A}, control.pages{N/A}, control.year{N/A}, control.eprint{N/A},
control{aip41Control}, control.key{N/A}, control.author{N/A}, control.editor{N/A}, control.title{}, control.pages{0}, control.year{N/A}, control.eprint{N/A}, control{aip41Control}, control.key{N/A}, control.author{N/A}, control.editor{N/A}, control.title{}, control.pages{0}, control.year{N/A}, control.eprint{N/A},
Warning--jnrlst (dependency: not reversed) set 1 Warning--jnrlst (dependency: not reversed) set 1
@ -28,45 +27,45 @@ Control: page (0) single
Control: year (1) truncated Control: year (1) truncated
Control: production of eprint (0) enabled Control: production of eprint (0) enabled
Warning--missing journal in CafAplGinScem-arxiv-16 Warning--missing journal in CafAplGinScem-arxiv-16
You've used 82 entries, You've used 83 entries,
5918 wiz_defined-function locations, 5918 wiz_defined-function locations,
2192 strings with 31260 characters, 2192 strings with 31256 characters,
and the built_in function-call counts, 84952 in all, are: and the built_in function-call counts, 85895 in all, are:
= -- 5441 = -- 5509
> -- 2788 > -- 2814
< -- 519 < -- 524
+ -- 865 + -- 874
- -- 709 - -- 715
* -- 13106 * -- 13242
:= -- 8744 := -- 8845
add.period$ -- 81 add.period$ -- 82
call.type$ -- 82 call.type$ -- 83
change.case$ -- 323 change.case$ -- 327
chr.to.int$ -- 79 chr.to.int$ -- 79
cite$ -- 83 cite$ -- 84
duplicate$ -- 7558 duplicate$ -- 7640
empty$ -- 6026 empty$ -- 6094
format.name$ -- 1434 format.name$ -- 1447
if$ -- 16850 if$ -- 17038
int.to.chr$ -- 4 int.to.chr$ -- 5
int.to.str$ -- 89 int.to.str$ -- 90
missing$ -- 998 missing$ -- 1009
newline$ -- 292 newline$ -- 295
num.names$ -- 240 num.names$ -- 243
pop$ -- 3236 pop$ -- 3272
preamble$ -- 1 preamble$ -- 1
purify$ -- 400 purify$ -- 405
quote$ -- 0 quote$ -- 0
skip$ -- 2995 skip$ -- 3031
stack$ -- 0 stack$ -- 0
substring$ -- 2218 substring$ -- 2250
swap$ -- 7349 swap$ -- 7428
text.length$ -- 259 text.length$ -- 261
text.prefix$ -- 0 text.prefix$ -- 0
top$ -- 10 top$ -- 10
type$ -- 1151 type$ -- 1164
warning$ -- 2 warning$ -- 2
while$ -- 318 while$ -- 322
width$ -- 0 width$ -- 0
write$ -- 702 write$ -- 710
(There were 6 warnings) (There were 5 warnings)

View File

@ -8,12 +8,13 @@
\BOOKMARK [2][-]{section*.8}{Generic form and properties of the approximations for B[n\(r\)] }{section*.4}% 8 \BOOKMARK [2][-]{section*.8}{Generic form and properties of the approximations for B[n\(r\)] }{section*.4}% 8
\BOOKMARK [3][-]{section*.9}{Generic form of the approximated functionals}{section*.8}% 9 \BOOKMARK [3][-]{section*.9}{Generic form of the approximated functionals}{section*.8}% 9
\BOOKMARK [3][-]{section*.10}{Properties of approximated functionals}{section*.8}% 10 \BOOKMARK [3][-]{section*.10}{Properties of approximated functionals}{section*.8}% 10
\BOOKMARK [2][-]{section*.11}{Approximations for the strong correlation regime}{section*.4}% 11 \BOOKMARK [2][-]{section*.11}{Requirements for the approximated functionals in the strong correlation }{section*.4}% 11
\BOOKMARK [3][-]{section*.12}{Requirements: separability of the energies and Sz invariance}{section*.11}% 12 \BOOKMARK [3][-]{section*.12}{Requirements: separability of the energies and Sz invariance}{section*.11}% 12
\BOOKMARK [3][-]{section*.13}{Condition for the functional PBEB[n,,s,n\(2\),B] to obtain Sz invariance}{section*.11}% 13 \BOOKMARK [3][-]{section*.13}{Condition for the functional PBEB[n,,s,n\(2\),B] to obtain Sz invariance}{section*.11}% 13
\BOOKMARK [3][-]{section*.14}{Functionals for strong correlation}{section*.11}% 14 \BOOKMARK [2][-]{section*.14}{Requirement on B for the extensivity}{section*.4}% 14
\BOOKMARK [2][-]{section*.15}{Requirement on B for the extensivity of \(r;B\)}{section*.4}% 15 \BOOKMARK [2][-]{section*.15}{Approximations for the strong correlation regime}{section*.4}% 15
\BOOKMARK [3][-]{section*.16}{Introduction of the effective spin-density}{section*.15}% 16 \BOOKMARK [3][-]{section*.16}{Definition of the different types of functionals}{section*.15}% 16
\BOOKMARK [3][-]{section*.17}{Requirement for B for size extensivity}{section*.15}% 17 \BOOKMARK [3][-]{section*.17}{Introduction of the effective spin-density}{section*.15}% 17
\BOOKMARK [1][-]{section*.18}{Results}{section*.2}% 18 \BOOKMARK [3][-]{section*.18}{Requirement for B for size extensivity}{section*.15}% 18
\BOOKMARK [1][-]{section*.19}{Conclusion}{section*.2}% 19 \BOOKMARK [1][-]{section*.19}{Results}{section*.2}% 19
\BOOKMARK [1][-]{section*.20}{Conclusion}{section*.2}% 20

View File

@ -72,6 +72,7 @@
\newcommand{\argebasis}[0]{\den,\xi,s,\ntwo,\mu_{\Psi^{\basis}}} \newcommand{\argebasis}[0]{\den,\xi,s,\ntwo,\mu_{\Psi^{\basis}}}
\newcommand{\argecmd}[0]{\den,\xi,s,\ntwo,\mu} \newcommand{\argecmd}[0]{\den,\xi,s,\ntwo,\mu}
\newcommand{\argepbeueg}[0]{\den,\xi,s,\ntwo_{\text{UEG}},\mu_{\Psi^{\basis}}} \newcommand{\argepbeueg}[0]{\den,\xi,s,\ntwo_{\text{UEG}},\mu_{\Psi^{\basis}}}
\newcommand{\argepbeuegxihf}[0]{\den,\xi,s,\ntwo_{\text{UEG}},\mu_{\text{HF}}^{\basis}}
\newcommand{\argepbeuegspin}[0]{\den,\Xi,s,\ntwo_{\text{UEG}},\mu_{\Psi^{\basis}}} \newcommand{\argepbeuegspin}[0]{\den,\Xi,s,\ntwo_{\text{UEG}},\mu_{\Psi^{\basis}}}
\newcommand{\argrebasis}[0]{\denr,\xi(\br{}),s,\ntwo(\br{}),\mu_{\Psi^{\basis}}(\br{})} \newcommand{\argrebasis}[0]{\denr,\xi(\br{}),s,\ntwo(\br{}),\mu_{\Psi^{\basis}}(\br{})}
\newcommand{\ecmubis}[0]{\bar{E}_{\text{c,md}}^{\text{sr}}[\denr;\,\mu]} \newcommand{\ecmubis}[0]{\bar{E}_{\text{c,md}}^{\text{sr}}[\denr;\,\mu]}
@ -220,6 +221,7 @@
\newcommand{\bx}[1]{\mathbf{x}_{#1}} \newcommand{\bx}[1]{\mathbf{x}_{#1}}
\newcommand{\dbr}[1]{d\br{#1}} \newcommand{\dbr}[1]{d\br{#1}}
\newcommand{\PBEspin}{PBEspin} \newcommand{\PBEspin}{PBEspin}
\newcommand{\PBEueg}{PBE-UEG-{$\Xi$}}
\newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\'e de Toulouse, CNRS, UPS, France} \newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\'e de Toulouse, CNRS, UPS, France}
\newcommand{\LCT}{Laboratoire de Chimie Th\'eorique, Universit\'e Pierre et Marie Curie, Sorbonne Universit\'e, CNRS, Paris, France} \newcommand{\LCT}{Laboratoire de Chimie Th\'eorique, Universit\'e Pierre et Marie Curie, Sorbonne Universit\'e, CNRS, Paris, France}
@ -375,6 +377,7 @@ As it was shown in Ref. \onlinecite{GinPraFerAssSavTou-JCP-18}, the effective in
\lim_{\Bas \rightarrow \text{CBS}} \wbasis = \frac{1}{|\br{1}-\br{2}|}\quad \forall\,\psibasis. \lim_{\Bas \rightarrow \text{CBS}} \wbasis = \frac{1}{|\br{1}-\br{2}|}\quad \forall\,\psibasis.
\end{equation} \end{equation}
The condition of equation \eqref{eq:cbs_wbasis} is fundamental as it guarantees the good behaviour of all the theory in the limit of a complete basis set. The condition of equation \eqref{eq:cbs_wbasis} is fundamental as it guarantees the good behaviour of all the theory in the limit of a complete basis set.
\subsection{Definition of a range-separation parameter varying in real space} \subsection{Definition of a range-separation parameter varying in real space}
\label{sec:mur} \label{sec:mur}
As the effective interaction within a basis set $\wbasis$ is non divergent, one can fit such a function with a long-range interaction defined in the framework of RSDFT which depends on the range-separation parameter $\mu$ As the effective interaction within a basis set $\wbasis$ is non divergent, one can fit such a function with a long-range interaction defined in the framework of RSDFT which depends on the range-separation parameter $\mu$
@ -455,7 +458,7 @@ which guarantees an unaltered limit when reaching the CBS limit.
Also, the $\efuncdenpbe{\argecmd}$ vanishes for systems with vanishing on-top pair density, which guarantees the good limit in the case of stretched H$_2$ and for one-electron system. Also, the $\efuncdenpbe{\argecmd}$ vanishes for systems with vanishing on-top pair density, which guarantees the good limit in the case of stretched H$_2$ and for one-electron system.
Such a property is guaranteed independently by i) the definition of the effective interaction $\wbasis$ (see equation \eqref{eq:wbasis}) together with the condition \eqref{eq:lim_muinf}, ii) the fact that the $\ecmd(\argecmd)$ vanishes when the on-top pair density vanishes (see equation \eqref{eq:lim_n2}). Such a property is guaranteed independently by i) the definition of the effective interaction $\wbasis$ (see equation \eqref{eq:wbasis}) together with the condition \eqref{eq:lim_muinf}, ii) the fact that the $\ecmd(\argecmd)$ vanishes when the on-top pair density vanishes (see equation \eqref{eq:lim_n2}).
\subsection{Approximations for the strong correlation regime} \subsection{Requirements for the approximated functionals in the strong correlation }
\subsubsection{Requirements: separability of the energies and $S_z$ invariance} \subsubsection{Requirements: separability of the energies and $S_z$ invariance}
An important requirement for any electronic structure method is the extensivity of the energy, \textit{i. e.} the additivity of the energies in the case of non interacting fragments, which is particularly important to avoid any ambiguity in computing interaction energies. An important requirement for any electronic structure method is the extensivity of the energy, \textit{i. e.} the additivity of the energies in the case of non interacting fragments, which is particularly important to avoid any ambiguity in computing interaction energies.
When two subsystems $A$ and $B$ dissociate in closed shell systems, as in the case of weak interactions for instance, a simple HF wave function leads to extensive energies. When two subsystems $A$ and $B$ dissociate in closed shell systems, as in the case of weak interactions for instance, a simple HF wave function leads to extensive energies.
@ -464,8 +467,7 @@ Another important requirement is the independence of the energy with respect to
Such a property is also important in the context of covalent bond breaking where the ground state of the super system $A+B$ is in general of low spin while the ground states of the fragments $A$ and $B$ are in high spin which can have multiple $S_z$ components. Such a property is also important in the context of covalent bond breaking where the ground state of the super system $A+B$ is in general of low spin while the ground states of the fragments $A$ and $B$ are in high spin which can have multiple $S_z$ components.
\subsubsection{Condition for the functional $\efuncdenpbe{\argebasis}$ to obtain $S_z$ invariance} \subsubsection{Condition for the functional $\efuncdenpbe{\argebasis}$ to obtain $S_z$ invariance}
A sufficient condition to achieve $S_z$ invariance is to eliminate all dependency to any quantity related to $S_z$, which is the spin density $s(\b{})$ in the case of the definition $\ecmd(\argecmd)$. A sufficient condition to achieve $S_z$ invariance is to eliminate all dependency to $S_z$, which for the $\ecmd(\argecmd)$, is the spin density $s(\br{})$ involved in the correlation energy density $\varepsilon_{\text{c,PBE}}(\argepbe)$ (see equation \eqref{eq:def_ecmdpbe}). A possible way to eliminate the $S_z$ dependency would be to simply set $\xi(\br{})=0$, but this would lower the accuracy of the usual PBE correlation functional $\varepsilon_{\text{c,PBE}}(\argepbe)$. Therefore, we use the effective spin density depending on the on-top pair density and the total density introduced by Scuseria and co-workers\cite{GarBulHenScu-PCCP-15} which reads
The spin density is involved in the usual PBE correlation functional $\varepsilon_{\text{c,PBE}}(\argepbe)$ which contributes to the definition of $\ecmd(\argecmd)$ (see equation \eqref{eq:def_ecmdpbe}). A possible way to eliminate the $S_z$ dependency would be then to simply set $\xi(\br{})=0$, but this would lower the accuracy of the usual PBE correlation functional $\varepsilon_{\text{c,PBE}}(\argepbe)$. Therefore, we use the proposal by Scuseria and co-workers\cite{GarBulHenScu-PCCP-15} which introduce an effective spin density depending on the on-top pair density and the total density
\begin{equation} \begin{equation}
\label{eq:def_effspin} \label{eq:def_effspin}
\Xi(n,\ntwo) = \Xi(n,\ntwo) =
@ -474,26 +476,39 @@ The spin density is involved in the usual PBE correlation functional $\varepsilo
0 & \text{otherwise.} 0 & \text{otherwise.}
\end{cases} \end{cases}
\end{equation} \end{equation}
The definition of equation \eqref{eq:def_effspin} is exact when $n$ and $\ntwo$ are obtained from a single Slater determinant. Such a definition is inspired by the spin density of a single determinant, which has precisely the form of \eqref{eq:def_effspin}.
With this definition, the $\Xi(n,\ntwo)$ depends only on $S_z$ invariants quantities, which naturally makes it $S_z$ invariant. With this definition, the $\Xi(n,\ntwo)$ depends only on $S_z$ invariants quantities, which naturally makes it $S_z$ invariant.
We also propose
\subsubsection{Functionals for strong correlation} \subsection{Requirement on $\psibasis$ for the extensivity}
The first one, referred as the \PBEspin functional, is a natural extension with effective spin density of the previously introduced PBE\cite{LooPraSceTouGin}, In the case of the present basis set correction, as $\efuncdenpbe{\argebasis}$ depends only on local quantities, one sufficient condition for the extensivity is that these quantities must be the same on the system $A$ that in the subsystem $A$ of the super system $A+B$ in the limit of non interacting fragments.
As all these quantities are properties of the wave function $\psibasis$, the extensivity requires that the wave function factorise in the limit of non-interacting fragments, that is $\Psi_{A\ldots B}^{\basis} = \Psi_A^{\basis} \Psi_B^{\basis}$.
In the case where the two subsystems $A$ and $B$ dissociate in closed shell systems, a simple HF wave function ensures this property, but when one or several covalent bonds are broken, the use of a properly chosen CASSCF wave function is sufficient to recover this property, as will be numerically illustrated in section \ref{sec:separability}.
The condition for the active space involved in the CASSCF wave function is that it has to lead to extensive energies in the limit of dissociated fragments.
\subsection{Approximations for the strong correlation regime}
\subsubsection{Definition of the different types of functionals}
As the present work proposes to investigate the performance of different flavours of functionals by varying different physical ingredients, we propose here a general nomenclature in order to make things easier.
The functionals $\efuncdenpbe{\argebasis}$ depends on: i) the wave function $\psibasis$ used to determine the $\murpsi$ and the various density related quantities, ii) the flavour of on-top pair density used, iii) the type of spin density used.
Therefore, we propose to use the following notations: PBE-"on-top"-"spin-density"-$\psibasis$.
For instance, within this convention the PBE-UEG-$\xi$-HF is the functional which was introduced in Ref. \onlinecite{LooPraSceTouGin-JCPL-19} and which reads
\begin{equation} \begin{equation}
\label{eq:def_pbeueg} \label{eq:def_pbeueg}
\begin{aligned} \begin{aligned}
\efuncdenpbe{\argepbeuegspin} = &\int d\br{} \,\denr \\ & \ecmd(\argepbeuegspin) \efuncdenpbe{\argepbeuegxihf} = &\int d\br{} \,\denr \\ & \ecmd(\argepbeuegxihf)
\end{aligned} \end{aligned}
\end{equation} \end{equation}
where $\ntwo_{\text{UEG}}$ is the on-top pair density of the UEG defined as where $\ntwo_{\text{UEG}}$ is an approximation of the on-top pair density of the uniform electron gas (UEG) defined as
\begin{equation} \begin{equation}
\label{eq:def_n2ueg} \label{eq:def_n2ueg}
\ntwo_{\text{UEG}}(n,\xi) = n^2(1-\xi)g_0(n). \ntwo_{\text{UEG}}(n,\xi) = n^2(1-\xi)g_0(n)
\end{equation} \end{equation}
Therefore, such a functional used the on-top pair density of the UEG computed with the total density and effective spin density which depends on the on-top pair density. using the pair-distribution function $g_0(n)$ of equation (46) of Ref. \onlinecite{GorSav-PRA-06}.
Therefore, such a functional uses a HF wave function to define; i)the $\murpsi$, ii) the total density, reduced density gradients, regular spin density $\xi$ and uses the UEG-like on-top pair density.
\subsection{Requirement on $\psibasis$ for the extensivity of $\murpsi$}
\begin{table*} \begin{table*}
\caption{Total energies (in Hartree) for HF and $E$ in aug-cc-pvdz for the He atom, F$_2$ (with F-F=1.411 angstroms) and the super non interacting system He--F$_2$. } \caption{Total energies (in Hartree) for HF and $E$ in aug-cc-pvdz for the He atom, F$_2$ (with F-F=1.411 angstroms) and the super non interacting system He--F$_2$. }
\begin{tabular}{lcc} \begin{tabular}{lcc}
@ -510,8 +525,6 @@ Error to additivity & 1.2 $\times 10^{-12}$ & 7 $\times 10^{-15}$
\end{table*} \end{table*}
In the case of the present basis set correction, as $\murpsi$ is a local quantity, one of the necessary but not sufficient requirements for extensivity is that $\murpsi$ must be the same on the system $A$ that in the subsystem $A$ of the super system $A+B$ in the limit of non interacting fragments.
\subsubsection{Introduction of the effective spin-density} \subsubsection{Introduction of the effective spin-density}

View File

@ -0,0 +1,270 @@
Date: 13/10/2019 22:24:33
===============
Quantum Package
===============
Git Commit: trying to fix the casscf
Git Date : Wed Sep 18 13:55:16 2019 +0200
Git SHA1 : c8cd1611626d12424fa9776ad42e17a0ce2ce228
EZFIO Dir : n.ezfio
Task server running : tcp://127.0.1.1:41279
.. >>>>> [ IO READ: no_core_density ] <<<<< ..
.. >>>>> [ RES MEM : 0.004505 GB ] [ VIRT MEM : 0.041687 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.000199 s ] [ CPU TIME: 0.001915 s ] <<<<< ..
.. >>>>> [ IO READ: on_top_from_cas ] <<<<< ..
.. >>>>> [ RES MEM : 0.004765 GB ] [ VIRT MEM : 0.041687 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.000384 s ] [ CPU TIME: 0.002039 s ] <<<<< ..
.. >>>>> [ IO READ: mu_of_r_potential ] <<<<< ..
.. >>>>> [ RES MEM : 0.004841 GB ] [ VIRT MEM : 0.041679 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.000553 s ] [ CPU TIME: 0.002147 s ] <<<<< ..
.. >>>>> [ IO READ: read_wf ] <<<<< ..
.. >>>>> [ RES MEM : 0.004841 GB ] [ VIRT MEM : 0.041679 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.000719 s ] [ CPU TIME: 0.002252 s ] <<<<< ..
.. >>>>> [ IO READ: mu_of_r_functional ] <<<<< ..
.. >>>>> [ RES MEM : 0.004841 GB ] [ VIRT MEM : 0.041679 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.000907 s ] [ CPU TIME: 0.002379 s ] <<<<< ..
LDA, PBE and PBE-on-top / mu(r) PSI coallescence with frozen core interaction
****************************************
Functional used = basis_set_on_top_PBE
****************************************
mu_of_r_potential = psi_cas_ful
MR DFT energy with pure correlation part for the DFT
.. >>>>> [ IO READ: grid_type_sgn ] <<<<< ..
.. >>>>> [ RES MEM : 0.004841 GB ] [ VIRT MEM : 0.041679 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.001095 s ] [ CPU TIME: 0.002507 s ] <<<<< ..
.. >>>>> [ IO READ: nucl_num ] <<<<< ..
.. >>>>> [ RES MEM : 0.004841 GB ] [ VIRT MEM : 0.041679 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.001283 s ] [ CPU TIME: 0.002633 s ] <<<<< ..
.. >>>>> [ IO READ: nucl_charge ] <<<<< ..
.. >>>>> [ RES MEM : 0.004841 GB ] [ VIRT MEM : 0.065128 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.004089 s ] [ CPU TIME: 0.008215 s ] <<<<< ..
.. >>>>> [ IO READ: nucl_label ] <<<<< ..
.. >>>>> [ RES MEM : 0.004841 GB ] [ VIRT MEM : 0.065128 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.004391 s ] [ CPU TIME: 0.008912 s ] <<<<< ..
.. >>>>> [ RES MEM : 0.004841 GB ] [ VIRT MEM : 0.190128 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.004694 s ] [ CPU TIME: 0.009648 s ] <<<<< ..
Nuclear Coordinates (Angstroms)
===============================
================ ============ ============ ============ ============
Atom Charge X Y Z
================ ============ ============ ============ ============
N 7.000000 0.000000 0.000000 0.000000
================ ============ ============ ============ ============
.. >>>>> [ IO READ: thresh_grid ] <<<<< ..
.. >>>>> [ RES MEM : 0.006584 GB ] [ VIRT MEM : 0.190979 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.007206 s ] [ CPU TIME: 0.020426 s ] <<<<< ..
n_points_final_grid = 22046
n max point = 22348
.. >>>>> [ IO READ: n_states ] <<<<< ..
.. >>>>> [ RES MEM : 0.006584 GB ] [ VIRT MEM : 0.190979 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.007513 s ] [ CPU TIME: 0.020911 s ] <<<<< ..
providing the mu_of_r ...
* mo_num 23
.. >>>>> [ IO READ: mo_class ] <<<<< ..
.. >>>>> [ RES MEM : 0.007782 GB ] [ VIRT MEM : 0.254852 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.009572 s ] [ CPU TIME: 0.028539 s ] <<<<< ..
* Number of active MOs 4
* Number of core MOs 1
* Number of inactive MOs 0
* mo_label Canonical
* Number of determinants 1
* Dimension of the psi arrays 100000
providing core_inact_act_two_bod_alpha_beta_mo ...
* N_int 1
.. >>>>> [ IO READ: ao_num ] <<<<< ..
.. >>>>> [ RES MEM : 0.008533 GB ] [ VIRT MEM : 0.255600 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.011494 s ] [ CPU TIME: 0.033719 s ] <<<<< ..
Read mo_coef
.. >>>>> [ IO READ: elec_beta_num ] <<<<< ..
.. >>>>> [ RES MEM : 0.008533 GB ] [ VIRT MEM : 0.255600 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.013069 s ] [ CPU TIME: 0.037688 s ] <<<<< ..
.. >>>>> [ IO READ: elec_alpha_num ] <<<<< ..
.. >>>>> [ RES MEM : 0.008533 GB ] [ VIRT MEM : 0.255600 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.013702 s ] [ CPU TIME: 0.038646 s ] <<<<< ..
* Number of unique alpha determinants 1
* Number of unique beta determinants 1
core_inact_act_two_bod_alpha_beta_mo provided in 7.2065409985953011E-003
Core MOs:
1
USING THE VALENCE ONLY TWO BODY DENSITY
providing core_inact_act_two_bod_alpha_beta_mo_physicist ...
core_inact_act_two_bod_alpha_beta_mo_physicist provided in 1.6240010154433548E-006
providing the core_inact_act_on_top_of_r
.. >>>>> [ IO READ: ao_prim_num ] <<<<< ..
.. >>>>> [ RES MEM : 0.010159 GB ] [ VIRT MEM : 0.275307 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.018106 s ] [ CPU TIME: 0.057134 s ] <<<<< ..
.. >>>>> [ IO READ: ao_expo ] <<<<< ..
.. >>>>> [ RES MEM : 0.010159 GB ] [ VIRT MEM : 0.275307 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.018569 s ] [ CPU TIME: 0.057815 s ] <<<<< ..
.. >>>>> [ IO READ: ao_coef ] <<<<< ..
.. >>>>> [ RES MEM : 0.010159 GB ] [ VIRT MEM : 0.275307 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.019022 s ] [ CPU TIME: 0.059222 s ] <<<<< ..
.. >>>>> [ IO READ: ao_power ] <<<<< ..
.. >>>>> [ RES MEM : 0.010159 GB ] [ VIRT MEM : 0.275307 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.019376 s ] [ CPU TIME: 0.060144 s ] <<<<< ..
.. >>>>> [ IO READ: ao_nucl ] <<<<< ..
.. >>>>> [ RES MEM : 0.010159 GB ] [ VIRT MEM : 0.275307 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.019883 s ] [ CPU TIME: 0.061265 s ] <<<<< ..
mo_num,n_points_final_grid 23 22046
* Number of virtual MOs 18
* Number of deleted MOs 0
Active MOs:
2 3 4 5
0 1 2 3
Virtual MOs:
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Core, Inactive and Active MOs:
1 2 3 4 5
provided the core_inact_act_on_top_of_r
Time to provide : 4.1155614999297541E-002
MO map initialized: 38226
.. >>>>> [ IO READ: io_mo_two_e_integrals ] <<<<< ..
.. >>>>> [ RES MEM : 0.057476 GB ] [ VIRT MEM : 0.313763 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.191075 s ] [ CPU TIME: 0.400365 s ] <<<<< ..
.. >>>>> [ IO READ: io_ao_two_e_integrals ] <<<<< ..
.. >>>>> [ RES MEM : 0.057476 GB ] [ VIRT MEM : 0.313763 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.191326 s ] [ CPU TIME: 0.400910 s ] <<<<< ..
AO map initialized : 52975
.. >>>>> [ IO READ: ao_integrals_threshold ] <<<<< ..
.. >>>>> [ RES MEM : 0.057476 GB ] [ VIRT MEM : 0.313763 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.191596 s ] [ CPU TIME: 0.401487 s ] <<<<< ..
Providing the AO integrals
Sorting the map
AO integrals provided:
Size of AO map : 8.5845947265625000E-002 MB
Number of AO integrals : 7966
cpu time : 0.13432800000000000 s
wall time : 8.3950192001793766E-002 s ( x 1.6000916352535539 )
AO -> MO integrals transformation
---------------------------------
.. >>>>> [ IO READ: mo_integrals_threshold ] <<<<< ..
.. >>>>> [ RES MEM : 0.060123 GB ] [ VIRT MEM : 0.524979 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.276098 s ] [ CPU TIME: 0.536419 s ] <<<<< ..
Buffers : 0.459625244 MB / core
Molecular integrals provided:
Size of MO map 0.36037063598632812 MB
Number of MO integrals: 18472
cpu time : 0.18962299999999999 s
wall time : 5.7800987000518944E-002 s ( x 3.2806187202010499 )
Providing core_inact_act_V_kl_contracted_transposed .....
Time to provide core_inact_act_V_kl_contracted_transposed = 0.10545316999923671
Providing core_inact_act_rho2_kl_contracted_transposed .....
Time to provide core_inact_act_rho2_kl_contracted_transposed = 1.6968988002190599E-002
Providing core_inact_act_f_psi_ab .....
Time to provide core_inact_act_f_psi_ab = 3.2415269997727592E-003
providing the cas_full_mu_of_r_psi_coal_vector ...
Time to provide cas_full_mu_of_r_psi_coal_vector = 5.8083600015379488E-004
Time to provide mu_of_r = 0.47625986300045042
Providing Energy_c_md_n_and_PBE_mu_of_r ...
.. >>>>> [ IO READ: density_for_dft ] <<<<< ..
.. >>>>> [ RES MEM : 0.083530 GB ] [ VIRT MEM : 0.658264 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.484660 s ] [ CPU TIME: 1.212247 s ] <<<<< ..
.. >>>>> [ IO READ: normalize_dm ] <<<<< ..
.. >>>>> [ RES MEM : 0.083530 GB ] [ VIRT MEM : 0.658264 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.484885 s ] [ CPU TIME: 1.212841 s ] <<<<< ..
Time for the Energy_c_md_n_and_PBE_mu_of_r : 0.11964879900187952
Providing Energy_c_md_LDA_mu_of_r ...
Time for Energy_c_md_LDA_mu_of_r : 2.9454646002704976E-002
Providing Energy_c_md_LDA_mu_of_r ...
Time for Energy_c_md_n_and_LDA_mu_of_r : 2.9101256001013098E-002
Providing Energy_c_md_n_and_on_top_PBE_mu_of_r ...
Time for the Energy_c_md_n_and_on_top_PBE_mu_of_r : 6.3777867999306181E-002
.. >>>>> [ IO READ: ontop_approx ] <<<<< ..
.. >>>>> [ RES MEM : 0.084538 GB ] [ VIRT MEM : 0.659248 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.773004 s ] [ CPU TIME: 1.541545 s ] <<<<< ..
Inactive MOs:
providing the core_inact_act_on_top_of_r_new
providint all_states_act_two_rdm_alpha_beta_mo
ispin = 3
USING THE VALENCE ONLY TWO BODY DENSITY
provided the core_inact_act_on_top_of_r_new
Time to provide : 3.5796539996226784E-003
Providing Energy_c_md_mu_of_r_PBE_on_top ...
Time for the Energy_c_md_on_top_PBE_mu_of_r: 0.27439229000083287
Providing Energy_c_md_PBE_mu_of_r ...
Time for the Energy_c_md_PBE_mu_of_r: 6.7258312999911141E-002
Corrections using Multi determinant mu
Functionals with UEG ontop pair density at large mu
ECMD LDA regular spin dens = -0.0265407099448326
ECMD LDA effective spin dens = -0.0265407099448326
ECMD PBE regular spin dens = -0.0230740500348705
ECMD PBE effective spin dens = -0.0230740500348705
Functionals with extrapolated exact ontop based on current wave function
ECMD PBE/ontop regular spin dens = -0.0247392466968251
ECMD PBE/ontop effective spin dens = -0.0247392466968251
mu_average for basis set = 0.9116337460
Wall time: 0:00:02

1
calcs/extensivity/n.xyz Normal file
View File

@ -0,0 +1 @@
N

View File

@ -0,0 +1,273 @@
Date: 13/10/2019 22:24:49
===============
Quantum Package
===============
Git Commit: trying to fix the casscf
Git Date : Wed Sep 18 13:55:16 2019 +0200
Git SHA1 : c8cd1611626d12424fa9776ad42e17a0ce2ce228
EZFIO Dir : n2.ezfio
Task server running : tcp://127.0.1.1:41279
.. >>>>> [ IO READ: no_core_density ] <<<<< ..
.. >>>>> [ RES MEM : 0.004436 GB ] [ VIRT MEM : 0.041679 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.000193 s ] [ CPU TIME: 0.001977 s ] <<<<< ..
.. >>>>> [ IO READ: on_top_from_cas ] <<<<< ..
.. >>>>> [ RES MEM : 0.004436 GB ] [ VIRT MEM : 0.041679 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.000368 s ] [ CPU TIME: 0.002092 s ] <<<<< ..
.. >>>>> [ IO READ: mu_of_r_potential ] <<<<< ..
.. >>>>> [ RES MEM : 0.004436 GB ] [ VIRT MEM : 0.041679 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.000533 s ] [ CPU TIME: 0.002196 s ] <<<<< ..
.. >>>>> [ IO READ: read_wf ] <<<<< ..
.. >>>>> [ RES MEM : 0.004436 GB ] [ VIRT MEM : 0.041679 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.000696 s ] [ CPU TIME: 0.002298 s ] <<<<< ..
.. >>>>> [ IO READ: mu_of_r_functional ] <<<<< ..
.. >>>>> [ RES MEM : 0.004436 GB ] [ VIRT MEM : 0.041679 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.000880 s ] [ CPU TIME: 0.002422 s ] <<<<< ..
LDA, PBE and PBE-on-top / mu(r) PSI coallescence with frozen core interaction
****************************************
Functional used = basis_set_on_top_PBE
****************************************
mu_of_r_potential = psi_cas_ful
MR DFT energy with pure correlation part for the DFT
.. >>>>> [ IO READ: grid_type_sgn ] <<<<< ..
.. >>>>> [ RES MEM : 0.004436 GB ] [ VIRT MEM : 0.041679 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.001067 s ] [ CPU TIME: 0.002548 s ] <<<<< ..
.. >>>>> [ IO READ: nucl_num ] <<<<< ..
.. >>>>> [ RES MEM : 0.004436 GB ] [ VIRT MEM : 0.041679 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.001253 s ] [ CPU TIME: 0.002673 s ] <<<<< ..
.. >>>>> [ IO READ: nucl_charge ] <<<<< ..
.. >>>>> [ RES MEM : 0.005276 GB ] [ VIRT MEM : 0.127628 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.006438 s ] [ CPU TIME: 0.014247 s ] <<<<< ..
.. >>>>> [ IO READ: nucl_label ] <<<<< ..
.. >>>>> [ RES MEM : 0.005276 GB ] [ VIRT MEM : 0.127628 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.006731 s ] [ CPU TIME: 0.015202 s ] <<<<< ..
.. >>>>> [ RES MEM : 0.005276 GB ] [ VIRT MEM : 0.252628 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.007020 s ] [ CPU TIME: 0.015901 s ] <<<<< ..
Nuclear Coordinates (Angstroms)
===============================
================ ============ ============ ============ ============
Atom Charge X Y Z
================ ============ ============ ============ ============
N 7.000000 0.000000 0.000000 -1000.000072
N 7.000000 0.000000 0.000000 1000.000072
================ ============ ============ ============ ============
.. >>>>> [ IO READ: thresh_grid ] <<<<< ..
.. >>>>> [ RES MEM : 0.007256 GB ] [ VIRT MEM : 0.254322 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.018087 s ] [ CPU TIME: 0.054428 s ] <<<<< ..
n_points_final_grid = 44092
n max point = 44998
.. >>>>> [ IO READ: n_states ] <<<<< ..
.. >>>>> [ RES MEM : 0.007256 GB ] [ VIRT MEM : 0.254322 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.018397 s ] [ CPU TIME: 0.057538 s ] <<<<< ..
providing the mu_of_r ...
* mo_num 46
.. >>>>> [ IO READ: mo_class ] <<<<< ..
.. >>>>> [ RES MEM : 0.009270 GB ] [ VIRT MEM : 0.256981 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.019785 s ] [ CPU TIME: 0.061670 s ] <<<<< ..
* Number of active MOs 8
* Number of core MOs 2
* Number of inactive MOs 0
* mo_label Canonical
* Number of determinants 400
* Dimension of the psi arrays 100000
Read psi_coef 400 1
providing core_inact_act_two_bod_alpha_beta_mo ...
* N_int 1
.. >>>>> [ IO READ: ao_num ] <<<<< ..
.. >>>>> [ RES MEM : 0.010387 GB ] [ VIRT MEM : 0.257874 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.020953 s ] [ CPU TIME: 0.064729 s ] <<<<< ..
Read mo_coef
.. >>>>> [ IO READ: elec_beta_num ] <<<<< ..
.. >>>>> [ RES MEM : 0.010387 GB ] [ VIRT MEM : 0.257874 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.022999 s ] [ CPU TIME: 0.074050 s ] <<<<< ..
.. >>>>> [ IO READ: elec_alpha_num ] <<<<< ..
.. >>>>> [ RES MEM : 0.010387 GB ] [ VIRT MEM : 0.257874 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.023209 s ] [ CPU TIME: 0.074364 s ] <<<<< ..
Read psi_det
* Number of unique alpha determinants 20
* Number of unique beta determinants 20
core_inact_act_two_bod_alpha_beta_mo provided in 1.0138563997315941E-002
Core MOs:
1 2
USING THE VALENCE ONLY TWO BODY DENSITY
providing core_inact_act_two_bod_alpha_beta_mo_physicist ...
core_inact_act_two_bod_alpha_beta_mo_physicist provided in 3.8632999348919839E-005
providing the core_inact_act_on_top_of_r
.. >>>>> [ IO READ: ao_prim_num ] <<<<< ..
.. >>>>> [ RES MEM : 0.012398 GB ] [ VIRT MEM : 0.315315 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.032296 s ] [ CPU TIME: 0.104271 s ] <<<<< ..
.. >>>>> [ IO READ: ao_expo ] <<<<< ..
.. >>>>> [ RES MEM : 0.012398 GB ] [ VIRT MEM : 0.315315 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.033598 s ] [ CPU TIME: 0.110293 s ] <<<<< ..
.. >>>>> [ IO READ: ao_coef ] <<<<< ..
.. >>>>> [ RES MEM : 0.012398 GB ] [ VIRT MEM : 0.315315 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.034755 s ] [ CPU TIME: 0.114448 s ] <<<<< ..
.. >>>>> [ IO READ: ao_power ] <<<<< ..
.. >>>>> [ RES MEM : 0.012398 GB ] [ VIRT MEM : 0.315315 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.035587 s ] [ CPU TIME: 0.117060 s ] <<<<< ..
.. >>>>> [ IO READ: ao_nucl ] <<<<< ..
.. >>>>> [ RES MEM : 0.012398 GB ] [ VIRT MEM : 0.315315 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.036767 s ] [ CPU TIME: 0.120070 s ] <<<<< ..
mo_num,n_points_final_grid 46 44092
* Number of virtual MOs 36
* Number of deleted MOs 0
Active MOs:
3 4 5 6 7 8 9 10
0 0 1 2 3 4 5 6
Virtual MOs:
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
Core, Inactive and Active MOs:
1 2 3 4 5 6 7 8 9 10
provided the core_inact_act_on_top_of_r
Time to provide : 0.70096241300052498
MO map initialized: 584821
.. >>>>> [ IO READ: io_mo_two_e_integrals ] <<<<< ..
.. >>>>> [ RES MEM : 0.200268 GB ] [ VIRT MEM : 0.485504 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 1.265357 s ] [ CPU TIME: 3.473769 s ] <<<<< ..
.. >>>>> [ IO READ: io_ao_two_e_integrals ] <<<<< ..
.. >>>>> [ RES MEM : 0.200268 GB ] [ VIRT MEM : 0.485504 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 1.265604 s ] [ CPU TIME: 3.474068 s ] <<<<< ..
AO map initialized : 813450
.. >>>>> [ IO READ: ao_integrals_threshold ] <<<<< ..
.. >>>>> [ RES MEM : 0.200573 GB ] [ VIRT MEM : 0.485504 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 1.265888 s ] [ CPU TIME: 3.474393 s ] <<<<< ..
Providing the AO integrals
Sorting the map
AO integrals provided:
Size of AO map : 0.44347000122070312 MB
Number of AO integrals : 38257
cpu time : 1.0639589999999997 s
wall time : 0.41615004599952954 s ( x 2.5566715905185853 )
AO -> MO integrals transformation
---------------------------------
.. >>>>> [ IO READ: mo_integrals_threshold ] <<<<< ..
.. >>>>> [ RES MEM : 0.203552 GB ] [ VIRT MEM : 0.697113 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 1.682451 s ] [ CPU TIME: 4.539011 s ] <<<<< ..
Buffers : 3.63958740 MB / core
Molecular integrals provided:
Size of MO map 9.6878700256347656 MB
Number of MO integrals: 473042
cpu time : 2.2190269999999996 s
wall time : 0.80212339799982146 s ( x 2.7664409310754126 )
Providing core_inact_act_V_kl_contracted_transposed .....
Time to provide core_inact_act_V_kl_contracted_transposed = 1.7762000410002656
Providing core_inact_act_rho2_kl_contracted_transposed .....
Time to provide core_inact_act_rho2_kl_contracted_transposed = 0.22741315399980522
Providing core_inact_act_f_psi_ab .....
Time to provide core_inact_act_f_psi_ab = 4.9875350014190190E-003
providing the cas_full_mu_of_r_psi_coal_vector ...
Time to provide cas_full_mu_of_r_psi_coal_vector = 1.9037699894397520E-004
Time to provide mu_of_r = 4.6907960499993351
Providing Energy_c_md_n_and_PBE_mu_of_r ...
.. >>>>> [ IO READ: density_for_dft ] <<<<< ..
.. >>>>> [ RES MEM : 0.352638 GB ] [ VIRT MEM : 0.860363 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 4.710455 s ] [ CPU TIME: 14.149410 s ] <<<<< ..
.. >>>>> [ IO READ: normalize_dm ] <<<<< ..
.. >>>>> [ RES MEM : 0.352638 GB ] [ VIRT MEM : 0.860363 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 4.710757 s ] [ CPU TIME: 14.150161 s ] <<<<< ..
Time for the Energy_c_md_n_and_PBE_mu_of_r : 0.37609190000148374
Providing Energy_c_md_LDA_mu_of_r ...
Time for Energy_c_md_LDA_mu_of_r : 5.3449625997018302E-002
Providing Energy_c_md_LDA_mu_of_r ...
Time for Energy_c_md_n_and_LDA_mu_of_r : 5.2238627999031451E-002
Providing Energy_c_md_n_and_on_top_PBE_mu_of_r ...
Time for the Energy_c_md_n_and_on_top_PBE_mu_of_r : 0.12120974099889281
.. >>>>> [ IO READ: ontop_approx ] <<<<< ..
.. >>>>> [ RES MEM : 0.361450 GB ] [ VIRT MEM : 0.864967 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 5.529283 s ] [ CPU TIME: 15.013616 s ] <<<<< ..
Inactive MOs:
providing the core_inact_act_on_top_of_r_new
providint all_states_act_two_rdm_alpha_beta_mo
ispin = 3
USING THE VALENCE ONLY TWO BODY DENSITY
provided the core_inact_act_on_top_of_r_new
Time to provide : 9.8473186000774149E-002
Providing Energy_c_md_mu_of_r_PBE_on_top ...
Time for the Energy_c_md_on_top_PBE_mu_of_r: 0.95842244199957349
Providing Energy_c_md_PBE_mu_of_r ...
Time for the Energy_c_md_PBE_mu_of_r: 0.12124202900304226
Corrections using Multi determinant mu
Functionals with UEG ontop pair density at large mu
ECMD LDA regular spin dens = -0.0678669003007728
ECMD LDA effective spin dens = -0.0530814198896590
ECMD PBE regular spin dens = -0.0691133629633015
ECMD PBE effective spin dens = -0.0461481000697329
Functionals with extrapolated exact ontop based on current wave function
ECMD PBE/ontop regular spin dens = -0.0509457188492165
ECMD PBE/ontop effective spin dens = -0.0494784933936403
mu_average for basis set = 0.9116337460
Wall time: 0:00:08

View File

@ -0,0 +1,787 @@
Date: 13/10/2019 22:18:11
===============
Quantum Package
===============
Git Commit: trying to fix the casscf
Git Date : Wed Sep 18 13:55:16 2019 +0200
Git SHA1 : c8cd1611626d12424fa9776ad42e17a0ce2ce228
EZFIO Dir : n2.ezfio
Task server running : tcp://127.0.1.1:41279
* mo_num 46
.. >>>>> [ IO READ: mo_class ] <<<<< ..
.. >>>>> [ RES MEM : 0.004566 GB ] [ VIRT MEM : 0.251705 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.000330 s ] [ CPU TIME: 0.012040 s ] <<<<< ..
.. >>>>> [ IO READ: io_mo_two_e_integrals ] <<<<< ..
.. >>>>> [ RES MEM : 0.004566 GB ] [ VIRT MEM : 0.251705 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.000661 s ] [ CPU TIME: 0.012783 s ] <<<<< ..
* N_int 1
MO map initialized: 584821
.. >>>>> [ IO READ: io_ao_two_e_integrals ] <<<<< ..
.. >>>>> [ RES MEM : 0.004566 GB ] [ VIRT MEM : 0.251705 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.001302 s ] [ CPU TIME: 0.014906 s ] <<<<< ..
.. >>>>> [ IO READ: ao_num ] <<<<< ..
.. >>>>> [ RES MEM : 0.004566 GB ] [ VIRT MEM : 0.251705 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.001641 s ] [ CPU TIME: 0.015667 s ] <<<<< ..
AO map initialized : 813450
.. >>>>> [ IO READ: ao_power ] <<<<< ..
.. >>>>> [ RES MEM : 0.004566 GB ] [ VIRT MEM : 0.251705 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.002248 s ] [ CPU TIME: 0.017195 s ] <<<<< ..
.. >>>>> [ IO READ: ao_prim_num ] <<<<< ..
.. >>>>> [ RES MEM : 0.004566 GB ] [ VIRT MEM : 0.251705 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.003513 s ] [ CPU TIME: 0.021442 s ] <<<<< ..
.. >>>>> [ IO READ: ao_expo ] <<<<< ..
.. >>>>> [ RES MEM : 0.004566 GB ] [ VIRT MEM : 0.251705 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.004434 s ] [ CPU TIME: 0.023313 s ] <<<<< ..
.. >>>>> [ IO READ: ao_coef ] <<<<< ..
.. >>>>> [ RES MEM : 0.004566 GB ] [ VIRT MEM : 0.251705 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.006587 s ] [ CPU TIME: 0.028598 s ] <<<<< ..
.. >>>>> [ IO READ: ao_nucl ] <<<<< ..
.. >>>>> [ RES MEM : 0.005543 GB ] [ VIRT MEM : 0.251705 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.008006 s ] [ CPU TIME: 0.030702 s ] <<<<< ..
.. >>>>> [ IO READ: ao_integrals_threshold ] <<<<< ..
.. >>>>> [ RES MEM : 0.005543 GB ] [ VIRT MEM : 0.251705 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.008525 s ] [ CPU TIME: 0.031353 s ] <<<<< ..
Providing the AO integrals
.. >>>>> [ IO READ: nucl_num ] <<<<< ..
.. >>>>> [ RES MEM : 0.005543 GB ] [ VIRT MEM : 0.400280 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.018219 s ] [ CPU TIME: 0.065993 s ] <<<<< ..
.. >>>>> [ IO READ: nucl_label ] <<<<< ..
.. >>>>> [ RES MEM : 0.005543 GB ] [ VIRT MEM : 0.400280 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.019145 s ] [ CPU TIME: 0.066277 s ] <<<<< ..
.. >>>>> [ IO READ: nucl_charge ] <<<<< ..
.. >>>>> [ RES MEM : 0.005543 GB ] [ VIRT MEM : 0.400280 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.019401 s ] [ CPU TIME: 0.066472 s ] <<<<< ..
.. >>>>> [ RES MEM : 0.005543 GB ] [ VIRT MEM : 0.400280 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.019638 s ] [ CPU TIME: 0.066648 s ] <<<<< ..
Nuclear Coordinates (Angstroms)
===============================
================ ============ ============ ============ ============
Atom Charge X Y Z
================ ============ ============ ============ ============
N 7.000000 0.000000 0.000000 -1000.000072
N 7.000000 0.000000 0.000000 1000.000072
================ ============ ============ ============ ============
Sorting the map
AO integrals provided:
Size of AO map : 0.44347000122070312 MB
Number of AO integrals : 38257
cpu time : 1.0255760000000000 s
wall time : 0.39576729399777832 s ( x 2.5913611749983496 )
AO -> MO integrals transformation
---------------------------------
Read mo_coef
.. >>>>> [ IO READ: mo_integrals_threshold ] <<<<< ..
.. >>>>> [ RES MEM : 0.007996 GB ] [ VIRT MEM : 0.463428 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.406879 s ] [ CPU TIME: 1.068523 s ] <<<<< ..
Buffers : 2.91943359 MB / core
Molecular integrals provided:
Size of MO map 2.8884887695312500E-002 MB
Number of MO integrals: 1467
cpu time : 0.41741099999999998 s
wall time : 0.29118732999995700 s ( x 1.4334792657361213 )
.. >>>>> [ IO READ: n_states ] <<<<< ..
.. >>>>> [ RES MEM : 0.075394 GB ] [ VIRT MEM : 0.588432 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.696199 s ] [ CPU TIME: 1.488003 s ] <<<<< ..
* mo_label Canonical
.. >>>>> [ IO READ: read_wf ] <<<<< ..
.. >>>>> [ RES MEM : 0.075394 GB ] [ VIRT MEM : 0.588432 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.696403 s ] [ CPU TIME: 1.488470 s ] <<<<< ..
* Number of determinants 118
* Dimension of the psi arrays 100000
Read psi_coef 118 1
.. >>>>> [ IO READ: elec_beta_num ] <<<<< ..
.. >>>>> [ RES MEM : 0.075893 GB ] [ VIRT MEM : 0.589176 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.697194 s ] [ CPU TIME: 1.494597 s ] <<<<< ..
.. >>>>> [ IO READ: elec_alpha_num ] <<<<< ..
.. >>>>> [ RES MEM : 0.075893 GB ] [ VIRT MEM : 0.589176 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.697367 s ] [ CPU TIME: 1.494990 s ] <<<<< ..
Read psi_det
.. >>>>> [ IO READ: do_pt2 ] <<<<< ..
.. >>>>> [ RES MEM : 0.077404 GB ] [ VIRT MEM : 0.590668 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.699137 s ] [ CPU TIME: 1.500094 s ] <<<<< ..
.. >>>>> [ RES MEM : 0.077656 GB ] [ VIRT MEM : 0.590851 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.700237 s ] [ CPU TIME: 1.506425 s ] <<<<< ..
.. >>>>> [ IO READ: io_nuclear_repulsion ] <<<<< ..
.. >>>>> [ RES MEM : 0.077656 GB ] [ VIRT MEM : 0.590851 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.700416 s ] [ CPU TIME: 1.506818 s ] <<<<< ..
.. >>>>> [ RES MEM : 0.077656 GB ] [ VIRT MEM : 0.590851 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.700578 s ] [ CPU TIME: 1.507172 s ] <<<<< ..
* Nuclear repulsion energy 0.1296484166754000E-01
.. >>>>> [ IO READ: distributed_davidson ] <<<<< ..
.. >>>>> [ RES MEM : 0.077656 GB ] [ VIRT MEM : 0.590851 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.700802 s ] [ CPU TIME: 1.508225 s ] <<<<< ..
.. >>>>> [ IO READ: n_det_max_full ] <<<<< ..
.. >>>>> [ RES MEM : 0.077656 GB ] [ VIRT MEM : 0.590851 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.700992 s ] [ CPU TIME: 1.508612 s ] <<<<< ..
.. >>>>> [ IO READ: io_mo_integrals_e_n ] <<<<< ..
.. >>>>> [ RES MEM : 0.109283 GB ] [ VIRT MEM : 2.467323 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.776437 s ] [ CPU TIME: 1.793946 s ] <<<<< ..
.. >>>>> [ IO READ: io_ao_integrals_e_n ] <<<<< ..
.. >>>>> [ RES MEM : 0.109283 GB ] [ VIRT MEM : 2.467323 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.776657 s ] [ CPU TIME: 1.794447 s ] <<<<< ..
.. >>>>> [ IO READ: io_mo_integrals_kinetic ] <<<<< ..
.. >>>>> [ RES MEM : 0.109283 GB ] [ VIRT MEM : 2.467323 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.777556 s ] [ CPU TIME: 1.800996 s ] <<<<< ..
.. >>>>> [ IO READ: io_ao_integrals_kinetic ] <<<<< ..
.. >>>>> [ RES MEM : 0.109283 GB ] [ VIRT MEM : 2.467323 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.777743 s ] [ CPU TIME: 1.801265 s ] <<<<< ..
.. >>>>> [ IO READ: io_mo_one_e_integrals ] <<<<< ..
.. >>>>> [ RES MEM : 0.109283 GB ] [ VIRT MEM : 2.467323 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.780765 s ] [ CPU TIME: 1.814206 s ] <<<<< ..
Providing the one-electron integrals
.. >>>>> [ IO READ: do_pseudo ] <<<<< ..
.. >>>>> [ RES MEM : 0.109283 GB ] [ VIRT MEM : 2.467323 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.780978 s ] [ CPU TIME: 1.814650 s ] <<<<< ..
.. >>>>> [ IO READ: selection_factor ] <<<<< ..
.. >>>>> [ RES MEM : 0.109283 GB ] [ VIRT MEM : 2.467323 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.782052 s ] [ CPU TIME: 1.817685 s ] <<<<< ..
.. >>>>> [ IO READ: pt2_max ] <<<<< ..
.. >>>>> [ RES MEM : 0.110638 GB ] [ VIRT MEM : 2.469215 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.782616 s ] [ CPU TIME: 1.820578 s ] <<<<< ..
.. >>>>> [ IO READ: correlation_energy_ratio_max ] <<<<< ..
.. >>>>> [ RES MEM : 0.110638 GB ] [ VIRT MEM : 2.469215 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.782817 s ] [ CPU TIME: 1.820999 s ] <<<<< ..
.. >>>>> [ IO READ: s2_eig ] <<<<< ..
.. >>>>> [ RES MEM : 0.110638 GB ] [ VIRT MEM : 2.469215 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.783246 s ] [ CPU TIME: 1.821527 s ] <<<<< ..
.. >>>>> [ IO READ: variance_max ] <<<<< ..
.. >>>>> [ RES MEM : 0.110638 GB ] [ VIRT MEM : 2.469215 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.783517 s ] [ CPU TIME: 1.821880 s ] <<<<< ..
.. >>>>> [ IO READ: pt2_relative_error ] <<<<< ..
.. >>>>> [ RES MEM : 0.110638 GB ] [ VIRT MEM : 2.469215 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.783775 s ] [ CPU TIME: 1.822222 s ] <<<<< ..
.. >>>>> [ RES MEM : 0.110638 GB ] [ VIRT MEM : 2.469215 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.784003 s ] [ CPU TIME: 1.822533 s ] <<<<< ..
Read n_states_diag
* N_generators_bitmask 1
.. >>>>> [ IO READ: weight_one_e_dm ] <<<<< ..
.. >>>>> [ RES MEM : 0.110638 GB ] [ VIRT MEM : 2.469215 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.784352 s ] [ CPU TIME: 1.823015 s ] <<<<< ..
.. >>>>> [ IO READ: n_det_max ] <<<<< ..
.. >>>>> [ RES MEM : 0.114918 GB ] [ VIRT MEM : 2.473316 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.789245 s ] [ CPU TIME: 1.842909 s ] <<<<< ..
.. >>>>> [ IO READ: threshold_generators ] <<<<< ..
.. >>>>> [ RES MEM : 0.114918 GB ] [ VIRT MEM : 2.473316 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.789515 s ] [ CPU TIME: 1.843273 s ] <<<<< ..
* Target maximum memory (GB) 2000
* Number of occupation patterns 46
.. >>>>> [ RES MEM : 0.114918 GB ] [ VIRT MEM : 2.474808 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.793300 s ] [ CPU TIME: 1.856314 s ] <<<<< ..
.. >>>>> [ IO READ: threshold_davidson ] <<<<< ..
.. >>>>> [ RES MEM : 0.114918 GB ] [ VIRT MEM : 2.474808 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.794625 s ] [ CPU TIME: 1.859001 s ] <<<<< ..
Diagonalization of H using Lapack
.. >>>>> [ IO READ: only_expected_s2 ] <<<<< ..
.. >>>>> [ RES MEM : 0.114918 GB ] [ VIRT MEM : 2.474808 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.795211 s ] [ CPU TIME: 1.859623 s ] <<<<< ..
.. >>>>> [ RES MEM : 0.115280 GB ] [ VIRT MEM : 2.475330 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.821105 s ] [ CPU TIME: 1.947158 s ] <<<<< ..
* Energy of state 1 -108.5308307944447
* S^2 of state 1 0.9661852136846990E-17
* Saved determinants 118
--------------------------------------------------------------------------------
* Number of unique beta determinants 19
* Number of unique alpha determinants 19
.. >>>>> [ IO READ: weight_selection ] <<<<< ..
.. >>>>> [ RES MEM : 0.116127 GB ] [ VIRT MEM : 2.477955 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.823563 s ] [ CPU TIME: 1.953964 s ] <<<<< ..
Using pt2-matching weight in selection
.. >>>>> [ IO READ: pseudo_sym ] <<<<< ..
.. >>>>> [ RES MEM : 0.116127 GB ] [ VIRT MEM : 2.477959 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.823738 s ] [ CPU TIME: 1.954365 s ] <<<<< ..
.. >>>>> [ IO READ: h0_type ] <<<<< ..
.. >>>>> [ RES MEM : 0.116127 GB ] [ VIRT MEM : 2.477959 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.823991 s ] [ CPU TIME: 1.954970 s ] <<<<< ..
.. >>>>> [ RES MEM : 0.116127 GB ] [ VIRT MEM : 2.477959 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.824201 s ] [ CPU TIME: 1.955252 s ] <<<<< ..
* Number of generators 112
.. >>>>> [ RES MEM : 0.116127 GB ] [ VIRT MEM : 2.477959 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.824406 s ] [ CPU TIME: 1.955522 s ] <<<<< ..
* Number of selectors 112
* Number of comb teeth 1
* Number of core MOs 4
* pt2_n_tasks_max 1
* PT2 Energy denominator -108.5308307944447
Using pt2-matching weight in selection
.. >>>>> [ RES MEM : 0.118645 GB ] [ VIRT MEM : 2.483547 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.828493 s ] [ CPU TIME: 1.969680 s ] <<<<< ..
* Number of generators 112
.. >>>>> [ RES MEM : 0.118645 GB ] [ VIRT MEM : 2.483547 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.828731 s ] [ CPU TIME: 1.976181 s ] <<<<< ..
* Number of selectors 112
* Number of comb teeth 1
* pt2_n_tasks_max 1
* Number of tasks 112
* Number of fragmented tasks 0
* Number of threads for PT2 4
* Memory (Gb) 0.1157009601593018E-03
========== ================= =========== =============== =============== =================
Samples Energy Stat. Err Variance Norm Seconds
========== ================= =========== =============== =============== =================
105 -108.6064355336 0.00 0.0050234074 5.9837485349 0.0226
========== ================= =========== =============== =============== =================
Using pt2-matching weight in selection
.. >>>>> [ RES MEM : 0.119499 GB ] [ VIRT MEM : 2.484295 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.874318 s ] [ CPU TIME: 2.090736 s ] <<<<< ..
* Number of generators 112
.. >>>>> [ RES MEM : 0.119499 GB ] [ VIRT MEM : 2.484295 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.874969 s ] [ CPU TIME: 2.091514 s ] <<<<< ..
* Number of selectors 112
* Number of comb teeth 1
* pt2_n_tasks_max 1
# PT2 weight 1.00000000
# var weight 1.00000000
Using pt2-matching weight in selection
* Correlation ratio 1.000000000000000
Summary at N_det = 118
-----------------------------------
# ============ =============================
State 1
# ============ =============================
# E -108.53083079
# PT2 -0.07560474 0.00000000
# rPT2 -0.01082581 0.00000000
#
# E+PT2 -108.60643553 0.00000000
# E+rPT2 -108.54165661 0.00000000
# ============ =============================
N_det = 118
N_states = 1
N_sop = 46
* State 1
< S^2 > = 9.6618521368469904E-018
E = -108.53083079444467
Variance = 5.0234073593933221E-003
PT norm = 2.4461701770151949
PT2 = -7.5604739131960072E-002
rPT2 = -1.0825810630772065E-002
E+PT2 = -108.60643553357663 +/- 0.0000000000000000
E+rPT2 = -108.54165660507545 +/- 0.0000000000000000
-----
.. >>>>> [ IO READ: io_mo_integrals_pseudo ] <<<<< ..
.. >>>>> [ RES MEM : 0.119499 GB ] [ VIRT MEM : 2.484295 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.881109 s ] [ CPU TIME: 2.113780 s ] <<<<< ..
Energy components
=================
Vnn : Nucleus-Nucleus potential energy
Ven : Electron-Nucleus potential energy
Vee : Electron-Electron potential energy
Vecp : Potential energy of the pseudo-potentials
T : Electronic kinetic energy
State 1
---------
Vnn = 1.2964841667540000E-002
Ven = -256.56312312502530
Vee = 39.292362035255408
Vecp = 0.0000000000000000
T = 108.72696545365768
.. >>>>> [ IO READ: energy_iterations ] <<<<< ..
.. >>>>> [ RES MEM : 0.119499 GB ] [ VIRT MEM : 2.484295 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.882128 s ] [ CPU TIME: 2.116795 s ] <<<<< ..
.. >>>>> [ IO READ: pt2_iterations ] <<<<< ..
.. >>>>> [ RES MEM : 0.119499 GB ] [ VIRT MEM : 2.484295 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.882490 s ] [ CPU TIME: 2.117355 s ] <<<<< ..
.. >>>>> [ IO READ: n_det_iterations ] <<<<< ..
.. >>>>> [ RES MEM : 0.119499 GB ] [ VIRT MEM : 2.484295 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.882833 s ] [ CPU TIME: 2.119319 s ] <<<<< ..
* Saved determinants 238
Diagonalization of H using Lapack
.. >>>>> [ RES MEM : 0.122677 GB ] [ VIRT MEM : 2.486561 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.941655 s ] [ CPU TIME: 2.261400 s ] <<<<< ..
* Energy of state 1 -108.7121464339008
* S^2 of state 1 -0.4329368308534452E-16
* Saved determinants 238
--------------------------------------------------------------------------------
* Number of unique beta determinants 20
* Number of unique alpha determinants 20
Using pt2-matching weight in selection
.. >>>>> [ RES MEM : 0.122677 GB ] [ VIRT MEM : 2.486561 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.944830 s ] [ CPU TIME: 2.275229 s ] <<<<< ..
* Number of generators 238
.. >>>>> [ RES MEM : 0.122677 GB ] [ VIRT MEM : 2.486561 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.945042 s ] [ CPU TIME: 2.275493 s ] <<<<< ..
* Number of selectors 238
* Number of comb teeth 1
* pt2_n_tasks_max 1
* PT2 Energy denominator -108.7121464339008
Using pt2-matching weight in selection
.. >>>>> [ RES MEM : 0.122677 GB ] [ VIRT MEM : 2.486561 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.948178 s ] [ CPU TIME: 2.281238 s ] <<<<< ..
* Number of generators 238
.. >>>>> [ RES MEM : 0.122677 GB ] [ VIRT MEM : 2.486561 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 0.948361 s ] [ CPU TIME: 2.281468 s ] <<<<< ..
* Number of selectors 238
* Number of comb teeth 1
* pt2_n_tasks_max 1
* Number of tasks 238
* Number of fragmented tasks 0
* Number of threads for PT2 4
* Memory (Gb) 0.1673931628465653E-03
========== ================= =========== =============== =============== =================
Samples Energy Stat. Err Variance Norm Seconds
========== ================= =========== =============== =============== =================
232 -108.7694757844 0.00 0.0365959034 0.0937532190 0.0584
========== ================= =========== =============== =============== =================
Using pt2-matching weight in selection
.. >>>>> [ RES MEM : 0.122757 GB ] [ VIRT MEM : 2.486561 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 1.025478 s ] [ CPU TIME: 2.478538 s ] <<<<< ..
* Number of generators 238
.. >>>>> [ RES MEM : 0.122757 GB ] [ VIRT MEM : 2.486561 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 1.025668 s ] [ CPU TIME: 2.478832 s ] <<<<< ..
* Number of selectors 238
* Number of comb teeth 1
* pt2_n_tasks_max 1
# PT2 weight 1.00000000
# var weight 1.00000000
Using pt2-matching weight in selection
* Correlation ratio 1.000000000000000
Summary at N_det = 238
-----------------------------------
# ============ =============================
State 1
# ============ =============================
# E -108.71214643
# PT2 -0.05732935 0.00000000
# rPT2 -0.05241525 0.00000000
#
# E+PT2 -108.76947578 0.00000000
# E+rPT2 -108.76456169 0.00000000
# ============ =============================
N_det = 238
N_states = 1
N_sop = 77
* State 1
< S^2 > = -4.3293683085344516E-017
E = -108.71214643390083
Variance = 3.6595903431384941E-002
PT norm = 0.30619147444113620
PT2 = -5.7329350545754762E-002
rPT2 = -5.2415251949702889E-002
E+PT2 = -108.76947578444658 +/- 0.0000000000000000
E+rPT2 = -108.76456168585052 +/- 0.0000000000000000
-----
Energy components
=================
State 1
---------
Vnn = 1.2964841667540000E-002
Ven = -256.56312312524665
Vee = 39.111046396020740
Vecp = 0.0000000000000000
T = 108.72696545365754
Extrapolated energies
------------------------
State 1
=========== ===================
minimum PT2 Extrapolated energy
=========== ===================
-0.0108 -108.48363399
=========== ===================
* Saved determinants 400
Diagonalization of H using Lapack
.. >>>>> [ RES MEM : 0.126030 GB ] [ VIRT MEM : 2.486824 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 1.260993 s ] [ CPU TIME: 3.048135 s ] <<<<< ..
* Energy of state 1 -108.7797414582286
* S^2 of state 1 0.9071010226647818E-17
* Saved determinants 400
--------------------------------------------------------------------------------
* Number of unique beta determinants 20
* Number of unique alpha determinants 20
Using pt2-matching weight in selection
.. >>>>> [ RES MEM : 0.126030 GB ] [ VIRT MEM : 2.486824 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 1.265556 s ] [ CPU TIME: 3.064943 s ] <<<<< ..
* Number of generators 394
.. >>>>> [ RES MEM : 0.126030 GB ] [ VIRT MEM : 2.486824 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 1.265819 s ] [ CPU TIME: 3.065317 s ] <<<<< ..
* Number of selectors 394
* Number of comb teeth 1
* pt2_n_tasks_max 1
* PT2 Energy denominator -108.7797414582286
Using pt2-matching weight in selection
.. >>>>> [ RES MEM : 0.126030 GB ] [ VIRT MEM : 2.486824 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 1.269735 s ] [ CPU TIME: 3.080012 s ] <<<<< ..
* Number of generators 394
.. >>>>> [ RES MEM : 0.126030 GB ] [ VIRT MEM : 2.486824 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 1.269985 s ] [ CPU TIME: 3.080350 s ] <<<<< ..
* Number of selectors 394
* Number of comb teeth 1
* pt2_n_tasks_max 1
* Number of tasks 394
* Number of fragmented tasks 0
* Number of threads for PT2 4
* Memory (Gb) 0.2367957681417465E-03
========== ================= =========== =============== =============== =================
Samples Energy Stat. Err Variance Norm Seconds
========== ================= =========== =============== =============== =================
385 -108.7797414582 0.00 0.0000000000 0.0000000000 0.0927
========== ================= =========== =============== =============== =================
Using pt2-matching weight in selection
.. >>>>> [ RES MEM : 0.127384 GB ] [ VIRT MEM : 2.488316 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 1.385304 s ] [ CPU TIME: 3.367108 s ] <<<<< ..
* Number of generators 394
.. >>>>> [ RES MEM : 0.127384 GB ] [ VIRT MEM : 2.488316 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 1.385462 s ] [ CPU TIME: 3.367500 s ] <<<<< ..
* Number of selectors 394
* Number of comb teeth 1
* pt2_n_tasks_max 1
# PT2 weight 1.50000000
# var weight 1.50000000
Using pt2-matching weight in selection
* Correlation ratio 1.000000000000000
Summary at N_det = 400
-----------------------------------
# ============ =============================
State 1
# ============ =============================
# E -108.77974146
# PT2 0.00000000 0.00000000
# rPT2 0.00000000 0.00000000
#
# E+PT2 -108.77974146 0.00000000
# E+rPT2 -108.77974146 0.00000000
# ============ =============================
N_det = 400
N_states = 1
N_sop = 141
* State 1
< S^2 > = 9.0710102266478180E-018
E = -108.77974145822864
Variance = 0.0000000000000000
PT norm = 0.0000000000000000
PT2 = 0.0000000000000000
rPT2 = 0.0000000000000000
E+PT2 = -108.77974145822864 +/- 0.0000000000000000
E+rPT2 = -108.77974145822864 +/- 0.0000000000000000
-----
Energy components
=================
State 1
---------
Vnn = 1.2964841667540000E-002
Ven = -256.56312312522454
Vee = 39.043451371670429
Vecp = 0.0000000000000000
T = 108.72696545365794
Extrapolated energies
------------------------
State 1
=========== ===================
minimum PT2 Extrapolated energy
=========== ===================
-0.0524 -108.77974146
-0.0108 -108.66826016
=========== ===================
* Saved determinants 400
Diagonalization of H using Lapack
.. >>>>> [ RES MEM : 0.126148 GB ] [ VIRT MEM : 2.486824 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 1.613008 s ] [ CPU TIME: 3.947564 s ] <<<<< ..
* Energy of state 1 -108.7797414582289
* S^2 of state 1 0.6807512035418938E-16
* Saved determinants 400
* Saved determinants 400
* Number of unique beta determinants 20
* Number of unique alpha determinants 20
Using pt2-matching weight in selection
.. >>>>> [ RES MEM : 0.126148 GB ] [ VIRT MEM : 2.486824 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 1.621452 s ] [ CPU TIME: 3.979345 s ] <<<<< ..
* Number of generators 394
.. >>>>> [ RES MEM : 0.126148 GB ] [ VIRT MEM : 2.486824 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 1.621675 s ] [ CPU TIME: 3.979628 s ] <<<<< ..
* Number of selectors 394
* Number of comb teeth 1
* pt2_n_tasks_max 1
* PT2 Energy denominator -108.7797414582289
Using pt2-matching weight in selection
.. >>>>> [ RES MEM : 0.126148 GB ] [ VIRT MEM : 2.486824 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 1.626670 s ] [ CPU TIME: 3.997720 s ] <<<<< ..
* Number of generators 394
.. >>>>> [ RES MEM : 0.126148 GB ] [ VIRT MEM : 2.486824 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 1.626931 s ] [ CPU TIME: 3.998050 s ] <<<<< ..
* Number of selectors 394
* Number of comb teeth 1
* pt2_n_tasks_max 1
* Number of tasks 394
* Number of fragmented tasks 0
* Number of threads for PT2 4
* Memory (Gb) 0.2189590781927109E-03
========== ================= =========== =============== =============== =================
Samples Energy Stat. Err Variance Norm Seconds
========== ================= =========== =============== =============== =================
385 -108.7797414582 0.00 0.0000000000 0.0000000000 0.1010
========== ================= =========== =============== =============== =================
Using pt2-matching weight in selection
.. >>>>> [ RES MEM : 0.127441 GB ] [ VIRT MEM : 2.488316 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 1.750181 s ] [ CPU TIME: 4.300568 s ] <<<<< ..
* Number of generators 394
.. >>>>> [ RES MEM : 0.127441 GB ] [ VIRT MEM : 2.488316 GB ] <<<<< ..
.. >>>>> [ WALL TIME: 1.750393 s ] [ CPU TIME: 4.301085 s ] <<<<< ..
* Number of selectors 394
* Number of comb teeth 1
* pt2_n_tasks_max 1
# PT2 weight 2.25000000
# var weight 2.25000000
Using pt2-matching weight in selection
Summary at N_det = 400
-----------------------------------
# ============ =============================
State 1
# ============ =============================
# E -108.77974146
# PT2 0.00000000 0.00000000
# rPT2 0.00000000 0.00000000
#
# E+PT2 -108.77974146 0.00000000
# E+rPT2 -108.77974146 0.00000000
# ============ =============================
N_det = 400
N_states = 1
N_sop = 141
* State 1
< S^2 > = 6.8075120354189381E-017
E = -108.77974145822886
Variance = 0.0000000000000000
PT norm = 0.0000000000000000
PT2 = 0.0000000000000000
rPT2 = 0.0000000000000000
E+PT2 = -108.77974145822886 +/- 0.0000000000000000
E+rPT2 = -108.77974145822886 +/- 0.0000000000000000
-----
Energy components
=================
State 1
---------
Vnn = 1.2964841667540000E-002
Ven = -256.56312312522522
Vee = 39.043451371670628
Vecp = 0.0000000000000000
T = 108.72696545365820
Extrapolated energies
------------------------
State 1
=========== ===================
minimum PT2 Extrapolated energy
=========== ===================
0.0000 -108.77974146
-0.0524 -108.77974146
-0.0108 -108.71107465
=========== ===================
Wall time: 0:00:03

4
calcs/extensivity/n2.xyz Normal file
View File

@ -0,0 +1,4 @@
2
N 0. 0. -1000.
N 0. 0. 1000.

View File

@ -1,4 +1,9 @@
## F2 + He
# HF correction PBE
-2.85570466771188 -0.0112667838948910 -2.85570466771188 -0.0112667838948910
-198.698792752661 -0.1596345827582842 -198.698792752661 -0.1596345827582842
-201.554497420371 -0.1709013666531826 -201.554497420371 -0.1709013666531826
1.9 10^-12 7 10^-15 1.9 10^-12 7 10^-15
# N2
-54.3898707291144
-108.779741458229