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Embedding calculations that find approximate solutions to the Schrödinger equation for large
molecules and realistic solids are performed commonly in a three step procedure involving (i) con-
struction of a model system with effective interactions approximating the low energy physics of the
initial realistic system, (ii) mapping the model system onto an impurity Hamiltonian, and (iii) solving
the impurity problem. We have developed a novel procedure for parametrizing the impurity Hamilto-
nian that avoids the mathematically uncontrolled step of constructing the low energy model system.
Instead, the impurity Hamiltonian is immediately parametrized to recover the self-energy of the re-
alistic system in the limit of high frequencies or short time. The effective interactions parametrizing
the fictitious impurity Hamiltonian are local to the embedded regions, and include all the non-local
interactions present in the original realistic Hamiltonian in an implicit way. We show that this impu-
rity Hamiltonian can lead to excellent total energies and self-energies that approximate the quantities
of the initial realistic system very well. Moreover, we show that as long as the effective impurity
Hamiltonian parametrization is designed to recover the self-energy of the initial realistic system for
high frequencies, we can expect a good total energy and self-energy. Finally, we propose two practi-
cal ways of evaluating effective integrals for parametrizing impurity models. © 2014 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4901432]

I. INTRODUCTION

Reliable, controlled, and systematically improvable cal-
culations for extended systems still remain a formidable task
for current ab initio quantum chemistry methods. While sig-
nificant progress has been made in modeling weakly cor-
related extended systems mostly due to various implemen-
tations of Møller-Plesset perturbation theory (MP2),1 the
random phase approximation (RPA)2–5 and coupled cluster
(CC),6 at present there is no ab initio theory that can re-
liably and accurately treat strongly correlated solids with
d- and f-electrons in an all orbital formulation. A viable
route for these systems, that remains computationally af-
fordable, is via embedding methods such as dynamical
mean field theory (DMFT),7–13 density matrix embedding
(DMET),14–16 or wave function in density functional theory
(DFT) embedding.17–24

In these methods the entire computationally intractable
system is mapped onto an auxiliary impurity model of
strongly correlated orbitals embedded in a bath of non-
interacting electrons. The solution of the computationally
tractable impurity model provides information about the lo-
cal quantities of interest, such as the local Green’s function
or local density. Consequently, the mapping from the infinite
system to the impurity model is a crucial part of an embed-
ding procedure, one that controls the accuracy of the results.
Compared to the entire system, the impurity is described by
only a few one-body and two-body body parameters. All non-
local Coulomb interactions (represented by parameters with
at least one index pointing to an orbital outside the impurity)

a)Author to whom correspondence should be addressed. Electronic mail:
rusakov@umich.edu

are neglected during the construction of the impurity model.
The remaining parameters have to be chosen such that the val-
ues of local impurity quantities match the local quantities of
the entire system. Thus, while it is easy to define that in a
Green’s function embedding method an ideal set of impurity
parameters should recover the local self-energy of the system,
it is a much more difficult question how to find such a set of
parameters.

Multiple prescriptions have been proposed in condensed
matter physics and materials science for the calculation of ef-
fective embedding interactions, U. Constrained LDA (cLDA),
now a standard tool for the evaluation of effective Coulomb
interactions, was introduced by Dedeichs et al.25 and subse-
quently by Hybertsen et al.26 Later, a self-consistent method
for the calculation of effective interactions based on linear re-
sponse within the cLDA scheme was designed by Cococcioni
and de Gironocoli.27 This method resulted in many applica-
tions, since the calculated effective interactions were used in
the computationally affordable LDA+U28, 29 method. Aryase-
tiawan et al.30, 31 used the constrained random-phase approxi-
mation (RPA)30, 32, 33 to exclude any screening channels and to
take into account dynamical or frequency-dependent screen-
ing effects. One of the most recent advances in the field was
introduced by Schüler et al.34 who proposed deriving effec-
tive interactions from the Peierls-Feynman-Bogoliubov vari-
ational principle.35–37

Conceptually, all these methods map a realistic sys-
tem described by a Hamiltonian with non-local interactions
onto a simpler effective model Hamiltonian with only lo-
cal interactions that describe essential low energy physics
of the realistic system. Subsequently, an embedding method
can be employed to solve this model Hamiltonian. While
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conceptually appealing, this procedure is inherently burdened
with an uncontrolled error acquired during the mapping to the
effective model Hamiltonian, and as a result, the local impu-
rity self-energy obtained from the embedding does not neces-
sarily recover the local self-energy of the full realistic system.

In this paper, we introduce a different method for
parametrizing the impurity model that avoids the issue of
mapping to the effective Hamiltonian. We postulate that a
method for finding effective Coulomb interactions should
be designed to approximate either the local Greens func-
tion or equivalently self-energy of the full realistic system,
thus providing a well defined mathematical criterion for
finding the effective interactions. We propose an approach for
finding the effective Coulomb interactions that is designed
such that the impurity model recovers the frequency depen-
dent self-energy of the full system in the high frequency limit.
Our prescription for finding the effective Coulomb interac-
tions is mathematically well defined and completely general.

While the most obvious use of our procedure is for em-
bedding methods such as DMFT, we do not attempt such a
study in this paper because the embedding method itself can
introduce an error. Here we only aim to calibrate the approxi-
mation resulting from the use of the effective interactions. To
this end we have designed several tests that measure the ac-
curacy of our impurity parametrization. First, we compare the
electronic energy from our procedure to that of prototypical
systems for which we are able to obtain an exact energy and
self-energy. Second, since for multi-orbital impurities there
is no single unique parametrization of effective interactions,
we will investigate if different parametrizations recover simi-
lar energetics. Lastly, we will establish if our parametrization,
which recovers the self-energy of the full system in the high
frequency limit, yields an acceptable impurity self-energy
in the low frequency limit when compared with the exact
answer.

The current paper is organized as follows: In Secs. II and
III we discuss the scheme for evaluating effective Coulomb
interactions. In Sec. IV we show the calibration results and
compare them to the exact results. In Sec. V we discuss the
generalization of the procedure to larger systems and present
necessary calibrations. Finally, Sec. VI presents the overall
conclusions of our work.

II. EFFECTIVE INTERACTIONS BASED ON THE HIGH
FREQUENCY EXPANSION OF THE SELF-ENERGY

We define a general Hamiltonian

Ĥ =
n∑
ij

tij a
†
i aj + 1

2

n∑
ijkl

vijkla
†
i a

†
kalaj , (1)

for a realistic system (a molecule or a solid) with full non-
local Coulomb interactions (in chemists’ notation) between
all n orbitals

vijkl =
∫∫

dr1dr2φ
∗
i (r1)φj (r1)

1

r12

φ∗
k (r2)φl(r2) (2)

and one-body operators

tij =
∫

dr1φ
∗
i (r1)h(r1)φj (r1), (3)

h(r1) = −1

2
∇2

r1
−

∑
A

ZA

|r1 − RA| . (4)

The correlated Green’s function G(ω) for this system is re-
lated to the non-interacting Green’s function G0(ω) via the
Dyson equation

�∞ + �(ω) = [G0(ω)]−1 − [G(ω)]−1, (5)

where �∞ and �(ω) are the frequency independent and fre-
quency dependent parts of the self-energy, which describe
all correlation effects present in the realistic Hamiltonian in
Eq. (1).

Imagine now that in our molecule or solid we choose a
subset of orbitals, called the correlated local subspace, which
we deem important for the physical description of this system.
Then we can express both parts of the self-energy as a sum of
local and non-local contributions

�∞ = �loc∞ + �non-loc∞ , (6)

�(ω) = �loc(ω) + �non-loc(ω), (7)

where the local contributions come from the embedding cal-
culations for the correlated local subspace.

The calculation of �∞, corresponding to the (frequency
independent) Hartree-Fock (HF) self-energy, is usually com-
putationally affordable since it scales polynomially and
requires only O(n4) operations. In practical embedding cal-
culations, �loc∞ is constructed using the correlated subspace
integrals multiplied with the correlated density matrix, while
�non−loc∞ is usually approximated at the HF or DFT level by
multiplying the HF/DFT density matrix with all the remaining
integrals.8, 11, 38, 39

The frequency dependent self-energy, �(ω), contains the
important many-body effects. In embedding calculations the
�loc(ω) part of this self-energy is evaluated by solving a sim-
pler Hamiltonian representing a fictitious system, where the
Hamiltonian is constructed to recover the local Green’s func-
tion and self-energy of the realistic system. This Hamiltonian
has effective two-body interactions given by Uijkl �= 0 if all or-
bital indices belong to the correlated subspace, and Uijkl = 0
if at least one of the indices is outside the correlated subspace.
The non-local frequency dependent part of the self-energy,
�non-loc(ω), cannot be recovered for orbitals outside the corre-
lated subspace by frequency independent methods such as HF
or DFT. Rather, in these methods �non-loc(ω) is simply zero.
Consequently, the total self-energy can be written as

�embed = �loc embed∞ + �non-loc embed∞ + �loc embed (ω). (8)

We would like the embedding calculation to approximate
in the best possible way the local quantities for the full system.
Consequently, the self-energy for the full system has to be
approximated by the following self-energies:

�f ull ≈ �embed, (9)
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�
f ull
∞ ≈ �loc embed∞ + �non-loc embed∞ , (10)

�f ull(ω) ≈ �loc embed (ω), (11)

where in the last equation we used �non-loc(ω) = 0. Since
�embed∞ has both local and non-local parts, let us assume that
it is a good approximation to the �

f ull
∞ of the full system.

Because the frequency dependent self-energy of the full sys-
tem from Eq. (11) should be recovered only by the local self-
energy coming from the embedded orbitals, we should find
mathematical conditions which will ensure that �loc embed(ω)
reasonably approximates the frequency dependent self-energy
of the full system. Let us first observe that the self-energy
in the embedded region is constructed as a product of the
Green’s function with the two-body integrals coming from
the embedded orbitals. Since the two-body integrals present
in the embedded orbitals are only a small fraction of all the
interactions present in the full system, to fulfill Eq. (11) one
would need to introduce reparametrized two-body integrals.
However, since �full(ω) is a frequency dependent quantity, it
is necessary to introduce frequency dependent effective inter-
actions, U(ω), to fulfill Eq. (11) for every frequency value.

Since the Green’s function in the high frequency limit
describes the short time behavior in the correlated system, it
is worth analyzing the effective interactions that are neces-
sary to recover this limit. To the best of our knowledge such
an analysis was never performed before. Moreover, since the
quality of the Green’s function or self-energy and therefore
total electronic energy crucially depends on the recovery of
the high frequency behavior, it is important that an accurate
method recovers it. To find a set of effective interactions that
fulfill Eq. (11) in the high frequency limit, we start with ana-
lyzing the high frequency expansion of the Green’s function40

G(iω) = G1

iω
+ G2

(iω)2
+ G3

(iω)3
+ O

(
1

(iω)4

)
, (12)

or in general

[G(iω)]ij =
∑
k≥0

(−1)(k−1)
〈�m|{[Ĥ , ai]{k}, a

†
j }|�m〉

(iω)k
. (13)

In the numerator of the above equation the commutator is de-
fined as [Ĥ , ai]{k} = [Ĥ , [Ĥ , [...[Ĥ , ai]]...]]︸ ︷︷ ︸

k operators totally

with |�m〉 being

the solution of the Schrödingier equation Ĥ |�m〉 = Em|�m〉
for the Hamiltonian in Eq. (1).

Analogously, we can write the high frequency expansion
of the self-energy as

�(iω) = �∞ + �1

iω
+ �2

(iω)2
+ �3

(iω)3
+ O

(
1

(iω)4

)
. (14)

Using the Dyson equation we can then evaluate the coeffi-
cients of the self-energy expansion as

�∞ = G2 − G0
2, (15)

�1 = (
G0

2

)2 − (G2)2 + G3 − G0
3. (16)

Enforcing Eq. (11) requires matching of the full and embed-
ded system’s self-energy at least up to the first order in 1/ω in
the high frequency limit

�
f ull

1 = �loc embed
1 . (17)

A general expression for �1 is given by Eq. (16) with the
second and third coefficient in the Green’s function expansion

[G2]ij = tij +
∑
rs

γrs

(
vijrs − 1

2
visrj

)
, (18)

[G3]ij =
∑

l

til tlj +
∑
qrs

viqrs

(
tqj γrs − 1

2
tsj γrq

)

+
∑
qrs

tirγqs

(
vqsrj − 1

2
vqjrs

)

−
∑
klqrs

vqrklγqksl

(
vijrs − 1

2
visrj

)

+ 1

2

∑
klqrs

vqrkj vilrsγqksl

+
∑
lqrs

viqrsγrl

(
vqjsl − 1

2
vqlsj

)

+
∑
klqrs

viqrsγrksl

(
vqjkl − 1

2
vqlkj

)

− 1

2

∑
klqrs

vqsklviqrj γrksl

− 1

2

∑
klqrs

viqrs(vsjklγrkql + vslkj γrklq)

+
∑
klqrs

vsqklvijrsγrkql . (19)

In these expressions the one- and two-body density matrices
are defined as

γij = 〈�m|
∑

σ

a
†
iσ ajσ |�m〉 (20)

and

γijkl = 〈�m|
∑
στ

a
†
iσ a

†
jτ alτ akσ |�m〉, (21)

respectively. �
f ull

1 for the full system is computed with all
the local and non-local Coulomb interactions, and with both
one- and two-body density matrices. In contrast the embedded
system’s �loc embed

1 coefficient is computed by solving for the
Green’s function of the fictitious system (impurity) that has
only local Coulomb interactions, Uijkl with all the indices be-
longing to the correlated subspace.

While all the previous arguments were general, for sim-
plicity we will consider explicitly a case for a single embed-
ded orbital with a single on-site interaction denoted by U.
For a single embedded orbital, the solution of the fictitious
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impurity Hamiltonian yields �loc embed
1 expressed as

�loc embed
1 = 1

2
U 2γ11

(
1 − 1

2
γ11

)
. (22)

Additionally, if we assume that our calculation for the em-
bedded system yields accurate density matrices, it is obvious
that Eq. (22) cannot provide a good approximation to �

f ull

1
in Eq. (16) and Eqs. (19) and (20), as these involve all the
local and non-local Coulomb interactions. We emphasize that
this discrepancy, �f ull

1 �= �loc embed
1 , is only present if the full

system’s Hamiltonian includes the non-local Coulomb inter-
actions outside the correlated subspace of the embedded sys-
tem. For systems such as the Hubbard lattice (with only on-
site U which are fully within the correlated subspace) such a
difference in �1 will not be observed.

These observations lead us to an important question: how
can we improve the high frequency self-energy behavior of
the fictitious system with only local interactions, to make it
approximate a realistic system better and account for the ne-
glected non-local interactions? If we assume for simplicity
that the exact �

f ull

1 is known and the embedded orbital has
only the on-site interaction, then Eq. (17) can be trivially ful-
filled by adjusting the on-site U while performing the follow-
ing reparametrization

Ueff =
√

2�1

γ11

(
1 − 1

2γ11

) . (23)

This reparametrization will improve the high-frequency be-
havior of the fictitious system and will recover the local self-
energy of the full system in the high frequency limit, thus pro-
viding prerequisites for a good approximation. While Ueff in
Eq. (23) accounts only for the on-site interactions, an exten-
sion of this procedure can be formulated to calculate a subset
of effective interactions in a correlated multi-orbital subspace.
Such a procedure will be discussed in Sec. IV.

III. NUMERICAL PROCEDURE

As stated previously, since the embedding method itself
can introduce an error, here we only calibrate the approxi-
mation resulting from the use of the effective interactions in
this paper. Consequently we embed a subset of correlated or-
bitals with effective local interactions, U, into a set of or-
bitals described by full configuration interaction (FCI). This is
achieved by employing the following definition for the zero-
order Green’s function:

G0(ω) = [(ω + μ) − F̄ ]−1, (24)

where μ is the chemical potential and

F̄ij = Fij − �loc embed∞ , (25)

with the local part of self-energy for embedded orbitals de-
fined as

�loc embed∞ =
∑

kl∈loc

γkl

(
Uijkl − 1

2
Uilkj

)
, (26)

where the sum runs over orbitals from the local correlated
embedded subspace. The Fock matrix, Fij, is defined as

Fij = tij + [�∞]ij, with �∞ evaluated using the correlated
density matrix from FCI calculations. The correlated one-
body density matrix γ from Eq. (26) comes from calculations
with the correlated orbitals parametrized with effective inter-
actions, Uijkl. This prescription ensures that the only error in
our calculations can result from a wrong self-energy in the
low frequency limit caused by the parametrization of effec-
tive integrals based on the high frequency expansion.

The definition of the zero-order Green’s function from
Eqs. (24) and (25) assumes that the correlated Green’s func-
tion of the full system is represented as

G(ω) = [(ω + μ) − F̄ − �loc embed∞ − �loc embed (ω)]−1.

(27)
Before we discuss the numerical results, let us define the

details of the scheme we are employing to calibrate the accu-
racy. We apply our procedure for finding effective interactions
to the H6 ring with a regular hexagonal arrangement of atoms.
Our calculations are performed in small STO-6G and double-
zeta (DZ) basis sets since FCI results can be readily obtained
and exact �∞, �(ω), and �1 matrices can be explicitly com-
puted. These exact quantities will be used for the comparison
against our results. To disentangle the embedding error from
the error of parametrization of effective integrals, we define
the fictitious system used to evaluate the frequency dependent
self-energy as a ring with only the on-site interactions Uiiii,
where all the remaining interactions will be used to construct
�non−loc embed∞ with a FCI density. Since the density matrix
for the embedded orbital is being adjusted during our calcula-
tions, we employ the following self-consistency scheme:

Iterative Scheme I

1. perform a FCI calculation on the entire system with all
the Coulomb interactions vijkl

2. choose local orbitals that should be embedded
3. compute �

f ull

1 from FCI for the entire system
4. compute one-body density matrix, γ (1), and two-body

density matrix, γ (2), from FCI
5. compute local Uijkl for the embedded orbitals using

�
f ull

1 and the density matrices γ (1) and γ (2)

6. calculate F̄ from Eq. (25) using γ (1)

7. compute the self-energy for the embedded orbitals as
�loc embed∞ + �loc embed (ω)

8. compute new correlated Green’s function for the entire
system from Eq. (27)

9. update γ (1)41

10. evaluate electronic energy for the entire system
11. go to step 5 until convergence

In all our calculations we use a grid of 3000 Matsubara fre-
quencies on the imaginary axis, with an inverse tempera-
ture β = 50. The temperature enters the calculations through
the Matsubara frequencies ωn = (2n + 1)π /β, where n is
an integer. In routine calculations the grid needs to be suf-
ficiently dense to provide reasonable accuracy for numeri-
cal integration, and the inverse temperature, which dictates
the grid spacing, should be chosen high enough to remain
close to zero-temperature results. For this calibration, since
the exact FCI result is known, we have verified that with 3000
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frequencies and β = 50 the temperature dependent FCI
Green’s function recovers the zero temperature standard FCI
energy up to 1 × 10−5 H, which is sufficient given the range
of errors from further approximations.

IV. NUMERICAL RESULTS

A. Accuracy of electronic energies

First let us define effective integrals for our calibration
studies. We embed either (i) a single orbital or (ii) two or-
bitals. If a single orbital is embedded then our fictitious sys-
tem is parametrized by the on-site effective integral, Uiiii,
where i is the orbital index. This effective on-site interaction
is uniquely defined by Eq. (23) since there is only one ele-
ment, [�f ull

1 ]ii , and a single on-site Uiiii. For two embedded
orbitals the fictitious system has effective interactions local
to the two subspace orbitals. In this subspace there are four
distinct (up to permutations) bare integrals v1111, v1122, v1212,
and v1112 (due to symmetry, v1111 = v2222 and v1112 = v2221)
and only two unique elements of the �

f ull

1 matrix. Conse-
quently, multiple choices of effective integrals of Uijkl are al-

TABLE I. Possible effective integrals for H6 in the STO-6G basis and corre-
sponding total energies. no/mp stands for n orbitals and m scaling parameters.
The parametrizations denoted with a star contain effective integrals obtained
from a fully self-consistent iterative scheme.

Type U1111 U1122 U1212 U1222 E, a.u.

d = 1.4 a.u.
1o/1p 0.5984 . . . . . . . . . − 3.0665
2o/1p 0.6182 0.3533 0.0093 − 0.0062 − 3.0557
2o/2p 0.6378 0.1266 0.0033 − 0.0022 − 3.0641
2o/2p* 0.6274 0.0817 0.0022 − 0.0014 − 3.0652
2o/4p* 0.6379 0.1332 0.0002 0.0008 − 3.0640

d = 1.8 a.u.
1o/1p 0.5952 . . . . . . . . . − 3.2583
2o/1p 0.6235 0.3290 0.0077 − 0.0059 − 3.2471
2o/2p 0.6320 0.1275 0.0030 − 0.0023 − 3.2555
2o/2p* 0.6190 0.0699 0.0016 − 0.0013 − 3.2571
2o/4p* 0.6303 0.1260 0.0000 0.0041 − 3.2556

d = 2.4 a.u.
1o/1p 0.6283 . . . . . . . . . − 3.1589
2o/1p 0.6614 0.3060 0.0054 − 0.0067 − 3.1529
2o/2p 0.6634 0.1688 0.0030 − 0.0037 − 3.1561
2o/2p* 0.6401 0.0400 0.0007 − 0.0009 − 3.1581
2o/4p* 0.6253 0.0128 − 0.0099 0.0124 − 3.1591

d = 3.4 a.u.
1o/1p 0.7290 . . . . . . . . . − 2.9122
2o/1p 0.7476 0.2730 0.0022 − 0.0072 − 2.9352
2o/2p 0.7440 0.4191 0.0034 − 0.0111 − 2.9374
2o/2p* 0.7419 0.2709 0.0022 − 0.0097 − 2.9295
2o/4p* 0.7387 0.0786 0.0043 − 0.0376 − 2.9230

d = 4.0 a.u.
1o/1p 0.7593 . . . . . . . . . − 2.8500
2o/1p 0.7675 0.2439 0.0011 − 0.0062 − 2.8714
2o/2p 0.7678 0.2641 0.0011 − 0.0067 − 2.8720
2o/2p* 0.7655 0.2432 0.0011 − 0.0067 − 2.8689
2o/4p* 0.7618 0.0776 0.0006 − 0.0228 − 2.8630

lowed to parametrize elements [�f ull

1 ]11 and [�f ull

1 ]12 simul-
taneously. The simplest approach is to re-scale uniformly all
bare integrals, Uijkl = α · vijkl , by a scaling parameter α cho-

sen to fit �
f ull

1 best in the least-square sense. An approxima-
tion frequently resulting in a better �

f ull

1 can be attained by
introducing more scaling parameters, though one should be
aware of potential optimization stability issues if the number
of parameters exceeds the number of independent �

f ull

1 ele-
ments. In the present case, the problem remains well-posed if
two parameters are introduced, for instance: Uiiii = α · viiii ,

i = 1, 2, and Uijkl = β · vijkl for other ijkl combinations.
We have also attempted to introduce four parameters, i.e.,
to scale each class of integrals independently: U1111 = α ·
v1111, U1122 = β · v1122, U1212 = γ · v1212, and U1112 = δ ·
v1112. Since there can be multiple sets of such α, β, γ , and
δ parameters, we have restricted the search by imposing the
Schwarz inequality to retain “physically meaningful” values
of effective integrals. In addition, Uijkl resulting from the two-
parameter scaling served as the initial guess for the opti-
mization procedure. These parametrizations are presented in
Table I for several bond distances.

Additionally in Fig. 1 for both cases of a single embed-
ded orbital and two embedded orbitals we explicitly plot ef-
fective integrals, Uijkl, as compared to bare integrals, vijkl .
Note that our orbitals and integrals are in the orthogonal-
ized basis rather than in the initial non-orthogonal Gaussian
atomic orbital basis set. Because the orthogonalization is per-
formed via the Löwdin transformation involving an overlap
matrix, the on-site integrals v1111 are not a constant function
of the interatomic distance. As expected, the deviations of ef-
fective integrals U from bare Coulomb integrals v (which is
sometimes called “screening”) vanishes at dissociation, but
manifests itself clearly for shorter bond distances where non-
local Coulomb integrals become significant. We interpret the
screening of the local two-electron integrals as a mathemati-
cal feature of a local model with only on-site effective inter-
actions that incorporate the non-local interactions.
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FIG. 2. Total energies for various parametrizations of local two-electron in-
tegrals compared against the FCI total energy for H6 in the STO-6G basis set
as a function of bond distance.

After defining the effective integrals, we now investi-
gate the accuracy of electronic energies calculated using the
Galitskii-Migdal formula42 applied to the correlated Green’s
function obtained from the above defined self-consistency
scheme. For the H6 ring in the STO-6G basis set we present
in Fig. 2 the energies evaluated using effective integrals
Uijkl, the energy obtained with bare local Coulomb inte-
grals, and the FCI energy. The correlation energy, defined as
Ecorr = Ecorrelated − EHartree − Fock, is plotted in Fig. 3.

To investigate how our procedure is affected by enlarg-
ing the number of embedded orbitals, we also performed a
study in the DZ basis. The effective integrals were used to
parametrize two orbitals that are centered on every hydrogen
atom. This involved four parameters to scale the groups of
two-electron integrals and was chosen to fit, in the best way
possible, the 2 × 2 matrix of �

f ull

1 for every hydrogen atom
described by two orbitals. The total energies and correlation
energies from this parametrization are listed in Figs. 4 and 5,
respectively.
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FIG. 3. Correlation energies for various parametrizations of local two-
electron integrals compared against the FCI correlation energy for H6 in the
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There are several general points from analyzing Figs. 2–5
that should be noted. First, the fictitious Hamiltonian with on-
site bare integrals yields very poor total and correlation ener-
gies anywhere away from the dissociation limit. The deviation
from the exact FCI data exceeds 0.1 a.u. around equilibrium.
This is not surprising though, as this fictitious Hamiltonian
completely neglects non-local integrals and non-local contri-
butions to the self-energy. Such an approximation is valid only
in the dissociation limit.

Second, all explored parametrizations of the local two-
electron integrals emulating the non-local contributions to the
first-order self energy �1 lead to a drastic improvement over
the case of bare integrals. Typical values of the deviations
from the exact FCI data are around 0.01 a.u., which is an order
of magnitude less than with bare integrals. Additionally, re-
producing �1 with high accuracy (the largest deviation from
the exact �1 elements is of order 10−4 a.u.) employing four
parameters allows us to recover almost the exact FCI result,
as shown in Table II for several points along the dissociation
curve.
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FIG. 5. Correlation energy obtained with four effective parameters in a two-
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DZ basis set as a function of bond distance.
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TABLE II. H6, Full CI energy, EFCI and energy, E4 param, obtained using
a fictitious system Hamiltonian where four local parameters were used to
describe the interactions in a two-orbital correlated subspace of the H6 ring
in the STO-6G basis set.

R (a.u.) EFCI (a.u.) E4 param (a.u.)

1.4 − 3.06585 − 3.06398
1.8 − 3.25742 − 3.25562
2.4 − 3.15968 − 3.15910
2.8 − 3.04747 − 3.04751
3.4 − 2.92238 − 2.92298
4.0 − 2.86210 − 2.86300

Third, despite there being multiple ways to choose Uijkl
that approximate �1, as long as such Uijkl reproduce the exact
�1, the resulting fictitious Hamiltonians lead to comparably
good energies that approximate the exact FCI energy well.

Since embedding methods rely on a drastic approxima-
tion of treating the interactions between the embedded frag-
ments at the mean field level, the difference between an exact
method and an embedding technique is usually larger than
1 mH (chemical accuracy). Embedding methods are meant
to be used for problems which are too large to be treated by
conventional ab initio methods or for which DFT has a large
error, thus making the embedding methods’ errors acceptable.
However, it is not reasonable to expect that since the embed-
ding error can be large it will “mask” the error present in the
effective interactions. In fact both of these errors can com-
pound together. In our studies of effective parameters we re-
port the total energy for the entire system, not just for the
embedded fragment. Thus, per embedded fragment the error
of several of our parametrizations is in fact closer to 0.16 mH,
reaching effectively chemical accuracy.

B. Accuracy of the frequency dependent self-energy

Since our parametrization of effective interactions was
developed to approximate the high frequency self-energy ex-
pansion, we cannot expect that the full system’s self-energy
�full(ω) from Eq. (11) will be recovered exactly for low fre-
quencies. In this subsection, we calibrate the error of the low
frequency self-energy. To this end, we have examined the
behavior of the self-energy �loc embed(ω). Since the real fre-
quency independent part �non-loc embed∞ is included exactly,
we consider here only Im(�loc embed(ω)). In Fig. 6, for sev-
eral bond distances of the H6 ring molecule, we compare the
self-energy calculated using four parameters to obtain effec-
tive interactions for a two-orbital subspace with the FCI self-
energy. Though the self-energy for the two-orbital subspace
is a 2 × 2 matrix for every frequency, in Fig. 6 we plot only
diagonal values, since the off-diagonal ones are at least an or-
der of magnitude smaller and behave the same way. To better
visualize the low-frequency region, we plot the self-energy
for the first 50 frequencies out of 3000 used in the evaluation
of the Green’s function. Though the only condition imposed
on the approximate self-energy is recovering the exact �1 in
the high-frequency limit, the resulting frequency-dependent
self-energy deviates from the exact result in a rather limited
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FIG. 6. The diagonal element of the exact FCI self-energy and the diagonal
element of Im(�loc embed(ω)) evaluated with four effective parameters in a
two-orbital subspace for the H6 ring molecule in the STO-6G basis set. Exact
values are plotted with lines, approximate values with points.

range of low frequencies. The difference between the exact
and approximate self-energy is smallest for short distances,
where our prescription seems to be accounting for the non-
local interactions not present in the fictitious model very well.
The differences become largest for the intermediate bond dis-
tances, where our fictitious model is not able to describe fully
the low frequency behavior. We attribute this difference to the
inability of the two-orbital type of fictitious system to em-
ulate all the types of correlations present in the full model.
This self-energy error contributes to a small total energy error
for intermediate bond distances.

The above observations show that the non-local contri-
butions, captured via adjusting local integrals to fit �

f ull

1 ,
are sufficiently dominant to yield the correct qualitative and
quantitative behavior of the self-energy in the low- and high-
frequency regions, respectively. To improve the self-energy in
the intermediate distances, a larger number of embedded or-
bitals would be needed.

We also have investigated the self-energies for the H6 ring
in the DZ basis where the same effective integrals were used
as for the energy calibration. The imaginary parts of the di-
agonal and off-diagonal element of the self-energy (Figs. 7
and 8) display the same trends as observed for the small ba-
sis, i.e., quantitative agreement of the exact and approximate
self-energies except for a narrow range of low frequencies.

V. APPROXIMATING �full
1 FOR LARGE SYSTEMS

For the purpose of our calibration study the exact �
f ull

1
was known and was used to calculate effective Coulomb in-
teractions. However in typical calculations for large realistic
systems the exact �

f ull

1 will obviously be unknown. There-
fore, it needs to be initially approximated in order to calculate
effective Coulomb interactions that recover the self-energy of
the full system in the high frequency limit. The simplest ap-
proximations to the �1 matrix can be obtained from

� the explicit self-energy obtained from computation-
ally affordable methods such as the lowest order
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of perturbation theory expressed in Green’s function
language,43, 44

� indirectly from methods that do not have an explicit
frequency dependence such as DFT. The one- and two-
body density matrices produced in these methods can
be used used to calculate �1 from Eqs. (16)–(20).

Here, we discuss both options and suggest how they can be
employed to calculate effective integrals.

A. Approximating �full
1 using the cumulant expansion

Computationally affordable methods that do not exploit
an explicit frequency dependence such as DFT or MP2 can
be employed to approximate �1 for hundreds of orbitals. The
one-body density matrix that is obtained in DFT or MP2 can
be later used in the cumulant expansion45–48

γrspq = λrspq + γrpγsq − γspγrq (28)

to evaluate a two-body density matrix which is not explic-
itly computed in DFT or MP2. Both one- and two-body den-
sity matrices are necessary to calculate �

f ull

1 from Eqs. (16)–

−0.12

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

0.00 1.00 2.00 3.00 4.00 5.00 6.00

Im
([

Σ]
12

),
 a

.u
.

Im(ω)

1.8

3.2

4.0

FIG. 8. The FCI off-diagonal elements of the self-energy and the off-
diagonal element of Im(�loc embed(ω)) for the H6 ring in the DZ basis set.
Exact values are plotted with lines, approximate values with points.

(20). The overall cost of evaluating �1 with the factorized
two-body density matrix is O(n5), where n is the number of
orbitals. This cost can be further reduced to O(n4) by employ-
ing density fitted Coulomb integrals. Multiple approximations
to the expression for �

f ull

1 that can reduce the computational
cost further are possible.

For realistic systems the exact �
f ull

1 can be approximated
using the following scheme:

Iterative Scheme II

1. calculate γ (1) from DFT or perturbation theory
2. calculate γ (2) from cumulant expansion in Eq. (28)
3. calculate �

f ull

1 from Eqs. (16)–(20)
4. calculate Uijkl for a subset of correlated orbitals
5. calculate new γ (1) from the Green’s function calculated

using Uijkl
6. calculate total energy
7. go to point 2 until convergence

Obviously, such a procedure is not reliable for larger distances
where the cumulant expansion breaks down since the two-
body cumulant cannot be simply neglected.

Here, again for calibration purposes, we avoid analyzing
the embedding error and the errors present are due to the use
of effective integrals calculated by employing the cumulant
expansion from Eq. (28). To this end we use the one-body
density matrix from FCI, while the two-body density matrix
is constructed from Eq. (28).

We have carried out a computational test for the same H6
ring as in Secs. IV A and IV B with FCI using the STO-6G
basis with on-site integrals only, thus making Uiiii the only
adjustable parameter. To initialize the procedure bare viiii in-
tegrals are used in the Hamiltonian to produce the starting FCI
γ (1), and γ (2) was evaluated using Eq. (28). The resulting en-
ergies are given in Fig. 9. From Fig. 9 it is apparent that this
iterative scheme can only work well as long as the approx-
imation (28) is valid. At d = 3.0 a.u. (28) breaks down thus
leading to energies worse than those from the bare v integrals.
A clear sign of such breakdown is a situation when U > v, as
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1 .
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opposed to the tendency observed in calculations based on
exact �

f ull

1 (cf. Fig. 1). Consequently, the iterative scheme
based on employing the cumulant of the two-body matrix is
successful when only weak interactions are present. The fre-
quency dependent self-energy is then recovered equally well
as in the examples above.

B. Approximating �full
1 using the frequency

dependent Green’s function method

Since the high frequency tail of �(ω) is describing short-
time behavior, it is reasonable to expect a perturbative method
will recover the self-energy in the high frequency limit very
well. Indeed, our experience from analyzing 2D Hubbard
models49 confirms that second order iterated Green’s func-
tion theory (GF2)43, 44 recovers the self-energy in the high
frequency limit very well despite missing important features
for low frequencies. Since perturbative methods such as GF2,
RPA or GW50 can be performed with a very moderate cost
for many molecular systems, the whole system can be treated
to get �

f ull PT

1 which approximates the �
f ull FCI

1 very well.
For solids, at least for insulators, one can perform GF2, RPA
or GW on a large cluster embedded in a crystal lattice and
expect the convergence of �

f ull PT

1 with the cluster size, thus
avoiding performing the perturbative calculation on the whole
system. We performed such a calculation using GF2 and em-
ploying a series of N × N hydrogen plaquettes, where N is
the number of atoms at the edge of the plaquette. These are
designed to approximate a 2D solid hydrogen lattice. From
Fig. 10, we can conclude that a converged �

f ull GF2
1 can be

obtained for larger plaquette sizes. From �
f ull GF2
1 the effec-

tive integrals can be evaluated using Iterative Scheme I and
replacing the quantities that come from FCI by those evalu-
ated at the GF2 level.

VI. CONCLUSIONS

We performed multiple calibrations of a procedure for
finding effective integrals based on the high frequency expan-

sion of the self-energy. This scheme is different from other
commonly used procedures for finding effective interactions,
because it does not involve the construction of a model Hamil-
tonian that is supposed to recover the most important low
energy physics of the full problem. Instead, we construct a
fictitious Hamiltonian that is parametrized such that the high
frequency behavior of the full system can be recovered in an
embedding calculation. We discovered that the electronic en-
ergies are recovered very well by this procedure, resulting
in a huge improvement of electronic energy when the fic-
titious system is parametrized with effective integrals rather
than bare ones. While an ideal application of our prescription
is to embedding methods such as DMFT, here we aimed to
calibrate only the error coming from choosing the effective
interactions, not the embedding error arising from choice of
embedding method. From our calculations it became apparent
that the effective integrals are mathematical artifacts caused
by incorporating the neglected non-local interactions in the
fictitious local Hamiltonian used to evaluate the correlated
Green’s function. We have also observed that when multiple
orbitals are embedded there is no unique parametrization for
effective integrals but all of the parametrizations lead to good
electronic energies. Consequently, in our method as long as
the traditional effective integrals, such as the on-site U and
inter-site J frequently used in DMFT or DFT+U calculations,
are chosen to approximate the high frequency tail of the full
system well, one can expect good results.

We have also analyzed the self-energy for the calcula-
tions with effective integrals. As expected, these self-energies
were approximating the full system self-energy very well in
the high frequency limit. For lower frequencies, the agree-
ment between the FCI self-energy and the one calculated with
effective integrals was quantitative for small and completely
stretched bond distances and qualitative for the intermediate
case.

We have also discussed approximate ways of obtaining
a high frequency expansion matrix �

f ull

1 based either on a
cumulant expansion or Green’s function perturbation theory.
Perturbative Green’s function methods may prove very useful
and robust for evaluating effective interactions that can later
be used by many methods for evaluating Green’s functions
which are working more efficiently with a specific type of
the interaction structure. Since there is a freedom of how the
�

f ull

1 can be parametrized, many effective interactions which
are of the form Uijijni↑nj↓ can be successfully found. These are
particularly suitable for the continuous time quantum Monte
Carlo (CT-QMC) Green’s function solver51 which is very suc-
cessful in the condensed matter physics community.
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