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MOLECULAR PHYSICS, 1999, VOL. 96, No. 4, 593-602 

Quasidegenerate second-order perturbation corrections to single- 
excitation configuration inter action 

MARTIN HEAD-GORDON, MANABU OUMI and DAVID MAURICE 
Department of Chemistry, University of California, Berkeley, and Chemical Sciences 

Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA 

(Received 1 May 1998; revised version accepted 24 June 1998) 

A family of quasidegenerate second-order perturbation theories that correct excitation ener- 
gies from single-excitation configuration interaction (CIS) are introduced which generalize the 
earlier non-degenerate second-order method, CIS(D). The new methods are termed CIS(D,), 
where n ranges from 0 to 00, according to the number of terms retained in a doubles denomi- 
nator expansion. Truncation at either n = 0 or n = 1 yields methods which involve the diag- 
onalization of a dressed singles-only response matrix, where the dressing is state-independent. 
Hence CIS(Do) and CIS(D1) can be implemented efficiently using semidirect methods, which 
are discussed. Test calculations on formaldehyde, ethylene, chlorine nitrate, styrene, benzal- 
dehyde, and chalcone are presented to assess the performance of these methods. CIS(Do) and 
CIS(Dl) both show significant improvements relative to CIS(D) in cases of near-degeneracy. 

1. Introduction 
Single-reference ab initio excitation energy methods 

are becoming widely used, with the simplest useful 
scheme being single excitation configuration interaction 
(CIS) [l,  21. CIS often provides a qualitatively correct 
description of low lying one-electron excited states in 
much the same sense that Hartree-Fock molecular 
orbital theory does for the ground state. CIS itself suf- 
fers from three general deficiencies: (1) neglect of 
dynamic correlation, which means that often transition 
energies are in error by roughly l e v ,  even if the CIS 
wavefunction is qualitatively correct; (2) near-degen- 
erate CIS excited states of the same symmetry may be 
strongly mixed when electron correlation is included, 
causing the CIS wavefunctions to be suspect in such 
cases; and (3) CIS wavefunctions cannot describe 
excited states which contain significant double-excita- 
tion character, without specialized extensions [3]. 

One natural next step beyond CIS for excited states is 
to include electron correlation via perturbation theory 
through second order, akin to second-order Mdler- 
Plesset theory for the ground state [4]. Using the CIS 
wavefunctions as a reference, the CIS(D) method is a 
non-degenerate second-order correction of this type 
[5, 61. CIS(D) approximately accounts for differential 
dynamical correlation effects on electronic transitions, 
to correct the first deficiency noted above. We have 
recently introduced a ‘theta diagnostic’ [7], which indi- 
cates the stability of the CIS wavefunctions to mixing 
induced by near-degeneracies, thereby at least detecting 
potential breakdowns of CIS(D), and the corresponding 

reference CIS wavefunctions. This diagnostic requires 
essentially no additional computational cost relative to 
CIS(D) itself. 

The purpose of this paper is to introduce a family of 
quasidegenerate generalizations of CIS(D) termed 
CIS(D,), with the objective of obtaining reliable results 
even in the presence of near-degeneracies amongst the 
excited states. There have been several previous single- 
reference based methods for elctronic transitions which 
include second-order electron correlation effects in a 
way that treats near-degeneracies properly. The CC2 
model [8, 91 iteratively determines the single and 
double substitutions as the poles of a true linear 
response function, which involves iteratively deter- 
mining the second-order ground state double substitu- 
tions as well. The P-EOM-MBPT2 method [lo] uses the 
ground state MP2 solution but iteratively determines 
both singles and doubles amplitudes via a truncation 
of the equation of motion coupled cluster equations. 
In terms of the perturbation expansion which is the 
basis for CIS(D), CC2 is a second-order theory, while 
P-EOM-MBPT2 accounts for part of a third-order term 
as well [l 11. 

The CIS(D,) methods introduced in this paper are 
similar in spirit to both CC2 and P-EOM-MBPT2, but 
when n = 0 or 1 they offer a critically important simpli- 
cation. CC2 and P-EOM-MBPT2 both require explicit 
iteration of the singles and the doubles amplitudes 
together (or alternatively diagonalization of an extre- 
mely awkward state-dependent singles response 
matrix), which restricts their domain of applicability 
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594 M. Head-Gordon et ul. 

relative to CIS(D), where only singles are required expli- 
citly. We shall show that CIS(Do) and CID(D1) require 
only explicit iteration of the singles, with the effect of 
doubles being included by a simple state-independent 
dressing of the singles response matrix. The idea of 
defining a dressed singles response matrix has been ele- 
gantly pursued also in the similarity-transformed (ST)- 
EOM methods [ 12-14], which implicitly folds in the 
effects of not just doubles but also higher substitutions. 
Other methods involving intermediate Hamiltonians 
[ 151 are based on similar general ideas. 

The theory is developed in section 2, and shows that 
the CIS(D,) methods are defined by a binomial expan- 
sion of a doubles denominator, where the index n indi- 
cates the order at which the series is truncated. Thus 
CIS(D,) is a full diagonalization of the response 
matrix through second order in the space of singles 
and doubles. It requires explicit iteration of double sub- 
stitutions like CC2 and P-EOM-MBPT2, or a computa- 
tionally awkward energy-dependent singles response 
matrix. The low order CIS(Do) and CIS(D1) methods 
have the unique feature of not requiring iteration of 
doubles amplitudes, so that efficient generalizations of 
semidirect MP2 methods [16, 171 can be employed, as 
described in section 3. Only cubic memory and disc 
storage is needed, so that CIS(Do) and CIS(Dl) excita- 
tion energies are feasible for systems virtually as large as 
those which are feasible for ground state MP2 calcula- 
tions. Indeed, the computational effort per state and per 
iteration is made essentially equal to evaluating the 
ground state MP2 energy and one-particle density 
matrix via semidirect methods. 

Numerical tests of the performance of CIS(Do) and 
CIS(DI) are presented in section 4, for vertical excita- 
tion energies. We wish to compare against non-degen- 
erate CIS(D) to assess the improvement, as well as 
against full diagonalization of the single-double 
response matrix through second order, which is 
CIS(D,). A variety of molecules are considered, and 
the results suggest that CIS(Do) and CIS(D1) perform 
satisfactorily. CIS(D1) yields results closer to CIS(D,), 
as expected, while CIS(Do) yields excitation energies 
that are systematically higher. CIS(D1) has been used 
to study the nature of low-lying excitations in the chal- 
cone molecule Ph-CO-CH=CH-Ph, which permits 
assignment of the principal low-lying bands of its 
absorption spectrum [18]. 

2. Theory 
Coupled cluster linear response theory [ 191 provides 

an ideal formulation for excitation energies, which is 
exact (equivalent to the full configuration interaction 
problem) if carried through cluster excitations 2, equal 
to the number of electrons. The coupled cluster equa- 

tions for the ground state amplitudes, ua (where the 
indices a and /3 run over all excitations) can be written 
symbolically as 

The coupled cluster response matrix A, in terms of the 
same notation, may be written as 

The eigenvalues of the response matrix A are the Bohr 
frequencies of the system: 

Truncating the cluster expansion employed for the 
ground state, and therefore the corresponding response 
amplitudes for electronic transitions, yields a hierarchy 
of size-consistent approximations to equation (la-c). 
Truncation at the singles and doubles level yields the 
widely used LR-CCSD [20] or EOM-CCSD [21] 
methods, for example. Approximations to the corre- 
sponding theories including triple excitations also have 
been proposed [22, 231, yielding improved results at 
great computational expense. 

The perturbation expansion of the response matrix 
that we proposed to define the CIS(D) method is as 
follows. First, as in ground state Merller-Plesset 
theory, the Hamiltonian is partitioned into the (zero- 
order) mean-field Fock operator plus a (first-order) fluc- 
tuation potential, & = $'('I + f(l) which yields the 
Msller-Plesset expansion of the ground state cluster 
operators. In the response matrix, the zero-order part 
is the CIS problem in the singles-singles block (SS), plus 
matrix elements of the mean-field Fock operator in 
other blocks (diagonal in the canonical orbital basis). 
Thus the Merller-Plesset partition of the Hamiltonian 
is applied everywhere in the response matrix except the 
SS block. 

With this construction, CIS solutions are obtained at 
zero order from eigenvectors of the SS block. At zero 
order the doubles and triples blocks are diagonal in the 
canonical basis (denoted as D(') in equation (2) below). 
First-order terms are matrix elements of the fluctuation 
potential (except in the SS block, where it was part of 
CIS itself). Higher-order terms enter because the exact 
response matrix depends on the ground state cluster 
amplitudes (which have their usual Mdler-Plesset 
expansion), giving an expansion of the response matrix 
of the form: 
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Second-order perturbation corrections to CIS 595 

A =  

-A$ 0 0 ...- 

0 DgL 0 

0 0 Dr!  

+ +. . . .  (2) 

1 
CIS(D) is the result of applying non-degenerate pertur- 
bation theory through second order: 

The result is a correction to the CIS excitation energy of 
the ith excited state. 

As stated in the introduction, CIS(D) is potentially ill- 
behaved when the reference CIS states exhibit near- 
degeneracies. In such cases, our objective should be to 
apply quasidegenerate perturbation theory through 
second order within a well defined manifold of near- 
degenerate states. Suppose, for example, a small 
number of CIS states are nearly degenerate, with eigen- 
value w?). We must diagonalize the response matrix 
constructed through second order in this small mani- 
fold, which is 

Although this is physically reasonable, and clearly cor- 
rects the possibly large errors that would arise from 
employing non-degenerate perturbation theory, it is 
still not entirely satisfactory. The necessity to select an 
arbitrary energy threshold that defines near-degeneracy 
means that such an approach does not constitute an 
unambiguous theoretical model chemistry. 

Instead, we prefer to view the entire manifold of refer- 
ence CIS states as being potentially near-degenerate, and 
develop the second-order perturbation correction under 
this simple parameter-free assumption. We will therefore 
be rediagonalizing the entire singles block of the 
response matrix to allow for remixing induced by 
including electron correlation effects through second 
order in the fluctuation potential. The singles block is 
redefined analogously to equation (4): 

except that we cannot employ the zero-order CIS eigen- 
values on the right hand side because they may span a 
large energy range. Hence this dressed Hamiltonian is 
excitation-energy dependent. It arises equivalently from 
diagonalization of the following truncated response 
matrix which is defined only in the singles and doubles 
blocks: 

One eliminates the doubles from explicit consideration 
by inverting the diagonal zero-order DD block, leading 
to an energy-dependent dressed singles response matrix 
as given by equation (5). Diagonalizing either equation 
(6) or the energy-dependent equation (5) is a quaside- 
generate generalization of CIS(D), which is similar in 
spirit to the CC2 and P-EOM-MBPT2 methods, 
although slightly simpler. 

A significant additional simplification is possible, 
which serves to define the CIS(D,) family of methods. 
We observe that the diagonal elements defining D$, (the 
doubles eigenvalue differences, E,  + ~b - ci - E ~ )  are 
bounded from below by twice the lowest ionization 
potential of the system (within the Koopman's approx- 
imation, assuming no bound virtual levels), and are gen- 
erally much larger. Therefore such elements are much 
larger than the excitation energies w to relatively low 
lying excited states that are of interest. Defining 

(7) (0) -1, A = 

we can write a rapidly convergent binomial expansion: 

(DDD (0) - w)-' = (DDD) (0) - 1  (1 - A)-' 

= (DgA)-'(I + A  + A2 + . . .). (8) 

We shall define CIS(D,) as the method which results 
from truncating the series after the A"-term. Thus 
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596 M. Head-Gordon et al. 

CIS(D,) involves finding exact eigenvalues and eigen- 
vectors of equation (6). 

In CIS(DI) we retain just the first two terms of the 
binomial expansion (i.e., up to first order in A ) .  This 
permits us to replace diagonalization of equation ( 5 )  
by a generalized eigenvalue problem of the form 

(9 a) Aeffb - ss s - ws;:'bs, 

where the dressed response matrix is independent of 
excitation energy and state, and the metric is non-diag- 
onal. In more detail, the effective singles response matrix 
and metric are defined by 

( I )  (O) -2A(I) 
= 4 1 ~ ~  + ASDPD,) Ds)bs. (9 b) 

The solution of equation (9a, b) defines CIS(D1). 
The corresponding method in which only the zero- 

order term of equation (8) is retained would simply 
replace the metric of equation (9) by the unit matrix, 
defining CIS(D0). If we were to retain higher terms, 
energy dependence would reappear in the eigenvalue 
problem, making it computationally intractable (except 
for the lowest excited state). Therefore the three most 
interesting members of the CIS(D,) family are CIS(Do), 
CIS(DI) and CIS(D,). Our objective in the results sec- 
tion will be to compare CIS(Do) and CIS(D,), which 
yield energy-independent dressings of the singles 
response matrix, against CLS(D,), to assess the legiti- 
macy of truncating the A expansion in equation (8). 

We briefly summarize the CIS(D (and implicitly also 
CIS(Do)) spin-orbital expressions for the matrix-vector 
multiples which correspond to evaluating the left and 
right sides of equation (9) for a given trial vector bs. 
A close similarity to terms in the CIS(D) excitation 
energy will of course be evident. The leading term of 
equation (9 6) is simply the singles-singles block of the 
Hamiltonian contracted with the trial vector: 

(Azbs); = (@Y/fi[@)b,? = ( E ,  - ~ ~ ) b q  + c ( j a  1 1  bi)b;. 
j b  

(10) 

The second term involves the same intermediate as the 
triples term of the CIS(D) energy: 

(Agbs); = (@lRlF'2$')b; 

where the doubles amplitudes are defined by the ground 
state first-order Marller-Plesset wavefunction: 

= --c 1 (V  1 1  ab) I @ ) .  (12) 
4 i jab &a f &b - & i  - &j 

Note that this second term is the only part of the dressed 
response matrix of equation (9) which is not symmetric. 
Therefore the left and right eigenvectors are different. 
For some applications, such as nuclear forces, the left 
residual also must be evaluated. The left contraction of 
this asymmetric term is 

1 
= - ~ u ; ~ { b ~ ( j k  ( 1  ca) + b;(ik (1 cb) 

jkbc 

+ 2bjb(ik ) [  m)}. (13) 

The third term of equation (9 b) is evaluated conveni- 
ently in terms of an effective set of doubles transition 
amplitudes: 

(14) 

1 1 
= - c ( j a  )I b c ) b F + - c ( j k  1) ib)b$'. (16) 

jbc jkb  

Finally, the second term on the right hand side 
(neglected in CIS(Do)) is given by equation (16) also, 
but using doubles amplitudes which involve the eigen- 
value differences squared in the denominator, according 
to: 

3. Implementation 
The eigenvalue problem to be solved is equation (9). 

This is treated by Davidson's method [24] for asym- 
metric matrices [25], using expansion vectors which are 
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Second-order perturbation corrections to CIS 597 

only single excitations. We begin with the converged CIS 
states as initial guesses, and the code employed for the 
iterative steps is quite similar to a CIS program. There 
are three noteworthy differences. 

(a) Due to the asymmetric nature of the eigenvalue 
problem, the left and right eigenvectors are not identical. 
For excitation energy calculations, it suffices to have 
either one or the other, and this is our program's 
default. For properties such as forces on the excited 
state, it is necessary to simultaneously solve for both 
eigenvectors. 

(b) The eigenvalue problem has a non-orthogonal 
metric given by the right hand side of equation (9), 
that must be respected in the iterative method. We eval- 
uate the metric matrix within the expanding subspace of 
singles used for the Davidson method, and then solve 
the generalized eigenvalue problem within the subspace. 
The metric is ignored when converting residual vectors 
into new subspace vectors, which is accomplished 
exactly as in a CIS calculation (dividing by the CIS 
eigenvalue differences and orthogonalizing against the 
existing space for each state). 

(c) The contraction of the response matrix against a 
trial singles vector is vastly more complicated than in the 
CIS method, as summarized in equations (lo)-( 17). 
While equation (10) corresponds to the CIS contraction, 
and is therefore performed using the same direct 
methods [2], the remaining terms are different and 
more demanding. The rest of this section describes the 
algorithm we have developed to perform this contrac- 
tion efficiently, assuming we are given a set of bs vec- 
tors. 

The triples-like contributions summarized in equa- 
tions (11)-(13) contain three terms, each of which 
involves a triple product between two-electron integrals, 
ground state doubles amplitudes, and the excited state 
singles vectors. It is convenient to define two state-inde- 
pendent matrices based on contractions between inte- 
grals and ground state doubles, which can be 
computed once and for all: 

The evaluation of these terms can be performed as the 
ground state first-order Mdler-Plesset doubles ampli- 
tudes are formed, exactly as in a direct [26] or semidirect 
MP2 gradient method [16, 171. Thus only the cubic 
memory and disc of such methods are necessary. The 
fifth-order work associated with forming the ground 
state doubles amplitudes and evaluating equations (1 8) 

and (19) is state-independent, and thus is very small in 
the context of a CIS(DI) calculation involving many 
states and/or iterations. 

Given the matrices defined by equations (1 8) and (1 9), 
equation (1 1) may now be expressed as 

b i 

where the final term is evaluated by forming a Fock-like 
matrix for each trial singles vector from the term in 
parentheses, which can be contracted with the ground 
state doubles amplitudes as they are constructed. A key 
point is that if we are dealing with many iterations and/ 
or many states, the cost of evaluating equation (20) 
approaches the cost of the Fock-like matrix and its con- 
traction with the ground state doubles, which asympto- 
tically scales only quadratically with molecule size. 
Finally, if we need the left-contraction, it may be eval- 
uated analogously: 

except that here the Fock-like matrices are made from 
density-like matrices which are not the singles, but 
rather the contraction of ground state doubles with 
singles, as given in parentheses. 

We consider the evaluation of the excited state 
doubles-like terms contained in equations (14)-( 16). 
Our approach to these contributions will be analogous 
to the semidirect evaluation of the MP2 energy and 
gradient. The rate-determining step in the MP2 energy 
is simply a transformation of the A 0  basis two-electron 
integrals to the MO basis. Explicitly, this is performed in 
four step-wise quarter-transformations 

(ia I jb )  

(22) 

where Greek indices refer to atomic orbitals, and the 
MO coefficient matrix is C. These single-bar (Mulliken 
notation) integrals can then be antisymmetrized: 
( i j  1 1  ab) = (ia I jb )  - (ib I j a ) .  The operation count for 
evaluating equation (22) is formally proportional to 
ON4 (0 and N are the numbers of occupied orbitals 
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598 M. Head-Gordon et al. 

and basis functions) from the first quarter-transforma- 
tion. With the use of integral prescreening, this term 
reduces to roughly ON2 with a large prefactor. The 
order of transformations implied by equation (22) is 
consistent with the order in which A 0  basis integrals 
are generated, as has been discussed previously [27]. 
The basis of direct and semidirect methods for the 
MP2 energy is to treat only a subset of the occupied 
orbitals (index i) at a time in the first quarter-transfor- 
mation. All j ,  a ,  b are then handled at once, ensuring that 
no rate determining computations that scale with the 
fifth power of molecule size are repeated, while the 
fourth-order (or lower with integral cutoffs) effort of 
A 0  integral evaluation is repeated as many times as 
there are batches. Memory and disc requirements are 
not worse than cubic in molecule size, since the quartic 
number of double substitutions are not all needed at 
once. 

While iiib could be evaluated by first forming MO 
basis integrals and then evaluating equation (1 5); this 
requires preparing the much larger three-virtual-index 
class of MO integrals in addition to the two-virtual- 
index class required for the MP2 energy. Furthermore, 
it is not possible to treat only a subset of the trans- 
formed integrals at a time because all indices must be 
available in order to transform with the CIS amplitudes 
via equation (15), and therefore direct and semidirect 
methods cannot be applied in the manner which is poss- 
ible for the MP2 energy. For these reasons, we believe it 
is preferable to instead directly form iiib from A 0  basis 
integrals, just as the MO integrals are constructed in a 
direct method. 

We accomplish the direct (or semidirect) formation of 
G i b  by defining a set of modified MO coefficients, which 
are derived by transforming the original coefficients with 
the current vector of single substitutions: 

a 

i 

In terms of the original coefficients and the single-bar 
coefficients, the following set of modified quarter-trans- 
formations permits the G i b  to be prepared at the same 
time as the (ialjb) are generated: 

(ia I Aa) = C[Cua(iv I Aa) + cua(iv 
v 

(ia 1 ja) = C [ C A a ( i U  1 Aa) + CAa(iV 
x 

(ia 1 jb )  = C[C,,b(ia 1 jo) + C,b(ia I ja)].  (24d) 

The antisymmetrized form of the final single-bar 
U 

integrals ~~ are the desired target quantities: i$b = 
(ia I jb) - (ib I ja). It is clear that the batching of occu- . I I  I ~ . -  I 
pied orbitals employed in direct and semidirect MP2 
methods applies immediately to this method of evalu- 
ating equation (15). The computational cost per state is 
roughly equivalent to MP2 itself (if sufficient states are 
treated to amortize the cost of the ground state contri- 
butions). 

After converting the iiib array (or the current piece of 
it) into doubles transition amplitudes based on equation 
(14), it remains to evaluate equation (16). Fortunately 
equation (16) has the same form as two of the terms 
defining the MP2 Lagrangian in gradient theory [26], 
and therefore standard semidirect MP2 gradient 
methods may be employed to perform this contraction 
also. We use our recently developed MP2 gradient form- 
alism [17], which avoids the need for generation of three- 
virtual-index integrals by performing the contractions in 
a mixed AO-MO representation. In spin-orbital nota- 
tion, the form of the resulting contractions is: 

j kc  

If converged CIS eigenvectors are employed as initial 
guesses, then on the first iteration of this procedure, the 
CIS(D) energy can be generated readily, as well as the 
theta diagnostic. The cost per state for semidirect 
CIS(D) is approximately equal to the cost of an MP2 
energy calculation for the ground state, while CIS(D1) 
states are more expensive by a factor which is the 
number of matrix vector contractions required per state. 

4. Excited state properties and transition properties 
There are (at least) two levels at which excited state 

properties, such as charge distributions, dipole 
moments, etc., may be evaluated based on converged 
CIS(D,) solutions. The highest, and most internally con- 
sistent level is to evaluate all properties of the excited 
state as analytical derivatives of the total CIS(D,) 
energy, defined as the ground state MP2 energy plus 
the CIS(D,) excitation energy. As analytical derivatives 
are responses of the CIS(D,) energy, which is correct 
through second order in electron correlation, properties 
defined this way should be regarded as also including 
contributions through second order in electron correla- 
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Second-order perturbation corrections to CIS 599 

tion. This requires the formulation and implementation 
of analytical gradients, which is a tractable problem, but 
one that we shall not address here. It requires significant 
effort beyond that needed for the excitation energies, 
and of course is essential for properties such as excited 
state geometries and vibrational frequencies. 

For more qualitative purposes, such as characterizing 
the nature of excitations, and coarse features of excited 
state charge distributions, a simpler alternative also 
exists. The alternative is only zero order in electron 
correlation, but is an improvement over CIS because it 
incorporates the effects of mixing of the zero-order sol- 
utions due to correlation. CIS(D,), as a quasidegenerate 
perturbation theory, yields eigenvectors whose singles 
components are linear combinations of the CIS eigen- 
vectors, due to the mixings associated with near degen- 
eracies. If we consider just the CIS(D,) singles vectors, 
this defines corrected zero-order solutions. In particular, 
the so-called unrelaxed difference density matrix [28] 
associated with CIS theory may be generalized to 

a 

where subscripts L and R refer to left and right eigen- 
vectors. This matrix describes zero-order charge rear- 
rangements associated with the excitation. It is 
particularly convenient to analyse this difference density 
matrix (which can of course be symmetrized since it is 
always contracted with symmetric quantities) via attach- 
ment-detachment density analysis [28]. The promotion 
number remains identically one within this corrected 
zero-order model. 

CIS(D,) transition properties are not defined uniquely 
by the theory presented in section 2, which is one dis- 
advantage of these models relative to the second-order 
CC2 method, which is a true linear response theory. 
However, the corrected zero-order model discussed 
above for charge distributions can also be applied 
straightforwardly to the evaluation of transition 
moments and in particular oscillator strengths, as an 
improvement relative to CIS. Left and right transition 
moments exist: 

ia 

Observable properties such as oscillator strengths 
involve the product of the left and right moments: 

where w is the second-order excitation energy. Use of 
this corrected zero-order oscillator strength permits an 
assessment of the changes in CIS spectral intensities due 
to the remixing of CIS states associated with near- 
degeneracies. In the limit in which no such mixing 
occurs (i.e., CIS(D) is correct), no changes to the CIS 
properties will be found (apart from the rescaling of the 
excitation energy). 

5. Results and discussion 
We have implemented CIS(D), CIS(Do) and CIS(D1) 

via the methods described in section 3, as part of a 
development version of the Q-Chem program [29]. 
CIS(D,) was obtained from previously described mod- 
ifications [l 11 to the Titan programs [30] for performing 
CCSD excited states [31]. The purpose of this section is 
to present test calculations to address the following five 
questions. 

Are deviations between CIS(D) and either experi- 
ment or a more accurate theory such as LR- 
CCSD reduced by employing CIS(D1)? This 
will apply particularly to cases where near-degen- 
eracies occur in either the CIS or CIS(D) results. 
How significantly is the character of excited 
states changed at the CIS(D1) level relative to 
CIS? We will report the overlap of the CIS(D1) 
singles vector with CIS reference states. 
How significant are the differences between sol- 
ution of CIS(D1) equation (9), and full diagona- 
lization of the response matrix of equation (6), 
which defines CIS(D,)? This assesses how well 
the state-independent dressing employed in 
CIS(DI) approximates the energy-dependent 
response matrix of CIS(D,). 
How much additional error would be incurred if 
we did not include the metric in equation (9), as 
in CIS(Do)? In other words, how much benefit do 
we gain from carrying the binomial expansion of 
equation (8) through first order versus zero 
order? 
Does the theta diagnostic [7] reliably predict the 
cases where CIS(D) performs poorly? If so then 
in cases where the diagnostic is small, cheaper 
CIS(D) calculations would suffice. 

Initially let us consider some fairly small molecules 
where direct comparison both against the higher level 
LR-CCSD method, and against full diagonalization of 
equation (6) (i.e., CIS(D,)) is possible. Since CIS(DI) 
and CIS(D) are quasidegenerate and non-degenerate 
second-order approximations to LR-CCSD, compar- 
ison against CCSD measures directly how successful 
such approximations are in practice. These results are 
summarized in table 1 for ethylene, formaldehyde, and 
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600 M. Head-Gordon et al. 

Table 1. Vertical excitation energies (in eV) of ethylene Table 2. CIS, CIS(D) and CIS(D,) vertical excitation energy 
(C2H4), formaldehyde (CH20) and chlorine nitrate calculations on styrene, benzaldehyde and chalcone using 
(CION02) evaluated at various levels of theory.a the 6-31 + G* basis set at HF/6-31G* optimized geome- 

tries (energies in eV). 

State CIS 8" %CIS" CIS(D) CIS(D1) Experiment 
CIS sh %CIS' CIS(D) CIS(D,) CIS(DI) CIS(D,) CCSD 

CZH4 
I'B3" 7.13 0.0" 100% 7.20 
I'Blg 7.71 1.2" 100% 7.84 
l'B2, 7.86 0.0" 100% 7.84 
I'Blu 7.74 2.4" 99% 8.04 
I'A, 8.09 0.0' 100% 8.17 

l'A2 4.48 0 . S  99% 3.98 
1'Bz 8.63 3.7" 91% 6.44 
2'B2 9.36 3.8" 92% 7.26 
2'A' 9.66 18.6" 63% 8.12 
2'Az 9.78 3.0" 96% 7.50 
3'B2 10.61 6.0" 89% 8.21 
1'BI 9.66 0.0" 98% 9.36 
3'Al 10.88 17.7" 90% 8.53 
4'B* 10.98 13.3" 93% 8.63 

C H 2 0  

CION02 
I 'A" 4.82 1.7" 99% 4.53 
2'A" 5.77 1.3" 99% 4.99 
1'A'  5.69 1.8" 85% 5.42 
3'"' 6.58 1.3" 98% 6.02 

7.50 7.24 7.20 7.31 
8.14 7.88 7.83 7.96 
8.19 7.91 7.84 7.99 
8.25 8.04 8.00 8.14 
8.51 8.23 8.17 8.34 

4.09 3.88 3.87 3.95 
6.86 6.36 6.29 7.06 
7.81 1.32 7.24 7.89 
7.86 7.32 7.23 8.00 
8.11 7.56 7.47 8.23 
8.91 8.30 8.18 9.07 
9.64 9.21 9.15 9.26 
9.19 8.59 8.46 9.27 
9.32 8.71 8.59 9.38 

4.67 4.47 4.44 4.46 
5.30 4.91 4.88 5.10 
5.53 5.23 5.19 5.32 
6.39 5.93 5.88 6.00 

Geometries and non-CIS(D,) values for CH20  and C2H4 from [l I ]  and for 
CION02 from [32]. 

0 (the theta diagnostic [7]) is the largest mixing angle between the CIS state 
and any other CIS state due to second-order correlation effects. Large angles 
indicates CIS is potentially unreliable. 

The percentage similarity between the unit-normalized singles component of 
the CIS(D1) response vector and the CIS vector describing the state, from their 
dot product. 

chlorine nitrate, using geometries optimized at the MP2/ 
6-31G* level. The basis sets are 6-311(2+,2+)G(d,p) 
for ethylene [ I l l  and formaldehyde Ell], and 6-31G* 
for chlorine nitrate [32]. The states are ordered 
according to the (benchmark) CCSD results. 

Several general conclusions can be drawn from this 
table. First, based on the good agreement between 
CIS(DI) and CIS(D,), it is clear that the denominator 
expansion through first order is quite close to the 
explicit representation. By contrast, retaining only the 
zero-order term in CIS(Do) gives rise to results which 
are systematically too high relative to the explicit repre- 
sentation. This is due to the fact that the zero-order term 
systematically enlarges denominators in a term which is 
negative-definite in CIS(D) theory. As far as approxi- 
mating CIS(D,) is concerned, it seems quite clear 
from table 1 that CIS(DI) is significantly more accurate 
than CIS(Do). 

Of course the objective is to approximate the 
Schrodinger equation rather than CIS(D,). It is not 
clear from table 1 that CIS(D1) accomplishes this 
better than CIS(Do), based on taking the CCSD results 
as a benchmark. For valence states, CIS(DI) is in gen- 
eral slightly too low, and CIS(Do) is generally too high. 

s t yreneb 
2'A' 5.88 
3lA' 5.54 

1'A" 4.92 
2'A' 5.88 

Benzaldehydeb 

3'A' 5.93 

ChalconeC 
1'A" 4.92 
2'A' 5.01 
3'A' 5.79 
4'A' 5.81 
5'A' 5.88 

11.1" 85% 5.18 5.11 4.42 
11.2" 81% 5.72 5.65 5.21 

0.0" 96% 4.11 3.94 3.34 
12.7" 81% 5.29 5.12 4.51 
12.7" 71% 5.97 5.90 5.34 

0.0" 93% 3.67 3.49 3.17-3.45 
12.0" 86% 4.92 4.82 3.974.16 
12.8" 79% 5.01 5.03 
21.0" 46% 5.38 5.10 
21.1" 36% 5.45 5.53 4.77 

'See table 1 for detailed definitions. 
Assignments of experimental data to CIS and CIS(D) states, and optimized 

' Assignments of experimental data to calculated states, and optimized 
ground state geometries from [7]. 

ground state geometry from [18]. 

For the Rydberg states of formaldehyde, where CIS(D) 
itself performs rather poorly, CIS(Do) is significantly 
closer to full CCSD than either CIS(D), CIS(D1) or 
CIS(D,). Further comparison of CIS(Do) and 
CIS(D1) is merited in the future. For present purposes, 
it is clear that either is substantially superior to CIS. 

CIS(D) yields results which are fairly close to either 
CIS(Dl) or CIS(D,) except when the theta diagnostic is 
large, as in the Al excited states of formaldehyde, for 
example. In the latter cases the iterative methods 
(including CIS(Do)) yield greatly improved results as 
assessed by comparison with LR-CCSD. Indeed, jud- 
ging by the small overlaps between the CIS wavefunc- 
tion and the singles component of CIS(Dl) for the A1 
states of formaldehyde, CIS fails to describe those states 
correctly, as we had suggested previously [I I]. 

Table 2 contains the results of calculations on several 
larger molecules using the CIS, CIS(D) and CIS(Dl) 
methods. These systems are too large for our CCSD 
or CIS(D,) codes on workstations, and therefore we 
consider the results relative to approximate experi- 
mental band maxima in absorption. The molecules con- 
sidered are styrene, benzaldehyde, and trans-chalcone, 
all of which were optimized at the HF/6-31G* level of 
theory. The excitation energy calculations were all per- 
formed with the 6-31 +G* basis set, which is of mod- 
erate quality in the sense of approaching the complete 
basis set limit to within a few tenths of an eV for valence 
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Second-order perturbation corrections to CIS 60 1 

excited states. It is not adequate for Rydberg states such 
as those of formaldehyde and ethylene discussed above, 
but the low-lying states of interest for the molecules of 
table 2 are all valence in character. 

The results of table 2 generally mirror the behaviour 
seen in table 1. The two lowest A’ states of styrene and 
isoelectronic benzaldehyde exhibit moderately large 
diagnostic values, which place them at the borderline 
of validity of conventional CIS(D). This is reflected in 
the unspectacular degree of similarity between the 
CIS(D1) and CIS states, which is as small as 71% for 
the 3’A’ state of benzaldehyde. The lowest two states of 
chalcone exhibit small diagnostic values, the CIS(D1) 
vectors are very similar to CIS states, and there is little 
difference between CIS(D) and CIS(D1). As we proceed 
higher into the A’ manifold of chalcone, the diagnostic 
values increase, and the extent of similarity between CIS 
and CIS(D1) decreases monotonically. These deviations 
have substantial energetic consequences, with the split- 
ting between the final two A’ states shifting by about 
0.5 eV between CIS(D) and CIS(D1). 

These A’ chalcone states reflect a type of behaviour of 
approximate theories of excitation energies which is 
likely to be the rule rather than the exception. The 
quality of a low level description such as CIS inevitably 
is best for the lowest excited state and will diminish, 
sometimes gradually and at other times rapidly, as we 
examine higher excited states. This reflects the fact that 
omitted terms, such as electron correlation, cause 
increasingly significant remixing of levels as we go 
higher in energy. This is both because such levels 
become closer spaced, and because deviations in the 
lower levels cause cumulatively larger changes in the 
character of higher levels. Thus when we compare CIS 
states against those computed at the higher CIS(DI) 
level, we find that, for a given symmetry class, the 
extent of similarity generally decreases monotonically. 
By contrast, the diagnostic values generally do not 
exhibit such behaviour, and it is important to note 
that the presence of a large diagnostic for a single 
state in the manifold usually implies that all higher 
states must be presumed suspect. 

These observations about similarity of states provide 
an excellent way of summarizing the general improve- 
ments obtained at the quasidegenerate CIS(D1) level 
relative to the non-degenerate CIS(D) level. Since 
CIS(D) employs unmodified CIS excited states, it is 
valid only as far up in the spectrum as the CIS reference 
state itself. By contrast, CIS(DI) iterates the singles in 
the presence of the correlation perturbation to yield 
states which are correct through somewhat higher exci- 
tation energies. It is hard to quantify exactly how much 
further, but the general argument is exactly the same. 
We regard the difference between the CIS(DI) response 

matrix and an exact theory such as FCI (or more pre- 
cisely its coupled cluster response function equivalent) 
as a perturbation. Its effect means that the deviations 
between CIS(DI) and the exact theory become cumula- 
tively significant as one proceeds higher in energy. How- 
ever, such deviations must occur later than those that 
arise relative to a less complete theory such as CIS, since 
the perturbation is smaller. By this argument, and the 
associated numerical examples, we see that even in cases 
where there are no obvious near-degeneracies (and 
hence immediate failures of CIS(D)), the new quaside- 
generate CIS(DI ) theory still provides a significant 
advantage. 

6. Conclusion 
We have introduced the CIS(D,) family of excitation 

energy methods, which are quasidegenerate second- 
order perturbation corrections to CIS, that generalize 
our previous non-degenerate CIS(D) correction. Rela- 
tive to other methods which include second-order elec- 
tron correlation effects on the transition in a way which 
respects near-degeneracies, the low-order CIS(Do) and 
CIS(D1) methods are novel in being expressible as the 
diagonalization of a singles-only response matrix which 
is dressed in a state-independent fashion. Therefore no 
explicit iteration of the doubles is required. 

The computational requirements of either CIS(Do) or 
CIS(DI) are similar to those of CIS(D), multiplied by a 
factor which approaches the number of iterations 
necessary to diagonalize the dressed singles response 
matrix. Thus fifth-order computation and approxi- 
mately cubic memory and disc resources are required, 
which per state per iteration is similar to the ground 
state MP2 method. We describe an efficient semidirect 
algorithm with these properties. 

Test calculations are reported to assess the perform- 
ance of CIS(D,) and CIS(D1) by comparison with full 
iterative CIS(D,) calculations for studying vertical 
absorption spectra. The CIS(DI) results better approx- 
imate CIS(D,) than CIS(Do), although comparison 
against CCSD benchmarks suggests that CIS(Do) also 
has merit. Clearly both CIS(Do) and CIS(DI) improve 
cases where CIS(D) yields poor results due to near- 
degeneracies, and also offer improvement in higher 
excited states. 

Further tests of CIS(Do) and CIS(D,) are necessary 
for other excited state properties, such as geometries and 
vibrational frequencies where CIS(D) itself appears to 
be somewhat erratic [33]. 

The binomial expansion which is employed to define 
the CIS(D,) methods equally can well be applied to 
define quasidegenerate triples corrections which do not 
require explicit iteration of the triples amplitudes. For 
example, an excellent approximation to the CC3 method 
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602 Second-order perturbation corrections to CIS 

[34] could be obtained by making a binomial expansion 
of the triples denominator through first order, which 
would be applicable to substantially larger systems by 
avoiding storage of the triples. 
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