changes in abstract

This commit is contained in:
Pierre-Francois Loos 2019-12-12 03:13:52 +01:00
parent 555fc7503c
commit 1e467f4d6e

View File

@ -281,9 +281,8 @@
\begin{abstract}
We extend to strongly correlated systems the recently introduced basis-set correction based on density-functional theory (DFT) [E. Giner \textit{et al.}, J. Chem. Phys. \textbf{149}, 194301 (2018)]. This basis-set correction relies on a mapping between wave-function calculations in a finite basis set and range-separated DFT (RSDFT) through the definition of an effective non-divergent interaction corresponding to the Coulomb electron-electron interaction projected in the finite basis set, allowing one to use RSDFT-type complementary functionals to recover the dominant part of the short-range correlation effects missing in a finite basis set. Using as test cases the potential energy curves of the H$_{10}$, C$_2$, N$_2$, O$_2$, and F$_2$ molecules up to the dissociation limit, we systematically explore different approximations for the complementary functionals which are suited to describe strong-correlation regimes and which fulfill two very desirable properties: $S_z$ invariance and size consistency. Specifically, we investigate the dependence of the functionals on different flavors of on-top pair densities and spin polarizations. An important result is that the explicit dependence on the on-top pair density allows one to completely remove the dependence on any form of spin polarization without any significant loss of accuracy.
In the general context of multiconfigurational DFT, this finding shows that one can avoid the effective spin polarization whose mathematical definition is rather \textit{ad hoc} and which can become complex valued. Quantitatively, we show that the basis-set correction reaches chemical accuracy on atomization energies with triple-zeta quality basis sets for most of the systems studied. Also, the present basis-set correction provides smooth curves along the whole potential energy curves.
%We study the potential energy surfaces (PES) of the H$_{10}$, C$_2$, N$_2$, O$_2$, and F$_2$ molecules up to the dissociation limit using increasing basis sets at near full configuration interaction (FCI) level with and without the present basis-set correction.
We extend to strongly correlated systems the recently introduced basis-set incompleteness correction based on density-functional theory (DFT) [E. Giner \textit{et al.}, \href{https://doi.org/10.1063/1.5052714}{J. Chem. Phys. \textbf{149}, 194301 (2018)}]. This basis-set correction relies on a mapping between wave-function calculations in a finite basis set and range-separated DFT (RSDFT) through the definition of an effective non-divergent interaction corresponding to the Coulomb electron-electron interaction projected in the finite basis set. This allows to use RSDFT-type complementary functionals to recover the dominant part of the short-range correlation effects missing in this finite basis. Using as test cases the potential energy curves of the H$_{10}$, C$_2$, N$_2$, O$_2$, and F$_2$ molecules up to the dissociation limit, we explore various approximations of complementary functionals suited to describe strong correlation. These short-range correlation functionals fulfill two very desirable properties: invariance with respect to the spin operator $S_z$ and size consistency. Specifically, we systematically investigate the dependence of the functionals on different flavors of on-top pair densities and spin polarizations. The key result of this study is that the explicit dependence on the on-top pair density allows one to completely remove the dependence on any form of spin polarization without any significant loss of accuracy.
In the general context of multiconfigurational DFT, this finding shows that one can avoid the effective spin polarization whose mathematical definition is rather \textit{ad hoc} and which can become complex valued. Quantitatively, we show that the basis-set correction reaches chemical accuracy on atomization energies with triple-$\zeta$ quality basis sets for most of the systems studied here. Also, the present basis-set incompleteness correction provides smooth curves along the whole potential energy surfaces.
\end{abstract}
\maketitle