diff --git a/Manuscript/srDFT_SC.tex b/Manuscript/srDFT_SC.tex index 70d6f1e..59e0381 100644 --- a/Manuscript/srDFT_SC.tex +++ b/Manuscript/srDFT_SC.tex @@ -717,7 +717,7 @@ More quantitatively, the values of $D_0$ are within chemical accuracy (\ie, an e Analyzing more carefully the performance of the different types of approximate density functionals, the results show that $\pbeontXi$ and $\pbeontns$ are very similar (the maximal difference on $D_0$ being 0.3 mHa), and that they give slightly more accurate results than $\pbeuegXi$. These findings provide two important clues on the role of the different physical ingredients used in these functionals: i) the explicit use of the on-top pair density coming from the CASSCF wave function [see Eq.~\eqref{eq:def_n2extrap}] is preferable over the use of the UEG on-top pair density [see Eq.~\eqref{eq:def_n2ueg}] which is somehow understandable, and ii) removing the dependency on any kind of spin polarization does not lead to significant loss of accuracy providing that one employs a qualitatively correct on-top pair density. The latter point is crucial as it shows that the spin polarization in density-functional approximations essentially plays the same role as the on-top pair density. This could have significant implications for the construction of more robust families of density-functional approximations within DFT. -Finally, the reader would have noticed that we did not report the performance of the $\pbeuegns$ functional as its performance are much poorer than the three other functionals. The main reason behind this comes from the fact that $\pbeuegns$ has no direct or indirect knowledge of the on-top pair density of the system. Therefore, it yields a non-zero correlation energy for the totally dissociated \ce{H10} chain even if the on-top pair density is vanishingly small. This necessary lowers the value of $D_0$. Therefore, from hereon, we simply discard the $\pbeuegns$ functional. +Finally, the reader would have noticed that we did not report the performance of the $\pbeuegns$ functional as its performance are significantly inferior than the three other functionals. The main reason behind this comes from the fact that $\pbeuegns$ has no direct or indirect knowledge of the on-top pair density of the system. Therefore, it yields a non-zero correlation energy for the totally dissociated \ce{H10} chain even if the on-top pair density is vanishingly small. This necessary lowers the value of $D_0$. Therefore, from hereon, we simply discard the $\pbeuegns$ functional. \subsection{Dissociation of diatomics}