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Although many-body perturbation theofiIBPT) for quite some time has been used to determine quasi-
particle energies and optical properties of solids, traditionally the issue of ground-state energy has not been
addressed with this method. Rather, most efforts in that direction have been concentrating on various mean-
field theories. The success of density-functional thé®fyT) has enhanced this evolution. However, there are
certain systems for which known approximations for the so-called exchange-correlation potential within DFT
cannot correctly reproduce the observed ground states or the calculated ground-state properties deviate signifi-
cantly from experiment. In situations like these, an alternative is to have a theory that does not depend on such
approximations, but rather is derived from first principles within MBPT, albeit with some other form of
approximation. We here investigate two such schemes, rather closely related to each other, in order to highlight
the essential properties of a MBPT that correctly describes spectral progertigsound-state energies. As a
first step, we have investigated the case of the electron gas that provides a starting point for more general cases
of real materials.

[. INTRODUCTION were made within the GW approximatid@®@WA). For this
case, it was shown that self-consistency in the GW calcula-
The total energy of a many-electron system can be calcuions was a key ingredient for the success of total-energy
lated in several ways within the Green-function formalism.calculations** Thus, a fully self-consistent GW calculation
One approach follows the well-known formulation due to perfectly reproduces the exchange-correlation energy of the
Galitskii and Migdal (GM).> In general, only expectation electron gas. On the other hand, however, the resulting spec-
values of single-particle operators can be obtained from theal function is rather unphysicalSpectral weight is trans-
one-particle Green function. The total energy contains twoferred from the main quasiparticle peak to the side of the
particle operators arising from the Coulomb interaction.spectrum, the renormalization factor approaches the value of
However, from the equation-of-motion of the field operator,one, indicating that the system is driven towards a noninter-
the expectation value of the Coulomb operator in the grounécting one, and the screened interaction becomes unphysical
state can be related to the one-particle operator and the totadith the disappearance of the plasmon excitations. To main-
energy can then be expressed in terms of the one-partickain the plasmon excitations, a partial self-consistent scheme
Green function. The GM formula is very simple but it has athat keeps the screened interaction fixed within the self-
disadvantage of being nonvariational. consistency procedure can also be used to obtain good ener-
A different approach of calculating total energies uses thajies, not directly from the GM theorem, but from an integra-
less well-known energy functional due to Luttinger andtion of interaction strength over a range of densities. The
Ward (LW).2 The energy is derived from a diagrammatic application of this scheme to real systems is yet unclear since
expansion and expressed as a functional of the Green funthe question of how to parameterize the interaction with
tion. The functional is constructed in such a way that the firsivarying densities has to be resolved first.
derivative with respect to the Green function is zero at the Clearly, fully self-consistent GW calculations in real sys-
self-consistent Green function of a given approximationtems are computationally demanding. Here we propose two
This variational property is very desirable. However, oneapproaches for calculating the total energy using the GM
disadvantage of the LW approach is that the energy funcformula. In the first approach, we consider a model spectral
tional is not easily calculated for real systems. Also, thefunction for the Green function from which the total energy
functional is not explicit, in the sense that an approximationcan be easily calculated. We make use of the empirically
must always be employed. This is in contrast to the GMknown property of the local-density approximatignDA )
formula where only the Green function is required as arRef. 5 wave functions which almost diagonalize the spectral
input. Given the exact Green function, the total energy carfunction® The model has two parameters, the renormaliza-
be calculated exactly whereas in the LW approach, an apion factor of the quasiparticle and the quasiparticle energy
proximation is always used in practice so that even with thehat are obtained from a standard GW calculafioff.In the
exact Green function, the exact energy cannot be calculatesecond approach we use the cumulant expansioB)
easily. theory'~*°to calculate the spectral function. The input to the
The simplicity of the GM formula is very appealing. Re- CE calculations is the one-iteration GW self-energy. The CE
cently, applications of the GM formula to the electron gastheory has been shown to give spectral functions for Na and
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AlI*®1%in good agreement with the photoemission spectraFrom the definition of the one-particle Green function

The two approaches are tested by applying them to the elec- R R
tron gas. iG(rt,r't’)=(0[T[(r,H) " (r',t")]]0) 5

. THEORY it follows that the total electronic enerdp|H|0) is

A. The Galitskii-Migdal total energy Jd3r lim lim [a,—ih(n)]tr, G(rt,r't’)  (6)
The Hamiltonian of an electronic system is given by rort sttt

A A A which is the well-known Galitskii-Migdal formula*’
H=f dr g (Dh(r)g(r)
B. The Galitskii-Migdal formula in the LDA basis

+ %f a3 Pr Pt v =) P, The spectral representation of the Green function is
Ao’
@) G(r,r’ w)—f dw f do ( - @)

where —w'—id w—w +I5(7)

Writing the Green function in its Fourier representation and
using the spectral representation we obtain

Vet IS the sum of external potentials such as those from the u
nuclear charges. The field operator in the Heisenberg repre- E= Ef d3r lim J do[w+h(r)]tr,Ar,r';w). (8

h(r)==3V?+Ve(r). )

sentation is given by(r,t)= exp(Ht)¢(r)exp(iHt) and P T
frorp theA Helsenk-)erg equation-of-motioni g, y(r,t) For solids, let us expand the spectral function in the LDA
=[(r,t),H] we obtain basis:
iat{/;(r,t)z{h(rwfd3r"v(r—r")?/ﬁ(r”,t)ib(r”,t)}fb(r,t)- AN 0)= D) (DA (K o)t (1), (9)

©) knn’

Multiplying from the left with (1.t} and taking expecta- The LDA wave functions satisfy the Kohn-Sham equatfion:

tion value in the ground state we find
- A h+U+ = , 10
iﬁt(0|z,/ﬁ(r’,t’)¢(r,t)|0) ( Uxe) Ykn= Eknin (10)
+ 3 . whereU is the Hartree potential arising from the electrons
=h(r)(0l'(r',t")y(r,t)[0)+ | d*r"v(r—r") only since the corresponding contribution from the nuclear

. . . . charges is included ih. Inserting the spin label explicitly,
X0t (r )t (r" ) d(r" 1) g(r,1)|0). (4  the ground-state energy may then be rewritten as

E= —tr f d3r lim dw[w-l- h(r)]E wkna(r)Ann'(k (D)I,Ukn a'( )

r—r knn’

=;trof dr lim f_ do[o+h(r)+U(r)+ovg(r)—U(r)—v C(r)]E Deno(NAL L (K, w)t/;kn S

v Sr knn’

=502, [ rim [ dulo i, =000 o (AT () 1)
knn

1 w
=5t f_ dof 0+ ene Ak 0) — Etr > degn,(k,w)f A% ol U + 05 e - (12)

n knn’

This formula is so far exact. It is known from GW calcula- plained this useful property of the LDA wave functions by

tions in semiconductors that the spectral function is practiusing a random-phaselike argument. We will now make an
cally diagonal in the LDA basi8 This also appears to be the assumption that the spectral function is diagonal in the LDA
case even in Nt® Some years ago Hedihqualitatively ex-  basis:
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s
j_ de(nTn,(k,w)=nkm,5nn, . (12)

With this assumption we then have

1 ”
E=—tr,,(f dwwA”(w)+E Nkno€kno
2 o0 kn
—f d3r(U+v;'c)p"), (13
where

Aff(w):; A7 (K, @) (14)

and

pa':% nkn0'| lpknalz' (15)
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satellites due to short-range correlation may arise but they
generally have a small weight.

A physically motivated model spectral function can be
derived from a model Hamiltonian describing an electron
interacting with a plasmon, a familiar model in the core-
electron problem:

H=ec'c+w,b'0+gcc’(b™+D), (18)

wherec andb correspond to the electron and plasmon, re-
spectively,w, is the plasmon energy, and the last term is the
coupling term describing the interaction between the electron
and the plasmon with a coupling strengghAlthough this
Hamiltonian is very simple, it captures the basic physics of
the interaction between an electron and the rest of a solid.
The spectral function corresponding to the above Hamil-
tonian can be obtained analyticaffy:

_ 2 (9/wp)?"
A(w)=e (@ nzom—?ﬁ(w—s—As-i-mwp).

Numerical evidence shows that the off-diagonal elements of (19

A are very smalf:*® Moreover, they may change sign so that
the integral over the frequency results in cancellation an
make their contribution to the total energy even smaller. This[
argument is rather similar to the one used by H&Hio

explain the reason for the small value of the off-diagonal

elements ofA.

The correction to the LDA energy can be calculated
straightforwardly. The total electronic energy in the LDA is

given by

1
ELDA:tr(r{ E Nkno€kne ™ Ef dSrUpo
kn

—f d3rvfpT+EZ}. (16)
The correction to the LDA total energy is then
1 w
E_ELDAz_tro(J dwwA”(©0) = X Nnekne
2 — o0 kn
+j dSrU;Tcp‘T—ZE)‘(TC]
1 w
=§trg[f doo[A%(w)—Af(w)]
+j d3ru§cp“—2E;’CJ, 17

where A7 is the LDA density-of-states. The only unknown
input is the spectral functioM’. Other quantities can be

obtained from the standard LDA calculations.

C. A model spectral function

e= gzlwp is the shift due to the self-energy correction. It is
traightforward to show that the spectral function integrates
0 unity. The factor ex[p—(g/wp)z] may be identified as the
quasiparticle renormalization factat. Thus, the spectrum
consists of a quasiparticle peak and a series of plasmon sat-
ellites located at multiples of plasmon energy below the qua-
siparticle peak, in agreement with our physical picture. X-ray
photoemission spectroscop¥PS) experiments in Na and Al
and others-p metals also show the same spectral structtire.
First-principles calculations for Na and Al using the CE
theory also yield a similar result:*®
We propose now the following model spectral function

for an occupied statkno:

ana'| m

" M lin
Ann(k! (1)) = nkn(ern(rmE_O A 5(") - Ekn(r+ mwp)

(20

whereZ,, is the quasiparticle renormalization factor gfg,

is the quasiparticle energy, both can be obtained from a stan-
dard GW calculationM is the maximum number of plas-
mons. In reality, the spectral function has weight above the
chemical potential. To take this possibility into account we
have introduced the occupation numlogf,,,. The plasmon
energy in atomic unit¢a.u. = 27.2 eV} is given by

wp=\4mp, (22)

wherep is the averagévalence electron density consisting

of those states that contribute to the plasmon. Since only the
center of gravity is important in the GM formula, it is clear
that it would make no difference to the total energy if we
replace the delta functions with, say, Gaussians. This means
that the total energy is not sensitive to the detail structure of
the spectral function, but only to its center of gravity. This

m!

While the exact spectral function is difficult to calculate, might explain the very good agreement achieved in self-

the general structure is well known. $ap systems, the spec- consisteniGW calculations for the electron gas although the
trum consists of a quasiparticle peak and a series of plasmapectral functions are of little resemblance to the expected
satellites located at multiple of the plasmon energy below thérue spectrd.This can only give a partial explanation though
quasiparticle peak. In strongly correlated systems, additionaince the total energy depends also on the chemical potential.
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20.0 — — c e tr E ] E [INZyno|™ Mo
:1 — Cumulant LDA ™ kno kn(r (m 1)|
15.0 | H Model
il -
3 “l + (Ekno—&kno) | T f dgrvxcp _ZExc] :
3 100} i 1.
< i (23
{ '
5.0 ' '\ D. Electron gas test
I . . .
I // \\ To test the quality of the model spectral function we use it
0.0 /f\/ 3 | === | \>. in the formula in Eq(13) to calculate the total energy of the
-0.60 -0.40 -0.20 electron gas. For the paramagnetic electron gas, the total en-
waau. ergy formula in Eq(13) becomes

FIG. 1. Spectral functions used in the total-energy calculation.
The one of the GW calculatiofdashegl has only one plasmon EZE f” dew lk2+w
satellite, and the distance between it and the quasiparticle peak is 2
too large. The one of the C&olid) has multiple plasmon peaks at
more appropriate energies. The delta peaks of the model are hegnd the model spectral function (see Fig. 1
indicated by arrows. Note that the arrows only represent relative

Z "

Ak, w) (24

weight of the peaks within the model. Further, note that the differ- [In
ence of position of the quasiparticle peak of the model and of the A(Kk,w)=nZ, E —5(w Ex+tmwp). (25
other schemes stems from the fact that the change of quasipatrticle

dispersion has been taken into account for the latter. . . .
The quasiparticle energy corresponds to its absolute value,

not measured with respect to the chemical potential.

An interesting work in this context was recently performed To simplify the calculation and to have an analytic ex-
by Schindimayet al?! where they calculated the spectra andpression for the total energy we replace the quasiparticle en-
total energies of a Hubbard model using self-consistenergy measured with respect to the chemical potential with the
GWA. Their conclusion is that the very good results for thefree-electron one since they are rather close to each other.
total energy in self-consistent GWA may well be spurious.The occupation number, has been set to unity for occupied
The relevance of this work to real systems, however, remainstates. We also replace the renormalization factor by its av-
unclear. erage value

Using the model spectral function in E@.3) we find
F
22,
— K 2
z= =5 2 Zc (26)
N %

F
M
1 I INZno|™
E= —trg{f dwwE nanangz —| o] Ek:
2 — kn m=0

m!

The last equation is obtained from
X 5((,0_ Ekn0'+ mwp) + % Nkno€kne

ke ‘ N
S f "=~ 27)
k (2m)3Jo 2
—J d3r(U+v%)p”
This approximation becomes exact if there is only one plas-
1 |InZ |m mon. Using the model spectral function, the total energy can
= Etr"[ % nkngzkmz kno —— " (Exno— Mw)) be calculated as a function @f andE,:
E=D, f” d 1k2+ A(K, )
+E nkn(rskmr_f d3r(U+U;(TC)pcr} B k — @ 2 @ @
kn
1IN Zyo|™ § 1k2+f”d Ak, )
I = = 0w ,
tro’ Z Nkne| — knoz kn (U k 2 —
kn m=1 (mM— l)'
Ke
1 “
= —k2+f dwwnZ
+<Ekm+skm)}—fd3r<U+v;’c>p”}. (22) 3 |24t | deend

m
E k| S(w—Ex+ mwp)}
Using EQq.(16) the correction to the LDA total energy is m=0
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TABLE I. Correlation energy per electron in a(d a.u.= 27.2 TABLE II. For comparison, the results for the correlation en-
eV) of the paramagnetic electron gas for differepbbtained in the  ergy of the electron gas obtained by other authors using different
present paper. The results under model are obtained froni3Ey. methods are listed. The data are taken from Hindgren’s tliRsit
and those under cumulant are calculated from @4) using the  25), all in a.u.(27.2 e\j. RPA corresponds to the Gell-Mann and
spectral function given in Eq34). QMC is the Ceperley and Alder Brueckner result(Ref. 26 but with the constant term equal to
(Ref. 22 data parametrized by Voslai al. (Ref. 27 which may be  —0.071 a.u(Ref. 25 instead of the standard value 6f0.048 a.u.

regarded as “exact.” GM(GyW,) is obtained from the GM formula using the Green

function resulting from one-iteration GW calculatioRef. 28

rs Model Cumulant QMC whereas GNIGW) is obtained from fully self-consistent GW calcu-
lations (Ref. 4. LW(G,) is calculated from the LW functional us-

1 —0.057 —0.0600 ing the noninteracting Green functi¢Ref. 25. ABL(G,, WPP) cor-

2 —0.045 —0.046 —0.0448 responds to a generalization of the LW functional where both the

3 —0.036 —0.037 —0.0369 Green function and the screened interacWgiare regarded as vari-

4 —0.032 —0.033 —0.0318 ables(Refs. 23 and 2b

5 —0.030 —0.0281

r« RPA GM(GW,) GM(GW) LW(Gy) ABL(Gy,WPP)

1 -0.0788 —-0.0722 —0.0658 —0.0669
2 —0.0618 —0.0539 —0.045 -—0.0455 —0.0468
3 —0.0528 —-0.0448 —0.037 —0.0350 —0.0363
4
5

Ke M m
1 ||n Zk|
— E K2 E —
= - |:2k +nkam:0 m! (Ek mwp)

—0.0468 —0.0382 —0.032 —-0.0286  —0.0299

M
1 InZ,|™
{zkz"'nkEk_nkaE | k| (28) —0.0425 —-0.0335 —0.0248 —0.0258

=1 (m=1)1 “P|°

Il
~Mz

ReplacingE, by (k2/2+ u,.), Zx by Z, and settingn,=1,  comparison, results obtained by other authors using different

be the model spectral function reproduces the QMC result very
well. It is quite feasible that the good agreement extends to

gm\231 z M Inz|™ 3 1 real systems with a possibility of improving the present ac-

E/N:O.3< T) 2735 m =5t 2 e curacy achieved in density-functional theory. For compari-

s m=1 " Ts son, we have listed in Table Il the correlation energy ob-

29 tained by other authors using different methods. For more
The first term is the kinetic energy of the free electrons, thedetails we refer to the given references.
second term and third term constitute the exchange and cor- We have calculated the total energies without adjusting
relation energypu,. is the exchange-correlation correction to the renormalization factor that is obtained from the one-

the chemical potential from its noninteracting value: iteration GW calculation. For applications in real systems,
we may adjust the form of the spectral weight so that the
L=epT Mty (30 scheme exactly reproduces the QMC data for the electron
. . gas and the total energies of some atoms and molecules
The correlation energy per electron is therefore
(Table 11I).
- M = 213
R D M£+} L3987t Iil. TOTAL ENERGY IN THE CUMULANT EXPANSION
T2 & (m—1)l 3 2B g\ Ta vy THEORY
S
(31

As discussed in the introduction, the GWA yields very
good total energies for the electron gas provided the calcu-
lations are performed self-consistently. However, self-
consistent GW calculations for real systems are computation-

where the last term is the negative of the well-known ex-
change energy. For a model with an infinite number of plas
mons, the sum ovem in the first term can be carried out

analytically: ally very demanding. In fact, the usefulness of the GWA
Inzm nz originates from the fact that no attempt of self-consistency is
Inz|™ _ Inz (32  atall invoked in calculations that lead to a remedy of the

m=1 (M—1)!

TABLE IIl. Different contributions to the total energy for dif-
We have used the fact that exp=;;,_x"/m! and ferent methods of obtaining total energies through the GM theorem.
- The case of ;=4.

=

0=z=1. 33 Method S Kinetic Spectral  Total  Correlation

We use this formula to caICL_JIate the correlation energy- wulant —0.045 —0.068 0035 —0.078 —0.033
per electron of the paramagnetic electron gas. The averages \v. 0045 -0.081 0044 —0.0816 —0.036
renormalization factoZ has been estimated from the data in gw (s9 -0.034 —0.086 0042 -0078 —0.032
Ref. 3. The exchange-correlation correction to the chemical qyc —0.032
potential u,., is obtained from the quantum Monte Carlo
(QMC) data?? The result of the test is shown in Table I. For 2 3¢, .
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classical failure of DFT to reproduce, e.g., proper band gaps ' ' '
conduction bands, and optical properties, where the correc iop————————- ] .
description of excited states is also required. Instead, only
one iteration is performed on the cycle of coupled equations,
leading to a simplification of the numerical procedure while €
simultaneously preserving the physical appearance of the
properties involved. The spectral function from one-iteration
GW calculation, however, has some well-known shortcom-
ings in the description of the plasmon satellite structure. The
multiple plasmon satellite structure is not reproduced. In-
stead, there is only one peak in the hole pdlow the
chemical potentialand one in the particle patabove the
chemical potentialof the spectrum. Further, the difference 0.05
in energy between this satellite and the main peak does no
correspond to the anticipated plasma frequency, but is typi-§
cally overestimated by a factor 1.5. It can be interpreted asz
an average of the energies of the multiple plasmon satellites 3
Albeit this factor is diminished as a consequence of self-
consistency, it does not approach 1. This shortcoming par-
tially explains the too low-total energgTable Il) obtained -0.15
. . ) 0.0 0.5 1.0 1.5 2.0

from the GM formula using one-iteration GW spectral func- Kk
tions since the plasmon satellite with too low energy gives F
more contribution than it should. 0.10 ' ' ' '

A more realistic spectrum is provided by the CE theory
using a one-iteration GW self-energy. The spectral function 2

-0.05

in the CE for a state below the Fermi level is expressedﬁ
ad3-15 S o000
=
N \
[] L
i \
ne (* .. .
A(k,(l)) = _kj dtel wteilskt+c(k’t), (34) -0.10 I I I I
2m) = -0.25 -0.15 -0.05 0.0 0.15 0.25
o/a.u.
whereny is the occupation number of statee is the free- FIG. 2. These plots are aimed to guide the reader through the

electron energy, an@(k,t) is the cumulant. In this ap- calculations. In all the examples,=4. Top: The momentum dis-
proach, the Green function for an occupied stéiele, t  tribution function resulting from a GW calculatidsolid) is altered

<0) is written as from that of a noninteracting electron gétasheg, but that of the
) CE, and of the proposed model, is not. Middle: As a result of
G(k,t)=ie TattCkD different momentum distributions, the exchange energy is altered.

The noninteracting exchangdashed, which is the same as that of
the CE, is larger in magnitude, and gives a larger contribution to the
chemical potential, than the one resulting from the GW momentum
distribution (solid). Bottom: The real part of the self-energy also
contributes to the chemical potential through its value at Fermi level
and energy.

=Go(k,)[1+C(k,t)+3C%(k,t)+ ...], (35

where Gy(k,t)=ie '*k'. In terms of the self-energy, the
Green function for the hole can be expanded as

G=Gy+ G2 Go+GoSGeSGo+ .. . . (36)

To first order in the screened interactigv) the cumulant is

obtained by equating The resulting spectrum proves to correspond very well to

experimental data for the two free-electronlike metals Na and
GoC=GoS anGo 37 AlL™® As the CE does not change the quasiparticle
properties* any modification of a property depending on the
so that spectral function is strictly due to an improvement on the
plasmon part of the spectrum.
T R ieur Thus there are several reasons for using the CE. First, the
C(k,t)= —|f0dt ft d72cw(k, 7)€", (38) resulting spectral function will have some similar essential
properties in common with that of the model, such as posi-
whereG refers to the hole Green function. This cumulant istions and weight of the quasiparticle and plasmon peaks.
then put back into Eq35) which yields an infinite series of However, it is physically more appealing since the peaks are
diagrams in powers dfV. Similar consideration applies also broadened and it corresponds better to experimental spectra.
to a state above the Fermi lev@article,t>0). The self- The success of the proposed model for the electron gas en-
energy appearing in the cumula@tk,t) is taken to be the courages us to apply the CE. Second, the CE only relies on
GW self-energy. the one-iteration rather than the self-consistent GW self-
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energy as input data. Self-consistent CE has been found the CE result is the same as for the noninteracting gas, half
have little effect on the spectfAFurther advantages are that of the value of the average kinetic energy:per . The GW
the spectral function in the CE can be easily calculated onceesult is higher because of the modification of momentum
the GW self-energy is available and no modeling of quasidistribution. The reason for this is that when evaluating the
particle parameters is required. There are, however, somategral overk, the k? weighting in the integrand results in
shortcomings. The CE works well for describing long-rangethe unoccupied states giving a larger contribution than the
correlations manifested in the coupling of electrons toloss due to the reduction of spectral weight in the occupied
bosonic excitations such as plasmons. In fact, the CE givegart.
the exact solution to the Hamiltonian in E@.8). In f sys- We now consider the spectral part. Assuming that the CE
tems or in strongly correlated materials, additional satellitespectrum belowu has the same weight as that of the GW
features in the range of the valence bandwidth may appeaspectrum, it is clear from Fig. 1 that the GW spectral contri-
These satellites are atomic in origin and due mainly to shortbution is more negative than that of the CE since the position
range correlations. These are not well accounted for by thef the plasmon satellite is lower than the middle of the two
CE. However, as mentioned before, the total energy depenggasmon satellites in the CE. The situation is actually not so
on the center of gravity of the spectral function so that thesimple because as discussed in the previous paragraph, the
CE could still perform well although the details of the spec-GW spectrum has some transfer of weight from the hole to
tral function is not entirely correct. the particle part. Numerical calculations, however, show that
We have calculated the total energy of the electron gas fothe GW spectral contribution is still more negative than that
severalrg values corresponding to the metallic range usingof the CE when the reduction of GW spectral weight in the
the CE theory and the result is displayed in Table I. As carhole (occupied part is taken into account.
be seen, the results are comparable in accuracy to the QMC Finally, as for the chemical potential, it has three con-
results. To gain insights into the different contributions to thetributions. One is the evident Fermi energy of the noninter-
total energy we analyze the results calculated from two specacting gase-. The second part comes from the exchange
tra obtained from a one-iteration GW calculation and fromcontribution, in the case of the electron gas given by the
the CE. The GM total energy expression can be decomposagksual expression,
into three components: One part stemming from the sum of
kinetic energies, another part containing spectral energy,

arising from the first moment of the spectral function, S i E VoMK
Q q '

f” dwwA(w) Thus, for the CE, the exchange contribution is again the
—o ’ same as for the non-interacting case. For the one-iteration
GW scheme there is an ambiguity here. In calculating the
and finally a term « originating from the upper limit of the €Xchange energy, should the momentum distribution of the
integral over energy. ingoing (i.e., noninteracting or the outgoing spectrum be
Let us begin with the kinetic-energy term. First it has to Us€d?(cf. Fig. 2, middig It turns out that the former case
be noted that in the CE as well as in the model previouslynderestimates the total-energy, the latter overestimates it.
described, for momenta inside the Fermi sphere, the hole paRUr investigations show that for the CE total-energy calcu-
of the spectrum is fully occupied. This is because the CE idation (keeping in mind that the QP parameters are given by
only defined for either the hole or particle Green function.the input self-energy, and the position of the QP peak affects
This is in contrast to the GW spectrum, which has weightth® result of thew integration in the GM theoremthe mo-
transferred from the hole part to the particle part as illusimentum distribution of the outgoing spectrum is to be pre-

trated in Fig. 2(top). The implication of this is that the ferred for the input GW self-energy when its exchange con-
momentum distribution tribution is evaluated. The third comes from the correlation

part of the self-energy, when evaluatekatander (see Fig.
2, bottonm). In Table Il the different contributions to the total
© energy are displayed and in Table | we see that we have
ng= f Ak, w)dw, successfully reproduced the total electron gas energies when
o using the CE in the prescribed way.

for the CE is essentially the same as that of the noninteract- IV. SUMMARY AND CONCLUSIONS
ing electron gas, whereas the GW one is modified, typically
reflecting the many-body interaction of the system. A conse- |5 symmary, we have shown that at least for the electron
quence of this is that in the sum ovef the CE only con- - gas, total energies can be obtained in an appealing way by
tributes for occupied values, whereas in the GWA, contri- compining the CE with the simple and physically appealing
bution_s al_so arise_from higher values. Thus, as for the surgpe-iteration GW approximation. We have also proposed a
over kinetic energies, model spectral function from which the total energy can be
easily calculated. The parameters in the model are obtained
from standard GW calculations. Thus we have at our hands a
E €Ny, computational scheme derived from first principles which for
K the electron gas yields good total energies through the simple
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