working on the theory section
This commit is contained in:
parent
d40d34f3b0
commit
68ddb0431a
@ -30,29 +30,37 @@
|
|||||||
\citation{G2,excited}
|
\citation{G2,excited}
|
||||||
\citation{kato}
|
\citation{kato}
|
||||||
\citation{GinPraFerAssSavTou-JCP-18}
|
\citation{GinPraFerAssSavTou-JCP-18}
|
||||||
\bibdata{srDFT_SCNotes,srDFT_SC}
|
\citation{GinPraFerAssSavTou-JCP-18}
|
||||||
\bibstyle{aipnum4-1}
|
|
||||||
\citation{REVTEX41Control}
|
|
||||||
\citation{aip41Control}
|
|
||||||
\@writefile{toc}{\contentsline {subsection}{\numberline {A}Basic formal equations}{2}{section*.5}}
|
\@writefile{toc}{\contentsline {subsection}{\numberline {A}Basic formal equations}{2}{section*.5}}
|
||||||
\newlabel{eq:levy}{{1}{2}{}{equation.2.1}{}}
|
\newlabel{eq:levy}{{1}{2}{}{equation.2.1}{}}
|
||||||
\newlabel{eq:levy_func}{{2}{2}{}{equation.2.2}{}}
|
\newlabel{eq:levy_func}{{2}{2}{}{equation.2.2}{}}
|
||||||
\newlabel{eq:e0approx}{{5}{2}{}{equation.2.5}{}}
|
\newlabel{eq:e0approx}{{5}{2}{}{equation.2.5}{}}
|
||||||
\@writefile{toc}{\contentsline {subsection}{\numberline {B}Definition of an effective interaction within $\mathcal {B}$}{2}{section*.6}}
|
\@writefile{toc}{\contentsline {subsection}{\numberline {B}Definition of an effective interaction within $\mathcal {B}$}{2}{section*.6}}
|
||||||
\@writefile{toc}{\contentsline {section}{\numberline {III}Results}{2}{section*.7}}
|
\newlabel{eq:wbasis}{{6}{2}{}{equation.2.6}{}}
|
||||||
\newlabel{LastBibItem}{{0}{2}{}{figure.7}{}}
|
\newlabel{eq:fbasis}{{8}{2}{}{equation.2.8}{}}
|
||||||
\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces N$_2$, aug-cc-pvdz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{3}{figure.1}}
|
\newlabel{eq:cbs_wbasis}{{10}{2}{}{equation.2.10}{}}
|
||||||
\newlabel{fig:N2_avdz}{{1}{3}{N$_2$, aug-cc-pvdz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.1}{}}
|
\@writefile{toc}{\contentsline {subsection}{\numberline {C}Definition of an range-separation parameter varying in real space}{2}{section*.7}}
|
||||||
\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces N$_2$, aug-cc-pvtz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{4}{figure.2}}
|
\citation{GinPraFerAssSavTou-JCP-18}
|
||||||
\newlabel{fig:N2_avtz}{{2}{4}{N$_2$, aug-cc-pvtz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.2}{}}
|
\bibdata{srDFT_SCNotes,srDFT_SC}
|
||||||
\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces F$_2$, aug-cc-pvdz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{5}{figure.3}}
|
\bibstyle{aipnum4-1}
|
||||||
\newlabel{fig:F2_avdz}{{3}{5}{F$_2$, aug-cc-pvdz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.3}{}}
|
\citation{REVTEX41Control}
|
||||||
\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces F$_2$, aug-cc-pvtz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{6}{figure.4}}
|
\citation{aip41Control}
|
||||||
\newlabel{fig:F2_avtz}{{4}{6}{F$_2$, aug-cc-pvtz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.4}{}}
|
\newlabel{eq:weelr}{{11}{3}{}{equation.2.11}{}}
|
||||||
\@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces H$_{10}$, cc-pvdz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{7}{figure.5}}
|
\newlabel{eq:cbs_mu}{{14}{3}{}{equation.2.14}{}}
|
||||||
\newlabel{fig:H10_vdz}{{5}{7}{H$_{10}$, cc-pvdz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.5}{}}
|
\@writefile{toc}{\contentsline {section}{\numberline {III}Results}{3}{section*.8}}
|
||||||
\@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces H$_{10}$, cc-pvtz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{7}{figure.6}}
|
\newlabel{LastBibItem}{{0}{3}{}{figure.7}{}}
|
||||||
\newlabel{fig:H10_vtz}{{6}{7}{H$_{10}$, cc-pvtz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.6}{}}
|
\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces N$_2$, aug-cc-pvdz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{4}{figure.1}}
|
||||||
\@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces H$_{10}$, cc-pvqz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{8}{figure.7}}
|
\newlabel{fig:N2_avdz}{{1}{4}{N$_2$, aug-cc-pvdz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.1}{}}
|
||||||
\newlabel{fig:H10_vqz}{{7}{8}{H$_{10}$, cc-pvqz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.7}{}}
|
\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces N$_2$, aug-cc-pvtz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{5}{figure.2}}
|
||||||
\newlabel{LastPage}{{}{8}{}{}{}}
|
\newlabel{fig:N2_avtz}{{2}{5}{N$_2$, aug-cc-pvtz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.2}{}}
|
||||||
|
\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces F$_2$, aug-cc-pvdz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{6}{figure.3}}
|
||||||
|
\newlabel{fig:F2_avdz}{{3}{6}{F$_2$, aug-cc-pvdz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.3}{}}
|
||||||
|
\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces F$_2$, aug-cc-pvtz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{7}{figure.4}}
|
||||||
|
\newlabel{fig:F2_avtz}{{4}{7}{F$_2$, aug-cc-pvtz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.4}{}}
|
||||||
|
\@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces H$_{10}$, cc-pvdz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{8}{figure.5}}
|
||||||
|
\newlabel{fig:H10_vdz}{{5}{8}{H$_{10}$, cc-pvdz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.5}{}}
|
||||||
|
\@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces H$_{10}$, cc-pvtz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{8}{figure.6}}
|
||||||
|
\newlabel{fig:H10_vtz}{{6}{8}{H$_{10}$, cc-pvtz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.6}{}}
|
||||||
|
\@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces H$_{10}$, cc-pvqz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one. }}{9}{figure.7}}
|
||||||
|
\newlabel{fig:H10_vqz}{{7}{9}{H$_{10}$, cc-pvqz: Comparison between the near FCI and corrected near FCI energies and the estimated exact one}{figure.7}{}}
|
||||||
|
\newlabel{LastPage}{{}{9}{}{}{}}
|
||||||
|
@ -4,4 +4,5 @@
|
|||||||
\BOOKMARK [1][-]{section*.4}{Theory}{section*.2}% 4
|
\BOOKMARK [1][-]{section*.4}{Theory}{section*.2}% 4
|
||||||
\BOOKMARK [2][-]{section*.5}{Basic formal equations}{section*.4}% 5
|
\BOOKMARK [2][-]{section*.5}{Basic formal equations}{section*.4}% 5
|
||||||
\BOOKMARK [2][-]{section*.6}{Definition of an effective interaction within B}{section*.4}% 6
|
\BOOKMARK [2][-]{section*.6}{Definition of an effective interaction within B}{section*.4}% 6
|
||||||
\BOOKMARK [1][-]{section*.7}{Results}{section*.2}% 7
|
\BOOKMARK [2][-]{section*.7}{Definition of an range-separation parameter varying in real space}{section*.4}% 7
|
||||||
|
\BOOKMARK [1][-]{section*.8}{Results}{section*.2}% 8
|
||||||
|
@ -105,6 +105,7 @@
|
|||||||
|
|
||||||
|
|
||||||
\newcommand{\wbasis}[0]{W_{\wf{}{\Bas}}(\bfr{1},\bfr{2})}
|
\newcommand{\wbasis}[0]{W_{\wf{}{\Bas}}(\bfr{1},\bfr{2})}
|
||||||
|
\newcommand{\wbasiscoal}[0]{W_{\wf{}{\Bas}}(\bfr{},\bfr{})}
|
||||||
\newcommand{\wbasisval}[0]{W_{\wf{}{\Bas}}^{\text{val}}(\bfr{1},\bfr{2})}
|
\newcommand{\wbasisval}[0]{W_{\wf{}{\Bas}}^{\text{val}}(\bfr{1},\bfr{2})}
|
||||||
\newcommand{\fbasis}[0]{f_{\wf{}{\Bas}}(\bfr{1},\bfr{2})}
|
\newcommand{\fbasis}[0]{f_{\wf{}{\Bas}}(\bfr{1},\bfr{2})}
|
||||||
\newcommand{\fbasisval}[0]{f_{\wf{}{\Bas}}^{\text{val}}(\bfr{1},\bfr{2})}
|
\newcommand{\fbasisval}[0]{f_{\wf{}{\Bas}}^{\text{val}}(\bfr{1},\bfr{2})}
|
||||||
@ -115,7 +116,7 @@
|
|||||||
\newcommand{\gammamnpq}[1]{\Gamma_{mn}^{pq}[#1]}
|
\newcommand{\gammamnpq}[1]{\Gamma_{mn}^{pq}[#1]}
|
||||||
\newcommand{\gammamnkl}[0]{\Gamma_{mn}^{kl}}
|
\newcommand{\gammamnkl}[0]{\Gamma_{mn}^{kl}}
|
||||||
\newcommand{\gammaklmn}[1]{\Gamma_{kl}^{mn}[#1]}
|
\newcommand{\gammaklmn}[1]{\Gamma_{kl}^{mn}[#1]}
|
||||||
\newcommand{\wbasiscoal}[1]{W_{\wf{}{\Bas}}({\bf r}_{#1})}
|
%\newcommand{\wbasiscoal}[1]{W_{\wf{}{\Bas}}({\bf r}_{#1})}
|
||||||
\newcommand{\ontoppsi}[1]{ n^{(2)}_{\wf{}{\Bas}}(\bfr{#1},\barr{#1},\barr{#1},\bfr{#1})}
|
\newcommand{\ontoppsi}[1]{ n^{(2)}_{\wf{}{\Bas}}(\bfr{#1},\barr{#1},\barr{#1},\bfr{#1})}
|
||||||
\newcommand{\wbasiscoalval}[1]{W_{\wf{}{\Bas}}^{\text{val}}({\bf r}_{#1})}
|
\newcommand{\wbasiscoalval}[1]{W_{\wf{}{\Bas}}^{\text{val}}({\bf r}_{#1})}
|
||||||
\newcommand{\ontoppsival}[1]{ n^{(2)}_{\wf{}{\Bas}}^{\text{val}}(\bfr{#1},\barr{#1},\barr{#1},\bfr{#1})}
|
\newcommand{\ontoppsival}[1]{ n^{(2)}_{\wf{}{\Bas}}^{\text{val}}(\bfr{#1},\barr{#1},\barr{#1},\bfr{#1})}
|
||||||
@ -170,6 +171,8 @@
|
|||||||
\newcommand{\sr}{\text{sr}}
|
\newcommand{\sr}{\text{sr}}
|
||||||
|
|
||||||
\newcommand{\Nel}{N}
|
\newcommand{\Nel}{N}
|
||||||
|
\newcommand{\V}[2]{V_{#1}^{#2}}
|
||||||
|
|
||||||
|
|
||||||
\newcommand{\n}[2]{n_{#1}^{#2}}
|
\newcommand{\n}[2]{n_{#1}^{#2}}
|
||||||
\newcommand{\E}[2]{E_{#1}^{#2}}
|
\newcommand{\E}[2]{E_{#1}^{#2}}
|
||||||
@ -183,7 +186,7 @@
|
|||||||
\newcommand{\w}[2]{w_{#1}^{#2}}
|
\newcommand{\w}[2]{w_{#1}^{#2}}
|
||||||
\newcommand{\hn}[2]{\Hat{n}_{#1}^{#2}}
|
\newcommand{\hn}[2]{\Hat{n}_{#1}^{#2}}
|
||||||
\newcommand{\rsmu}[2]{\mu_{#1}^{#2}}
|
\newcommand{\rsmu}[2]{\mu_{#1}^{#2}}
|
||||||
\newcommand{\SO}[2]{\phi_{#1}(\bx{#2})}
|
\newcommand{\SO}[2]{\phi_{#1}(\br{#2})}
|
||||||
|
|
||||||
\newcommand{\modX}{\text{X}}
|
\newcommand{\modX}{\text{X}}
|
||||||
\newcommand{\modY}{\text{Y}}
|
\newcommand{\modY}{\text{Y}}
|
||||||
@ -280,7 +283,7 @@ The exact ground state energy $E_0$ of a $N-$electron system can be obtained by
|
|||||||
\label{eq:levy}
|
\label{eq:levy}
|
||||||
E_0 = \min_{\denr} \bigg\{ F[\denr] + (v_{\text{ne}} (\br{}) |\denr) \bigg\},
|
E_0 = \min_{\denr} \bigg\{ F[\denr] + (v_{\text{ne}} (\br{}) |\denr) \bigg\},
|
||||||
\end{equation}
|
\end{equation}
|
||||||
where $(v_{ne}(\br)|\denr)$ is the nuclei-electron interaction for a given density $\denr$ and $F[\denr]$ is the so-called Levy-Liev universal density functional
|
where $(v_{ne}(\br{})|\denr)$ is the nuclei-electron interaction for a given density $\denr$ and $F[\denr]$ is the so-called Levy-Liev universal density functional
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\label{eq:levy_func}
|
\label{eq:levy_func}
|
||||||
F[\denr] = \min_{\Psi \rightarrow \denr} \elemm{\Psi}{\kinop +\weeop }{\Psi}.
|
F[\denr] = \min_{\Psi \rightarrow \denr} \elemm{\Psi}{\kinop +\weeop }{\Psi}.
|
||||||
@ -292,17 +295,17 @@ Following equation (7) of \cite{GinPraFerAssSavTou-JCP-18}, we split $F[\denr]$
|
|||||||
\begin{equation}
|
\begin{equation}
|
||||||
F[\denr] = \min_{\wf{}{\Bas} \rightarrow \denr} \elemm{\wf{}{\Bas}}{\kinop +\weeop}{\wf{}{\Bas}} + \efuncden{\denr}
|
F[\denr] = \min_{\wf{}{\Bas} \rightarrow \denr} \elemm{\wf{}{\Bas}}{\kinop +\weeop}{\wf{}{\Bas}} + \efuncden{\denr}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
where $\wf{}{\Bas}$ refer to $N-$electron wave functions expanded in $\Bas$, and
|
||||||
where $\efuncden{\denr}$ is the density functional complementary to the basis set $\Bas$ defined as
|
where $\efuncden{\denr}$ is the density functional complementary to the basis set $\Bas$ defined as
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\begin{aligned}
|
\begin{aligned}
|
||||||
\efuncden{\denr} =& \min_{\Psi \rightarrow \denr} \elemm{\Psi}{\kinop +\weeop }{\Psi} \\
|
\efuncden{\denr} =& \min_{\Psi \rightarrow \denr} \elemm{\Psi}{\kinop +\weeop }{\Psi} \\
|
||||||
&- \min_{\Psi^{\Bas} \rightarrow \denr} \elemm{\wf{}{\Bas}}{\kinop +\weeop}{\wf{}{\Bas}},
|
&- \min_{\Psi^{\Bas} \rightarrow \denr} \elemm{\wf{}{\Bas}}{\kinop +\weeop}{\wf{}{\Bas}}.
|
||||||
\end{aligned}
|
\end{aligned}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
and $\wf{}{\Bas}$ refer to $N-$electron wave functions expanded in $\Bas$.
|
|
||||||
The functional $\efuncden{\denr}$ must therefore recover all physical effects not included in the basis set $\Bas$.
|
The functional $\efuncden{\denr}$ must therefore recover all physical effects not included in the basis set $\Bas$.
|
||||||
|
|
||||||
Assuming that the FCI density $\denFCI$ in $\Bas$ is a good approximation of the exact density (see equations 12-15 of \cite{GinPraFerAssSavTou-JCP-18}), one obtains the following approximation for the exact ground state density
|
Assuming that the FCI density $\denFCI$ in $\Bas$ is a good approximation of the exact density, one obtains the following approximation for the exact ground state density (see equations 12-15 of \cite{GinPraFerAssSavTou-JCP-18})
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\label{eq:e0approx}
|
\label{eq:e0approx}
|
||||||
E_0 = \efci + \efuncbasisFCI
|
E_0 = \efci + \efuncbasisFCI
|
||||||
@ -317,17 +320,55 @@ As it was originally derived in \cite{GinPraFerAssSavTou-JCP-18} (see section D
|
|||||||
|
|
||||||
More specifically, we define the effective interaction associated to a given wave function $\wf{}{\Bas}$ as
|
More specifically, we define the effective interaction associated to a given wave function $\wf{}{\Bas}$ as
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\wbasis = \fbasis/\twodmrdiagpsi
|
\label{eq:wbasis}
|
||||||
|
\wbasis =
|
||||||
|
\begin{cases}
|
||||||
|
\fbasis /\twodmrdiagpsi, & \text{if $\twodmrdiagpsi \ne 0$,}
|
||||||
|
\\
|
||||||
|
\infty, & \text{otherwise,}
|
||||||
|
\end{cases}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
where $\twodmrdiagpsi$ is the opposite spin two-body density associated to $\wf{}{\Bas}$
|
where $\twodmrdiagpsi$ is the opposite spin two-body density associated to $\wf{}{\Bas}$
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\twodmrdiagpsi = \sum_{pqrs} \phi_{p}(\br) \phi_{q}(\br) \Gam{pq}{rs} \phi_{r}(\br) \phi_{s}(\br),
|
\twodmrdiagpsi = \sum_{pqrs} \SO{p}{1} \SO{q}{2} \Gam{pq}{rs} \SO{r}{1} \SO{s}{2},
|
||||||
\end{equation}
|
\end{equation}
|
||||||
$\Gam{pq}{rs}$
|
$\Gam{pq}{rs} = 2 \mel*{\wf{}{\Bas}}{ \aic{r_\downarrow}\aic{s_\uparrow}\ai{q_\uparrow}\ai{p_\downarrow}}{\wf{}{\Bas}}$ its associated two-body tensor, $\SO{p}{}$ are the spatial orthonormal orbitals,
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\int \int \dr{1} \dr{2} \wbasis \twodmrdiagpsi = \elemm{\wf{}{\Bas}}{\weeop}{\wf{}{\Bas}},
|
\label{eq:fbasis}
|
||||||
|
\fbasis
|
||||||
|
= \sum_{pqrstu \in \Bas} \SO{p}{1} \SO{q}{2} \V{pq}{rs} \Gam{rs}{tu} \SO{t}{1} \SO{u}{2},
|
||||||
\end{equation}
|
\end{equation}
|
||||||
where $\twodmrdiagpsi$ is the two-body density of
|
and $\V{pq}{rs}=\langle pq | rs \rangle$ are the usual two-electron Coulomb integrals.
|
||||||
|
With such a definition, one can show that $\wbasis$ satisfies
|
||||||
|
\begin{equation}
|
||||||
|
\int \int \dr{1} \dr{2} \wbasis \twodmrdiagpsi = \int \int \dr{1} \dr{2} \frac{\twodmrdiagpsi}{|\br{1}-\br{2}|}.
|
||||||
|
\end{equation}
|
||||||
|
As it was shown in \cite{GinPraFerAssSavTou-JCP-18}, the effective interaction $\wbasis$ is necessary finite at coalescence for an incomplete basis set, and tends to the regular coulomb interaction in the limit of a complete basis set, that is
|
||||||
|
\begin{equation}
|
||||||
|
\label{eq:cbs_wbasis}
|
||||||
|
\lim_{\Bas \rightarrow \text{CBS}} \wbasis = \frac{1}{|\br{1}-\br{2}|}.
|
||||||
|
\end{equation}
|
||||||
|
The condition of equation \eqref{eq:cbs_wbasis} is fundamental as it guarantees the good behaviour of all the theory in the limit of a complete basis set.
|
||||||
|
\subsection{Definition of an range-separation parameter varying in real space}
|
||||||
|
As the effective interaction within a basis set $\wbasis$ is non divergent, one can fit such a function with a long-range interaction defined in the framework of RSDFT which depends on the range-separation parameter $\mu$
|
||||||
|
\begin{equation}
|
||||||
|
\label{eq:weelr}
|
||||||
|
w_{ee}^{\lr}(\mu;\br{1},\br{2}) = \frac{\text{erf}\big(\mu \,|\br{1}-\br{2}| \big)}{|\br{1}-\br{2}|}.
|
||||||
|
\end{equation}
|
||||||
|
As originally proposed in \cite{GinPraFerAssSavTou-JCP-18}, we introduce a range-separation parameter $\murpsi$ varying in real space
|
||||||
|
\begin{equation}
|
||||||
|
\murpsi = \frac{\sqrt{\pi}}{2} \wbasiscoal
|
||||||
|
\end{equation}
|
||||||
|
such that
|
||||||
|
\begin{equation}
|
||||||
|
w_{ee}^{\lr}(\murpsi;\br{ },\br{ }) = \wbasiscoal.
|
||||||
|
\end{equation}
|
||||||
|
Because of the very definition of $\wbasis$, one has the following properties at the CBS limit (see \eqref{eq:cbs_wbasis})
|
||||||
|
\begin{equation}
|
||||||
|
\label{eq:cbs_mu}
|
||||||
|
\lim_{\Bas \rightarrow \text{CBS}} \murpsi = \infty,
|
||||||
|
\end{equation}
|
||||||
|
which is fundamental to guarantee the good behaviour of the theory at the CBS limit.
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
\section{Results}
|
\section{Results}
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
Loading…
Reference in New Issue
Block a user