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Although many-body perturbation theory~MBPT! for quite some time has been used to determine quasi-
particle energies and optical properties of solids, traditionally the issue of ground-state energy has not been
addressed with this method. Rather, most efforts in that direction have been concentrating on various mean-
field theories. The success of density-functional theory~DFT! has enhanced this evolution. However, there are
certain systems for which known approximations for the so-called exchange-correlation potential within DFT
cannot correctly reproduce the observed ground states or the calculated ground-state properties deviate signifi-
cantly from experiment. In situations like these, an alternative is to have a theory that does not depend on such
approximations, but rather is derived from first principles within MBPT, albeit with some other form of
approximation. We here investigate two such schemes, rather closely related to each other, in order to highlight
the essential properties of a MBPT that correctly describes spectral propertiesandground-state energies. As a
first step, we have investigated the case of the electron gas that provides a starting point for more general cases
of real materials.
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I. INTRODUCTION

The total energy of a many-electron system can be ca
lated in several ways within the Green-function formalis
One approach follows the well-known formulation due
Galitskii and Migdal ~GM!.1 In general, only expectation
values of single-particle operators can be obtained from
one-particle Green function. The total energy contains tw
particle operators arising from the Coulomb interactio
However, from the equation-of-motion of the field operat
the expectation value of the Coulomb operator in the gro
state can be related to the one-particle operator and the
energy can then be expressed in terms of the one-par
Green function. The GM formula is very simple but it has
disadvantage of being nonvariational.

A different approach of calculating total energies uses
less well-known energy functional due to Luttinger a
Ward ~LW!.2 The energy is derived from a diagramma
expansion and expressed as a functional of the Green f
tion. The functional is constructed in such a way that the fi
derivative with respect to the Green function is zero at
self-consistent Green function of a given approximatio
This variational property is very desirable. However, o
disadvantage of the LW approach is that the energy fu
tional is not easily calculated for real systems. Also,
functional is not explicit, in the sense that an approximat
must always be employed. This is in contrast to the G
formula where only the Green function is required as
input. Given the exact Green function, the total energy
be calculated exactly whereas in the LW approach, an
proximation is always used in practice so that even with
exact Green function, the exact energy cannot be calcul
easily.

The simplicity of the GM formula is very appealing. Re
cently, applications of the GM formula to the electron g
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were made within the GW approximation~GWA!. For this
case, it was shown that self-consistency in the GW calcu
tions was a key ingredient for the success of total-ene
calculations.3,4 Thus, a fully self-consistent GW calculatio
perfectly reproduces the exchange-correlation energy of
electron gas. On the other hand, however, the resulting s
tral function is rather unphysical:3 Spectral weight is trans
ferred from the main quasiparticle peak to the side of
spectrum, the renormalization factor approaches the valu
one, indicating that the system is driven towards a nonin
acting one, and the screened interaction becomes unphy
with the disappearance of the plasmon excitations. To m
tain the plasmon excitations, a partial self-consistent sche
that keeps the screened interaction fixed within the s
consistency procedure can also be used to obtain good e
gies, not directly from the GM theorem, but from an integr
tion of interaction strength over a range of densities. T
application of this scheme to real systems is yet unclear s
the question of how to parameterize the interaction w
varying densities has to be resolved first.

Clearly, fully self-consistent GW calculations in real sy
tems are computationally demanding. Here we propose
approaches for calculating the total energy using the G
formula. In the first approach, we consider a model spec
function for the Green function from which the total ener
can be easily calculated. We make use of the empiric
known property of the local-density approximation~LDA !
Ref. 5 wave functions which almost diagonalize the spec
function.6 The model has two parameters, the renormali
tion factor of the quasiparticle and the quasiparticle ene
that are obtained from a standard GW calculation.6–10 In the
second approach we use the cumulant expansion~CE!
theory11–15to calculate the spectral function. The input to t
CE calculations is the one-iteration GW self-energy. The
theory has been shown to give spectral functions for Na
4858 ©2000 The American Physical Society
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Al15,16 in good agreement with the photoemission spec
The two approaches are tested by applying them to the e
tron gas.

II. THEORY

A. The Galitskii-Migdal total energy

The Hamiltonian of an electronic system is given by

Ĥ5E d3r ĉ†~r !h~r !ĉ~r !

1
1

2E d3rd3r 8ĉ†~r !ĉ†~r 8!v~r2r 8!ĉ~r !ĉ~r 8!,

~1!

where

h~r !52 1
2 ¹21Vext~r !. ~2!

Vext is the sum of external potentials such as those from
nuclear charges. The field operator in the Heisenberg re
sentation is given byĉ(r ,t)5 exp(iĤt)ĉ(r )exp(2iĤt) and
from the Heisenberg equation-of-motioni ] tĉ(r ,t)
5@ĉ(r ,t),Ĥ# we obtain

i ] tĉ~r ,t !5Fh~r !1E d3r 9v~r2r 9!ĉ†~r 9,t !ĉ~r 9,t !G ĉ~r ,t !.

~3!

Multiplying from the left with ĉ†(r 8,t8) and taking expecta
tion value in the ground state we find

i ] t^0uĉ†~r 8,t8!ĉ~r ,t !u0&

5h~r !^0uĉ†~r 8,t8!ĉ~r ,t !u0&1E d3r 9v~r2r 9!

3^0uĉ†~r 8,t8!ĉ†~r 9,t !ĉ~r 9,t !ĉ~r ,t !u0&. ~4!
a-
ct
e

.
c-

e
e-

From the definition of the one-particle Green function

iG~r t,r 8t8!5^0uT@ĉ~r ,t !ĉ†~r 8,t8!#u0& ~5!

it follows that the total electronic energy^0uĤu0& is

E5
1

2E d3r lim
r8→r

lim
t8→t1

@] t2 ih~r !#trs G~r t,r 8t8! ~6!

which is the well-known Galitskii-Migdal formula.1,17

B. The Galitskii-Migdal formula in the LDA basis

The spectral representation of the Green function is

G~r ,r 8;v!5E
2`

m

dv8
A~r ,r 8;v8!

v2v82 id
1E

m

`

dv8
A~r ,r 8;v8!

v2v81 id
.

~7!

Writing the Green function in its Fourier representation a
using the spectral representation we obtain

E5
1

2E d3r lim
r8→r

E
2`

m

dv@v1h~r !#trs A~r ,r 8;v!. ~8!

For solids, let us expand the spectral function in the LD
basis:

A~r ,r 8;v!5 (
knn8

ckn~r !Ann8~k,v!ckn8
* ~r 8!. ~9!

The LDA wave functions satisfy the Kohn-Sham equation5

~h1U1vxc!ckn5«knckn , ~10!

whereU is the Hartree potential arising from the electro
only since the corresponding contribution from the nucle
charges is included inh. Inserting the spin label explicitly
the ground-state energy may then be rewritten as
E5
1

2
trsE d3r lim

r8→r

E
2`

m

dv@v1h~r !# (
knn8

ckns~r !Ann8
s

~k,v!ckn8s
* ~r 8!

5
1

2
trsE d3r lim

r8→r

E
2`

m

dv@v1h~r !1U~r !1vxc
s ~r !2U~r !2vxc

s ~r !# (
knn8

ckns~r !Ann8
s

~k,v!ckn8s
* ~r 8!

5
1

2
trs (

knn8
E d3r lim

r8→r

E
2`

m

dv@v1«kns2U~r !2vxc
s ~r !#ckns~r !Ann8

s
~k,v!ckn8s

* ~r 8!

5
1

2
trs(

kn
E

2`

m

dv@v1«kns#Ann
s ~k,v!2

1

2
trs (

knn8
E

2`

m

dvAnn8
s

~k,v!E d3rckns@U1vxc
s #ckn8s

* . ~11!
y
an
A

This formula is so far exact. It is known from GW calcul
tions in semiconductors that the spectral function is pra
cally diagonal in the LDA basis.6 This also appears to be th
case even in Ni.18 Some years ago Hedin19 qualitatively ex-
i-
plained this useful property of the LDA wave functions b
using a random-phaselike argument. We will now make
assumption that the spectral function is diagonal in the LD
basis:
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E
2`

m

dvAnn8
s

~k,v!5nknsdnn8 . ~12!

With this assumption we then have

E5
1

2
trsH E

2`

m

dvvAs~v!1(
kn

nkns«kns

2E d3r ~U1vxc
s !rsJ , ~13!

where

As~v!5(
kn

Ann
s ~k,v! ~14!

and

rs5(
kn

nknsucknsu2. ~15!

Numerical evidence shows that the off-diagonal element
A are very small.6,18 Moreover, they may change sign so th
the integral over the frequency results in cancellation a
make their contribution to the total energy even smaller. T
argument is rather similar to the one used by Hedin19 to
explain the reason for the small value of the off-diago
elements ofA.

The correction to the LDA energy can be calculat
straightforwardly. The total electronic energy in the LDA
given by

ELDA5trsH(
kn

nkns«kns2
1

2E d3rUrs

2E d3rvxc
s rs1Exc

s J . ~16!

The correction to the LDA total energy is then

E2ELDA5
1

2
trsH E

2`

m

dvvAs~v!2(
kn

nkns«kns

1E d3rvxc
s rs22Exc

s J
5

1

2
trsH E

2`

m

dvv@As~v!2A0
s~v!#

1E d3rvxc
s rs22Exc

s J , ~17!

whereA0
s is the LDA density-of-states. The only unknow

input is the spectral functionAs. Other quantities can be
obtained from the standard LDA calculations.

C. A model spectral function

While the exact spectral function is difficult to calculat
the general structure is well known. Ins-p systems, the spec
trum consists of a quasiparticle peak and a series of plas
satellites located at multiple of the plasmon energy below
quasiparticle peak. In strongly correlated systems, additio
of
t
d
is

l

on
e
al

satellites due to short-range correlation may arise but t
generally have a small weight.

A physically motivated model spectral function can
derived from a model Hamiltonian describing an electr
interacting with a plasmon, a familiar model in the cor
electron problem:

Ĥ5« ĉ†ĉ1vpb̂†b̂1gĉĉ†~ b̂†1b̂!, ~18!

where ĉ and b̂ correspond to the electron and plasmon,
spectively,vp is the plasmon energy, and the last term is t
coupling term describing the interaction between the elect
and the plasmon with a coupling strengthg. Although this
Hamiltonian is very simple, it captures the basic physics
the interaction between an electron and the rest of a so
The spectral function corresponding to the above Ham
tonian can be obtained analytically:11

A~v!5e2(g/vp)2

(
m50

`
~g/vp!2m

m!
d~v2«2D«1mvp!.

~19!

D«5g2/vp is the shift due to the self-energy correction. It
straightforward to show that the spectral function integra
to unity. The factor exp@2(g/vp)

2# may be identified as the
quasiparticle renormalization factorZ. Thus, the spectrum
consists of a quasiparticle peak and a series of plasmon
ellites located at multiples of plasmon energy below the q
siparticle peak, in agreement with our physical picture. X-r
photoemission spectroscopy~XPS! experiments in Na and A
and others-p metals also show the same spectral structur20

First-principles calculations for Na and Al using the C
theory also yield a similar result.15,16

We propose now the following model spectral functio
for an occupied statekns:

Ann
s ~k,v!5nknsZkns (

m50

M u ln Zknsum

m!
d~v2Ekns1mvp!

~20!

whereZkn is the quasiparticle renormalization factor andEkn
is the quasiparticle energy, both can be obtained from a s
dard GW calculation.M is the maximum number of plas
mons. In reality, the spectral function has weight above
chemical potential. To take this possibility into account w
have introduced the occupation numbernkns . The plasmon
energy in atomic units~a.u.5 27.2 eV! is given by

vp5A4pr̄, ~21!

wherer̄ is the average~valence! electron density consisting
of those states that contribute to the plasmon. Since only
center of gravity is important in the GM formula, it is clea
that it would make no difference to the total energy if w
replace the delta functions with, say, Gaussians. This me
that the total energy is not sensitive to the detail structure
the spectral function, but only to its center of gravity. Th
might explain the very good agreement achieved in s
consistentGW calculations for the electron gas although t
spectral functions are of little resemblance to the expec
true spectra.3 This can only give a partial explanation thoug
since the total energy depends also on the chemical poten
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An interesting work in this context was recently perform
by Schindlmayret al.21 where they calculated the spectra a
total energies of a Hubbard model using self-consist
GWA. Their conclusion is that the very good results for t
total energy in self-consistent GWA may well be spuriou
The relevance of this work to real systems, however, rem
unclear.

Using the model spectral function in Eq.~13! we find

E5
1

2
trsH E

2`

m

dvv(
kn

nknsZkns (
m50

M u ln Zknsum

m!

3d~v2Ekns1mvp!1(
kn

nkns«kns

2E d3r ~U1vxc
s !rsJ

5
1

2
trsH(

kn
nknsZkns (

m50

M u ln Zknsum

m!
~Ekns2mvp!

1(
kn

nkns«kns2E d3r ~U1vxc
s !rsJ

5
1

2
trsH(

kn
nknsF2Zkns (

m51

M u ln Zknsum

~m21!!
mvp

1~Ekns1«kns!G2E d3r ~U1vxc
s !rsJ . ~22!

Using Eq.~16! the correction to the LDA total energy is

FIG. 1. Spectral functions used in the total-energy calculati
The one of the GW calculation~dashed! has only one plasmon
satellite, and the distance between it and the quasiparticle pe
too large. The one of the CE~solid! has multiple plasmon peaks a
more appropriate energies. The delta peaks of the model are
indicated by arrows. Note that the arrows only represent rela
weight of the peaks within the model. Further, note that the diff
ence of position of the quasiparticle peak of the model and of
other schemes stems from the fact that the change of quasipa
dispersion has been taken into account for the latter.
t

.
s

E2ELDA5
1

2
trH(

kn
nknsF2Zkns (

m51

M u ln Zknsum

~m21!!
mvp

1~Ekns2«kns!G1E d3rvxc
s rs22Exc

s J .

~23!

D. Electron gas test

To test the quality of the model spectral function we use
in the formula in Eq.~13! to calculate the total energy of th
electron gas. For the paramagnetic electron gas, the tota
ergy formula in Eq.~13! becomes

E5(
k
E

2`

m

dvF1

2
k21vGA~k,v! ~24!

and the model spectral function is~see Fig. 1!

A~k,v!5nkZk (
m50

M u ln Zkum

m!
d~v2Ek1mvp!. ~25!

The quasiparticle energy corresponds to its absolute va
not measured with respect to the chemical potential.

To simplify the calculation and to have an analytic e
pression for the total energy we replace the quasiparticle
ergy measured with respect to the chemical potential with
free-electron one since they are rather close to each o
The occupation numbernk has been set to unity for occupie
states. We also replace the renormalization factor by its
erage value

Z̄5

(
k

kF

Zk

(
k

kF
5

2

N (
k

kF

Zk . ~26!

The last equation is obtained from

(
k

kF

→ V

~2p!3E0

kF
d3k5

N

2
. ~27!

This approximation becomes exact if there is only one pl
mon. Using the model spectral function, the total energy
be calculated as a function ofZk andEk :

E5(
k
E

2`

m

dvF1

2
k21vGA~k,v!

5(
k

kF F1

2
k21E

2`

m

dvvA~k,v!G
5(

k

kF F1

2
k21E

2`

m

dvvnkZk

3 (
m50

M u ln Zkum

m!
d~v2Ek1mvp!G

.
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5(
k

kF F1

2
k21nkZk (

m50

M u ln Zkum

m!
~Ek2mvp!G

5(
k

kF F1

2
k21nkEk2nkZk (

m51

M u ln Zkum

~m21!!
vpG . ~28!

ReplacingEk by (k2/21mxc), Zk by Z̄, and settingnk51,
the total energy per electron in a.u. can be readily show
be

E/N50.3S 9p

4 D 2/3 1

r s
2

2
Z̄

2 (
m51

M u ln Z̄um

~m21!!

A3

r s
3/2

1
1

2
mxc .

~29!

The first term is the kinetic energy of the free electrons,
second term and third term constitute the exchange and
relation energy.mxc is the exchange-correlation correction
the chemical potential from its noninteracting value:

m5«F1mxc . ~30!

The correlation energy per electron is therefore

«c52
Z̄

2 (
m51

M u ln Z̄um

~m21!!

A3

r s
3/2

1
1

2
mxc1

3

4p S 9p

4 D 2/31

r s
,

~31!

where the last term is the negative of the well-known e
change energy. For a model with an infinite number of pl
mons, the sum overm in the first term can be carried ou
analytically:

(
m51

` u ln Z̄um

~m21!!
52

ln Z̄

Z̄
. ~32!

We have used the fact that expx5(m50
` xm/m! and

0<Z̄<1. ~33!

We use this formula to calculate the correlation ene
per electron of the paramagnetic electron gas. The ave
renormalization factorZ̄ has been estimated from the data
Ref. 3. The exchange-correlation correction to the chem
potential mxc , is obtained from the quantum Monte Car
~QMC! data.22 The result of the test is shown in Table I. F

TABLE I. Correlation energy per electron in a.u.~1 a.u.5 27.2
eV! of the paramagnetic electron gas for differentr s obtained in the
present paper. The results under model are obtained from Eq.~31!
and those under cumulant are calculated from Eq.~24! using the
spectral function given in Eq.~34!. QMC is the Ceperley and Alde
~Ref. 22! data parametrized by Voskoet al. ~Ref. 27! which may be
regarded as ‘‘exact.’’

r s Model Cumulant QMC

1 20.057 20.0600
2 20.045 20.046 20.0448
3 20.036 20.037 20.0369
4 20.032 20.033 20.0318
5 20.030 20.0281
to

e
r-

-
-

y
ge

al

comparison, results obtained by other authors using diffe
methods are listed in Table II. As can bee seen from Tab
the model spectral function reproduces the QMC result v
well. It is quite feasible that the good agreement extends
real systems with a possibility of improving the present a
curacy achieved in density-functional theory. For compa
son, we have listed in Table II the correlation energy o
tained by other authors using different methods. For m
details we refer to the given references.

We have calculated the total energies without adjust
the renormalization factor that is obtained from the on
iteration GW calculation. For applications in real system
we may adjust the form of the spectral weight so that
scheme exactly reproduces the QMC data for the elec
gas and the total energies of some atoms and molec
~Table III!.

III. TOTAL ENERGY IN THE CUMULANT EXPANSION
THEORY

As discussed in the introduction, the GWA yields ve
good total energies for the electron gas provided the ca
lations are performed self-consistently. However, se
consistent GW calculations for real systems are computat
ally very demanding. In fact, the usefulness of the GW
originates from the fact that no attempt of self-consistenc
at all invoked in calculations that lead to a remedy of t

TABLE II. For comparison, the results for the correlation e
ergy of the electron gas obtained by other authors using diffe
methods are listed. The data are taken from Hindgren’s thesis~Ref.
25!, all in a.u. ~27.2 eV!. RPA corresponds to the Gell-Mann an
Brueckner result~Ref. 26! but with the constant term equal t
20.071 a.u.~Ref. 25! instead of the standard value of20.048 a.u.
GM(G0W0) is obtained from the GM formula using the Gree
function resulting from one-iteration GW calculations~Ref. 28!
whereas GM~GW! is obtained from fully self-consistent GW calcu
lations ~Ref. 4!. LW(G0) is calculated from the LW functional us
ing the noninteracting Green function~Ref. 25!. ABL(G0,W

pp) cor-
responds to a generalization of the LW functional where both
Green function and the screened interactionW are regarded as vari
ables~Refs. 23 and 25!.

r s RPA GM(G0W0) GM~GW! LW(G0) ABL(G0 ,Wpp)

1 20.0788 20.0722 20.0658 20.0669
2 20.0618 20.0539 20.045 20.0455 20.0468
3 20.0528 20.0448 20.037 20.0350 20.0363
4 20.0468 20.0382 20.032 20.0286 20.0299
5 20.0425 20.0335 20.0248 20.0258

TABLE III. Different contributions to the total energy for dif-
ferent methods of obtaining total energies through the GM theor
The case ofr s54.

Method 1
2 m Kinetic Spectral Total Correlation

Cumulant 20.045 20.068 0.035
a

20.078 20.033
G0W0 20.045 20.081 0.044 20.0816 20.036

GW ~sc! 20.034 20.086 0.042 20.078 20.032
QMC 20.032

a 3
10eF .
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classical failure of DFT to reproduce, e.g., proper band ga
conduction bands, and optical properties, where the cor
description of excited states is also required. Instead, o
one iteration is performed on the cycle of coupled equatio
leading to a simplification of the numerical procedure wh
simultaneously preserving the physical appearance of
properties involved. The spectral function from one-iterat
GW calculation, however, has some well-known shortco
ings in the description of the plasmon satellite structure. T
multiple plasmon satellite structure is not reproduced.
stead, there is only one peak in the hole part~below the
chemical potential! and one in the particle part~above the
chemical potential! of the spectrum. Further, the differenc
in energy between this satellite and the main peak does
correspond to the anticipated plasma frequency, but is t
cally overestimated by a factor 1.5. It can be interpreted
an average of the energies of the multiple plasmon satell
Albeit this factor is diminished as a consequence of s
consistency, it does not approach 1. This shortcoming
tially explains the too low-total energy~Table II! obtained
from the GM formula using one-iteration GW spectral fun
tions since the plasmon satellite with too low energy giv
more contribution than it should.

A more realistic spectrum is provided by the CE theo
using a one-iteration GW self-energy. The spectral funct
in the CE for a state below the Fermi level is express
as13–15

A~k,v!5
nk

2pE2`

`

dteivte2 i«kt1C(k,t), ~34!

wherenk is the occupation number of statek, «k is the free-
electron energy, andC(k,t) is the cumulant. In this ap
proach, the Green function for an occupied state~hole, t
,0) is written as

G~k,t !5 ie2 i«kt1C(k,t)

5G0~k,t !@11C~k,t !1 1
2 C2~k,t !1 . . . #, ~35!

where G0(k,t)5 ie2 i«kt. In terms of the self-energy, th
Green function for the hole can be expanded as

G5G01G0SG01G0SG0SG01 . . . . ~36!

To first order in the screened interactionW, the cumulant is
obtained by equating

G0C5G0SGWG0 ~37!

so that

C~k,t !52 i E
0

t

dt8E
t8

`

dtSGW~k,t!ei«kt, ~38!

whereG0 refers to the hole Green function. This cumulant
then put back into Eq.~35! which yields an infinite series o
diagrams in powers ofW. Similar consideration applies als
to a state above the Fermi level~particle, t.0). The self-
energy appearing in the cumulantC(k,t) is taken to be the
GW self-energy.
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The resulting spectrum proves to correspond very wel
experimental data for the two free-electronlike metals Na a
Al.15,16 As the CE does not change the quasiparti
properties,24 any modification of a property depending on th
spectral function is strictly due to an improvement on t
plasmon part of the spectrum.

Thus there are several reasons for using the CE. First,
resulting spectral function will have some similar essen
properties in common with that of the model, such as po
tions and weight of the quasiparticle and plasmon pea
However, it is physically more appealing since the peaks
broadened and it corresponds better to experimental spe
The success of the proposed model for the electron gas
courages us to apply the CE. Second, the CE only relies
the one-iteration rather than the self-consistent GW s

FIG. 2. These plots are aimed to guide the reader through
calculations. In all the examples,r s54. Top: The momentum dis-
tribution function resulting from a GW calculation~solid! is altered
from that of a noninteracting electron gas~dashed!, but that of the
CE, and of the proposed model, is not. Middle: As a result
different momentum distributions, the exchange energy is alte
The noninteracting exchange~dashed!, which is the same as that o
the CE, is larger in magnitude, and gives a larger contribution to
chemical potential, than the one resulting from the GW moment
distribution ~solid!. Bottom: The real part of the self-energy als
contributes to the chemical potential through its value at Fermi le
and energy.
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energy as input data. Self-consistent CE has been foun
have little effect on the spectra.24 Further advantages are th
the spectral function in the CE can be easily calculated o
the GW self-energy is available and no modeling of qua
particle parameters is required. There are, however, s
shortcomings. The CE works well for describing long-ran
correlations manifested in the coupling of electrons
bosonic excitations such as plasmons. In fact, the CE g
the exact solution to the Hamiltonian in Eq.~18!. In f sys-
tems or in strongly correlated materials, additional satel
features in the range of the valence bandwidth may app
These satellites are atomic in origin and due mainly to sh
range correlations. These are not well accounted for by
CE. However, as mentioned before, the total energy depe
on the center of gravity of the spectral function so that
CE could still perform well although the details of the spe
tral function is not entirely correct.

We have calculated the total energy of the electron gas
severalr s values corresponding to the metallic range us
the CE theory and the result is displayed in Table I. As c
be seen, the results are comparable in accuracy to the Q
results. To gain insights into the different contributions to t
total energy we analyze the results calculated from two sp
tra obtained from a one-iteration GW calculation and fro
the CE. The GM total energy expression can be decompo
into three components: One part stemming from the sum
kinetic energies, another part containing spectral ene
arising from the first moment of the spectral function,

E
2`

m

dvvA~v!,

and finally a term1
2 m originating from the upper limit of the

integral over energy.
Let us begin with the kinetic-energy term. First it has

be noted that in the CE as well as in the model previou
described, for momenta inside the Fermi sphere, the hole
of the spectrum is fully occupied. This is because the CE
only defined for either the hole or particle Green functio
This is in contrast to the GW spectrum, which has weig
transferred from the hole part to the particle part as ill
trated in Fig. 2~top!. The implication of this is that the
momentum distribution

nk5E
2`

m

A~k,v!dv,

for the CE is essentially the same as that of the noninter
ing electron gas, whereas the GW one is modified, typic
reflecting the many-body interaction of the system. A con
quence of this is that in the sum overk, the CE only con-
tributes for occupiedk values, whereas in the GWA, contr
butions also arise from higher values. Thus, as for the s
over kinetic energies,

(
k

eknk ,
to

e
i-

e
e

es

e
ar.
t-
e
ds
e
-

or
g
n
C

e
c-

ed
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y
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m

the CE result is the same as for the noninteracting gas,
of the value of the average kinetic energy or3

10 eF . The GW
result is higher because of the modification of moment
distribution. The reason for this is that when evaluating
integral overk, the k2 weighting in the integrand results i
the unoccupied states giving a larger contribution than
loss due to the reduction of spectral weight in the occup
part.

We now consider the spectral part. Assuming that the
spectrum belowm has the same weight as that of the G
spectrum, it is clear from Fig. 1 that the GW spectral con
bution is more negative than that of the CE since the posi
of the plasmon satellite is lower than the middle of the tw
plasmon satellites in the CE. The situation is actually not
simple because as discussed in the previous paragraph
GW spectrum has some transfer of weight from the hole
the particle part. Numerical calculations, however, show t
the GW spectral contribution is still more negative than th
of the CE when the reduction of GW spectral weight in t
hole ~occupied! part is taken into account.

Finally, as for the chemical potentialm, it has three con-
tributions. One is the evident Fermi energy of the nonint
acting gaseF . The second part comes from the exchan
contribution, in the case of the electron gas given by
usual expression,

Sx52
1

V (
q

vqnk1q .

Thus, for the CE, the exchange contribution is again
same as for the non-interacting case. For the one-itera
GW scheme there is an ambiguity here. In calculating
exchange energy, should the momentum distribution of
ingoing ~i.e., noninteracting! or the outgoing spectrum b
used?~cf. Fig. 2, middle! It turns out that the former cas
underestimates the total-energy, the latter overestimate
Our investigations show that for the CE total-energy cal
lation ~keeping in mind that the QP parameters are given
the input self-energy, and the position of the QP peak affe
the result of thev integration in the GM theorem!, the mo-
mentum distribution of the outgoing spectrum is to be p
ferred for the input GW self-energy when its exchange c
tribution is evaluated. The third comes from the correlati
part of the self-energy, when evaluated atkF andeF ~see Fig.
2, bottom!. In Table III the different contributions to the tota
energy are displayed and in Table I we see that we h
successfully reproduced the total electron gas energies w
using the CE in the prescribed way.

IV. SUMMARY AND CONCLUSIONS

In summary, we have shown that at least for the elect
gas, total energies can be obtained in an appealing way
combining the CE with the simple and physically appeali
one-iteration GW approximation. We have also propose
model spectral function from which the total energy can
easily calculated. The parameters in the model are obta
from standard GW calculations. Thus we have at our hand
computational scheme derived from first principles which
the electron gas yields good total energies through the sim
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GM formula. This raises hopes to use the GWA for le
conventional purposes, e.g., the calculation of ground-s
energies of real systems and might give clues for the c
struction of of an improved exchange-correlation ene
within DFT. Applications of the scheme to real system
would be desirable.
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