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Résumé

Cette thèse se propose d'explorer les mérites d'une famille d'approches de simulation quantique

ab initio, les théories de perturbation à N-corps, pour l'exploration des propriétés électroniques

et optiques de systèmes organiques [1, 2]. Nous avons étudié en particulier l'approximation dite

de GW et l'équation de Bethe-Salpeter, très largement utilisées dès les années soixante pour

les semiconducteurs de volume [3, 4, 5], mais dont l'utilisation pour les systèmes organiques

moléculaires est très limitée. L'étude de quelques cas d'intérêt pour le photovoltaïque or-

ganique, et en particulier de petites molécules pour lesquelles sont disponibles des données

expérimentales ou des résultats issus d'approches de chimie quantique, nous ont permis de

valider ces approches issues de la physique du solide.

Ce doctorat s'inscrit dans le cadre du développement d'un outil de simulation quantique

spéci�que (le projet FIESTA) dont l'objectif est de combiner les formalismes GW et Bethe-

Salpeter avec les techniques de la chimie quantique, c'est-à-dire en particulier l'utilisation

de bases localisées analytiques (bases gaussiennes) et des approches de type �résolution de

l'identité� pour le traitement des intégrales Coulombiennes [6, 7, 8]. Ce code est aujourd'hui

massivement parallélisé, permettant, au delà des études de validation présentées dans ce travail

de thèse, l'étude de systèmes complexes comprenant plusieurs centaines d'atomes. En cours

de développement, l'incorporation d'approches hybrides combinant mécanique quantique et

écrantage à longue portée par des approches modèles de milieu polarisable m'a permis d'une

part de me familiariser avec le code et le développement méthodologique, et permet d'autre

part d'envisager l'étude de systèmes réalistes en couplage avec leur environnement.

Le manuscrit s`ouvre sur une introduction au photovoltaïque organique a�n de mettre en

lumière les questionnements spéci�ques qui requièrent le développement de nouveaux outils

théoriques à la fois �ables en terme de précision et su�samment e�caces pour traiter des

systèmes de grande taille. Le premier chapitre est d'ordre méthodologique et rappelle les

fondements des techniques ab initio de type champ-moyen (Hartree, Hartree-Fock et théorie

de la fonctionnelle de la densité). En partant des principes de la photoémission, les théories

de perturbation à N-corps et la notion de quasi-particule sont ensuite introduites, conduisant

aux équations de Hedin et aux approximations GW et COHSEX [9]. De même, à partir

de la compréhension d'une expérience d'optique, le traitement des interactions électron-trou

est présenté, menant à l'équation de Bethe-Salpeter. Le chapitre 2 introduit brièvement

les spéci�cités techniques liées à l'implémentation des formalismes GW et Bethe-Salpeter.

Les propriétés analytiques des bases gaussiennes et les principes mathématiques derrière les

techniques de type �résolution de l'identité� et �déformation de contour�, sont brièvement



décrites. Le troisième chapitre présente les résultats scienti�ques obtenus durant cette thèse.

Le cas paradigmatique d'un polypeptide model nous permettra de discuter des spéci�cités de

l'approche GW appliquée à des systèmes moléculaires a�n d'obtenir des énergies de quasi-

particule de bonne qualité [10]. De même, l'utilisation de l'équation de Bethe-Salpeter pour

l'obtention du spectre optique de ce système sera présentée, ainsi que le cas d'une famille de

colorants [11] d'importance pour les cellules de Graetzel (les coumarines). Finalement, nous

explorons dans le cas du fullerène C60 [12] et du graphène le calcul des termes de couplage

électron-phonon dans le cadre de l'approche GW, c'est-à-dire au delà des approches standards

de type théorie de la fonctionnelle de la densité. Notre étude vise à véri�er si une approx-

imation statique et à écrantage constant au premier ordre permet de garder la qualité des

résultats GW pour un coût numérique réduit. Après la conclusion, les appendices donnent le

détail de certaines dérivations.



Abstract

The present thesis aims at exploring the properties and merits of the ab initio Green's function

many-body perturbation theory (MBPT) GW and Bethe-Salpeter formalisms [1, 2], in order

to provide a well-grounded and accurate description of the electronic and optical properties

of condensed matter systems. While these approaches have been developed for extended

inorganic semiconductors and extensively tested on this class of systems since the 60s [3,

4, 5], the present work wants to assess their quality for gas phase organic molecules, where

systematic studies still remain scarce. By means of small isolated study case molecules,

we want to progress in the development of a theoretical framework, allowing an accurate

description of complex organic systems of interest for organic photovoltaic devices. This

represents the main motivation of this scienti�c project and we pro�t here from the wealth

of experimental or high-level quantum chemistry reference data, which is available for these

small, but paradigmatic study cases.

This doctoral thesis came along with the development of a speci�c tool, the FIESTA package

[6, 7, 8], which is a Gaussian basis implementation of the GW and Bethe-Salpeter formalisms

applying resolution of the identity techniques with auxiliary bases and a contour deformation

approach to dynamical correlations. Initially conceived as a serial GW code, with limited

basis sets and functionalities, the code is now massively parallel and includes the Bethe-

Salpeter formalism. The capacity to perform calculations on several hundreds of atoms to

moderate costs clearly paves the way to enlarge our studies from simple model molecules to

more realistic organic systems. An ongoing project related to the development of discrete

polarizable models accounting for the molecular environment allowed me further to become

more familiar with the actual implementation and code structure.

The manuscript at hand is organized as follows. In an introductory chapter, we brie�y

present the basic mechanisms characterizing organic solar cells, accentuating the properties

which seek for an accurate theoretical description in order to provide some insight into the

factors determining solar cell e�ciencies. The �rst chapter of the main part is methodological,

including a discussion of the principle features and approximations behind standard mean-�eld

techniques (Hartree, Hartree-Fock, density functional theory). Starting from a description of

photoemission experiments, the MBPT and quasiparticle ideas are introduced, leading to the

so-called Hedin's equations, the GW method and the COHSEX approach [9]. In order to

properly describe optical experiments, electron-hole interactions are included on top of the

description of inter-electronic correlations. In this context, the Bethe-Salpeter formalism is

introduced, along with an excursus on time-dependent density functional theory. Chapter 2



brie�y presents the technical speci�cations of the GW and Bethe-Salpeter implementation in

the FIESTA package. The properties of Gaussian basis sets, the ideas behind the resolution of

the identity techniques and �nally the contour deformation approach to dynamical correlations

are discussed. The third chapter deals with the results obtained during this doctoral thesis.

On the electronic structure level, a recent study on a paradigmatic dipeptide molecule [10] will

be presented. Further, also its optical properties will be explored, together with an in-depth

discussion of charge-transfer excitations in a family of coumarin molecules [11]. Finally, by

means of the Buckminster fullerene C60 [12] and the two-dimensional semi-metal graphene, we

will analyze the reliability of two many-body formalisms, the so-called static COHSEX and

constant-screening approximation, for an e�cient calculation of electron-phonon interactions

in organic systems at the MBPT level. After a short conclusion, the Appendix containing

details and derivations of the formalisms presented before closes this work.
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Many-body perturbation theory:

towards organic photovoltaics

The present doctoral thesis was initiated having in mind a computational framework which

would allow to simulate properties important for organic photovoltaics and to steer experimen-

tal research in this �eld. As such, in order to understand the challenges organic photovoltaics

represents to computational physicists, we �rst brie�y discuss the basic principles of organic

photovoltaic cells. For a comprehensive overview, the reader is referred to Refs. [13, 14, 15].

This is followed by a short comparison of standard ab initio methods, where we focus on

approaches available to calculate electronic structure and optical absorption properties. The

presented computational techniques will be compared with special emphasis on accuracy and

e�ciency. In this context, we de�ne accuracy through the comparison to experimental or cor-

related quantum chemistry results. Concerning e�ciency, we take a pragmatic view, where

we attempt to �nd a proper ratio between accuracy and computing time in the light of the

complexity of the targeted systems. Subsequent to the paragraph on computational methods,

the organization of the present manuscript follows.

Organic photovoltaics: basic concepts

Photovoltaics: a promising renewable energy source

The search for sustainable and unlimited energy sources is one of the key challenges of the

21st century. Among diverse renewable energy sources, such as wind power, biomass and

hydroelectricity, photovoltaics takes a prominent place. In photovoltaic cells, sun light is

directly converted into electricity. This is basically achieved through the following working

principle: a semiconducting material absorbs photons, which have an energy exceeding the

semiconductor's gap. This creates pairs of bound positive and negative charges, so-called

excitons. These bound pairs then dissociate, yielding free charges that drift to the respective

electrodes through a built-in potential. This provides a closed circuit with direct current �ow.

Solar cells of the �rst generation utilize bulk crystalline silicon as absorbing semiconducting

material. Most commercial solar cells to date belong to this type and power conversion

e�ciencies of over 20% are provided. However, the production process is complicated and

material costs of perfectly crystalline silicon are high. Therefore, much research e�ort is

spent on the exploration of novel solar cell concepts. Among the most promising ones are

13



Contents

Figure 0.1.: Recent compilation of the best research power conversion e�ciencies of diverse
solar cell types, reaching from standard single-junction silicon cells to emerg-
ing quantum dot cells. Record e�ciencies of up to 45% are achieved with
multi-junction cells, while single-junction silicon cells approach 28%. From
2001 to 2014, an impressive increase by a factor of around 4 can be noted
for organic solar cells, reaching a laboratory e�ciency of 11%. Figure pro-
vided by the American National Renewable Energy Laboratory (NREL) at
http://www.nrel.gov/ncpv/.

e.g. low-cost thin-�lm solar cells, where the use of very e�ciently absorbing direct band gap

semiconductors, such as e.g. amorphous silicon or chalcopyrite compound semiconductors

(CIS, CIGS), allows for thinner layers and thus production time and material savings. Another

example are multijunction concepts, which harvest, through the stacking of several single-

junction sub-cells with varying gaps, a broader range of the solar spectrum and thereby

obtain record power conversion e�ciencies of up to 45%. A compilation of to date power

conversion e�ciencies for various types of solar cells is provided by Fig. (0.1). Among these

trend-setting directions which have risen much attention recently are organic solar cells. It is

these types of cells, which we will focus on in the following.1

Organic photovoltaic cells: functional principle and characteristics

Perspectives and challenges In organic photovoltaic cells, the traditional silicon absorbing

layer is replaced by organic semiconducting materials. In particular, thin-�lms of polymers

or molecules, mainly composed of carbon, hydrogen, oxygen and nitrogen, are applied. The

utilization of organic materials as absorbers o�ers di�erent advantages compared to standard

silicon cells. First of all, a low-cost mass production seems possible. This is due to the fact

that the needed raw materials are abundantly available and that material costs are low. In
1For a comprehensive introduction into solar cells concepts and technology, see Ref. [16].
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Figure 0.2: Organic solar cells can be not
only light and semitransparent,
but also �exible. Innovative ap-
plications, such as organic solar
cell sheets adhered at vitreous
building fronts or car roofs, come
into reach. Figure reproduced by
courtesy of Fraunhofer Center for
Organic Materials and Electronic
Devices Dresden (COMEDD).

addition, large area thin �lms can be easily produced without technological di�culties. By

way of example, polymer �lms are usually deposited from the liquid using printing technolo-

gies from the already commercialized organic light emitting diode (OLED) sector. Films of

organic molecules are instead grown using physical vapor deposition (PVD) techniques. This

necessitates high vacuum conditions, however, these procedures are industrially deployed and

high quality �lms can be produced in a very controlled way. In both cases, processing tem-

peratures are of the order of room temperature and thus much lower as compared to the

processing of inorganic materials. This allows to freely choose the substrate. Provided that

plastic sheets are used, the resulting solar cells can be not only light-weight, but also �exible

(see Fig. 0.2). In addition, the lower-temperature manufacturing reduces the energy needs

during production [14], which signi�cantly diminishes the solar cell energy pay back time.2

Apart from these production related advantages, another important point is that most of the

organic compounds used can be chemically tailored with ease. This allows to optimize their

physical and chemical properties and makes a variety of interesting organic semiconductors

available. By way of example, the miscibility of organic molecules can be improved by adding

speci�c side groups or semitransparent solar cells can be created by choosing the size of

the gap such that part of the visible radiation is too low in energy to be absorbed [15, 17].

Another striking advantage is the simple and low-cost installation of organic solar cells, where

no robust supporter constructions are necessary as in the case of silicon solar cells. Instead,

e.g. deposited on adherent plastic substrates, they can be simply attached.

Organic solar cells are an environmentally safe and cheap alternative compared to classical

solar cells, which provide, due to their low weight and mechanical �exibility, completely new

scopes of application. The goal is not to replace traditional silicon cells, but to enrich the

variety by bene�ting from their unique properties. That way, totally di�erent markets are

accessible, such as e.g. the integration of organic solar cells in clothes or vitreous facades.

However, for a full-scale commercialization, two main challenges have to be tackled. First,

much research e�ort is still needed to increase the lifetime and stability of such cells [15].

Second, power conversion e�ciencies, which are to date of about 11% for the best cells in the

laboratory, have to be improved. Nevertheless, the rapid increase from around 3% in 2001 to

the up-to-date value of 11% is more than promising (see Fig. 0.1).

2The energy payback time is the operating time a solar cells needs to produce the amount of energy which
was spent during its production, installation and maintenance [14].
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Functional principle and characteristics The utilization of organic semiconductors as active

absorbing layers in organic photovoltaic cells provides the possibility of cheap, light-weight

and �exible end products, entering new emerging consumer markets as compared to standard

inorganic solar cells. Apart from these application related advantages, the organic materials

used represent a highly interesting challenge for fundamental research. Consisting of weakly

interacting molecular units rather than strongly covalently bound atoms, organic semiconduc-

tor crystals are at the interface between solid state physics and quantum chemistry theories,

urging for new concepts. Organic semiconductors, which are characterized by delocalized π-

conjugated electrons, possess inherent characteristics distinguishing them from their inorganic

analogues. In order to mention only a small excerpt of properties, one deals with:

� narrow electronic bands, high e�ective masses,

� strong electron-phonon coupling,

� a high degree of structural disorder,

� discrete and narrow absorption peaks,

� and strongly bound electron-hole pairs.

These aspects signi�cantly in�uence the semiconductor properties. By way of example, the

strong electron-phonon coupling in these materials, i.e. the interplay between the electronic

and the atomic structure [14], is one of the reasons leading to charge localizations. As a

consequence, free charge carrier transport may rather be described in terms of a hopping of

polarons than by standard band models of nearly free electrons. Likewise, the strong electron-

hole binding energy necessitates new concepts in order to e�ciently separate the electron

and the hole and to create free charge carriers. For the sake of comparison, the electron-

hole binding energy in inorganic semiconductors3 is usually of the order of some few meV

and consequently room temperature, corresponding to 25 meV, is su�cient to immediately

dissociate the exciton after its creation. In organic semiconductors, however, the excitonic

binding energy is one order of magnitude larger, typically around 0.5-1 eV [15]. This re�ects

the fact that organic semiconductors usually have a low dielectric constant [15], namely ε =

3-4, and thus the electron-hole interaction is not as e�ciently screened by the surrounding

medium as in inorganic semiconductors. Moreover, due to weak intermolecular interactions,

the excited electron and hole have a tendency to stay on the molecule they have been created

on. This results in short distances between the charges and consequently a strong Coulomb

interaction. As a consequence, an additional driving force is needed to separate the electron

and the hole. To date, organic solar cells therefore apply donor-acceptor interfaces consisting

of two di�erent materials. One of these materials, the so-called donor, is characterized by

a low ionization energy (IE), i.e. it easily gives electrons and stabilizes holes. The second

material, the so-called acceptor, has a high electron a�nity (EA) and thus e�ciently takes up

electrons. A simpli�ed scheme of such a bilayer organic solar cell is provided by Fig. (0.3),

3By way of example, the excitonic binding energy of silicon is around 15 meV [18].
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to understand the associated challenges for computational methods, a discussion of these two

steps is provided in the following.

Absorption In general, there are two main losses related to the absorption step in solar cells,

both directly connected to the optical gap. First, energy is lost through the thermalization

of excess photon energy. Instead of creating electrons and holes in the highest occupied

(HOMO) and the lowest unoccupied molecular orbital (LUMO), radiation with an energy

overcoming the optical gap excites electrons from lower occupied to higher unoccupied states.

These higher excited states usually relax extremely fast in the lowest excitonic state, releasing

the excess energy as heat through lattice vibrations. Consequently, the maximum electrical

energy which one can gain per electron corresponds to the optical gap, favoring wide band

gap semiconductors. This condition, however, disagrees with the second source of energy

losses, namely the non-absorption of low-energy photons. Since only photons with an energy

higher than the optical gap contribute to the electron-hole pair generation, small gaps would

be desirable in order to maximize the amount of created electron-hole pairs. One sees that

the choice of an appropriate gap size is very complicated and a careful balance between

thermalization and absorption losses has to be found. As a rough estimate, the Shockley-

Queisser limit predicts for single-junction cells an optimum gap of 1.4 eV, yielding a maximum

theoretical e�ciency of around 30% [16, 19]. Since the maximum is rather broad, materials

with gaps ranging from 0.8-1.7 eV are usually suitable for single-junction solar cells [20].

Organic semiconductors have fundamental gaps which are typically signi�cantly larger and,

even though the electron-hole binding energy can amount to some hundreds of meV, the optical

gaps are often too large to capture the low-energy part of the visible radiation. Therefore,

much e�ort is put in the reduction of the optical gap. From a theoretical point of view, these

considerations call for an accurate calculation of the fundamental gap and optical absorption

spectra, in order to discriminate more or less suited organic systems.

Exciton dissociation For an e�ective charge separation, the energy which is �gained� by

transferring the electron from the donor to the acceptor should be as high as possible.4 This

can be favored by maximizing the band o�set ∆ between the LUMO (HOMO) of the donor

and the LUMO (HOMO) of the acceptor (see Fig. 0.3b). Consequently, an e�cient exciton

dissociation necessitates a small energy di�erence between the HOMO of the donor and the

LUMO of the acceptor. However, it is exactly this di�erence which determines the open

circuit voltage Voc, which in turn is directly related to the power conversion e�ciency. An

opening of the two gaps could cure the problem and increase both 4 and Voc. This, however,

would imply that a smaller part of the solar spectrum is absorbed.

Clearly, the presented energy level diagram is a strong simpli�cation of real photovoltaic

devices, since one should compare excitonic energy o�sets. Nevertheless, this simple model

already points out the importance of band o�sets and gaps, and the di�culty to �nd an ideal

trade-o� between the di�erent requirements. One sees that the design of e�cient organic solar

4Of course, energy has to be conserved in the system. The exact role of the electronic excess energy in driving
the dissociation is still very debated [21, 22, 23].
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cells represents a very complex optimization problem and that the choice of high-performance

material combinations is a major challenge. Here, calculations could o�er a guideline and help

experiment to sort out appropriate semiconductors without actually testing every material in

the laboratory. This calls for an accurate theoretical description of the electronic structure

and optical absorption properties and is, as it will be discussed below, a demanding objective

for ab initio theories.

Organic solar cells: devices

In order to concretize the di�culties for theory arising from organic photovoltaic cells, two

of the most successful realizations of organic-based solar cells are shortly presented in the

following: all-organic bulk heterojunction cells and dye-sensitized solar cells (DSSCs). For a

complete overview, the reader is referred to Refs. [13, 14, 15, 24]. In the case of all-organic

bulk heterojunction cells, the organic semiconductor serves for light absorption and charge

carrier transport, whereas for DSSCs the organic material is only used as absorber. The cell

structures are quite di�erent, however, they have in common that light absorption creates

bound electron-hole pairs, which have to be dissociated. Therefore, diverse types of organic

solar cells are often grouped together and called exciton solar cells.

All-organic bulk heterojunction cells The �rst all-organic solar cells, which applied the con-

cept of an active donor-acceptor interface for the exciton dissociation, were so-called bilayer

cells. Even though their device structure is of course more complex, it nevertheless resem-

bles very much the extremely simpli�ed scheme presented in Fig. (0.3a). The �rst bilayer

cell, as realized by Tang in 1986 [25], was based on copper phthalocyanine and a perylene

tetracarboxylic derivative as donor and acceptor materials, respectively, resulting in a power

conversion e�ciency of 1%. The respective molecular structures are depicted in Fig. (0.5b).

As discussed in the following, bilayer structures are not ideal to provide an e�cient light

absorption and exciton dissociation at the same time. Instead, all-organic bulk heterostructure

solar cells are most popular device structures at present (see Fig. 0.4). The number of excitons

which actually di�use to the donor-acceptor interface before recombination is crucial for the

power conversion e�ciency. In organic materials, the di�usion length, i.e. the average distance

between excitation and recombination, is only around 10 nm, while usual device structures

apply 100-200 nm thick donor/acceptor layers in order to avoid an incomplete absorption [15].

As a result, light is indeed absorbed in the whole layer, however, only absorption in a thin

region around the interface actually contributes to the photon-to-electron conversion, whereas

most of the incident light remains unused. Bulk heterojunction cells tackle this problem by

both allowing for an e�ective absorption through 100-200 nm thick absorption layers and by

reducing the average distance an exciton has to travel in order to reach the donor-acceptor

interface. This is achieved by replacing the two �at donor/acceptor layers by a single bulk

absorption layer consisting of a blend of the donor and the acceptor material (see Fig. 0.4b).

That way, not only the interfacial area is greatly enlarged, but also the average exciton travel

distance to the interface is of the order of the di�usion length. A percolation pathway for
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Figure 0.5.: Atomic representation of molecules commonly used in exciton solar cells: a)
Ruthenium dye b) Copper phthalocyanine (left) and the perylene tetracar-
boxylic derivative PTC (right), as applied as donor and acceptor materials in
the �rst organic solar cell with a donor/acceptor interface. c) In bulk hetero-
junction cells, typically PC61BM, a derivative of the Buckminster fullerene C60,
is used as acceptor, combined with a semiconducting polymer as donor. The
added side group of PC61BM enhances its miscibility compared to C60 [13, 17].
Figures taken from Ref. [17].

date, Grätzel's approach is commonly applied and DSSCs are therefore often termed Grätzel

cells. E�ciencies of up to 12% are reached (see Fig. 0.1), where mainly ruthenium-based

organometallic complexes are used as absorbers (see Fig. 0.5a). Nevertheless, there is a trend

towards pure organic absorbers, which are cheaper, easier to synthesize and free from resource

limitations. Intense research is conducted in this direction, since solar cell e�ciencies are to

date usually smaller as compared to cells based on organo-metallic complexes [26]. Later in

this work, a study on the optical properties of all-organic coumarin dyes is presented, a family

of molecules which recently led to DSSCs with very promising e�ciencies [28, 29, 30, 31].

This sections clearly demonstrates that organic photovoltaics makes high demands on com-

putational methods. Apart from the usually experimentally targeted accuracy of 0.1-0.2 eV

for electronic levels and optical excitation energies, one has to tackle:

� a huge number of atoms,

� hybrid systems (e.g. TiO2 nanoparticles/dye molecules/liquid electrolyte),

� complex bulk and interface morphologies showing non-negligible disorder,

� and a complex interplay between electron-electron, electron-hole and electron-vibrations

coupling with similar magnitude.

In the following, the merits and limitations of ab initio computational method available to

predict electronic and absorption properties are brie�y described.

Computational aspects

The photon-to-electron conversion process in organic solar cells is very complex and includes

a variety of physical aspects. In this work, and as a �rst step into the �eld of organic photo-

voltaics, we concentrate on the calculation of the electronic structure and optical properties of
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small molecules in the gas phase. We seek an ab initio computational method able to reliably

predict these properties, where only fundamental physical constants and the molecular struc-

tures are given as input, whereas no reference data from experiment enters. The above listed

aspects imply that the sought computational method responds to the following requirements,

by being:

� accurate (within an 0.1-0.2 eV error range as compared to experimental or high level

quantum chemistry reference data),

� e�cient (both molecules with up to 100 atoms on a standard computer within one day

and several hundreds of atoms on large-scale computers should be feasible),

� parameter-free,

� and system-independent.

The two last issues ask for an universal formalism, which works equally well for extended,

�nite, semiconducting or metallic systems. Universalism is a necessary condition having in

mind hybrid systems, such as e.g. inherent to Grätzel cells, or donor-acceptor interfaces in

general.

Status report: ab initio electronic structure theories Concerning electronic structure

calculations, density functional theory (DFT ), particularly in combination with standard

(semi)local exchange-correlation functionals, is an e�cient and widely applied tool [32, 33].

However, errors of the order of several eVs on the electronic energy levels, namely as large as

the visible range of the solar spectrum, are not unusual. On the contrary, correlated quan-

tum chemistry methods [34] yield an excellent agreement with experiment, though they are

computationally too demanding to treat systems with more than a few tens of atoms.

In this work, we rely on the many-body perturbation theory GW method [1], which has

proven to be a reliable electronic structure theory formalism for extended systems. For �-

nite systems, however, systematic studies remain scarce. This is due to the high computa-

tional costs related to the straightforward application of periodic boundary condition codes

to molecules, necessitating the development of �nite-system-speci�c packages. The FIESTA

code [6] attempts to address this issue and is conceived as an e�cient mean to treat the

electronic structure of molecular systems at the many-body perturbation theory GW level.

It provides a real-space atom-centered Gaussian function basis set implementation, which is

very suited for the description of molecular systems. Further, Gaussian basis sets are most

popular in computational quantum chemistry and thus allow a direct comparison to higher

level quantum chemistry reference data. Finally, even though this is beyond the scope of

the present thesis, the proposed real-space basis approach straightforwardly opens the way

to embedding techniques, where the electronic structure of a single molecule is evaluated by

taking into account the surrounding molecules of the organic crystal. Here, space is divided

in an active region around the molecule of interest, which is treated with the highest available

accuracy, whereas the ambient medium is included at a lower level of theory to reduce the
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computational e�ort. This allows to go beyond the gas phase description and to simulate

organic semiconductors in a more realistic way.

In this context, we want to point out that a trade-o� between accuracy and e�ciency is

inevitable. Conceiving the FIESTA package and choosing input parameters such as e.g. a spe-

ci�c basis set, we deliberately accept certain approximations in order to reduce computational

costs, however, always adhering to the targeted maximum 0.1-0.2 eV error range.

Status report: optical absorption formalisms Concerning the calculation of optical absorp-

tion properties from �rst principles, TDDFT [35, 36], the time-dependent extension to DFT ,

is very popular. TDDFT provides a computationally feasible scheme and yields, for stan-

dard (local) optical excitations, energies and oscillator strengths in very close agreement with

experiment and correlated quantum chemistry methods. In the present work, however, we

want to particularly address the problem of non-local charge-transfer optical excitations. The

latter are neutral excitations of great conceptual importance, where the promoted electron

and the respective hole are spatially separated, but still interacting. Even though the exact

microscopic mechanisms of the exciton dissociation at the donor/acceptor interface are still

strongly debated [21, 37, 38], the charge separation process from bound to free carriers is sup-

posed to take place through an intermediate charge-transfer excited state [39, 40, 41]. There

is still no clear picture about the exact process, hence calling for the accurate calculation of

the excited state properties with respect to the electron-hole distance. Unfortunately, stan-

dard TDDFT approaches with (semi)local exchange-correlation functionals fail in correctly

describing these excitations by largely underestimating the electron-hole binding energy with

increasing separation. Most recently, it has been suggested that a combined GW/BSE ap-

proach [2, 42, 43], where �rst the underlying GW electronic structure is calculated and then

electron-hole interactions are included through the Bethe-Salpeter equations, cures the prob-

lem. In this context, we recently obtained, together with other groups, promising results for

intermolecular charge-transfer systems, where the excited electron and the hole are located

on di�erent molecules [8, 44]. In this work, we go further and explore the most common case

of intramolecular charge-transfer excitations by means of the GW/BSE approach [10, 11].

Organization of the present thesis

The present thesis is organized as follows. First, in order to set up a common framework,

concepts and de�nitions are brie�y recapitulated in Chapter 1. The latter is divided into

two parts, where the �rst one is devoted to electronic structure theory and the second one

to optical absorption. We try to establish a clear connection between experimentally and

theoretically accessible quantities in order to clarify which properties are calculable with the

respective formalisms and which features are not captured.

The chapter starts with a short introduction to photoemission spectroscopy (PES), an

experimental technique directly accessing the electronic structure [45, 46]. The latter is a

complex many-particle quantity, where the particle number of the interacting-particle system

changes through the ejection/injection of single electrons during the PES measurement. As
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it will be pointed out in the subsequent section of Chapter 1, the electronic structure can

in principle be exactly treated in terms of the many-body Schrödinger equation. Due to

the enormous number of correlated particles in solids or molecules, an analytic or exact

numerical solution is out of reach and approximating electronic structure theories have to be

introduced. The key problem is the inclusion of the Coulomb interaction, which correlates the

particles on a long-range scale. As important representatives of ab initio electronic structure

methods, the Hartree, Hartree-Fock and density-functional theory (DFT ) formalisms will be

brie�y discussed. These are mean-�eld approaches, i.e. the Coulomb interaction is taken

into account only in an averaged way. The many-body problem of interacting particles is

reduced to the description of a single particle moving in an e�ective Coulomb �eld created by

the others. Particularly DFT is an e�cient and widely applied tool to calculate structural

properties. However, as it will be demonstrated many times in this work, it can lead to non-

negligible errors of the order of some eV on the energy of electronic levels. In order to go

beyond the mentioned mean-�eld approaches, we present in detail the electronic many-body

problem from the view point of many-body perturbation theory, where lies the main emphasis

of the present thesis. The central quantity of this formalism are Green's functions G, which

describe the propagation of electrons and holes in the environment of an interacting many-

body system and which are thus perfectly suited to model the PES process. To be precise,

the added charges are considered as quasiparticles, i.e. bare electrons/holes surrounded by a

positively/negatively charged screening cloud created by interactions with the system. Due

to this screening, quasiparticles only weakly interact via the screened Coulomb potential W ,

rather than via the bare Coulomb potential. Similar to mean-�eld approaches, one arrives

at an e�ective single-particle problem, the so-called quasiparticle eigenvalue equation, whose

solution gives access to the electronic energies measured in PES experiments. The main

ingredient of this equation is the self-energy, an operator which accounts for all interactions

beyond Hartree and which is energy-dependent and non-local. In principle, the self-energy

can be exactly calculated through the self-consistent solution of a closed set of �ve integro-

di�erential equations, namely the Hedin's equations [1]. In practice, however, this is not

feasible. Following perturbation theory, where the screened Coulomb potential W is taken as

perturbation, one retrieves the so-called GW method and the static COHSEX approximation

[9].

The second part of the Chapter 1 deals with optical absorption. We �rst shortly comment on

optical absorption experiments and then focus on the fundamental physical di�erences between

electronic structure and optical absorption measurements. Whereas in PES, one considers

charged excitations, electrons are promoted from occupied to bound unoccupied states in

optical absorption experiments. The excited electron and the created hole attract each other

through Coulomb forces and, as it will be demonstrated in detail by means of simple absorption

models, it is crucial to take into account this interaction in order to accurately describe the

absorption process. This implies that, within many-body perturbation theory, one has to go

beyond the single quasiparticle (GW ) picture towards an interacting quasielectron-quasihole

description. This is achieved by �rst calculating the underlying electronic (GW ) structure

and then solving the Bethe-Salpeter equations to add electron-hole interactions. Within
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the domain of DFT , time-dependent DFT is a popular method to directly access optical

absorption properties. Since it is, in addition to correlated quantum chemistry approaches,

the most commonly used technique, a short review of this formalism closes Chapter 1.

Chapter 2 describes the technical speci�cations of the FIESTA code. General details on

Gaussian basis sets with emphasis on auxiliary basis sets are given, along with the intro-

duction of contour deformation techniques. Beyond formalisms and theories, the accuracy of

actual calculations may su�er from e.g. convergency issues related to the chosen basis sets or

e.g. from an inadequate treatment of dynamical correlations through plasmon-pole models.

Such technical concerns have taken an important part in the present doctoral thesis. In the

subsequent Chapter 3, namely �GW and BSE in practice�, we will constantly refer to Chapter

2 in regard to technical terms.

Chapter 3 is divided in three parts. First, we will comment on recent GW results which we

obtained for a model dipeptide molecule, a paradigmatic system for which large discrepancies

on the optical absorption level arise between the di�erent quantum chemistry and TDDFT

approaches [10, 47]. Already at the electronic structure level, the chosen molecule is a highly

interesting study case. We will demonstrate that the standard �GW Scissor� approach of

calculating the many-body GW correction to the underlying DFT -LDA electronic structure

for the HOMO and LUMO only, while correspondingly shifting the remaining states, is not

enough. It will be pointed out that for a correct ordering and spacing of the frontier orbitals,

it is indispensable to go beyond the Scissor approach by explicitly correcting several states

around the gap. This is similar to results we previously obtained within the scope of my Master

thesis for the DNA/RNA nucleobases (for details see Ref. [7]). In addition, we will propose

a reliable alternative to the standard single-shot G0W0 approach, which su�ers from non-

negligible starting point dependencies [48]. Within G0W0, the many-body correction to the

DFT eigenvalues is calculated in a single step. This implies much lower computational costs

than self-consistent schemes, however, the choice of an appropriate starting point has a large

impact on the resulting many-body electronic structure. In the present work, we carry out

inexpensive self-consistent COHSEX calculations on top of DFT -LDA electronic structure.

We will show that, even though overestimating fundamental gaps, the self-consistent COHSEX

approach readily yields the correct level spacing and ordering. This makes self-consistent

COHSEX calculations a reliable starting point for G0W0 (Scissor) calculations, o�ering the

possibility to treat also large systems on the many-body level.

The second section of Chapter 3 deals with the study of optical absorption properties

by means of a combined GW/BSE approach, where we mainly focus on the problem of

intramolecular charge-transfer excitations. We will present two interesting systems character-

ized by low-lying charge-transfer excitons, one of them being the already introduced model

dipeptide. The other one is a family of coumarin dyes [11], which are both from the fun-

damental, but also from the applicatory point of view, highly attractive. Apart from the

possibility to study charge-transfer excitations, these molecules recently earned much atten-

tion due to the high e�ciencies obtained when applied as all-organic, transition metal free

absorbers in Grätzel cells. Moreover, this family of molecules is an impressive example of

molecular design through chemical engineering, where the stacking properties and the gap
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have been systematically optimized [28, 29]. Both for the dipeptide and for the coumarin

molecules, TDDFT with inexpensive (semi)local exchange-correlation functionals has prob-

lems to reproduce charge-transfer excitation energies and only parametrized range-separated

exchange-correlation functionals cure the problem [49, 50]. In this work, we will show that our

combined GW/BSE approach turns out to be a reliable alternative. It succeeds in describing

intramolecular charge-transfer excitations in good agreement with the quantum chemistry

reference data, while being parameter-free and system independent.

The third issue we address in Chapter 3 is the accurate calculation of electron-phonon

coupling strengths from �rst principles. The latter takes a prominent place in organic semi-

conductors, as in various �elds of condensed matter physics, and for a realistic modeling of

these materials a reliable estimation is indispensable. As this quantity is sensitive to the

quality of the underlying electronic structure, it necessitates the accurate calculation of the

latter. DFT and especially density functional perturbation theory (DFPT ) provide a most

e�cient way to access electron-phonon coupling matrix elements. However, recent studies

show a signi�cant underestimation of up to 50% as compared to experiment when using

(semi)local exchange-correlation functionals. Further, it has been demonstrated that a many-

body treatment on the GW level cures the problem and yields results in close agreement

with experiment [12, 51, 52]. However, due to the lack of e�cient techniques as in the case

of DFPT , a frozen-phonon approach with step-wise atomic displacements along the phonon

modes has to be carried out. This makes the evaluation of electron-phonon coupling matrix

elements within GW very expensive. In this work, we propose two alternative many-body

approaches, namely the static COHSEX and the constant screening approximation, yielding a

much less demanding frozen-phonon framework as compared to a full GW treatment. We will

assess their accuracy by means of the Buckminster fullerene C60 and the most popular two-

dimensional semi-metal graphene. Concerning the static COHSEX approach, we will show

that it leads, especially in the case of graphene, to non-negligible discrepancies as compared to

the GW reference. However, the constant screening approach, where we neglect the variation

of the screened Coulomb potential with respect to the atomic displacements, yields results in

excellent agreement with the corresponding GW and static COHSEX reference. Even though

this approach has still to be validated for a larger variety of systems, the obtained results

are promising and open the door to an inexpensive and reliable man-body treatment of the

electron-phonon coupling.

After a short summary of the presented results and the discussion of future perspectives in

Chapter 4, the Appendix, comprising detailed information on derivations and theorems, and

a list of publications and conference contributions, closes the present thesis.
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1 | Methodology

1.1. Accessing the electronic structure experimentally:

Photoemission spectroscopy

Photoemission spectroscopy has evolved to become one of the most established experimental

techniques, playing a central role in probing the electronic structure of materials [45, 46]. Vari-

ous quantities related to the electronic structure are accessible, e.g. the chemical composition

of materials, the Fermi surface or the electron-phonon coupling strength, leading to major

progresses in the understanding of fundamental processes in solid state physics, chemistry

and material sciences.

The physical origin of photoemission spectroscopy (PES) is the photoelectric e�ect [53, 54].

Discovered in 1887 by Hertz and Hallwachs, it describes the ejection of electrons from a

sample due to irradiation with light. Today's measurement setups are still very similar to the

pioneering experiments: monochromatic and polarized photons from a light source � most

commonly UV, X-Ray or synchrotron radiation � hit the sample under a certain angle and

cause electrons to be ejected. The kinetic energy of these photoelectrons is detected via

an electrostatic analyzer. Due to the relation between the momentum p of a photoelectron

and the wave vector k of the corresponding Bloch state in the crystal, an angular resolved

measurement of the kinetic energy gives access to the electronic dispersion relation, i.e. the

band structure (ARPES: angular resolved photoelectron spectroscopy).

The microscopic processes underlying PES experiments constitute a manifold of complicated

many-particle interactions. The ejected photoelectron leaves the sample with a maximum

kinetic energy, if the remaining electronic system is completely relaxed. However, in the case

where the ionized many-body system is left in an excited state, with neutral excitations such

as e.g. electron-hole pairs, the kinetic energy of the photoelectron is lowered and so-called

satellite peaks occur in the measured spectrum. This will be discussed in more detail later in

this chapter. Apart from these intrinsic losses, the photoelectron can also loose energy on its

way to the surface by creating secondary electrons through inelastic scattering processes [42,

55]. In order to facilitate the theoretical description of the photoemission process, one usually

neglects these extrinsic losses and assumes the sudden approximation, where the interaction

between the escaping photoelectron and the remaining electrons is not taken into account. In

other words, the photoelectron and the ionized system are completely decoupled. Moreover,

the response of the system to the ionization, i.e. to the creation of a positive �potential�
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Figure 1.1.: Experimental valence band PES spectra of V2O3, measured at di�erent incident
photon energies. The spectrum signi�cantly changes going from small photon
energies to the high energy limit. This is due to the energy dependence of the
electron-photon cross section. Moreover, extrinsic processes, such as inelastic
scattering with secondary electrons, are more e�ective for low kinetic energy
photoelectrons. Figure taken from Ref. [56].

or photohole, is assumed to be instantaneous. An additional approximation consists of the

neglect of frequency dependent e�ects in the PES spectrum, i.e. the energy dependence of

the electron-photon scattering cross section and the more e�ective scattering between low-

energy photoelectrons and the system's electrons is not taken into account (see Fig. 1.1). In

consideration of the assumptions made, a direct comparison of theory and experimental data

is complicated and one has to choose wisely the data one compares with. By way of example,

one should prefer e.g. spectra measured at su�ciently high frequencies, expecting here the

sudden approximation to be more likely valid (see Fig. 1.1).

In order to get a �rst rough idea of the microscopic mechanisms, one can further simplify the

scheme by considering a single electron only to be involved in the PES process. Within this

single-particle picture (see Fig. 1.2a), an electron is promoted from a bound single-particle

state with energy εi into an unbound continuum state with energy εf by the absorption of a

photon of energy ~ω. The electronic structure of the initial N -particle ground state and the

�nal (ionized) system are taken to be equal. In other words, the ejection of the electron and

the related creation of a positive potential is assumed to have no in�uence on the remaining

electrons. According to energy conservation, simple relations between the measured kinetic

energy Ekin of the photoelectron and the orbital energy εi can be established (see Fig. 1.2a):

−εi + Ekin = ~ω,

Eb = ~ω − Ekin ≡ −εi.

This is known as Koopmans or frozen-orbital approximation and the binding energy Eb, i.e.
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Figure 1.3.: Comparison between a one-electron and a many-body picture of the PES pro-
cess: The photoelectric e�ect creates a system reduced by one electron with
respect to the initial one. Consequently, PES accesses �nal state energies (after
the ejection of the photoelectron), where the relaxation of the system due to the
created hole is taken into account. These so-called binding energies are depicted
on the right-hand side, whereas on the left hand side single-electron ground state
orbital energies are represented. The relation between initial ground state or-
bital energies and �nal state energies is highly nontrivial, being a �ngerprint of
many-body interactions in the system. The energy levels are not only shifted
in energy with respect to each other, but also the level spacings change. For
the sake of clarity, broadening e�ects and satellites are not depicted. The only
measurable quantities are binding energies, whereas orbital energies represent
purely theoretical tools.

Eb = ~ω − Ekin ≡ EN−1
i − EN0 .

The binding energy Eb for occupied states is thus the energy needed to eject an electron

from a system of N interacting electrons, where the creation of a positive potential and its

in�uence on the electronic structure of the remaining electrons is taken into account. By way

of example, the ionization energy (IE), i.e. the energy needed to eject an electron from the

highest occupied (ho) state is given by:

IE ≡ EN−1
ho − EN0 .

The measured binding energy Eb, i.e. the electronic structure, is consequently a complicated

many-body quantity, necessitating to go beyond single particle orbital energies.

In order to obtain information about unoccupied states, i.e. to get a complete view of the

electronic structure of the system, a complementary method to PES is usually used, called

inverse PES (IPES). The measurement principle of IPES is the following: an electron with a

�xed energy Ekin is inserted into the i−th unoccupied state of the N electron system, which

in turn relaxes to the charged (N + 1) ground state under photon emission (see Fig. (1.2b)).

The energy Eb needed to insert an electron in state i of a system of N interacting electrons

is given by:

Ekin + EN0 = ~ω + EN+1
i ,

Eb = ~ω − Ekin ≡ EN0 − EN+1
i ,
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and can consequently easily be obtained by measuring the energy distribution of the outgoing

photons. By way of example, the energy needed to insert an electron into the lowest unoccu-

pied (lu) state of the N electron system, i.e. the so-called electron a�nity (EA), is de�ned

as:

EA = ~ω − Ekin ≡ EN0 − EN+1
lu .

To conclude, the described underlying microscopic mechanisms of PES/IPES are compli-

cated many-body processes involving not only the ejection/insertion of a single electron, but

also the associated creation of an additional positive/negative potential. The obtained elec-

tronic structure represents thus an excited state property, where an added charge interacts

with the whole many-body system. This explains why the electronic structure is very di�cult

to calculate and usually approximations are needed. In the subsequent sections, we explore

di�erent levels of electronic structure theory and discuss both microscopic processes they de-

scribe and their range of validity. We focus on ab initio theories, i.e. approaches where no

adjustable parameters enter. We further do not account for extrinsic e�ects, i.e. we limit our

considerations on the intrinsic spectrum related to the excitation of a photoelectron and the

response of the (N − 1) system, whereas energy losses the photoelectron su�ers from on its

way out of the target are neglected. Including extrinsic e�ects clearly goes beyond the scope

of this work and the reader is referred to Ref. [55] for a comprehensive discussion.

1.2. Electronic structure theory: a many-body problem

The many-body problem Atoms, molecules and solids are systems composed of positively

charged atomic cores and the respective electrons. In quantum mechanics, assuming non-

relativistic and time-independent problems, the behavior of interacting electrons and nuclei

is governed by the following Schrödinger equation:

ĤΨ (x,R) = EΨ (x,R) ,

where Ψ (x,R) is the many-particle wave function depending on the spatial coordinates R ≡
(R1 . . .Rn) of the K ion cores with nuclear charge ZI . The spatial coordinates r ≡ (r1 . . . rN )

and the spin coordinates {si} of the N electrons are regrouped in the generalized coordinate

x, while the total energy of the system is represented by E. The Hamiltonian Ĥ is composed

as follows:

Ĥ = −1

2

N∑
i=1

∇2
i −

1

2

K∑
I=1

∇2
I

MI
+

N∑
i=1

N∑
j>i

1

|ri − rj |
+

K∑
I=1

K∑
J>i

ZIZJ
|RI −RJ |

−
N∑
i=1

K∑
I=1

ZI
|ri −RI |

,

where the �rst two terms are kinetic energy contributions. The remaining terms originate from

the electron-electron, core-core and electron-core Coulomb interaction, respectively. Here and

in the following, atomic units are used, i.e. the mass me and the charge e of an electron, the

Planck constant ~ and the permittivity of the vacuum 4πε0 are set to unity.
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The electronic problem Since the mass M of the nuclei is essentially larger than the elec-

tronic mass me, the velocity of the ion cores is much smaller and one supposes that electrons

adjust immediately to changes in the core positions. Following Born and Oppenheimer [57, 58],

the Hamiltonian can be expanded in terms of the mass ratio (me/M)1/4, resulting in a de-

coupling of the Schrödinger equation in an electronic and an ionic part. For now, we focus

on the electronic Schrödinger equation, where the ion cores are kept frozen at �xed positions

R0. As a result, their kinetic energy contribution vanishes and the repulsive ion-ion Coulomb

potential becomes a constant:

Ĥe
(
R0
)

Ψe
(
x,R0

)
= E

(
R0
)

Ψe
(
x,R0

)
, (1.1)

Ĥe
(
R0
)

= −1

2

N∑
i=1

∇2
i +

N∑
i=1

N∑
j>i

1

|ri − rj |
−

N∑
i=1

K∑
I=1

ZI∣∣ri −R0
I

∣∣ . (1.2)

The last term in equation (1.2), a constant potential originating from the interaction of the

electrons with the �xed ion cores, is from now on termed external potential V̂ext, even though

V̂ext is not necessarily restricted to the electron-core potential and can in principle contain

any applied external �eld. In the following, except for some special cases, the electronic spin

degree of freedom is not explicitly considered, i.e. we limit ourselves to systems with spin

paired electrons and thus no magnetization. Moreover, we omit the explicit notation of the

nuclear positions R0, only representing parameters. The electronic kinetic energy contribution

and the external potential are grouped together in ĥ0,

ĥ0 = −1

2
∇2 + V̂ext,

which is the so-called single-particle Hamiltonian, only containing operators acting on a single

electron. On the contrary, the electron-electron Coulomb interaction term in equation (1.2)

is a two-particle operator, correlating the motion of the electrons and making the electronic

problem very di�cult to solve for a larger number of particles.

Correlation means that the behavior of a single electron is a�ected by the motion of all

the other electrons. In crystals, where a 1 cm3 volume contains roughly 1023 electrons, the

enormous complexity of solving the Schrödinger equation becomes obvious. Calculating total

energies, such as E (N) and E (N ± 1), in order to obtain the electronic structure amounts

thus to a complex many-body problem, too di�cult to be solved exactly. For realistic sys-

tems, approximations are consequently inevitable. Since the Coulomb interaction constitutes

a clearly non-negligible contribution, low-order perturbation theories have to be manipulated

with care.1 In principle, there is no controlled way to treat these correlations and one usually

chooses approximations including the most important features of the strong Coulomb interac-

tion. Only in very few cases mathematical error estimates can be made and approximations

have rather to be justi�ed through systematic comparisons with experiments.

An often used starting point to deal with correlations is to �nd an appropriate set of one-

1By way of example, the electrostatic energy between two electrons placed at one Bohr radius a0 apart from

each other, amounts to around e2

a0
= 27 eV.
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electron orbitals, obtained using reasonable approximative single-particle expressions for the

Coulomb term. Among these approaches are so-called mean-�eld theories, where the many-

body system is reduced to the problem of a single electron moving in an averaged (e�ective)

interaction �eld of the other electrons. Two important representatives, the Hartree-Fock

approach (HFA) and density functional theory (DFT) are introduced in the following.

1.2.1. The Hartree-Fock Approach

The variational principle Solving the electronic Schrödinger equation (1.1) allows to predict

the properties of any electronic system. Due to its complexity, an exact solution of the problem

is, however, out of reach. Nevertheless, one can formulate strategies, where not a full solution

is obtained, but where at least the ground state wave function Ψ0 and the ground state energy

E0 are accessible. In this context, the total energy Etrial is calculated using an arbitrary trial

many-body wave function Ψtrial. The variational principle then states that Etrial is always

larger than the ground state energy, except the case, where Ψtrial equals the ground state

wave function:
Etrial = 〈Ψtrial| Ĥe |Ψtrial〉 ,
E0 = 〈Ψ0| Ĥe |Ψ0〉 ,
Etrial ≥ E0.

Consequently, searching through all admissible many-body wave functions represents a way

to systematically minimize the total energy and thus to �nd the ground state energy and wave

function:

E0 = min E [Ψtrial] .

Possible trial wave functions have to ful�ll certain conditions, characteristic to fermionic

wave functions. An important criterion is anti-symmetry, i.e.

Ψ (r1 . . . rirj . . . rN ) = −Ψ (r1 . . . rjri . . . rN ) .

This is nothing else than a generalization of the Pauli exclusion principle, which states that

two fermions are not allowed to occupy the same state. In addition, a physical meaning can

only be associated to the absolute square of a wave function. In particular, one is usually

interested in averaged quantities, such as the charge density n (r) and the pair density % (r, r′):

n (r1) = N
¯
|Ψ (r1 . . . rN )|2 dr2 . . . drN ,

% (r1, r2) = N (N − 1)
¯
|Ψ (r1 . . . rN )|2 dr3 . . . drN .

The former represents the probability to �nd one of the N electrons at r, while the latter

describes the probability that one electron is at r and another one at r′.2 Since the probability

2Following Ref. [59], we introduced a normalization factor of N (N − 1) for the pair density, corresponding to
the total number of non-distinct pairs. However, also the prefactor N (N − 1) /2 is common, corresponding
to the total number of distinct pairs [60].
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of �nding the N electrons anywhere in space has to be 1, one imposes

˙
|Ψ (r1 . . . rN )|2 d3r1 . . . d

3rN = 1

as a normalization condition to the wave function.

From the mentioned physical properties, important mathematical characteristics of wave

functions can be derived, such as continuity and quadratic integrability. Nevertheless, the

manifold of possible functions is enormous and in practice a complete search through all

elements is, except for very small systems, not feasible. Instead, one has to limit the search

on subsets which are both physically meaningful and manageable.

The Hartree approximation The many-electron wave function Ψ depends on 3N spatial

electronic coordinates and is consequently highly non-trivial. Several approaches exist, where

functions depending on the known single-electron orbitals are taken as a subset. One of

the most straightforward ways is to approximate the many-body wave function by a simple

product of orthonormal single-particle orbitals:

Ψ (r1 . . . rN ) ≈ ΨH = φ1 (r1) . . . φN (rN ) .

This denotes a drastic approximation and e.g. the anti-symmetry condition is not ful�lled.

Instead, the Hartree wave function ΨH represents the exact solution for a system of N non-

interacting bosons. Nevertheless, the simplicity of the approximated many-body wave function

invites to apply the mentioned minimization scheme. The degrees of freedom to vary are theN

single-electron orbitals, under the constraint to remain orthonormal. This boundary condition

introduces Lagrange multipliers εi, resulting in:[
ĥ0 + ṼH,i

]
φi (r) = εiφi (r) . (1.3)

The complex many-body problem thus reduced, by the introduction of an approximated

Hartree wave function, to an e�ective single-particle eigenvalue equation. Here, the state-

dependent Hartree operator is introduced,

ṼH,i (r) =

ˆ
d3r′

ρi (r′)

|r− r′|
,

corresponding to a classical electrostatic potential at point r generated by a charge distribution

ρi (r′). The latter is obtained by ρi (r′) =
∑

j 6=i |φj (r′)|2, where the absolute square of the

wave function for the particle i under study is explicitly not considered in order to avoid

an unphysical self-interaction. Since only the N states lowest in energy are occupied in the

ground state, only these contribute to ρi (r′).

To conclude, the many-body problem expressed in terms of the many-body Schrödinger

equation is reduced to a subproblem, where a single particle moves in an averaged repulsive

�eld, compensated by the attractive background of the positive ion cores. Concerning the

total ground state energy of the system, it equals the sum of the eigenvalues εi, where the
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Coulomb repulsion energy is counted twice for each (ij) pair and thus has to be subtracted:

E0 =

N∑
i

εi −
N∑
i

ˆ
d3r φ∗i (r) ṼH,iφi (r) .

The self-consistent �eld scheme A priori, the Hartree potential is not known, since it

depends through ρi (r′) on the single-particle orbitals φj , i.e. on the solutions itself. Con-

sequently, the problem has to be solved in an iterative way, where one starts with an initial

guess for the orbitals. From the latter, the Hartree potential, the missing ingredient to set up

the Hartree equations, is constructed. As a solution, updated single-particle orbitals φj and

thus a corrected Hartree potential are obtained. This procedure is continued until reaching a

de�ned convergency limit for the input and the updated potential. Since the resulting Hartree

potential is �nally consistent with the generating orbitals, this scheme is called self-consistent

�eld approach. The mathematical algorithms associated with the fast convergence to the

�xed point solution, such as Lanczos method [61] or direct inversion of the iterative subspace

(DIIS) [62], will be not detailed here.

The Hartree-Fock approximation Even though the Hartree approach denotes a strong sim-

pli�cation to the many-body problem, some important physical trends are already covered

by the e�ective electrostatic potential. However, in order to also account for antisymmetry,

the many-body wave function is approximated as an antisymmetric product of one-electron

orbitals:

Ψ (x1 . . .xN ) ≈ ΨSD =
1√
N !

∣∣∣∣∣∣∣∣
φ1 (x1) . . . φN (x1)

...
. . .

...

φ1 (xN ) . . . φN (xN )

∣∣∣∣∣∣∣∣ .
This is the popular Hartree-Fock approach (HFA) and the resulting wave functions are so-

called Slater determinant ΨSD [63, 64]. Anti-symmetry and hence the Pauli exclusion principle

are respected, since ΨSD changes sign under the exchange of two rows or columns and vanishes

for two equal rows/columns. Again, the introduced variational scheme can be applied, where

the total energy is minimized with respect to the one-electron orbitals. This leads to single-

particle e�ective equations, the Hartree-Fock equations:[
ĥ0 + V̂HF

]
φi (x) = εiφi (x) . (1.4)

The above relation is very similar to the Hartree result, however, due to the anti-symmetry

of the wave function, a more complex operator occurs, the Hartree-Fock operator V̂HF . It is

composed of two contributions, whose physical meaning can be made clear considering the

corresponding total Hartree-Fock energy:

EHF =
∑N

i 〈φi| ĥ0,i |φi〉+ 1
2

∑N
i

∑N
j (ii|jj)− (ij|ji) ,
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where

(ii|jj) =

¨
drdr′

|φi (x)|2 |φj (x′)|2

|r− r′|

and

(ij|ji) =

¨
drdr′

φi (x)φ∗j (x)φj (x′)φ∗i (x′)

|r− r′|
.

The �rst term in the Hartree-Fock total energy arises from ĥ0, i.e. from the kinetic energy

and the external potential. The second one, the so-called Hartree energy, plays the role of a

classical averaged electrostatic repulsion. It corresponds to the energy 〈φi| ṼH,i |φi〉 introduced
in Hartree theory, di�ering only in the fact that here the considered particle can be included

in the sum. The Hartree operator within HF theory is de�ned as:

VH (r) =

ˆ
dr′

n (r′)

|r− r′|
,

where the charge density n (r) is expressed in terms of single-particle orbitals:

n (r) = N
´
|ΨSD (r . . . rN )|2 dr2 . . . drN ,

=
∑N

j |φj (r)|2 .

In the following, it is always this potential we refer to as Hartree potential and not the state-

dependent potential ṼH,i from Hartree theory. Analogue, we introduce the so-called Hartree

energy contribution, corresponding to 1
2 (ii|jj), as follows:

EH =
1

2

ˆ
drdr′

n (r)n (r′)

|r− r′|
.

The third contribution in equation (1.4), (ij|ji), is governed by the Fock operator V̂F , which

is de�ned by its e�ect on an orbital φi:

VF,j (r)φi (r) =

ˆ
φ∗j
(
r′
)
φi
(
r′
) 1

|r− r′|
dr′ φj (r) .

It is called exchange contribution and has no classical analogue, since it emanates from the

fermionic nature of electrons. It cancels for electrons with opposite spin and only electrons

with the same spin are subject to it. Since the result of the application of V̂F on a orbital

depends on the value of the latter in the entire space, this operator is called non-local.

For the case (i = j), the Hartree and the exchange term cancel ((ii|jj) = (ij|ji)), i.e. an

unphysical self-interaction of the electron with itself is automatically avoided. Analogue to

the Hartree equations, the Hartree-Fock equations (1.4) have to be solved self-consistently.

The obtained eigenvalues have an important physical interpretation. It can be easily demon-

strated that the orbital energies εi obtained in the presented single determinant approximation

correspond to the already introduced Koopmans binding energies, i.e. to a frozen orbital ap-

proximation.
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Electron correlation Even though a single Slater determinant captures important physical

e�ects present in many-body systems, it does not represent an exact solution to the many-body

wave function. As a consequence, this approach covers only part of the electron correlation,

i.e. the e�ect an electron has on the others. In this context, the so-called correlation energy

is introduced as the di�erence between the exact ground state energy and the Hartree-Fock

energy. However, some correlations are already governed within the Hartree-Fock approach,

namely exchange interactions originating from the anti-symmetric nature of the fermionic

wave function.3 On the contrary, correlations due to the charge of the electrons are completely

neglected within Hartree-Fock theory. By way of example, the probability % (r, r′) of �nding

one electron at r and another one at r′ is not simply %cl (r, r′) = [N/ (N − 1)] n (r)n (r′), as

it would be the case for classical non-interacting charge distributions, but the electrons try

to avoid each other.4 The region around an electron is thus depleted of other electrons and

a screening hole is formed around, reducing the interaction between electrons and thus the

Coulomb energy. Within Hartree-Fock, % (rs; r′s′) di�ers from a simple product only for equal

spin electrons through the introduction of an exchange correlation fx:

%HF↑↑
(
r, r′

)
= n (r, ↑)n

(
r′, ↑

)
+ fx

(
r, r′

)
.

However, electrons with opposite spins move completely uncorrelated, following:5

%HF↓↑
(
r, ↑; r′, ↓

)
= n (r, ↑)n

(
r′, ↓

)
.

As a result, two electrons of opposite spin are even allowed to be simultaneously at r. Conse-

quently, in average electrons come too close together, giving rise to an overestimation of the

electron-electron repulsion term.

In order to account for correlation e�ects beyond the exchange interaction fx, an approach

based on a single ground state Slater determinant is not su�cient. Instead, the exact solution

for an interacting electron system requires an in�nite sum of Slater determinants, including

also determinants with excitations of one, two, three etc. electrons:

Ψ (x1 . . .xN ) =
∞∑
i=0

ΨSD,i.

This approach is known as Full Con�guration Interaction Method (Full CI). Since one works

with the exact Hamiltonian and the full wave function space, correlation is in principle com-

pletely taken into account [65, 66]. However, the number of determinants included in the

sum scales exponentially with the system's size and therefore, one usually limits the sum

to single or double excitations (CISD). Thereby, the scaling reduces to N6. Besides CI,

di�erent kinds of post-Hartree-Fock ab initio methods exist, where the most popular ones

are e.g. Møller�Plesset perturbation theory and Coupled Cluster (CC) approaches. These

3Later in this work, we adopt the common notation to restrict the word �correlation� to correlation e�ects
beyond exchange interactions present in HF .

4The factor N/ (N − 1) accounts for the fact that the particles are identical and indistinguishable.
5Here, the factor N/ (N − 1) disappears, since the two considered electrons are distinguished by their spin.
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methods are widely used in quantum chemistry electronic structure calculations, however,

their detailed discussion is beyond the scope of this thesis and the reader is referred to Refs.

[34, 67, 68, 69].

1.2.2. Density Functional Theory

Density Functional Theory (DFT ) represents a powerful alternative to Hartree-Fock and post-

Hartree-Fock approaches [59, 60, 70]. The already introduced electron density n (r) constitutes

the central quantity in this method, bearing the advantage of being much easier to handle than

the complicated many-body wave function Ψ (x1 . . .xN ). Even though representing a much

simpler object depending only on 3 instead of 3N spatial variables, very intuitive arguments

demonstrate that it provides all necessary information to set up the many-body Hamiltonian

and consequently to determine the properties of the N -electron system. The Hamiltonian is

completely determined by the number of electrons N , and by the charge Zi and the position

of the ions {R0}, which enter in the external potential. These quantities are readily available

through the ground state density. Integrating the density over the whole volume gives the

number of electrons N . Moreover, due to Coulomb attraction, the core positions {R0} can be

identi�ed through �nite maxima of the ground state density. Here, the gradient of the density

has a discontinuity, resulting from the singularity of the electron-ion potential for r → R0.

The cusp can be directly related to the nuclear charge Zi. The actual physical proof of these

plausibility arguments is provided by the Hohenberg-Kohn theorems.

The Hohenberg-Kohn theorems The basis of DFT has been set in 1964 by Hohenberg and

Kohn who introduced, in two theorems, the charge density as main ingredient to describe

a many-body system [32]. The �rst theorem states that the external potential Vext (r), the

only system dependent ingredient of the Hamiltonian, is uniquely de�ned within an additive

constant by the ground state density n0 (r). Two external potentials, di�ering by more than a

constant and providing the same ground state density, do thus not exist. Accordingly, n0 (r)

contains all important information to uniquely determine the full many-body Hamiltonian

and hence the true total ground state energy:

n0 (r)→ Vext (r)→ Ĥ → E0.

The latter is a functional of n0 (r) and can be expressed as follows:

E [n0] = FHK [n0 (r)] +
´
d3rVext (r)n0 (r) ,

FHK [n0] = T [n0] + Eee [n0] .

The introduced Hohenberg-Kohn functional FHK [n0] is universal and accounts for the kinetic

energy T [n0] and the electron-electron interaction Eee [n0], whereas the speci�cations of the

system under study are completely governed by the external potential term. The explicit form

of FHK [n0] is not known, however, it is possible to divide Eee into the electrostatic Hartree
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energy EH and a non-classical energy Encl, accounting for exchange and correlation:

Eee [n0] =
1

2

ˆ
d3rd3r′

n0 (r)n0 (r′)

|r− r′|
+ Encl.

The second Hohenberg-Kohn theorem introduces the variational principle for the energy

functional with respect to the charge density. It states that E [n] has its minimum at the

ground state equilibrium density n0 (r),

n0 (r) = N
´
|Ψ0 (r . . . rN )|2 d3r2 . . . d

3rN ,

E0 = minn E [n] = E [n0] ,

and provides thus a systematic way to obtain the ground state energy from trial densities. It is

important to mention that the variational principle only holds for the exact Hohenberg-Kohn

functional. As soon as approximations to this functional are made, total energies lower than

the true ground state energy can be obtained.

The Kohn-Sham approach The �rst Hohenberg-Kohn theorem proves that the the ground

state density provides all necessary information of the system, while the variational principle

provides a systematic way to obtain it. However, the explicit form of the Hohenberg-Kohn

functional FHK [n] is not known. After many trails and errors, the Kohn-Sham ansatz turns

DFT into a widely used practical method [33]. The idea is to introduce an auxiliary reference

system of N non-interacting electrons whose density ns (r) equals the density n (r) of the

corresponding interacting system. Since the many-body wave function of the non-interacting

electron gas is a single Slater determinant, the non-interacting density ns (r) is completely

determined by single-electron orbitals, the so-called Kohn-Sham wave functions φKS,i (r):

ns (r) =
N∑
i

|φKS,i (r)|2 ≡ n (r) .

Also the kinetic energy Ts of the reference system can be readily obtained from the Kohn-Sham

orbitals:

Ts [n] = −
N∑
i

ˆ
d3rφ∗KS,i (r)

∇2

2
φKS,i (r) .

The latter is supposed to constitute the major fraction of the kinetic energy of the interacting

system. As a consequence, the Hohenberg-Kohn functional can be rewritten as follows:

FHK [n] = Ts [n] + EH [n] + Exc [n] ,

where the so-called exchange-correlation functional Exc contains all unknown contributions,

i.e. the residual part of the kinetic energy, repulsive exchange interactions due to Pauli's

exclusion principle and correlation e�ects due to repulsive Coulomb interactions between

charged particles:

Exc = (T − Ts) + (Eee − EH) .
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A priori, its exact form is not known and �nding appropriate approximative functionals rep-

resents a challenging �eld of research.

Minimizing the energy functional E [n] with respect to the density leads to a density-only

Euler eigenvalue equation:
∂F [n]

∂n (r)
+ Vext (r) = µ,

where µ is the chemical potential. Taking the one-particle Kohn-Sham orbitals φKS,i as

variational parameters �nally gives the Kohn-Sham (KS) equations:[
−1

2
∇2 + V̂eff

]
φKS,i (r) = εKS,iφKS,i (r) . (1.5)

The latter represent a single-particle problem, where an electron moves in an e�ective one-

particle potential Veff ,

Veff (r) = VH (r) + Vext (r) + Vxc (r) .

In this context, the exchange-correlation potential Vxc is introduced as:

Vxc (r) =
∂Exc [n]

∂n (r)
.

The e�ective one-particle potential Veff apparently depends on the density and thus on the

solution of the problem itself. Therefore, a self-consistent �eld scheme starting from an initial

guess density has to be applied in order to solve the Kohn-Sham eigenvalue problem.

The DFT Kohn-Sham (1.5) and Hartree-Fock equations (1.4) appear very similar, however,

important conceptual di�erences have to be noted. First, in contrast to the Hartree-Fock

scheme which is conceived to �nd the best approximative many-body wave function, DFT -KS

is in principle an exact theory, provided that the correct exchange-correlation energy is known.

Moreover, the DFT -KS e�ective potential and thus the exchange correlation functional are

local in space, compared to the non-local Fock exchange term in Hartree-Fock. Formally,

the DFT -KS scheme seems thus less complicated, however, the true exchange-correlation

functional is supposed to show a very complicated non-local dependence on n. This points

out the challenge in �nding a suitable approximation for Vxc, covering both as many correlation

e�ects as possible and being at the same time computationally feasible.

A manifold of di�erent exchange-correlation functionals have been elaborated and merits

and limitations of the diverse functionals have been studied in detail for diverse materials

[59]. The Local Density Approximation (LDA) to Vxc represents the pioneering exchange-

correlation functional [33, 71, 72]. It has been proposed by Kohn and Sham and is based on

the assumption that the charge density of the system only slowly varies. As a consequence,

each volume element is described by the density n (r) of a uniform electron gas. Based on the

exchange-correlation energy εxc (n) per electron in a homogeneous gas, a quantity that has

been calculated using Quantum Monte Carlo techniques [73], one deduces for the exchange-
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correlation energy of the whole volume:

ELDAxc [n] =

ˆ
d3r εxc (n) n (r) .

The LDA represents one of the simplest approaches, however, it proved to yield ground state

properties in excellent agreement with experiment for a large class of systems, in particular

due to the satisfaction of important sum rules.

A possible improvement can be achieved by also including information about the density

gradient. This leads to semi-local generalized gradient approximations (GGA), among which

the functional of Perdew, Burke and Ernzerhof (PBE) is the most popular [74]. However,

(semi)local functionals seem not appropriate for molecules, which are characterized by ex-

tremely inhomogeneous and localized densities. Moreover, from equation (1.5) one can readily

see that self-interaction e�ects, which can be dramatic for localized orbitals, are not avoided

within (semi)local functionals. In order to tackle these issues, so-called hybrid functionals

have been designed. They are based on (semi)local functionals such as LDA or PBE, but

also include a certain percentage of exact exchange from Hartree-Fock theory. These func-

tionals, especially the so-called B3LY P functional [75], have been shown to yield satisfying

results and have been established as functionals of choice for e.g. the optimization of ground

state molecular structures [76]. Within the DFT community, the development of exchange-

correlation functionals represents a vivid �eld of research of its own. A detailed discussion is

clearly beyond the scope of this work and the reader is referred to Ref. [59].

Physical interpretation of the Kohn-Sham eigenvalues The quantities accessible through

theDFT -KS scheme are �rst of all ground state related properties, i.e. ground state densities,

total energies or structural properties such as lattice constants. For various classes of systems,

such as atoms [77], molecules [77], metals [78] and insulators [79], more than satisfactory result

have been obtained at favorable computational costs.

Corresponding to the Hohenberg-Kohn theorem, the ground state density contains the entire

information needed to construct the exact Hamiltonian. Consequently, also excited state

properties should, in principle, be accessible. However, so far it is not known how to extract

this information from the Kohn-Sham formalism. By way of example, Kohn-Sham eigenvalues

enter the equations as Lagrange multipliers in order to ensure orthogonality of the Kohn-Sham

wave functions during the minimization of the energy functional. This is analogue to the

derivation of the Hartree-Fock equations, where the HF eigenvalues guarantee orthogonality

of the Hartree-Fock single-particle wave functions. Provided that the electronic structure is

una�ected by changing the number of electrons in the system (frozen orbital approximation),

the HF eigenvalues gain a direct physical meaning through Koopmans theorem, associating

them with electron removal/addition energies εHFi,j :

εHFi,j =


EN (n1, . . . , nN )− EN−1 (n1, . . . ni − 1, . . . , nN )

EN+1 (n1, . . . , nN , . . . nj + 1, . . .)− EN (n1, . . . , nN ) .
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ñi ∈ [0, 1]

E (N ≡ N0 + α) N0 ∈ N α ∈ [0, 1]

E (N) = (1− α)E (N0) + αE (N0 + 1) .

E (N)

DFT

ho N IE



CHAPTER 1. METHODOLOGY

occupied level:

−IE (N0) = EN0 − EN0−1
ho = εDFTho=N0

=
∂EN0

∂nho

∣∣∣∣
nho=1−η

, (1.6)

where η = 0+. This is known as the ionization potential theorem and is illustrated in Fig.

(1.4a). Even though only assigning a physical meaning to the highest occupied level, it is

nevertheless stronger than Koopmans theorem, since relaxation e�ects, i.e. the reaction of

the remaining electrons on the ejection of the photoelectron, are included. The electron a�nity

EA, i.e. the energy needed to insert an electron in the lowest unoccupied (lu) level, can be

accessed in the same manner. In this case, one has to carry out an exact DFT calculation on

a (N + 1) electron system, making again use of the ionization potential theorem:

−EA (N0) = EN0+1
lu − EN0 = εDFTho=N0+1 = ∂EN0+1

∂nho

∣∣∣
nho=1−η

. (1.7)

In general, it follows from Janak's theorem that the energy of the highest occupied eigenvalue

is a stair-step function with respect to the particle number N , jumping at the integer points

(see Fig. 1.4b). This is physically sound, since e.g. the energy needed to eject an electron

(IE) or to insert one (EA) are di�erent, i.e. the fundamental gap is non-zero.

It is important to note that for the majority of approximate exchange-correlation func-

tionals, the presented relations are not forced to hold. Moreover, only the highest occupied

Kohn-Sham eigenvalue is directly associated with a physical quantity, whereas there is no

conclusion for the remaining eigenvalue spectrum. Despite these discoveries, in practice, the

whole Kohn-Sham eigenvalue spectrum is usually associated with excitation energies. This is

due to the fact that more accurate and at the same time inexpensive ab initio alternatives

are rare. The consequences on the quality of the resulting electronic structures will be dis-

cussed in detail in subsequent chapters. A comprehensive overview of excited states in DFT

is provided by Refs. [82, 83, 87].

1.3. Many-body perturbation theory

The key feature of the so far introduced electronic structure theories, namely the HF ap-

proximation and DFT , is to map the many-body system onto an e�ective single-particle

problem. Concerning excitation energies, these approaches have the conceptual disadvantage

that only the N particle ground state enters, whereas the ionized electronic con�guration

is not explicitly considered. The HFA is limited to the single particle picture (Koopmans

binding energies) and standard DFT calculations on N particles access only the ionization

energy IE. In order to model the microscopic processes occurring when removing (adding)

an electron from the system in PES/ IPES experiments, a formalism connecting a system of

N interacting electrons to one with (N ± 1) would be desirable.

Many-particle physics [88, 89, 90] provides quantities which can be directly related to the

mentioned process, namely single-particle Green's functions. As it will be discussed in the

following, the latter are propagators, which describe the motion of an additional charge in
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an interacting many-body system. Here, the many-body problem can be also transformed

into an e�ective one-particle problem. In contrast to the HF or Kohn-Sham equations, not

a bare particle, but a so-called quasiparticle is considered. The latter behaves like a non-

interacting electron or hole subject to an external potential, however, its mass and energy are

renormalized due to Coulomb interactions with the remaining particles. Based on one-particle

Green's functions, a closed set of equations, the Hedin's equations, will be set up. From these,

spectroscopic quantities such as excitation energies are, in theory, exactly accessible from �rst

principles. Representing a set of �ve integro-di�erential equations which have to be solved

self-consistently, this denotes a very demanding problem. Therefore, practical approaches

to the Hedin's equations, namely the so-called GW and COHSEX approximation, will be

discussed.

Real experimental measurements can not be carried out at absolute zero, but at very low

temperatures. Since many physical quantities only weakly depend on temperature in this low

temperature regime, calculations at absolute zero can often be helpful describing real systems.

Moreover, from a theoretical point of view, the ground state of an interacting system |Ψ0〉, a
property at zero temperature or at small thermal energies not su�cient to excite the system,

is of great conceptual importance. Therefore, we limit the description to zero-temperature

single-particle Green's functions in the following and refer the reader to Appendix A.2 for

more detailed information.

1.3.1. Green's functions as propagators

Our starting point is a system of N interacting electrons in a static external potential Vext.

In order to study the electronic structure, we introduce the single-electron Green's function

Ge(rt, r′t′), de�ned such that i~Ge(rt, r′t′) is the probability amplitude to detect an elec-

tron at (rt) after the insertion of an electron to the interacting many-body system at (r′t′).

Similarly, we can de�ne a single-hole Green's function Gh(r′t′, rt), describing the probability

amplitude to �nd a hole at (rt) subsequent to its creation at (r′t′) [91]. These quantities

represent thus theoretical tools to describe electron injection (ejection) and the induced re-

action of the system. It is important to note that despite their name, single-particle Green's

functions are true many-body quantities, characterizing the propagation of a single particle

in an interacting many-particle system.

Using the �eld operator description in the Schrödinger picture, the one-electron Green's

function is de�ned as follows:

Ge(rt, r′t′) = − i
~
〈
ΨN

0 (t)
∣∣ Φ̂(r) S(t, t′) Φ̂†(r′)

∣∣ΨN
0 (t′)

〉
θ
(
t− t′

)
. (1.8)

Hence, a process is described which adds an electron at time t′ and position r′ to the N-electron

ground state
∣∣ΨN

0 (t′)
〉
, through the application of the �eld operator Φ̂†(r):

∣∣ΨN+1(r′t′)
〉

= Φ̂†(r′)
∣∣ΨN

0 (t′)
〉
.

Subsequently, the evolution operator S(t, t′) = e−iĤ(t−t′) propagates the system from time t′
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to t,

S(t, t′) Φ̂†(r′)
∣∣ΨN

0 (t′)
〉

= e−iĤ(t−t′) ∣∣ΨN+1(r′t′)
〉

=
∣∣ΨN+1(r′t)

〉
,

where interactions of the added electron and its environment are considered via the many-

body Hamiltonian Ĥ. By means of the annihilation �eld operator Φ̂(r), the process is �nalized

at time t by verifying whether there is an electron at position r:

Φ̂(r) S(t, t′) Φ̂†(r′)
∣∣ΨN

0 (t′)
〉
.

Except the case where an electron is at r, the above expression vanishes. The probability

amplitude is then obtained by calculating the overlap of the �nal state with the N-particle

ground state
∣∣ΨN

0 (t)
〉
at time t. The right time order is ensured by including the step function

θ:

θ
(
t− t′

)
=

1 for t > t′

0 for t < t′,

i.e. an electron is �rst added and then annihilated. Transforming equation (1.8) from the

Schrödinger representation into the Heisenberg picture, one obtains an equivalent description.

Here, the time-dependence is governed by �eld operators instead of wave functions, following:

Φ̂(†)(r, t) = eiĤt Φ̂(†)(r) e−iĤt.

This leads to:

Ge(rt, r′t′) = − i
~

〈
ΨN

0 (0) eiĤt
∣∣∣ Φ̂(r) e−iĤ(t−t′) Φ̂†(r′)

∣∣∣e−iĤt′ΨN
0 (0)

〉
θ (t− t′)

= − i
~
〈
ΨN

0

∣∣ Φ̂(r, t) Φ̂†(r′, t′)
∣∣ΨN

0

〉
θ (t− t′) .

(1.9)

The inverse process of �rst ejecting and then reinjecting an electron to the system can be

formulated in a similar way. It is considered as the propagation of a hole from (rt) to (r′t′),

i.e. of a particle possessing the same mass and opposite charge than an electron and moving

opposite in time:

Gh(r′t′, rt) = − i
~
〈
ΨN

0

∣∣ Φ̂†(r′, t′) Φ̂(r, t)
∣∣ΨN

0

〉
θ
(
t′ − t

)
. (1.10)

For the sake of convenience, equations (1.9) and (1.10) are combined to one time-ordered

Green's function GT ≡ Ge(rt, r′t′)−Gh(r′t′, rt) using Wick's time-ordering operator T̂ . The

latter arranges time-dependent operators Ô with earliest times to the right giving rise to a

factor (−1) for each permutation in the fermionic case:

T̂
[
Ô1(t1)Ô2(t2)

]
= Ô1(t1)Ô2(t2) θ (t1 − t2)− Ô2(t2)Ô1(t1) θ (t2 − t1) ,

GT (rt, r′t′) = − i
~
〈
ΨN

0

∣∣ T̂ [Φ̂(r, t) Φ̂†(r′, t′)
] ∣∣ΨN

0

〉
. (1.11)
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Depending on the time order, this equation describes either the propagation of an electron

(t > t′) or a hole (t < t′).

Besides the time-ordered Green's function, it is very useful to introduce the retarded Green's

function GR,

GR(rt, r′t′) = − i
~
〈
ΨN

0

∣∣ {Φ̂(r, t) Φ̂†(r′, t′)
} ∣∣ΨN

0

〉
θ
(
t− t′

)
,

where {. . .} denotes the anticommutator. Analogously, the advanced Green's function GA is

de�ned as:

GA(rt, r′t′) =
i

~
〈
ΨN

0

∣∣ {Φ̂(r, t) Φ̂†(r′, t′)
} ∣∣ΨN

0

〉
θ
(
t′ − t

)
.

Strictly speaking, among the time-ordered, the retarded and the advanced Green's function,

only GR is physically meaningful, since it is directly related to experimental quantities. Nev-

ertheless, GT and GA are mathematical tools which facilitate calculations and which are

connected to GR via simple relations.

1.3.2. The Lehmann representation of the Green's function

The power of the Green's function formalism for describing PES/IPES experiments can be

made clear by rewriting the time-ordered Green's function GT (1.11) in its Lehmann represen-

tation. The latter is a reformulation of the problem in terms of the eigenfunctions
{∣∣ΨN

n

〉}
of

the many-body Hamiltonian Ĥ, solutions to Ĥ
∣∣ΨN

n

〉
= ENn

∣∣ΨN
n

〉
. As it is explicitly demon-

strated in Appendix A.2, GT can be written in the complete
{∣∣ΨN

n

〉}
basis as follows:

GT (r, r′, τ) = − i
~

unocc∑
m

e−iεmτ f∗m(r)fm(r′) Θ (τ) +
i

~

occ∑
l

e−iεlτ g∗l (r
′)gl(r) Θ (−τ) , (1.12)

where we de�ned the Lehmann amplitudes for the (N + 1) system,

fm(r) =
〈
ΨN+1
m

∣∣ Φ̂†(r)
∣∣ΨN

0

〉
f∗m(r) =

〈
ΨN

0

∣∣ Φ̂(r)
∣∣ΨN+1

m

〉
,

and the (N − 1) system:

gl(r) =
〈

ΨN−1
l

∣∣∣ Φ̂(r)
∣∣ΨN

0

〉
g∗l (r) =

〈
ΨN

0

∣∣ Φ̂†(r)
∣∣∣ΨN−1

l

〉
.

The excitation energy needed to insert an electron into an unoccupied state of an interacting

N particle system in its ground state with total energy EN0 , creating a (N + 1) system with

total energy EN+1
m , is here de�ned as εm = EN+1

m − EN0 . The excitation energy needed to

remove an electron from an occupied state of the N particle system, creating a (N − 1) system

with total energy EN−1
l , is εl = EN0 − E

N−1
l [55]. The notation (l-occupied, m-unoccupied)

in the above equations serves to distinguish these two cases. The excitation energies εm,l
correspond to the negative value of the binding energy Eb as de�ned before in the discussion

of PES experiments. Since the Hamiltonian does not explicitly depend on time, the problem

is translationally invariant and the Green's function only depends on the time di�erence
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τ = t − t′. Consequently, a Fourier transformation from time to frequency space is suitable,

following:

G(r, r′, ω) =

ˆ ∞
−∞

dτ eiωτG(r, r′, τ),

G(r, r′, τ) =
1

2π

ˆ ∞
−∞

dω e−iωτG(r, r′, ω).

For the time-ordered Green's function, the Fourier transformation yields:

GT (r, r′, ω) =
1

~

unocc∑
m

f∗m(r)fm(r′)

ω − εm + iη
+

1

~

occ∑
l

g∗l (r
′)gl(r)

ω − εl − iη
, (1.13)

where the small imaginary part η appears to ensure convergence (see Appendix A.2). When

not explicitly needed in the following, i.e. except for integrals, we set η to zero. Likewise, we

can derive an expression for the retarded Green's function:

GR(r, r′, ω) =
1

~

unocc∑
m

f∗m(r)fm(r′)

ω − εm + iη
+

1

~

occ∑
l

g∗l (r
′)gl(r)

ω − εl + iη
. (1.14)

In this representation, one can easily see that GT and GR have poles at the excitation ener-

gies εm/l measured as binding energies in PES/IPES experiments. This suggests that these

quantities are, in principle, accessible. However, this is a highly non-trivial problem, since all

many-body interactions are taken into account.

A suitable starting point from which the interacting system can be modeled is a system of N

non-interacting particles, governed by ĥ0 = −1
2∇

2
r + V̂ext. In this case, the excitation energies

are simply the single-particle energies ε0
m/l and the many-electron states are single Slater

determinants constructed from single-particle wave functions φm/l, simplifying the Lehmann

amplitudes to φm/l. Thus, the Green's function GT0 for a system of N non-interacting particles

denotes in the Lehmann representation:

GT0 (r, r′, ω) =
∑
n

φ∗n (r)φn (r′)

ω − ε0
n + iη sgn (µ− ε0

n)
, (1.15)

where we introduced the chemical potential µ to distinguish between occupied and unoccupied

states regrouped in the index n. For the retarded Green's function one �nds:

GR0 (r′, r, ω) =
∑
n

φn(r)φn(r′)

ω − ε0
n + iη

. (1.16)

Besides one-particle excitation spectra, important ground state properties are accessible

through the single-particle Green's function. By way of example, the ground state expectation

value of any one-particle operator, such as e.g. the density operator n̂(r, t) = Φ̂†(r, t) Φ̂(r, t),

can be obtained:

n (r, t) = −iG
(
r, r, t, t+

)
.

Moreover, also the exact total ground state energy can be calculated by means of the one-
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particle Green's function using e.g. the Galitskii-Migdal relation [92]:

EN0 = − i
2

ˆ
d3r lim

t′→t+
lim
r′→r

(
i∂

∂t
− h0(r)

)
G
(
r, r′, t, t′

)
.

1.3.3. The Dyson equation and the self-energy

The equation of motion technique As depicted in the previous section, the Green's func-

tion enters in many observables. Studying its time-dependence represents a powerful tool to

explore these quantities. Di�erent approaches exist, where one of which is the equation of

motion technique. Here, the quantity of interest, e.g. the single-particle Green's function, is

di�erentiated several times, creating a series of coupled di�erential equations. Provided that

this series constitutes a closed set of equations, the problem is in principle exactly solvable.

However, if it is not a closed, physical arguments have to be carefully selected in order to

truncate the series in a physically meaningful manner.

As elaborated in Appendix A.3, the derivation of the equation of motion (EOM) of the

time-ordered Green's function starts by di�erentiating G with respect to one of its two time

arguments, yielding:

i~∂G(rt,r′,t′)
∂t = δ (r− r′) δ (t, t′) +

〈
ΨN

0

∣∣T [∂Φ̂(r,t)
∂t Φ̂†(r′, t′)

] ∣∣ΨN
0

〉
.

The time-derivative of the annihilation operator Φ̂(r, t) reads:

i~
∂Φ̂(r, t)

∂t
=
{

Φ̂(r, t), Ĥ
}

= h0 (r) Φ̂(r, t) +

ˆ
d3r′′ v

(
r, r′′

)
Φ̂†(r′′, t)Φ̂(r′′, t)Φ̂(r, t), (1.17)

where v (r, r′′) = 1
|r−r′′| is the bare Coulomb potential and where h0 (r) accounts for the kinetic

and the ionic potential. Inserting the time-derivative results in:(
i~ ∂
∂t − h0 (r)

)
G(rt, r′t′)

+ 1
i~
´
d3r′′ v (r, r′′)

〈
ΨN

0

∣∣T [Φ̂(r, t)Φ̂(r′′, t) Φ̂†(r′′, t)Φ̂†(r′, t′)
] ∣∣ΨN

0

〉
= δ (r− r′) δ (t, t′) .

The above equation consists of a single-particle expression and an expectation value containing

four �eld operators accounting for electron-electron interactions. This expectation value can

be associated with a two-particle Green's function G2 at zero temperature, in general de�ned

as [2, 90]:

G2

(
r1t1; r2t2; r′1t

′
1; r′2t

′
2

)
=

1

(i~)2

〈
ΨN

0

∣∣T [Φ̂(r1, t1)Φ̂(r2, t2) Φ̂†(r′2t
′
2)Φ̂†(r′1t

′
1)
] ∣∣ΨN

0

〉
.

Analogue to the one-particle Green's function G1, it represents the probability amplitude of

�nding simultaneously two particles at (r1, t1) and (r2, t2), which have been added to the

system at (r′1t
′
1) and (r′2t

′
2). It thus contains information about two-particle processes and the

involved interactions. Depending on the time order it either describes the propagation of two

electrons, two holes or an electron-hole pair. In terms of the two-particle Green's function,

the EOM in its di�erential form is represented by:
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(
i~
∂

∂t
− h0 (r1)

)
G(11′) + i~

ˆ
d2 v (r1, r2) G2

(
12, 1′2+

)
= δ

(
1, 1′

)
. (1.18)

Concerning the introduced shorthand notation, natural numbers regroup both space and

time arguments. In this speci�c case, we de�ned 1 ≡ (r1, t), 1′ ≡ (r′1, t
′
1), 2 ≡ (r2, t) and

2+ ≡ (r2, t+ η), where the in�nitesimal parameter η ensures the right time order.

Provided that the Hamiltonian does not explicitly depend on time, the Green's function G

only depends on the time di�erence τ = t=t′. Hence, it is very useful to transform equation

(1.18) to frequency space via a Fourier transformation. Using the fact that the Fourier trans-

formation of a derivative ∂
∂t becomes (−iω) and that δ-functions δ (τ) give unity, one arrives

at:

(~ω − h0 (r1))G(r1, r
′
1;ω) + i~

ˆ
d3r2 v (r1, r2) G2

(
r1r2, r

′
1r2;ω

)
= δ

(
r1, r

′
1

)
. (1.19)

Equations (1.18) and (1.19) provide a possibility to calculate the single-particle Green's func-

tion from the known single-particle potential h0 (r) and the two-body Green's function G2.

This is an important result, however, of little practical use. In order to obtain the two-particle

Green's function, a solution to an EOM containing a three particle Green's function is needed.

The latter in turn is obtained by solving an EOM involving a four-particle Green's function.

That means, in order to calculate the single-particle Green's function, a hierarchy of equa-

tions of motions for higher order Green's functions has to be solved. This is not astonishing

regarding the fact that equation (1.18) is an exact reformulation of the many-body problem

implying all kinds of complex many-particle correlations.

The Dyson equation A useful reformulation of the the single-particle Green's function EOM

is to map the complicated many-body system onto an e�ective one-particle problem. This

can be achieved by introducing a one-particle quantity, the so-called self-energy Σ, pushing

the two-particle Green's function out of the EOM. Following Ref. [4], we �rst introduce the

mass operator M , accounting for electron-electron interactions both at the classical Hartree

level and beyond:

ˆ
d2M(12)G(21′) = −i~

ˆ
d2 v (r1, r2) G2

(
12, 1′2+

)
.

Inverting the above equation using the inverse Green's function G−1,

ˆ
d2G(12)G−1(21′) =

ˆ
d2G−1(12)G(21′) = δ(1, 1′),

yields the explicit de�nition of the mass operator:

M(12) = −i~
ˆ
d4

ˆ
d3 v (r1, r3) G2

(
13, 43+

)
G−1(42). (1.20)
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Consequently, the equation of motion (1.18) can be written as follows:(
i~
∂

∂t
− h0 (r1)

)
G(11′)−

ˆ
d2M(12)G(21′) = δ

(
1, 1′

)
, (1.21)

i.e. we reformulated the many-body problem in terms of the mass operator. In frequency

space, we consequently obtain:

(~ω − h0 (r1))G(r1, r
′
1;ω)−

ˆ
dω′
ˆ
d3r2 M

(
r1r2;ω′

)
G
(
r2, r

′
1;ω + ω′

)
= δ

(
r1, r

′
1

)
.

Even though representing a one-particle quantity, the latter is a highly non-trivial object being

not only non-local and non-Hermitian, but also implying a self-consistent solution scheme for

the EOM due to its dependence on G. Nevertheless, it constitutes a suited starting point for

perturbative approaches.

Tackling the equation of motion by means of perturbation theory (see Appendix A.3) can

be achieved by starting from an exactly solvable problem, such as the case of non-interacting

particles subject to a classical Hartree potential VH . For the latter, the non-interacting single-

particle Green's function G0 can be readily calculated following equation (1.21) via:(
i~
∂

∂t
−H0 (r1)

)
G0(11′) = δ

(
1, 1′

)
,

where we introduced the Hamiltonian Ĥ0:

Ĥ0 = ĥ0 + V̂H = −1

2
∇2 + V̂ext + V̂H .

Due to the choice to include the operator of the classical Hartree potential in the latter, this

kind of electron-electron interaction has to be removed from the mass operator in order to

not counting it twice. This leads to the de�nition of the self-energy operator Σ,

Σ = M − V̂H ,

governing all interactions beyond Hartree. Reformulating the EOM (1.21) in terms of G0 and

Σ leads to: (
i~

∂

∂t1
−H0 (r1)

)
G(11′)−

ˆ
d3 Σ (13)G

(
31′
)

= δ
(
1, 1′

)
, (1.22)

which can be reformulated to the so-called Dyson equation for the single-particle Green's

function [93, 94]:

G(11′) = G0(11′) +

ˆ
d2

ˆ
d3G0(12)Σ(23)G(3′1). (1.23)

Rewriting the latter in a separated form with respect to the particular contributions, following:

G−1 (54) = G−1
0 (54)− Σ (54) ,
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facilitates the Fourier transformation of equation (1.22) to frequency space:

[~ω −H0 (r)]G
(
r, r′, ω

)
−
ˆ
dr′′Σ

(
r, r′′, ω

)
G
(
r′′, r′, ω

)
= δ

(
r, r′

)
.

Dyson's equation (1.23) represents an in�nite series in the perturbation Σ based on the

known building blocks G0 and can be symbolically written as:

G = G0 +G0ΣG0 +G0ΣG0ΣG0 + . . . .

Truncating the series at zero order simply results in the propagation of a non-interacting

particle. Including higher order terms provides more and more interactions and �nally the

in�nite series describes the full many-body problem correctly. Equation (1.23) o�ers thus

a systematic way to include correlation e�ects with the challenge to �nd both physically

meaningful and feasible truncations.

It is often of high practical use and repeatedly applied in the subsequent sections to express

the Dyson equation within a non-interacting Hartree basis φi, in which G0 is diagonal:

GT0,ii ≡ 〈φi|G0 |φi〉
=
˜
d3r d3r′

∑
n
φ∗n(r)φi(r)φ∗i (r′)φn(r′)

ω−ε0n±iη
=
∑

n
δin

ω−ε0n±iη
= 1

ω−ε0i±iη
.

Assuming that the self-energy is diagonal in this basis, namely that Hartree and quasiparticle

wave functions strongly overlap, it follows for the interacting Green's function:

GTii ≡ 〈φi|G |φi〉 = 〈φi|
(
G−1

0 − Σ
)−1 |φi〉 =

1

ω − ε0
i − Σii

, (1.24)

with Σii = 〈φi|Σ |φi〉.

1.3.4. The spectral function and the quasiparticle picture

The spectral function Coming back to the actual problem of accurately calculating PES/

IPES spectra, we search a formalism which directly connects the Green's function as pre-

sented in the preceding sections to experimentally accessible quantities such as the measured

photocurrent. As already commented on, the accurate theoretical description of PES/IPES

experiments requires many-body concepts, however, approximations are inevitable.

One of these is the sudden approximation, where the measured photocurrent I directly

results from the excitation of an electron from an initial state Ψi to a �nal state Ψf due to

the interaction of the electronic system with a photon �eld. Losses on its way out to the

surface are not considered. Within Fermi's Golden Rule and the dipole approximation, the

transition rate Ω, i.e. the probability of a transition per unit time, can be written as follows

[95, 96]:

Ω ≈ 2π

~
|〈Ψf | r |Ψi〉|2 δ (Ef − Ei − ~ω) .

The main ingredients are the matrix element of the perturbation and a δ-function ensuring

energy conservation. The matrix element is further simpli�ed within a single-electron picture,
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where the initial state is described by a single-particle orbital φi,m, from which the electron

is ejected, and the decoupled remaining electronic system ΨN−1
i,m :

ΨN
i ≈ Ĉ φi,mΨN−1

i,m .

Antisymmetry of the state is guaranteed by the operator Ĉ. Likewise, the �nal state is

characterized by the single-particle orbital of the free photoelectron φf,Ekin and the left over

electrons ΨN−1
f,m :

ΨN
f ≈ Ĉ φf,EkinΨN−1

f,m .

Within the single-electron approximation, the matrix element thus reduces to:

〈Ψf | r |Ψi〉 = 〈φf,Ekin| r |φi,m〉
〈

ΨN−1
f,m

∣∣∣ ΨN−1
i,m

〉
,

i.e. it is given by the overlap of the initial and �nal state of the (N − 1) electron system and

the matrix element consisting of the perturbation between the single-electron orbitals. Within

Koopmans approximation, these states are supposed to be equal, ΨN−1
f,m = ΨN−1

i,m , yielding:

〈Ψf | r |Ψi〉 = 〈φf,Ekin| r |φi,m〉 .

The relaxation of the remaining electronic system is thus completely neglected and the �nal

state ΨN−1
f,m corresponds to the frozen ground state electronic con�guration, where one electron

in state m is missing.

In order to go beyond Koopmans approximation, �rst one has to allow the electronic system

to react on the creation of a charge in state m. This results in a relaxed many-body state

labeled ΨN−1
f,m,0, where an electron is still missing in state m, but where the remaining energy

levels are renormalized. Moreover, one also has to consider �nal state con�gurations, where

the electronic system not only relaxes, but where the system also reacts in form of neutral

excitations, such as the creation of e.g. electron-hole pairs or plasmon excitations. The

manifold of all possible �nal excited states, including ΨN−1
f,m,0, is labeled with the index s, ΨN−1

f,m,s,

and assigned the energy EN−1
f,m,s. The electronic system can thus react in many di�erent ways

to the ionization, provided that the particle number (N − 1) remains �xed and that energy

conservation is respected, i.e. the sum of the kinetic energy of the outgoing electron and the

energy of the �nal state is constant. The above matrix element then reads:

〈Ψf | r |Ψi〉 = 〈φf,Ekin| r |φi,m〉
∑
s

〈
ΨN−1
f,m,s

∣∣∣ ΨN−1
i,m

〉
.

The measured photocurrent I, which is proportional to the transition rate Ω, becomes:

I ≈
∑
fim

|〈φf,Ekin| r |φi,m〉|2
∑
s

∣∣∣〈ΨN−1
f,m,s

∣∣∣ ΨN−1
i,m

〉∣∣∣2 δ (~ω − Ef,kin − Eb) , (1.25)

where ENi,0 is the total energy of the initial (neutral) electronic system. Eb represents the

binding energy, which has been already de�ned as Eb ≡ EN−1
f,m,s − ENi,0, i.e. it is always
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m

ΨN−1
f,m,0 m

ΨN−1
f,m,s

s �= 0
m

m

m

A

Am (ω) ≡
∑
s

∣∣∣
〈
ΨN−1

f,m,s

∣∣∣ ΨN−1
i,m

〉∣∣∣
2
δ (�ω − Eb) .

Ekin = 0

ĉ†m ĉm

m

Am (ω) =
∑

s |〈N − 1,m, s| ĉm |N, 0〉|2 δ (�ω − Eb)

=
∑

s 〈N, 0| ĉ†m |N − 1,m, s〉 〈N − 1,m, s| ĉm |N, 0〉 δ (�ω − Eb)

=
∑

s g
∗
m,sgm,s δ (�ω − |εm,s|) ,

gm,s

εm,s ≡ EN
i,0 − EN−1

f,m,s

A

A
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to the imaginary part of the Green's function [90]:

A(r, r′, ω) ≡ − 1

π
=
[
GT (r, r′, ω)

]
sgn (ω − µ) ,

where µ represents the chemical potential. The other way around, one can also express the

Green's function G in terms of A, yielding its so-called spectral representation:

GT (r, r′, ω) =

ˆ ∞
−∞

dω′
A(r, r′, ω′)

ω − ω′ + iη sgn (ω′ − µ)
.

Here, A is introduced as position resolved function by replacing the creation ĉ†m and annihi-

lation operators ĉm in equation (1.26) by �eld operators Φ̂(†)(r). However, any basis can be

chosen for A and G without loss of generality.

Important properties of the spectral function can be easily deduced by considering the

single-particle Green's function G, expressed in a diagonal single-particle Hartree basis (1.24):

GTii(ω) =
1

ω − ε0
i − Σii (ω)

.

In the case of non-interacting particles in an e�ective Hartree potential VH , one �nds:

GT0,ii(ω) =
1

ω − ε0
i ± iη

.

Using the Dirac identity,

lim
η→0+

=
(

1

x+ iη

)
= lim

η→0+

(
− η

x2 + η2

)
= −πδ(x)

for x ∈ R, we �nd for the spectral function:

A0,ii(ω) = δ
(
ω − ε0

i

)
.

In the non-interacting case, the spectral function thus consists of δ-peaks at the Hartree

energies ε0
i . Since we used the time-ordered Green's function for the derivation, A is gen-

eralized compared to equation (1.26) and accounts both for the ejection (ε0
i < µ) and the

insertion (ε0
i > µ) of an electron to the system. For the interacting case, A becomes more

di�cult to evaluate due to the non-local, non-Hermitian and frequency dependent nature of

the self-energy Σ:

Aii(ω) =
1

π

={Σii (ω)}[
ω − ε0

i −<{Σii (ω)}
]2

+ [={Σii (ω)}]2
.

Due to the frequency-dependent self-energy, it is di�cult to make predictions of photoemission

spectra from the above formula. However, in general, one can distinguish between at least

two kinds of excitations. When slowly turning on interactions in the system, the former δ-

peaks in A are shifted from
(
ω = ε0

i

)
to
(
ω = ε0

i + <{Σii (ω)}
)
. Moreover, they broaden to
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Figure 1.6.: The quasiparticle picture: the many-body system is approximated by replacing
the bare Coulomb interaction v between electrons by quasiparticles that interact
through the weaker screened Coulomb potential W . The quasiparticles repre-
sent bare particles (purple) surrounded by an inversely charged cloud (grayish),
accounting for all kinds of many-body interactions.

Lorentzian functions, whose full width at half maximum (FWHM) is proportional to ={Σii}.
These peaks, which are in close correspondence to the original non-interacting peaks, are

attributed to so-called quasiparticle excitations, whose lifetime is inversely proportional to

the peak width. This point will be discussed in detail below. In addition, satellite peaks

occur in the spectrum. The latter are caused by excitations, where due to the creation of

a photohole di�erent kinds of neutral excitations such as plasmons, spin waves, phonons or

electron-hole pairs are provoked. These elementary excitations related to bosons are usually

termed collective excitations. In the following, we treat collective excitations only sketchily

and focus on the former case, the quasiparticle excitations.

The quasiparticle picture Quasiparticles are approximate low-lying elementary excitations

of macroscopic systems [97]. They are not real particles, but mathematical tools which o�er

the possibility to describe the motion of particles in an interacting many-body system. Many

kinds of di�erent quasiparticles exist, in the following we focus on electron/hole quasiparticles.

In this limit, a quasiparticle can be thought of as an electron/hole injected into the system

and a surrounding positively/negatively charged cloud, see Fig. (1.6). The latter is formed

due to repulsive interactions with the remaining electrons/holes through Coulomb interactions

and the Pauli exclusion principle. The many-body problem consequently reduces to a single

particle picture, where not a bare electron/hole, but a particle encircled by a screening cloud

moves through the system. As a result, two quasiparticles are not interacting via the bare,

but via the much weaker screened Coulomb interaction W . Screening is thus supposed to be

the main physical e�ect when adding a particle to a system. It is governed by the inverse of

the material speci�c dielectric function ε:

W
(
r, r′, ω

)
=

ˆ
d3r′′ v

(
r′′ − r′

)
ε−1

(
r, r′′, ω

)
=

ˆ
d3r′′

ε−1 (r, r′′, ω)

|r′′ − r′|
.

Due to the supposed weak interaction, we assume a one-to-one correspondence of the inter-

acting and the non-interacting system and label quasiparticles by the same quantum numbers

k or σ as their non-interacting counterparts. However, these dressed particles possess a renor-

55



CHAPTER 1. METHODOLOGY

malized energy εqp and mass, and a �nite life-time τk, since they are not eigenstates of the

system. In this context, we want to point out that quasiparticle energies, and the quasiparticle

picture in general, are mathematical tools, introduced to make the description of the many-

body system feasible. The corresponding observables are the already presented excitation

energies εm = EN+1
m − EN0 and εl = EN0 − E

N−1
l , as occurring in the Lehmann representa-

tion of the Green's function. The connection between quasiparticle and excitation energies is

depicted in Fig. (1.7).

Reducing the motion of bare electrons interacting with each other through the bare Coulomb

potential v to the picture of weakly interacting quasiparticles denotes an e�ective way to

simplify the many-body problem. However, this approach is not generally valid and it breaks

down in strongly correlated materials, where the elementary excitations signi�cantly depend

on each other.

The spectral function within the quasiparticle picture Within the quasiparticle picture,

the Green's function and hence the spectral function are strongly simpli�ed by supposing

weak correlations and thus excitations with a long lifetime τ , i.e. ={Σii (ω)} → 0. Moreover,

one is interested in the position of poles at:

ω − ε0
i −<{Σii (ω)} = 0,

where ε0
i is the mean-�eld Hartree solution. The energies ful�lling the above relation are

labeled quasiparticle (qp) energies:

εqp,i ≡ ε0
i + <{Σii (εqp,i)} .

Instead of accounting for the complete frequency dependence of the self-energy, we limit our

considerations on frequencies near the quasiparticle poles and expand the real part of the

self-energy around these poles in a Taylor series:

<{Σii (ω)} = <{Σii (εqp,i)}+
∂<{Σii (ω)}

∂ω

∣∣∣∣
ω=εqp,i

(ω − εqp,i) + . . . .

As it will be detailed in the following and corresponding to Fig. (1.7), this can be inter-

preted as a �scan� of the spectral function in a narrow frequency window around ε0
i , where

δ-function like excitation peaks are grouped together to a single quasiparticle peak at εqp,i.

That way, broad satellite peak structures, which are farther apart from ε0
i , are not included.

As demonstrated below, the quasiparticle peak has a Lorentzian shape associated with a �-

nite peak width. Inserting the above expansion of the self-energy in the one-particle Green's

function Gii yields:

Gii (ω) = Zqp
1

ω−ε0i−<{Σii(εqp,i)}
+ (1− Zqp)Ginc

= Gcoh + (1− Zqp)Ginc,
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where the expansion terms up to linear order are grouped together in the coherent and higher

order terms in the incoherent part of the Green's function (see Appendix A.4). The coherent

part yields for non-interacting particles (<{Σii (εqp,i)} → 0) poles at the Hartree energies ε0
i .

Therefore, this part can be associated with the creation of a quasiparticle. The introduced

factor Zqp is called quasiparticle weight and de�ned as:

Zqp ≡

(
1− ∂<{Σii (ω)}

∂ω

∣∣∣∣
ω=εqp,i

)−1

.

For the spectral function, we consequently retrieve a similar decomposition:

Aii(ω) =
1

π
Zqp

={Σii (εqp,i)}[
ω − ε0

i −<{Σii (εqp,i)}
]2

+ [={Σii (εqp,i)}]2
+ (1− Zqp)Ainc,

providing an intuitive physical interpretation of A. In the non-interacting case, the coherent

part of A reduces to a δ-function centered at ε0
i , but for interacting particles it represents a

Lorentzian curve centered at the renormalized energy εqp = ε0
i − <{Σii (εqp,i)} with a width

related to ={Σii (εqp,i)}. This can be associated with the creation of a quasiparticle, whose

lifetime τ is inversely proportional to the peak width. Thus, the broadening of the curve

with respect to the non-interacting particle picture contains information about many-particle

interactions. The incoherent part Ainc covers satellite excitations, i.e. all kinds of excitations

which can not be described within a weakly correlated quasiparticle picture. Since the spectral

function has to ful�ll the following sum rule [90]:

1

2π

ˆ
dω A (ω) = 1,

the renormalization factor or quasiparticle weight Zqp is a measure of correlations in the sys-

tem. Zqp is obtained by integrating the coherent (quasiparticle) part of the spectral function,

whereas the weight of the incoherent part is (1− Zqp). Consequently, for non-interacting

problems Zqp equals 1. However, in systems, where correlations become important it is di-

minished and the quasiparticle picture becomes questionable (see Fig. 1.7). Indeed, the

quasiparticle concept is only applicable to systems, where quasiparticles have a su�ciently

long lifetime, i.e. where little scattering occurs. Fermion systems in which the picture of

almost non-interacting quasiparticles holds are called Fermi liquids [90, 97]. Quasiparticles

are approximate excitations of these systems, only making sense for timescales shorter than

the quasiparticle lifetime. Contrary, the incoherent part of A accounts for all interactions

which are not describable by a particle and its screening cloud, such as the already mentioned

collective excitations. In cases, where the quasiparticle picture breaks down and incoherent

contributions become dominant, one has to consider other levels of theory than Fermi liquid

theory. Due to the Peierls divergence and charge-spin separation, this is for example the case

for 1D systems, where one has to pass on to Luttinger liquid theory [90].
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state on which they are applied, the eigenvalue problem is non-linear. Nevertheless, important

conclusions can be drawn with respect to the introduced mean-�eld equations. Comparing

the latter to the quasiparticle equation strictly derived within a Green's functions approach,

the e�ective �elds in Hartree, HF and DFT -KS can be interpreted as approximate self-

energies of di�erent level of theory. By way of example, the DFT -KS exchange-correlation

functional can be regarded as a (semi)local and energy-independent self-energy neglecting life-

time e�ects. In this spirit, the often good quantitative agreement ofDFT -KS band structures

with experimental dispersion relations seems plausible.

In order to �nd a practical solution to the quasiparticle equation, further approximations

are inevitable. The main di�erence between the introduced mean-�eld approaches and the

quasiparticle formalism is supposed to manifest in di�ering eigenenergies, whereas the e�ect

on the wave functions is said to be small [55]. Therefore, as a starting point, one assumes

that HF or DFT -KS wave functions are almost identical to the unknown quasiparticle wave

functions ψqpν ≈ ψHFν ≈ ψKSν and one diagonalizes equation (1.27) for example in a Kohn-

Sham basis:

εqp,ν =
〈
ψKSν

∣∣ Ĥ0

∣∣ψKSν 〉
+
〈
ψKSν

∣∣Σ (εqp,ν)
∣∣ψKSν 〉

.

In this case, H0 is chosen to be the Kohn-Sham Hamiltonian,

Ĥ0 ≡ ĤKS = −1

2
∇2 + V̂ext + V̂H + V̂xc.

Consequently, the already covered e�ects in the exchange-correlation functional have to be

removed from the self-energy in order to avoid a double counting:

εqp,ν =
〈
ψKSν

∣∣ ĤKS
∣∣ψKSν 〉

+
〈
ψKSν

∣∣Σ (εqp,ν)− V̂xc
∣∣ψKSν 〉

.

The quasiparticle energy εqp is thus obtained in �rst-order perturbation theory from Kohn-

Sham eigenvalues and wave functions following:

εqp,ν = εKSν +
〈
ψKSν

∣∣Σ (εqp,ν)− Vxc
∣∣ψKSν 〉

. (1.28)

In order to circumvent the state-dependence of the above equation, the self-energy can be

expanded up to linear order in a Taylor series around the known Kohn-Sham eigenvalues (see

Appendix A.4). This yields:

εqp,ν ≈ εKSν + ZKSν

〈
ψKSν

∣∣Σ (εKSν )
− Vxc

∣∣ψKSν 〉
, (1.29)

where ZKSν is a renormalization factor:

ZKSν =

1− ∂Σνν (ω)

∂ω

∣∣∣∣∣
ω=εKSν

−1

with Σνν (ω) =
〈
ψKSν |Σ (ω)|ψKSν

〉
.

Provided that the chosen linear approximation is valid, ZKS should be very similar to the

introduced quasiparticle weight Zqp, i.e. the �rst derivatives (∂Σνν/∂ω) at εKSν and εqpν are
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assumed to be of the same order. As a result, equation (1.28) no longer depends on the

quasiparticle energy, but on the known DFT -KS energies. One has to keep in mind that

the demonstrated approach is only valid if the DFT -KS wave functions are close to the true

quasiparticle wave functions. The validity of this assumption will be discussed in detail in

subsequent chapters. Finally, the last missing ingredient in equation (1.29) is the self-energy

Σ
(
εKSν

)
. Containing all many-body e�ects beyond Hartree, the latter is a highly complex

quantity still to be determined.

1.4. Hedin's equations

Linear response theory In principle, the self-energy can be obtained by self-consistently

solving a cycle of integro-di�erential equations. Before going into that, it is necessary to

introduce several auxiliary quantities. In order to connect experiment and theory, it is very

interesting to study the system's reaction in equilibrium to a small external disturbance Ĥ ′

applied at a certain time t0. In terms of the Hamiltonian, the system is governed by an

equilibrium and a perturbation part:

Ĥ = Ĥ0 + Ĥ ′.

Provided that the applied external potential is weak, the response of the system linearly

depends on it. Within this so-called linear response regime, the system's reaction in terms of

the expectation value of any operator Ô is governed by response/correlation functions C:〈
Ô (t)

〉
=
〈
Ô
〉

0
− i
ˆ ∞
t0

dt′C
(
t− t′

)
, (1.30)

with

C
(
t− t′

)
= −i

〈[
Ô (t) , Ĥ ′

(
t′
)]〉

0
Θ
(
t− t′

)
.

Equation (1.30) is known as the general Kubo formula [90]. It denotes an important relation,

since it connects out-of-equilibrium quantities
〈
Ô (t)

〉
to equilibrium averages represented by

〈. . .〉0. The step function ensures that C is a retarded quantity, i.e. respects causality. Strictly

speaking, only retarded response functions are physically meaningful and can be compared

to experiment, however, for mathematical reasons, we are going to work with time-ordered

quantities only in the following.

In the case of PES or optical absorption experiments, the incoming light represents an

external electromagnetic perturbation causing charge redistributions and thus a polarization

of the system. In addition to the applied perturbative potential Ûext, one also has to take

into account the potential created by the induced charge density nind. Therefore, the total

�eld sums up to:

V̂tot = Ûext + V̂ind,
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where the induced potential denotes an induced Hartree potential [90]:

Vind (r) =

ˆ
dr′ v

(
r− r′

)
nind

(
r′
)
. (1.31)

It is important not to confound the applied time-dependent potential Ûext with the static

potential V̂ext, accounting for the core ion potential. The relation between the total and the

external potential de�nes the inverse of the dielectric function ε−1, which is a measure for the

polarizability of the system:

Vtot (1) =

ˆ
d2 ε−1 (1, 2)Uext (2) .

We already encountered ε−1 for the de�nition of the screened Coulomb potential W :

W (1, 2) =

ˆ
d3 ε−1(13) v(32),

which characterizes how strongly a bare charge is screened. Assuming linear response theory

and a perturbation of Ĥ ′ =
´
dr n̂ (r)Uext (r, t), the induced charge density, 〈n̂ (1)〉 ≡ nind (1) ,

can be readily determined from the Kubo formula:

nind (1) =

ˆ
d3 χ(1, 3)Uext(3). (1.32)

Here, we assumed that the equilibrium system is charge neutral, i.e. 〈n̂ (1)〉0 = 0. This

introduces the corresponding response function, the reducible polarizability χ:

χR
(
rt, r′t′

)
= −i 〈N, 0|

[
n̂ (rt) , n̂

(
r′t′
)]
|N, 0〉Θ

(
t− t′

)
.

The latter is a retarded quantity and represents a density-density correlation function. Its

time-ordered analogue, which is used in the following, reads:

χT
(
rt, r′t′

)
= −i 〈N, 0|T

[
n̂ (rt) , n̂

(
r′t′
)]
|N, 0〉 .

χ can also be expressed as derivative of the induced density with respect to the external

perturbing potential Ûext:

∂nind (1)

∂Uext(2)
=

ˆ
d3

∂χ(1, 3)

∂Uext(2)︸ ︷︷ ︸
0

Uext(3) +

ˆ
d3 χ(1, 3)

∂Uext(3)

∂Uext(2)︸ ︷︷ ︸
δ(2,3)

→ χ(1, 2) ≡ ∂nind (1)

∂Uext(2)
. (1.33)

It is a non-local quantity, since in an interacting system a perturbation at (1) can induce

modi�cations at (2). A related response function is the irreducible polarizability P which
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gives the change in the density with respect to the total potential Vtot:

P (1, 2) ≡ ∂nind (1)

∂Vtot(2)
. (1.34)

P accounts for the fact that the application of an external �eld not only a�ects the electron

density, but consequently also induces an additional Hartree potential. It is closely related to

the reducible polarizability through a Dyson-like equation:

χ(1, 2) = P (1, 2) +

ˆ
d34P (1, 3)v (3, 4)χ(4, 2) (1.35)

and represents the irreducible part with respect to the bare Coulomb potential v, singled out

from χ.

Hedin's equations As already discussed before, screening is supposed to be the main physical

e�ect of the system's reaction to an additional charge. Hedin's approach consists of expanding

the self-energy in terms of the screened Coulomb potential W , while supposing that Σ is

a functional of the single-particle Green's function G. That way, the problem is assumed

to converge much faster as compared to expansions in the bare Coulomb potential v and

eventually only very few expansion terms have to be considered. The expansion in W can

be derived following Schwinger's functional derivative approach [99, 100], where a small time-

varying external perturbation Uext is �rst introduced as mathematical tool and then set to

zero, as soon as the self-energy is obtained. In the course of the derivation, one last quantity

is needed in addition to the ones introduced above, the so-called irreducible vertex function

Γ:

Γ(1, 2; 3) ≡ −∂G
−1(1, 2)

∂Vtot(3)
.

As detailed in Appendix A.3, the outcome of the derivation is that the self-energy Σ, the single-

particle Green's function G, the irreducible vertex function Γ, the irreducible polarizability P

and the screened Coulomb potential W are closely related to each other. They form Hedin's

equations, an exact closed set of �ve integro-di�erential equations [1]:

Σ(1, 2) = i
´
d34G(1, 3) Γ(3, 2; 4)W (1, 4)

G(1, 2) = G0 (1, 2) +
´
d34G0(1, 3) Σ(3, 4)G(4, 2)

Γ(1, 2; 3) = δ(1, 2) δ(2, 3) +
´
d4567 δΣ(1,2)

δG(4,5) G(4, 6) Γ(6, 7; 3)G(7, 5)

P (1, 2) = −i
´
d34G(1, 3) Γ(3, 4; 2)G(4, 1)

W (1, 2) = v(1, 2) +
´
d34 v(1, 3)P (3, 4)W (4, 2).
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and to suppose that the vertex function is diagonal in space and time:

ΓGW (1, 2; 3) ≡ δ (1, 2) δ (2, 3) .

This assumption signi�cantly simpli�es Hedin's equations (see Fig. 1.9):

ΣGW (1, 2) = i G(1, 2)W (1, 2)

G(1, 2) = G0 (1, 2) +
´
d34G0(1, 3) ΣGW (3, 4)G(4, 2)

ΓGW (1, 2; 3) = δ(1, 2) δ(2, 3)

PGW (1, 2) = −i G(1, 2)G(2, 1)

W (1, 2) = v(1, 2) +
´
d34 v(1, 3)PGW (3, 4)W (4, 2),

where the self-energy is taken to �rst order in the perturbation W . Both the self-energy Σ

and the irreducible polarizability P reduce to convolution products when Fourier transformed

into frequency space:

PGW (r, r′, ω) = − i
2π

´∞
−∞ dω

′ G(r, r′, ω + ω′)G(r, r′, ω′),

ΣGW (r, r′, ω) = i
2π

´∞
−∞ dω

′ eiω
′ηG(r, r′, ω − ω′)W (r, r′, ω′).

Since the screened Coulomb potential is a symmetric function of the frequency ω′ (see equation

1.36), the self-energy can equivalently be expressed as:

ΣGW (r, r′, ω) =
i

2π

ˆ ∞
−∞

dω′ eiω
′ηG(r, r′, ω + ω′)W (r, r′, ω′).

The factor eiηω
′
with η → 0+ enters to ensure convergency. TheGW approximation [4, 5, 9, 91]

is not a �rigorous� approach in terms of perturbation theory, but its validity range is much

larger than one could expect. That will be pointed out in subsequent chapters, where we will

see that GW gives signi�cantly improved results for excitation energies compared to Hartree-

Fock or DFT -KS, yielding a good agreement with experiment. As a hand wave justi�cation,

it seems physically sound to express Σ in terms of the dynamically screened potentialW . That

way, energy-dependent correlations are included, which are not present in simple one-particle

approaches based on mean-�elds of the bare (static) Coulomb potential. One thus relies on

the assumption that interactions are covered to a large amount by W . However, due to their

screened nature, the system almost behaves like a non-interacting system and W is assumed

to be small, justifying the use of the lowest order approximation Σ = iGW . From a practical

point of view, the GW approximation opens the way to calculate quasiparticle energies from

�rst principles for real-size systems.
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ΣGW
(
r, r′, ω

)
=

i

2π

ˆ
dω′ eiηω

′
G(r, r′, ω′)W (r, r′, ω − ω′) ≡ Σx +Σc.

Vm

W (r, r′, ω) =
´
d3r′′ v (r′′, r′) ε−1 (r, r′′, ω) = v (r, r′) +

∑
m

2ωmVm(r)V ∗
m(r′)

ω2−ω2
m

,

Vm (r) =
´
d3r′ v (r, r′) 〈N,m| n̂ (r′) |N, 0〉 .

(ωm = EN,m − EN,0 − iη)

EN N
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perturbation. For the self-energy, this leads to:

ΣGW
(
r, r′, ω

)
=

i

2π
v
(
r, r′

) ˆ
dω′ eiηω

′
G(r, r′, ω′)+

i

2π

ˆ
dω′ eiηω

′
G(r, r′, ω′)W̃

(
r, r′, ω − ω′

)
,

where we de�ned W̃ ≡ [W (1, 2)− v (1, 2)]. As it is demonstrated in Appendix A.6, assuming

a non-interacting Green's function G0, the �rst part, i.e. the exchange operator Σx, reduces

to the Fock exchange:

〈φk,0|Σx |φk,0〉 = −
occ∑
n

ˆ
drdr′

φk,0 (r)φn,0 (r′)φ∗k,0 (r′)φ∗n,0 (r)

|r− r′|
. (1.37)

Using again the non-interacting Green's function G0, the second part of the self-energy can

be analytically integrated by means of contour deformation techniques, yielding:

Σc
(
r, r′, ω

)
=
∑
i

∑
m6=0

Vm (r)V ∗m (r′)φi,0 (r)φ∗i,0 (r′)

ω + ωm − εi,0
+
∑
j

∑
m6=0

Vm (r)V ∗m (r′)φj,0 (r)φ∗j,0 (r′)

ω − ωm − εj,0
,

where the index i labels occupied and j unoccupied states. Taking the expectation value of

Σc with respect to the same one-particle basis and considering diagonal elements only results

in:

〈k|Σc (ω) |k〉 =
∑
i

∑
m6=0

|〈k|Vm |i〉|2

ω + ωm − εi,0
+
∑
j

∑
m6=0

|〈k|Vm |i〉|2

ω − ωm − εj,0
. (1.38)

Finally, the quasiparticle energy can be evaluated within a Hartree-Fock basis ({φi,0} ≡
{φi,HF } , εi,0 ≡ εi,HF ) analogue to equation (1.29) as follows:

εqp,k ≈
〈
ψHFk

∣∣h0 + VH + Σx
∣∣ψHFk 〉

+ ZHFk

〈
ψHFk

∣∣Σc (εk,HF )
∣∣ψHFk 〉

= εHFk + ZHFk

〈
ψHFk

∣∣Σc (εk,HF )
∣∣ψHFk 〉

.

From the above equation and equation (1.38), the e�ect of interactions beyond Hartree-Fock

on the quasiparticle energy is obvious. Calculating the expectation value for an electron in

the highest valence band, 〈vb|Σc (εvb,HF ) |vb〉, the sum over unoccupied states provides only

a small contribution, whereas the major part stems from the sum over occupied states. In

the case of small intra-spacings between occupied/unoccupied states, the neutral excitation

energy ωm, which is on the scale of the Hartree-Fock gap, is much larger than the di�erence

|εvb,HF − εi,HF |. Consequently, we obtain a positive contribution to the quasiparticle energy,

i.e. the highest valence band is shifted upwards in energy with respect to the Hartree-Fock

value. Analyzing the expectation value for the lowest conduction band, 〈cb|Σc (εcb,HF ) |cb〉, we
�nd that a large negative contribution originates from the sum over unoccupied states, shifting

the lowest conduction band down in energy. This explains the systematic overestimation of

the gap within Hartree-Fock and elucidates that energy-dependent correlations within GW

tend to close the bare exchange gap.
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1.6.2. The COHSEX reformulation of the self-energy

Another way of reformulating the self-energy Σ within the GW approximation is the COH-

SEX formulation, i.e. the separation of ΣGW into two terms, the Coulomb-hole (COH) and

screened exchange (SEX) contribution: ΣGW = ΣCOH + ΣSEX . Since COHSEX calcula-

tions on molecules will be discussed later in this chapter, we brie�y introduce the relevant

terminology. In order to arrive at the COHSEX formulation, the frequency integral of the

self-energy,

Σ(r, r′, E) =
i

2π

ˆ ∞
−∞

dω eiηωG(r, r′, E + ω)W
(
r, r′, ω

)
, (1.39)

is evaluated in terms of contour deformation techniques. The derivation is tedious and can

be found in the Appendix A.5. It can be obtained upon inserting the time-ordered single-

particle Green's function G in its Lehmann representation and the screened Coulomb potential

in terms of �uctuation potentials Vm in equation (1.39):

GT (r, r′, ω) =
∑

l
φ∗l (r)φl(r

′)
ω−εl+iη sgn(µ−εl) ,

W (r, r′, ω) = v (r, r′) +
∑

m
2ωmVm(r)V ∗m(r′)

ω2−ω2
m

,

where (ωm = EN,m − EN,0 − iη) are neutral excitation energies. φl and εl should be actually

Lehmann amplitudes and excitation energies, however, without loss of generality in the COH-

SEX derivation, single-particle wave functions and eigenvalues as obtained from HF or DFT

can be equally used. The outcome of the derivation is that the GW self-energy can be split

into two terms, where the screened exchange contribution reads:

ΣSEX
(
r, r′, ω

)
=−

occ∑
l

φ∗l
(
r′
)
φl (r) W

(
r, r′, ω − εl

)
. (1.40)

Its main ingredient is the screened Coulomb potential W , shifted by the poles of the Green's

function for occupied states εl. Comparing ΣSEX to the bare exchange operator Σx in equation

(1.37) illustrates that ΣSEX represents a screened exchange interaction depending on the

energy of the particular state. The Coulomb hole contribution reads:

ΣCOH (r, r′, ω) =
∑

m,l φ
∗
l (r)φl (r

′) Vm(r)V ∗m(r′)
ω−εl+ωm . (1.41)

1.6.3. The static COHSEX approximation

In general, the separation of the self-energy in ΣCOH and ΣSEX is exact, representing an ideal

starting point for approximations. Within the so-called static COHSEX approximation, one

assumes that the interaction via the screened exchange interaction W is constant. Instead

of a frequency dependent screened Coulomb potential, we consider W for (ω − εl) = 0 only.

This corresponds to the response of a system to a weak static external potential, where the

ground state density is reorganized due to the modi�ed total potential, however, where the
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system is not excited. This seems a plausible approximation for both the low-frequency and

the high-frequency limit, where the system density can not follow the rapid perturbation.

Within the static limit, the screened exchange contribution reads:

ΣSEX
static

(
r, r′, 0

)
= −

occ∑
l

φl (r)φ∗l
(
r′
)
W
(
r, r′, 0

)
,

while the Coulomb hole term becomes:

ΣCOH
static

(
r, r′, 0

)
=

1

2
δ
(
r− r′

) [
W
(
r, r′, 0

)
− v

(
r− r′

)]
.

Here, we used that
∑

l φ
∗
l (r)φl (r

′) = δ (r− r′) andW (r, r′, 0) = v (r− r′)+2
∑

m
Vm(r)V ∗m(r′)

ωm
.

The static COHSEX approximation provides an intuitive understanding of the self-energy.

It di�ers from directly setting W to its static limit in the original ΣGW expression, which

would only yield the ΣSEX
static term. The ΣSEX

static contribution resembles the bare exchange Σx,

however, static screening e�ects due to the system's polarizability are considered. These

weaken the e�ect of the bare exchange. Therefore, in polarizable materials, ΣSEX
static is expected

to improve excitation energies with respect to the Hartree-Fock approach. Compared to a full

evaluation of ΣSEX, computational costs are reduced tremendously, since W has only to be

evaluated once instead of calculating it as a function of the frequency.

The Coulomb hole contribution not only becomes static, but also local. It corresponds

to the interaction energy of a classical point charge with an induced charge distribution.

The latter can be calculated within linear response theory, assuming an external potential

Uext (r, r0) =
´
dr′ v (r, r′) (±δ (r′, r0)) created by a (±)point charge adiabatically added at

r0. Uext causes an induced potential, which in turn acts on the point charge. Following

equations (1.31) and (1.32), it is given by:

Vind (r, r0) =

ˆ
dr′dr′′dr′′′ v

(
r, r′′

)
χ
(
r′′, r′

)
v
(
r′, r′′′

)
δ
(
r′′′, r0

)
.

The above expression can be rewritten in terms of the screened Coulomb potential,

W̃
(
r, r′

)
= W − v =

ˆ
dr′′dr′′′ v

(
r, r′′

)
χ
(
r′′, r′′′

)
v
(
r′′′, r′

)
,

resulting in:

Vind (r, r0) = W̃ (r, r0) .

The energy needed to insert a point charge into a polarizable medium is then given by:

Eind =
1

2

ˆ
dr (±δ (r, r0))Vind (r, r0) =

1

2
W̃ (r0, r0) ,

where the factor 1
2 enters, because the charge is added adiabatically to the system [9]. Includ-
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ing also the probability to �nd a charge i at r0, we arrive at:

Eiiind =
1

2

ˆ
dr0 W̃ (r0, r0) |φi (r0)|2 ,

which is nothing else than the static Coulomb hole self-energy, 〈i|ΣCOH
static |i〉, for the state i.

Neglecting dynamical e�ects, the static COHSEX approximation denotes a rather strong

approximation. However, in cases where the added charge can be considered as a classical

point charge, e.g. in the case of core level ionization, it is expected to work rather well.

Moreover, it represents a very interesting approximation to the GW self-energy from the

computational point of view. A detailed discussion about its accuracy and limitations is

provided in subsequent chapters.

1.7. Optical absorption spectroscopy

As already pointed out in the introductory chapter, two physical properties are of main interest

for our study on organic solar cells. First, we focus on an accurate calculation of the electronic

structure. The latter determines for instance band o�sets which are crucial for organic solar

cell e�ciencies. As discussed in detail in the preceding sections, it can be obtained from

�rst principles by a Green's function formalism, where PES excitation energies are calculated

within the many-body perturbation theory framework of GW . Second, we are interested in

optical absorption quantities, such as electron-hole binding energies, since they are decisive

for the optimization of the photoabsorption process with respect to the amount of sunlight

absorbed by the solar cell. In the present section, a many-body perturbation theory approach

based on the Bethe-Salpeter equations (BSE) is presented, where electron-hole interactions

are explicitly included in order to accurately determine absorption spectra.

Optical absorption experiments When exposing a material to electromagnetic radiation,

the latter is partially absorbed on its way through the medium. This is attributed to neu-

tral excitations which occur if the photon energy ~ω matches the neutral excitation energies

(εm = EN,m − EN,0). The latter are the di�erence between the total energy of the equilib-

rium system EN,0 and the excited one EN,m. This implies that we need to properly describe

the excited states of the N particle system. Depending on the energy range, di�erent kinds

of neutral excitations exist. Within the microwave regime, rotational excitations are most

likely for molecules. Changes in the vibrational state (phonons) often occur in the infrared,

whereas electronic excitations such as electron-hole pairs or plasmonic oscillations are typical

for the optical range. In addition, mixtures of di�erent types of excitations with a combined

excitation energy are also possible. In the following, we focus on the optical regime, i.e. we

consider excitations of the electronic system only.

In a typical optical absorption spectroscopy experiment, a probe is exposed to visible radi-

ation with intensity I from one side, while a detector on the facing side measures the amount

of radiation passing through. Since absorption depends on a manifold of material speci�c

quantities, absorption spectroscopy provides important information about the medium under
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study. It is a widely applied tool and, e.g. in analytical chemistry, used to distinguish between

di�erent kinds of substances present in a sample. Measuring the absorption with respect to

~ω and subtracting the reference spectrum of the light source provides the material speci�c

absorption spectrum. The related observable is the absorption coe�cient σ (~ω), which is

de�ned as the ratio of the absorbed energy and the incoming intensity I:

σ (~ω) ≡ ~ω · U (~ω)

I
,

where U (~ω) represents the number of absorbed photons per unit volume and time. The

absorption coe�cient is closely related to the macroscopic dielectric function ε̄M . The latter

determines the linear response of a system with respect to a small external electromagnetic

perturbation and describes its optical properties. It is a complex quantity,

ε̄M (~ω) = ε1 (~ω) + iε2 (~ω) , (1.42)

where real and imaginary part can be deduced from each other through the Kramers-Kronig

relations:
ε1 (~ω)− 1 = 2

πP
´∞

0 dω′ ω
′ε2(~ω′)

(ω′)2−ω2
,

ε2 (~ω) = −2ω
π P
´∞

0 dω′ ε1(~ω′)
(ω′)2−ω2

.

In the above equations, P represents the Cauchy principle value. The imaginary part ε2 (~ω)

is directly accessible through experiment through its relation to the absorption coe�cient:

ε2 (~ω) =
nrc0

ω
σ (~ω) ,

where c0 is the speed of light in vacuum and where we assume a constant refraction index nr.

The dielectric function within a single-particle picture Neutral excitations can be treated

on di�erent levels of sophistication. In order to get a rough overview of the most important

features, we only consider interband electron-hole excitations where an electron is promoted

from an occupied (v) to an unoccupied (c) state leaving behind its corresponding hole. In

semiconductors and isolators, these type of excitations are lowest in energy. In addition,

plasmons can be excited, i.e. collective oscillations relative to the positive background of the

ion cores. In semiconductors, the plasmon excitation energies are usually higher than the

lowest electron-hole excitations and meanwhile they are not included in our considerations.

On the simplest level of theory, we work in a single-particle picture, i.e. we decouple the

excited electron from the remaining electronic system and approximate the neutral excitation

energy by single-particle energies:

εm = EN,m − EN,0 ≈ εc − εv.

The number of absorbed photons per unit volume and time, U (~ω), is obtained by summing
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up the probabilities Ω of all possible transitions from occupied to unoccupied states:

U (~ω) ∝
∑
vc

Ωv→c (~ω) .

Within �rst-order time-dependent perturbation theory, Ω is given by Fermi's golden rule:

Ωv→c (~ω) ∝ |〈v|Ap̂ |c〉|2 δ (εc − εv − ~ω) , (1.43)

where A denotes the vector potential of the radiation and p̂ = −i~∇ the electronic momentum

operator. Equation (1.43) is analogue to the transition rate introduced for PES experiments,

but here one is interested in a neutral �nal state, i.e. the electron is not supposed to leave the

system. Moreover, only vertical transitions are considered, where the photon momentum is

not explicitly taken into account, since it is small as compared to electronic momenta in solids.

Again, the initial and �nal state of the decoupled remaining electronic system are taken to be

equal, i.e. we assume a frozen-orbital (Koopmans) picture. In order to arrive at an expression

for ε2, the matrix element in equation (1.43) has to be evaluated. The derivation is somewhat

lengthy6and therefore only the �nal result is presented. For non-degenerate parabolic bands

and excitations at the direct gap, ε2 can be derived to [104]:

ε2 (~ω) ∝ 1

~2ω2

√
~ω − Eg Θ (~ω − Eg) , (1.44)

where Eg represents the fundamental electronic energy gap. The latter is de�ned by charged

excitations, namely as the energy di�erence between the �rst ionization energy, i.e. the

energy needed to eject an electron from the system, and the �rst electron a�nity, which is

the necessary energy to insert an electron. The above equation is valid for singlet transitions

without spin �ips. For photon energies smaller thanEg, there is no absorption and the material

is transparent. For photon energies greater than Eg, the function
(
~2ω2 · ε2

)
increases like the

square root of (~ω − Eg) with increasing ω (see Fig. 1.11). Equation (1.44) provides a �rst

intuitive picture of the absorption process. However, comparing the model to experimental

absorption spectra reveals large quantitative and qualitative discrepancies (see Fig. 1.10).

This suggests that the single-particle approximation seems to miss important physical e�ects.

The dielectric function including excitonic e�ects One crucial e�ect that has to be included

in the independent particle model is the electron-hole interaction. Indeed, the promoted

electron and the created hole are not uncorrelated, but they in�uence each other through

an attractive Coulomb potential. We rather have to consider a quasiparticle in the form of a

bound electron-hole pair instead of two independent particles. Due to the attractive potential,

the energy needed to excite this so-called exciton is smaller than the excitation energy needed

to create two bare particles. Therefore, in contrast to equation (1.44), optical absorption is

6Based on equation (1.43), ε2 can be evaluated in the vicinity of critical points of the band structure, the
so-called van Hove singularities. Its spectral characteristics depend on the type and the dimension of the
singularity. Equation (1.44) has been derived for a 3D-M0 singularity in a periodic semiconductor with
parabolic bands. See Refs. [101, 102, 103] for more details.
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some nanometer apart from each other.

For the sake of pedagogy, we focus on the description of Wannier-Mott excitons in the

following. Here, due to e�cient screening, we can straightforwardly treat the electron and the

corresponding hole within the quasiparticle picture. The latter is also called e�ective-mass

approximation, since the electron and the hole are regarded as bare particles, however, they

are assigned a renormalized energy and mass m∗. Within this approximation, the exciton is

governed by the excitonic wave function Φexc,

Φexc (rh, re) =
∑
vc

avcφv (rh)φc (re) .

It is a linear combination of products from quasielectron φc (re) and quasihole φv (rh) wave

functions with the coe�cients avc. That implies that one needs to go beyond a single-particle

picture and instead considers a two-particle problem. The corresponding Schrödinger equation

reads [102, 107]:(
− ~2

2m∗e
∇2

re −
~2

2m∗h
∇2

rh
− e2

4πε0εr |re − rh|
+ Eg

)
Φexc (rh, re) = EexcΦexc (rh, re) .

It models the absorption process by a quasielectron and a quasihole in a potential equal to the

gap energy Eg. They have e�ective masses m∗ and are coupled to each other via a screened

Coulomb potential expressed in terms of the permittivity of the vacuum 4πε0 and the relative

permittivity εr. The above equation can be solved in terms of a separation ansatz, where

the motion of the center of gravity and the relative motion of the electron and the hole are

decoupled. The latter can be treated analogously to the hydrogen problem or the positronium

atom (for details see Ref. [101, 102, 107, 108]). As a result, one obtains bound excitonic states

for exciton energies (Eexc < 0) and continuum states for (Eexc > 0). The exciton energy of

bound states at the Γ-point of the band structure is given by:

Eexcn = Eg −
Ry∗

n2
,

where

Ry∗ =
m∗re

4

2 (4πε0εr~)2 =
m∗r
me

1

ε2
r

Ry

is an e�ective Rydberg energy accounting for screening e�ects in the medium. The latter

is determined by the ratio of the reduced e�ective mass m∗r = m∗em
∗
h/ (m∗e +m∗h) and the

free electron mass, the relative permittivity εr and the Rydberg constant Ry = 13.6 eV. By

way of example, in indium nitride (InN), with m∗e ≈ 0.06me [109, 110] and m∗h ≈ 0.5me

[111], and a relative permittivity of εr = 9.5 [112], one obtains for the �rst bound exciton

(n = 1) an e�ective Rydberg energy of Ry∗ ≈ 8 meV. This is one order of magnitude smaller

than the Rydberg constant Ry, which elucidates the importance of screening. Moreover,

room temperature, which corresponds to a thermal energy of around 25 meV, is su�cient

to dissociate the bound electron-hole pair, whose binding energy can be calculated following

(Ee−hb,n = Ry∗/n2). Contrary, the binding energy of organic semiconductors is usually one
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order of magnitude larger, as it will be explicitly shown for the coumarin family later in this

work.

The consideration of electron-hole interactions signi�cantly modi�es the imaginary part of

the dielectric function compared to the already discussed single-particle picture, yielding a

hydrogen-like Rydberg series [101, 102, 103, 113]:

εexc,b2 (~ω) ∝ 1

~2ω2

∑
n

Ry∗

n3
δ (~ω − Eexcn ) . (1.45)

Due to the creation of bound excitonic states, sharp absorption peaks occur at energies (Eexcn =

Eg − Ry∗/n2) below the gap. The �rst peak in the spectrum is at (Eexc1 = Eg − Ry∗), the
second at (Eexc2 = Eg − Ry∗

4 ), etc. , i.e. for (n→∞) peaks are getting closer and closer to

each other. Since the function value is diminishing at the same time with (1/n3), they sum

up to a �nite value close to (~ω = Eg), see Fig. (1.11). For excitation frequencies higher than

Eg, the electron and the hole are not bound anymore, but still somewhat correlated by the

interaction with the medium. The imaginary part of the dielectric function ε2 for the exciton

continuum is given by [101, 102, 113]:

εexc,f2 (~ω) ∝ 1

~2ω2
Θ (~ω − Eg)

1

1− exp
(
−
√
Ry∗/ |~ω − Eg|

) . (1.46)

The latter is expected to coincide with equation (1.44) of the single-particle approximation.

However, even though the curves are very similar for high energies ~ω, they strongly di�er close
to (~ω = Eg). In contrast to equation (1.44), εexc,f2 is non-zero and has a peak at (~ω = Eg),

see Fig. (1.11). This is due to the fact that the limit of both εexc,b2 and εexc,f2 for (~ω 0−−→ Eg)

and (~ω 0+

−→ Eg) are identical and �nite. Moreover, one observes a signi�cant enhancement

of absorption above Eg with respect to equation (1.44), which is described by the so-called

Sommerfeld enhancement factor. Combining the results for bound and continuum states and

considering in addition broadening e�ects through a temperature dependent parameter Γ, one

�nally arrives at the so-called Elliott's model for the imaginary part of the dielectric function

[107, 113]:

εexc2 (~ω) ∝ 1

~2ω2

∑
n

Ry∗

Γn3
exp

[
−
(
~ω − Eg +Ry∗/n2

)2
Γ2

]
+

1

~2ω2

1 + erf [(~ω − Eg) /Γ]

1− exp
(
−
√
Ry∗/ |~ω − Eg|

) .
One thus obtains an equation to model optical absorption spectra, which contains three �tting

input parameters: the fundamental gap Eg, the broadening parameter Γ and the e�ective

Rydberg constant Ry∗.

Including excitonic e�ects, using even simple models such as the presented e�ective-mass

approximation, drastically changes the characteristics of ε2. The agreement with respect to

experimental absorption spectra can be signi�cantly improved (see Fig. 1.10). We therefore

conclude that electron-hole interactions play an important role in absorption experiments.

In the following, we transfer the gained insights to the already presented many-body per-

turbation theory formalism. That means we go beyond the single-quasiparticle description
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irreducible analogue P through:

ε (1, 2) = δ (1, 2)−
ˆ
d3 v (1, 3)P (3, 2)

and

ε−1 (1, 2) = δ (1, 2) +

ˆ
d3 v (1, 3)χ (3, 2) .

If the system is not polarizable, χ is zero and consequently the total potential Vtot equals the

external potential Uext. However, for polarizable media, induced internal �elds are created.

In this case, χ is in average usually negative, thus it weakens the e�ect of the external

potential. As already introduced in preceding chapters, χ is a density-density correlation

function following:

χ
(
rt, r′t′

)
≡ ∂nind (rt)

∂Uext(r′t′)
= −i 〈N, 0|T

[
n̂ (rt) , n̂

(
r′t′
)]
|N, 0〉 .

Analogue to the single-particle Green's function, it reads in the Lehmann representation [2]:

χ (r, r′, ω) =
∑

m6=0
ρm(r)ρ∗m(r′)

ω+(EN,m−EN,0)−iη
− ρ∗m(r)ρm(r′)

ω−(EN,m−EN,0)+iη
,

ρm (r) = 〈N,m| n̂ (r) |N, 0〉 ,

where ρm are charge �uctuations. The reducible polarizability thus has poles at the neutral

excitation energies (εm = EN,m − EN,0) of the created electron-hole pair like excitations.

From microscopic to macroscopic Up to now, two di�erent kinds of dielectric functions

have been presented. The microscopic dielectric function ε (1.47) as introduced within linear

response theory and its macroscopic counterpart εM (1.42), which is accessible through optical

experiments. However, no relation between these two quantities has been established so far.

Following Refs. [114, 115, 116], the macroscopic dielectric function can be expressed in terms

of the microscopic dielectric function for periodic structures through:

εM (ω) ≡ lim
k→0

1

ε−1
G=0,G′=0 (k, ω)

.

Here, εGG′ (k, ω) ≡ ε (k + G,k + G′, ω) is the Fourier transform of ε (r, r′, ω), where G is the

reciprocal lattice vector and where the electronic wave vector k is limited to the �rst Brillouin

zone. The dielectric constant ε0 corresponds to the static limit of the macroscopic dielectric

function: ε0 ≡ εM (ω = 0). For crystals, the absorption spectrum, i.e. the imaginary part of

the macroscopic dielectric function ε2, is thus obtained by calculating the microscopic dielec-

tric function in reciprocal space followed by an inversion. In general, ε (r, r′, ω) is non-local,

i.e. it depends on (r, r′) and not on the di�erence (r− r′). As a consequence, in reciprocal

space εGG′ (k, ω) is a non-diagonal matrix and thus an inversion couples the matrix elements

with each other. This is known as local �eld e�ects, arising in systems with microscopic

inhomogeneities.

In �nite systems, the photoabsorption cross section η can directly be accessed through the
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imaginary part of the dynamical polarizability α (ω):

η (ω) ≡ 4πω

c
={α (ω)} .

The dynamical polarizability in turn depends solely on the applied external �eld and the

reducible polarizability χ [42]:

αij (ω) = −
ˆ
drdr′ Uext,i (r, ω)χ

(
r, r′, ω

)
Uext,j

(
r′, ω

)
.

By way of example, for dipolar external �elds along the x and z direction, respectively, one

obtains the non-diagonal αxz polarizability [42]:

αxz (ω) = −
ˆ
drdr′ xχ

(
r, r′, ω

)
z′.

Consequently, absorption is directly accessible through the introduced Green's function tech-

niques. Nevertheless, it is important to note that the previously considered quantities, such

as the Green's function G or the polarizability χ, are time-ordered objects. This implies

that they include the knowledge of future interactions and hence they are no observables.

Instead, their retarded analogues only refer to bygone interactions and are thus measured in

experiments. Contrary to the introduced time-ordered quantities, it is, however, not possible

to establish a set of coupled integral equations for their calculation, since certain identities

in the derivation do not hold. One has to pass by the time-ordered functions instead, which

afterwards are transformed into their retarded counterparts. For the reducible polarizability,

and correlation functions in general, simple transformation rules exist [2, 117], e.g.:

<
[
χR (r, r′, ω)

]
= <

[
χT (r, r′, ω)

]
=
[
χR (r, r′, ω)

]
= sign (ω) =

[
χT (r, r′, ω)

]
For frequencies ω > 0, the retarded polarizability χR equals thus the time-ordered polariz-

ability. In subsequent sections, only time-ordered quantities are considered. Therefore, the

superscript T will be dropped.

Common approximations to the polarizability Analogue to the one-particle Green's func-

tion, applying the equation of motion (EOM) technique to the polarizability yields a Dyson-

like equation for χ in terms of the irreducible polarizability P and the bare Coulomb potential

v:

χ(1, 2) = P (1, 2) +

ˆ
d34P (1, 3)v (3, 4)χ(4, 2).

However, the building blocks P from which χ is constructed are complicated objects them-

selves, given by Hedin's equation:

P (12) = −i
ˆ
d34G(1, 3) Γ(3, 4; 2)G(4, 1). (1.48)
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This is in contrast to the Dyson equation for the single particle Green's function,

G(11′) = G0(11′) +

ˆ
d2

ˆ
d3G0(12)Σ(23)G(3′1), (1.49)

where the non-interacting Green's function G0 represents known building blocks and where

the complexity of the problem is fully governed by the self-energy Σ.

The simplest approximation to P consists of considering non-interacting particles, yielding

the independent irreducible polarizability PIP :

PIP (12) ≡ −iG0 (12)G0 (21) .

The latter describes the absorption process as the uncorrelated motion of an excited bare

electron and the created hole. These are completely decoupled from each other and the

remaining electronic system. In the Lehmann representation (see Appendix A.7), it reads:

PIP (r1, r2;ω) =
∑
m,l

φl (r1)φ∗l (r2)φm (r2)φ∗m (r1)

ω −
(
ε0
l − ε0

m

)
+ iη

−
φm (r1)φ∗m (r2)φl (r2)φ∗l (r1)

ω +
(
ε0
l − ε0

m

)
− iη

, (1.50)

i.e. it is constructed from single-particle wave functions φ. Its poles correspond to the transi-

tion of an electron from an occupied single-particle state with energy ε0
m to an unoccupied state

with energy ε0
l . This approximation is known as the random-phase approximation (RPA).

Within the RPA, χ and ε read:

χRPA (1, 2) = PIP (1, 2) +
´
d34PIP (1, 3)v (3, 4)χRPA(4, 2)

εRPA (1, 2) = δ (1, 2)−
´
d3 v (1, 3)PIP (3, 2) .

(1.51)

In order to go beyond the RPA, one considers quasiparticles instead of bare electrons and

holes:

PQIP ≡ −iG (12)G (21) . (1.52)

The subscript �QIP � refers to quasi-independent particles. This highlights the fact that the

two particles propagate without interacting with each other, however, both are quasiparti-

cles and interact with the surrounding medium. Analogue to equation (1.50), the Lehmann

representation is obtained by:

PQIP (r1, r2;ω) =
∑
m,l

fl (r1) f∗l (r2) fm (r2) f∗m (r1)

ω − (εl − εm) + iη
−
fm (r1) f∗m (r2) fl (r2) f∗l (r1)

ω + (εl − εm)− iη
.

Contrary to the independent-particle polarizability, Lehmann amplitudes fl,m and quasipar-

ticle energies εl,m enter instead of single-particle quantities. PQIP corresponds to the irre-

ducible polarizability calculated within the GW approximation, therefore this approach is

called GW -RPA in the following. It represents the independent motion of a quasielectron

and a quasihole. This is an important extension to PIP , however, as pointed out in the pre-

ceding section, it is crucial to explicitly include the interaction between the excited electron
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P GW (Γ ≡ 1) P

Γ

ΓGW (1, 2; 3) = δ (1, 2) δ (2, 3) ,

P

Γ

Γ

Γ(1, 2; 3) = δ(1, 2) δ(2, 3) +

ˆ
d4567

δΣ(1, 2)

δG(4, 5)
G(4, 6) Γ(6, 7; 3)G(7, 5).

[−iG(1, 3)G(4, 1)]
(´

d34
)

P (12) = −i
´
d34G(1, 3) Γ(3, 4; 2)G(4, 1)

= −i
´
d34G(1, 3)G(4, 1)δ(3, 4) δ(4, 2)

−i
´
d345678G(1, 3)G(4, 1) δΣ(3,4)

δG(5,6) G(5, 7) Γ(7, 8; 2)G(8, 6)

= −i G(1, 2)G(2, 1)− i
´
d3456G(1, 3)G(4, 1) δΣ(3,4)

δG(5,6) P (5, 2, 6) .

P (1, 2)

P (5, 2, 6)

P (12)

G2
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function L following:

L(1, r′t; 2, rt+) = −G2(1, r′t; 2, rt+) +G1(1, 2)G1(r′t, rt+).

The latter contains both the independent propagation of two particles through the one-particle

Green's functions G1 and their coupled motion through the two-particle Green's function G2.

Comparing the identities for the two-point polarizability χ,

χ (1, 2) ≡ −iG1 (11+)

Uext (2)
= i
[
G2(1, 2; 1+, 2+)−G1(1, 1+)G1(2, 2+)

]
,

and the two-particle correlation function L, we realize that χ is nothing else than a degenerate

form of L obtained from:

χ (1, 2) = −iL(1, 2; 1+, 2+). (1.54)

From the following relation (see Appendix A.1),

G2

(
1, r′t; 2, rt+

)
= G1 (1, 2)G1

(
r′t, rt+

)
− ∂G1 (1, 2)

∂Uext (r, r′, t)
,

we directly �nd:

L(1, r′t; 2, rt+) =
∂G1 (1, 2)

∂Uext (r, r′, t)
.

Using the relation:

∂G1 (12)

∂Uext (34)
= −

¨
d5d6G1 (15)

∂G−1
1 (56)

∂Uext (34)
G1 (62) ,

L is transformed into:

L(1, r′t; 2, rt+) = −
´
d3d4G1 (1, 3)

∂G−1
1 (3,4)

∂Uext(r,r′,t)
G1 (4, 2) . (1.55)

The inverse of the one-particle Green's function is determined through the following Dyson

equation:

G−1
1 =

(
G0

1

)−1 − (M + Uext) ,

where M is the mass operator (1.20) containing all possible interactions and where G0
1 is the

one-particle Green's function for a system of non-interacting particles. As it is demonstrated

in Appendix A.8, inserting the above relation for G−1
1 into equation (1.55) yields a closed

Dyson-like equation:

L(1, 2; 1′, 2′) = G1

(
1, 2′

)
G1

(
2, 1′

)
+

ˆ
d3456G1 (1, 3)G1

(
4, 1′

)
K (3, 5; 4, 6) L(6, 2; 5, 2′).

(1.56)

The latter is known as Bethe-Salpeter equation for L [2, 42, 43, 117, 118, 119]. It describes

the propagation of an electron and a hole through two terms. The �rst one represents the

propagation of two independent quasiparticles, whereas the second one describes their coupled
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motion through an e�ective two-particle interaction, the so-called kernel K:

K ≡ ∂M (3, 4)

∂G1 (5, 6)
.

For the uncorrelated motion term, it is convenient to introduce a quasi-independent two-

particle correlation function LQIP analogue to equation 1.52:

LQIP (1, 2; 1′, 2′) = G1

(
1, 2′

)
G1

(
2, 1′

)
.

Expressing the Bethe-Salpeter equation (1.56) in terms of LQIP yields:

L(1, 2; 1′, 2′) = LQIP (1, 2; 1′, 2′) +

ˆ
d3456LQIP (1, 4; 1′, 3)K (3, 5; 4, 6)L(6, 2; 5, 2′).

One thus obtains an equation, where the quasi-independent quantity LQIP is connected to

the full four-point polarizability L through the kernel K. This is completely analogue to the

Dyson equation for the single-particle Green's function (1.49), where the self-energy Σ links

the non-interacting to the interacting Green's function. To describe absorption experiments,

the two-point quantities P and χ are in principle su�cient, however, no closed equations

can be set up for them within the Green's function approach. Therefore, one passes by the

four-point quantity L. The latter contains more information than actually needed to describe

absorption. Once the Bethe-Salpeter equation is solved, L is hence contracted to χ following

equation (1.54). This yields:

−iL(1, 2; 1, 2) = −iG1 (1, 2)G1 (2, 1)

+
´
d3456 [−iG1 (1, 4)G1 (4, 1)] iK (3, 5; 4, 6) [−iL(6, 2; 6, 2)]

χ (1, 2) = PGW (1, 2) +
´
d3456PGW (1, 4) iK (3, 5; 4, 6) χ (6, 2) ,

(1.57)

where PGW (1, 2) = −iG1 (1, 2)G1 (2, 1).

Reducible and irreducible quantities In order to single out the Hartree term from the

e�ective two-particle interaction K, we split the mass operator into the Hartree contribution

and the self-energy Σ:

M = VH + Σ,

with VH (1, 2) = δ (1, 2)
[
−i
´
d3 v (1, 3)G1 (3, 3+)

]
. The latter follows from: n (1) = −iG (11+).

The kernel is consequently separated into:

K = ∂VH(3,4)
∂G1(5,6) + ∂Σ(3,4)

∂G1(5,6)

= −iδ (3, 4) δ (5, 6) v (3, 5) + ∂Σ(3,4)
∂G1(5,6) ,

(1.58)

i.e. a Hartree term KH = −iδ (3, 4) δ (5, 6) v (3, 5) and the remainder KR = ∂Σ(3,4)
∂G1(5,6) . The

remaining part KR including all interactions beyond Hartree de�nes the irreducible four-point
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polarizability L̃ through:

L̃(1, 2; 1′, 2′) = G1

(
1, 2′

)
G1

(
2, 1′

)
+

ˆ
d3456G1 (1, 3)G1

(
4, 1′

)
KR (3, 5; 4, 6) L̃(6, 2; 5, 2′).

From that, the reducible analogue L is obtained via:

L(1, 2; 1′, 2′) = L̃(1, 2; 1′, 2′) +

ˆ
d3456 L̃(1, 4; 1′, 3)KH (3, 5; 4, 6) L(6, 2; 5, 2′).

The choice of the kernel The kernel K accounts for all interactions and is hence a compli-

cated many-body object. It can be strongly simpli�ed depending on the chosen approximation

for the self-energy Σ in equation (1.58). The roughest approximation consists of completely

neglecting the self-energy (Σ ≡ 0). As a result, the Bethe-Salpeter equation reduces to a

time-dependent Hartree approach:

LTDH(1, 2; 1′, 2′) = G1 (1, 2′)G1 (2, 1′)

+
´
d46G1 (1, 4)G1 (4, 1′) [−iv (4, 6)]L(6, 2; 6, 2′).

(1.59)

Equation (1.59) can be contracted to χ following equation (1.57). This results in a closed

equation for χ:

χTDH(1, 2) = PGW (1, 2) +
´
d46PGW (1, 4) v (4, 6)χTDH(6, 2),

with PGW (1, 2) ≡ −iG1 (1, 2)G1 (2, 1). The latter is nothing else than the already introduced

GW -RPA for χ.

In order to go beyond GW -RPA, a possibility is to use the bare exchange part Σx of the

self-energy to construct the kernel K:

Σ ≈ Σx = iG1 (1, 2, τ) v (1, 2) .

This results in a Hartree-Fock like kernel following:

KHF (3, 5; 4, 6) = −iδ (3, 4) δ (5, 6) v (3, 5) + i δ(3, 5)δ (4, 6) v (3, 4) .

As it is demonstrated in Appendix A.8, one obtains for the Bethe-Salpeter equation:

LTDHF (1, 2; 1′, 2′) = G1 (1, 2′)G1 (2, 1′)

+
´
d46G1 (1, 4)G1 (4, 1′) [−iv (4, 6)]LTDHF (6, 2; 6, 2′)

+
´
d56G1 (1, 5)G1 (6, 1′) [iv (5, 6)] LTDHF (6, 2; 5, 2′),

(1.60)

which represents a time-dependent Hartree-Fock approach (TDHF ). The independent motion

of an electron and a hole is governed by the �rst term in the above equation, whereas the second

term includes the classical Hartree contribution and the third term the Fock exchange. The

excited electron and the hole thus interact through exchange interactions, however, correlation

is not taken into account. It is important to note that in contrast to equation (1.59), the terms
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can not be readily contracted to two-point quantities following (1′ → 1, 2′ → 2). Indeed, the

exchange term remains a true four-point quantity. That implies that one is obliged to solve

the Bethe-Salpeter equation for L, instead of a closed equation for χ as it is the case in the

TDH approach. In general, including interactions beyond Hartree enforces a detour over

four-point equations.

In order to go beyond the TDHF approach, one can include correlations by using Σ within

the GW approximation. This yields for the kernel:

KGW (3, 5; 4, 6) = −iδ (3, 4) δ (5, 6) v (3, 5) + ∂iG(3,4)W (3,4)
∂G1(5,6)

= −iδ (3, 4) δ (5, 6) v (3, 5) + iδ (3, 5) δ (4, 6)W (3, 4) ,

where we imposed (∂W/∂G ≡ 0), i.e. the change in the screening due to the excitation is

neglected. This e�ect is usually supposed to be small, even though systematic studies on this

approximation are scarce. As shown in Appendix A.8, the Bethe-Salpeter equation for the

GW kernel reads:

LTDSHF (1, 2; 1′, 2′) = G1 (1, 2′)G1 (2, 1′)

+
´
d46G1 (1, 4)G1 (4, 1′) [−iv (4, 6)]LTDSHF (6, 2; 6, 2′)

+
´
d56G1 (1, 5)G1 (6, 1′) [iW (5, 6)] LTDSHF (6, 2; 5, 2′).

(1.61)

The comparison to expression (1.60) points out that one obtains a time-dependent screened

Hartree-Fock approach (TDSHF ), where the time-dependent screened Coulomb potentialW

replaces the static bare Coulomb potential v in the third term. Consequently, the independent

motion of two particles is not only correlated by the Hartree contribution of the second term,

but also by a screened dynamical exchange contribution. In the following, a solution scheme

for the time-dependent screened HFA is worked out.

Fourier transformation to frequency space and the static approximation Since L is a

four-point quantity, it depends, in principle, on four di�erent time arguments. However, the

Coulomb potential v is instantaneous,

v (1, 2) = v (x1x2) δ (t1 − t2) ,

and also the one-particle Green's functions in equation (1.61) only depend on time di�erences.

This suggests that the time arguments can be contracted to a single one in order to permit a

straightforward Fourier transformation to frequency space. However, as it is demonstrated in

the Appendix, this is not possible without further ado and approximations are implied. First,

one assumes translational time invariance and an isochronous propagation of the electron and

the hole.7 In addition, the dynamically screened interaction W is approximated within its

static limit:

W (1, 2) ≈Wstat (x1x2) δ (t1 − t2) ,

7For L = L (1234), i.e. L = L (t1 − t4; t2 − t3), we set t1 = t3; t2 = t4.
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an approximation we already encountered for the static COHSEX approach. This is a drastic

assumption, however, as it is shown in detail in Appendix A.8, it greatly simpli�es equation

(1.61) and one obtains:

L (τ) = LQIP (τ)

−i
´
dτ ′ LQIP (τ ′)L (τ − τ ′) v (x3x4)

+i
´
dτ ′ LQIP (τ ′)L (τ − τ ′)Wstat (x3x4) ,

where τ = t1 − t
′
2 and τ ′ = t4 − t1. In order to simplify the notation, space coordinates are

omitted. As a result, a straightforward Fourier transformation using the convolution theorem

can be performed, yielding:

L (ω) = LQIP (ω)− iLQIP (ω)L (ω) v (x3x4) + iLQIP (ω)L (ω)Wstat (x3x4) .

Reintroducing space coordinates, L (ω) reads:

L
(
x1x2; x

′
1x
′
2;ω
)

=

LQIP

(
x1x2; x

′
1x
′
2;ω
)

+
´
dx3x4x5x6 LQIP

(
x1x4; x

′
1x3;ω

)
K (x3x4; x5x6)L

(
x6x2; x5x

′
2;ω
)
,

(1.62)

with

LQIP

(
x1x2; x

′
1x
′
2;ω
)

=
1

2π

ˆ
dω′G1

(
x1x

′
2;ω + ω′

)
G1

(
x2x

′
1;ω′

)
being the Fourier transform of the already introduced quasi-independent two-particle cor-

relation function LQIP . K is the many-body perturbation theory kernel within the GW

approximation, following:

K (x3x4; x5x6) = iδ (x5,x3) δ (x6,x4)Wstat (x3x4)− iδ (x3,x4) δ (x5,x6) v (x3x5) .

It is important to keep in mind that we used a static, i.e. strongly approximated, screened

Coulomb potential W in order to straightforwardly carry out the Fourier transformation.

The e�ective two-particle problem In principle, equation (1.62) can be solved by inversion

for every frequency ω. However, it seems more handy to reformulate the problem in terms

of an e�ective eigenvalue equation. This is analogue to the already introduced one-particle

e�ective equations, such as the HF , DFT -KS or quasiparticle equation. However, in the

case of absorption, an e�ective two-particle equation is needed. This equation then serves e.g.

to determine neutral excitation energies e�ciently.

Using the Lehmann representation of the Green's function in Fourier space, an explicit

expression for the quasi-independent two-particle correlation function LQIP within the RPA
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or GW -RPA is obtained (see Appendix A.7):

−iLRPAQIP

(
x1x2; x

′
1x
′
2;ω
)

=

∑
m,l

φl(x1)φm(x2)φ∗m

(
x
′
1

)
φ∗l

(
x
′
2

)
ω−(εl−εm)+iη −

φ∗m

(
x
′
2

)
φl(x2)φ∗l

(
x
′
1

)
φm(x1)

ω+(εl−εm)−iη ,

(1.63)

where φl,m are single-particle wave functions and εl,m are single- or quasiparticle energies.

Occupied states are labeled by the index m, unoccupied ones by l. Equation (1.63) suggests

to work in transition space, i.e. to de�ne a two-particle excitonic basis {ψexc},

ψexci (x1,x2) ≡
∑
n1n2

ci,n1n2φn1 (x1)φ∗n2
(x2) ,

where one sums over all single-particle basis functions φm,l appearing in G0 and LRPAQIP . The

transformation of any four-point quantity F (x1x2x3x4) to this basis follows:

F (x1x2; x3x4) =
∑

n1n2n3n4

φn1 (x1)φ∗n2
(x2)Fn1n2n3n4φn3 (x3)φ∗n4

(x4)

with

Fn1n2n3n4 =

ˆ
dx1x2x3x4φn1 (x1)φ∗n2

(x2)F (x1x2; x3x4;ω)φn3 (x3)φ∗n4
(x4) .

Transferred to the Bethe-Salpeter equation (1.62), this yields the following matrix elements:

Ln1n2n3n4 (ω) = Ln1n2n3n4
QIP (ω) + Ln1n2n5n6

QIP (ω) Kn5n6n7n8 Ln7n8n3n4 (ω) ,

or, represented in matrix notation:

[L (ω)] = [LQIP (ω)] + [LQIP (ω)] [K] [L (ω)] . (1.64)

At this point it is useful to multiply the Bethe-Salpeter equation with a factor (−i) following
equation (1.57), since in the end of the calculation one is interested in contracting L to χ:

χ (1, 2) = −iL(1, 2; 1+, 2+).

One thus �nds for the matrix equation:

[−iL (ω)] = [−iLQIP (ω)] + [−iLQIP (ω)] [iK] [−iL (ω)] .

Evaluating the quasi-independent polarizability LRPAQIP within the single-particle basis starting
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from equation (1.63), results in (see Appendix A.8):

−iLn1n2n3n4
QIP (ω) = −i

´
dx1x

′
1x2x

′
2φn1

(
x
′
1

)
φ∗n2

(x1) LQIP

(
x1x2; x

′
1x
′
2;ω
)
φ∗n3

(x2)φn4

(
x
′
2

)
=

∑
m,l

δ(n1,m)δ(n2,l)δ(n3,m)δ(n4,l)

ω−(εn2−εn1)+iη
− δ(n1,l)δ(n2,m)δ(n3,l)δ(n4,m)

ω+(εn1−εn2)−iη
,

which points out that the matrix
[
−iLRPAQIP

]
is diagonal in the transition basis (n1 = n3,

n2 = n4). Moreover, only (occupied → unoccupied) or (unoccupied → occupied) transitions

contribute, whereas (occupied→ occupied) or (unoccupied→ unoccupied) do not occur. This

can be depicted in form of a (n1n2, n3n4) matrix:

[−iLQIP (ω)] =

(n1n2) (n3n4) → mm ll ml lm

↓
mm 0 0 0 0

ll 0 0 0 0

ml 0 0 −1
∆εn2n1−ω

0

lm 0 0 0 1
∆εn2n1−ω

(1.65)

where ∆εn2n1 = (εn2 − εn1). Consequently, the quasi-independent polarizability LRPAQIP can

be compactly written in terms of occupation factors fi (fm = 1, fl = 0):

−iLn1n2n3n4
QIP (ω) =

(fn2 − fn1) δ (n1, n3) δ (n2, n4)

∆εn2n1 − ω
,

where zeros on the diagonal appear for fn2 = fn1 . From now on, we restrict ourselves to the

physical meaningful (ml, lm) subspace, where [−iLQIP ] has only non-zero diagonal elements

and thus is invertible. Moreover, we introduce an occupation matrix [F ],

Fn1n2n3n4 = (fn2 − fn1) δ (n1, n3) δ (n2, n4) ,

which also has only non-zero elements in the chosen subspace. It follows:

[−iLQIP (ω)] =
[
−iL̆QIP (ω)

]
[F ]

with

[
−iL̆QIP (ω)

]
[F ] =

(
1

∆εn2n1−ω
0

0 1
∆εn2n1−ω

)
f (n2 − n1)︸ ︷︷ ︸

−1

0

0 f (n2 − n1)︸ ︷︷ ︸
1

 . (1.66)

The Bethe-Salpeter matrix equation within the (ml, lm) subspace then reads:

[−iL (ω)] =

([
−iL̆QIP (ω)

]−1
− [F ] [iK]

)−1

[F ] . (1.67)
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Since [−iLQIP ] is a diagonal matrix, its inverse is readily calculated from equation (1.66) to:

[
−iL̆QIP (ω)

]−1
=

(
∆εn2n1 0

0 ∆εn2n1

)
− ω

(
1 0

0 1

)
,

where the frequency dependence has been singled out. This permits to introduce a frequency-

independent two-particle e�ective Hamiltonian H2p, following:

[−iL (ω)] =
([
H2p

]
− 1̄ω

)−1
[F ] . (1.68)

with [
H2p

]
=

(
∆εlm 0

0 ∆εml

)
+ i

(
Kml,ml Kml,lm

−Klm,ml −Klm,lm

)
.

In general, the two-particle e�ective Hamiltonian H2p is a non-Hermitian block matrix,

reading in a shorthand notation:

[
H2p

]
=

(
Hres Kcoupl

−
(
Kcoupl

)∗ − (Hres)∗

)
. (1.69)

Hres is called resonant part, i.e. transitions between (occupied → unoccupied) states are

treated. On the contrary, − (Hres)∗ is an anti-resonant part, where transitions between

(unoccupied → occupied) states and thus negative frequency transitions are considered. The

Kcoupl and −
(
Kcoupl

)∗ blocks couple the resonant to the anti-resonant part and include

both (occupied → unoccupied) and (unoccupied → occupied) transitions. Within the the so-

called Tamm-Danko� approximation (TDA), these o�-diagonal coupling terms in
[
H2p

]
are

neglected. As a result,
[
H2p

]
becomes a block-diagonal, Hermitian matrix, whose eigenvalues

are obtained by diagonalizing the Hermitian block matrix [Hres], while the eigenvalues of

[−Hres] are just opposite in sign. The qualities and limitations of the TDA are discussed

later in this work.

For the sake of convenience, we focus on the resonant part of the two-particle e�ective

Hamiltonian in the following and search for suited solution schemes. The polarizability L for

the resonant part can be obtained within the TDA analogue to equation (1.68) by:

[−iL (ω)] = ([Hres]− 1̄ω)−1 [F ] .

This implies that, in principle, a matrix with elements stemming from four-point quantities

has to be inverted for every frequency ω. As demonstrated in the following, this laborious

approach can be circumvented by making use of some mathematical transformations. In the

so-called spectral representation, any Hermitian matrix [M ] can be expressed in terms of their

eigenvalues ελ and eigenvectors |λ〉, following:

[M ] =
∑
λ

ελ |λ〉 〈λ| .
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If [M ] is invertible, its inverse [M ]−1 is given by:

[M ]−1 =
∑
λ

1

ελ
|λ〉 〈λ| .

For our actual problem, we thus obtain:

[−iL (ω)] = ([Hres]− ω)−1

=
∑

λ
|λ〉〈λ|
ελ−ω ,

where |λ〉 and ελ are the eigenvectors and eigenvalues of [Hres]. The problem of inverting a

four-point equation for every frequency ω is thus reduced to an eigenvalue problem for the

e�ective two-particle Hamiltonian:

[Hres] |λ〉 = ελ |λ〉 .

This implies that Hres has to be diagonalized once in order to obtain its eigenvectors and

eigenvalues, the latter corresponding to neutral excitation energies. The presented solution

scheme is equivalently valid for the full two-particle Hamiltonian
[
H2p

]
, however, due to its

non-Hermitian nature, a generalized eigenvalue equation distinguishing between left and right

eigenvectors has to be solved.

As it is detailed in Appendix A.8, the matrix elements Hres
ml,m′l′ of the resonant part read:

Hres
ml,m′l′ = Hdiag

ml,ml +Hexch
ml,m′l′ +Hscr

ml,m′l′ ,

i.e. it is split into a diagonal, an electron-hole exchange and a screened electron-hole interac-

tion part with:

Hdiag
ml,ml = ∆εlmδmm′δll′ ,

Hexch
ml,m′l′ = 2η

´
dx1x2φm (x1)φ∗l (x1) v (x1x2) φ∗m′ (x2)φl′ (x2) ,

Hscr
ml,m′l′ = −

´
dx1x2φm (x1)φ∗l (x2) Wstat (x2x1) φ∗m′ (x1)φl′ (x2) .

This implies that the neutral excitation energies which are obtained by diagonalizing [Hres]

consist of three contributions. The �rst one stems from the diagonal part Hdiag
ml,ml and is

simply the energy di�erence between an occupied and an unoccupied single- or quasiparticle

level. Further, electron-hole interactions are taken into account through the exchange and the

static screened exchange term. The spin is not explicitly included in the derivation, however,

the factor 2η in the second term implicitly accounts for it. For singlet excitations, where the

promoted electron and the corresponding hole have the same spin, one has (η = 1), whereas for

triplet excitations one sets (η = 0). Note that the standard notation 'exchange' is misleading,

since Hexch
ml,m′l′ is clearly a Hartree and not a Hartree-Fock contribution.

In conclusion, the many-body perturbation theory BSE formalism o�ers the possibility
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to access optical absorption properties from �rst principles. Usually, it is applied in its

time-dependent screened Hartree-Fock approximation, see equation (1.60). In practice, it

goes along with an underlying GW calculation, from which electronic excitation energies

εl,m are drawn out to construct the quasi-independent polarizability LRPAQIP . In addition, also

the bare Coulomb potential v and the static screened Coulomb potential Wstat needed for

the (screened) exchange term of the two-particle Hamiltonian H2p can be directly reused

from the GW calculation. Once the GW electronic structure is calculated, electron-hole

interactions can thus be included in a relatively inexpensive fashion. The BSE approach

enjoys great popularity and its reliability has been shown for diverse systems, such as clusters

[120], surfaces [121] and solids [122, 123]. In subsequent chapters, its applicability to molecular

systems will be discussed in detail.

1.8.3. Excursus: time-dependent DFT

A widely used alternative to theGW/BSE formalism to calculate optical excitation properties

for �nite systems is time-dependent density functional theory (TDDFT) [35, 36, 124, 125],

where one obtains the entire excitation spectrum of relatively large systems at reasonable

costs. Analogue to DFT , the time-dependent many-body Schrödinger equation is mapped

onto an e�ective one-particle time-dependent Kohn-Sham equation in TDDFT, through a

one-to-one correspondence of the time-dependent one-body external potential Uext (r, t) and

the time-dependent one-body density n (r, t) [35, 36]:

Ĥ (t) Ψ (r1 . . . rN , t) = i
dΨ (r1 . . . rN , t)

dt
−→

[
−∇

2

2
+ Veff [n] (r, t)

]
φi (r, t) = i

dφi (r, t)

dt
.

The �ctitious Kohn-Sham system with density n (r, t) =
∑N

i |φi (r, t)|2 yields by construction
the density of the real system and is governed by a time-dependent one-particle e�ective

Kohn-Sham potential Veff (r, t), consisting of a time-dependent external Uext (r, t), a time-

dependent Hartree,

VH (r, t) =

ˆ
d3r′

n (r′, t)

|r− r′|
,

and a time-dependent exchange-correlation contribution Vxc (r, t). This is completely similar

to the time-independent DFT formalism, however, the exchange-correlation potential is now

much more complex, since it is a functional of the entire history of the density n (r, t), involving

the solution of all time-dependent Coulomb-interacting problems [36]. One therefore not only

has to make assumptions on its spatial, but also on its temporal form. In practice, the

adiabatic approach is most common, where Vxc (r, t) is assumed to not depend on the history

of the density, but only on its present form [82]. In principle, the TDDFT framework can

be useful, whenever time-dependent electrons are involved. In practice, TDDFT is widely

applied within the linear response regime in order to access the system's response to a weak

time-dependent external perturbation. Within this regime, one only has to consider the

e�ective potential for densities close to the ground state density nGS (r, t), i.e. n (r, t) =

nGS (r, t)+nind (r, t), instead of densities strongly varying in time. Di�erent TDDFT methods
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to calculate excitation energies within the linear response regime exist, such as the real-time-

evolution scheme, and the reader is referred to Ref. [36] for a comprehensive overview. Here,

we focus on one of the most popular approaches to access excitation energies for �nite systems,

namely the eigenvalue problem approach in transition space proposed by Casida [124].

In general, assuming that the time-dependent external perturbation is a weak electric �eld,

the response of the ground state charge density nGS (r, t) is to induce small changes nind (r, t)

via the already introduced reducible polarizability χ [42, 126]:

nind (r, t) =

ˆ
dt′
ˆ
d3r′ χ [nGS ]

(
r, r′, t

)
Uext

(
r′, t′

)
.

As a remainder, χ denotes in its Lehmann representation in frequency space:

χ (r, r′, ω) =
∑

k 6=0
ρk(r)ρ∗k(r′)
ω+εk−iη −

ρ∗k(r)ρk(r′)
ω−εk+iη ,

ρk (r) = 〈N, k| n̂ (r) |N, 0〉 ,

where ρk are charge �uctuations and (εk = EN,k − EN,0) neutral excitation energies which one

wants to calculate [2, 126]. Within the DFT framework, the exact reducible polarizability χ

can be expressed in terms of a closed Dyson-like equation following [36]:

χ(r, r′, ω) = χ0(r, r′, ω) +

ˆ
dr1r2 χ0(r, r1, ω) [v (r1, r2) + fxc (r1, r2, ω)]χ(r2, r

′, ω). (1.70)

This is the central equation of TDDFT linear response in frequency space, where all quantities

are functionals of the ground state density. Whereas time-independent DFT -KS eigenvalues

can not be mapped straightforwardly on physical quantities, i.e. quasiparticle excitation

energies, TDDFT directly provides optical excitation energies and oscillator strengths from

the poles of χ [82]. One needed ingredient is χ0, the non-interacting Kohn-Sham polarizability

de�ned as:

χ0

(
rt, r′t′

)
≡ ∂nind (r, t)

∂Vtot (r′, t′)
.

Here, the total potential Vtot consists of the applied external potential, the induced Hartree and

the induced exchange-correlation potential. The non-interacting Kohn-Sham polarizability χ0

can be readily obtained from a standard time-independent DFT -KS calculation, where one

uses the time-independent DFT -KS eigenstates φv,c and eigenvalues εv,c to construct it:

χ0

(
r, r′, ω

)
=
∑
m,l

φl (r)φ∗l (r′)φm (r′)φ∗m (r)

ω −
(
ε0
l − ε0

m

)
+ iη

−
φm (r)φ∗m (r′)φl (r

′)φ∗l (r)

ω +
(
ε0
l − ε0

m

)
− iη

.

Here, l stands for unoccupied and m for occupied states. It thus corresponds to a special

type of a non-interacting polarizability PIP , see equation (1.50). However, its physical in-

terpretation is di�cult due to the missing correspondence of Kohn-Sham eigenvalues and

single-particle excitation energies. Expression (1.70) is very similar to the presented Dyson

equation for χ within the Green's functions approach (see below), however, important dif-

ferences have to be noted. First, the TDDFT framework allows to �nd a closed Dyson-like
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equation for the exact χ. Within the Green's function approach, this is only achieved within

the random-phase approximation for χ, see equation (1.51). Instead, for the exact χ, the

irreducible polarizability P enters the Dyson equation:

χ(1, 2) = P (1, 2) +

ˆ
d34P (1, 3)v (3, 4)χ(4, 2).

The de�nition of P (1.34) is analogue to that of χ0, however, it does not include the induced

exchange-correlation potential, but solely the external and the induced Hartree potential. It

is a complex object itself, resulting in a highly non-trivial equation for χ, see equation (1.53).

On the contrary, by utilizing χ0, it is possible to shift the complexity of the problem into the

time-dependent exchange correlation kernel fxc. As a result, one has a closed equation for the

two-point polarizability χ and avoids the detour by the four-point polarizability L. However,

the exact kernel, de�ned as

fxc
(
rt, r′t′

)
=
∂Vxc [n (r, t)]

∂n (r′, t′)

∣∣∣∣
n=nGS

,

is unknown and one has to �nd appropriate approximations to it. The most common approach

is the adiabatic local-density approximation (TDLDA), where fxc is approximated by the

derivative of the static and local LDA exchange-correlation functional [42]:

fLDAxc

(
r, r′

)
= δ

(
r− r′

) ∂V LDA
xc [n (r)]

∂n (r)
.

This is a drastic approximation, but its simplicity is nevertheless tempting.

In the case of frequency-independent exchange-correlation kernels and systems with a dis-

crete excitation energy spectrum, such as e.g. �nite systems, it is convenient to reformulate

the response equation (1.70) in terms of an eigenvalue problem. By rewriting the equa-

tions in terms of a transition basis ψexc (r, r′) consisting of products of Kohn-Sham occupied

φm (r) and empty φl (r′) states, one obtains, analogously to the BSE approach, an e�ective

two-particle Hamiltonian H2p. The latter is composed of (anti-)resonant Hres and coupling

Kcoupl blocks and is non-Hermitian. For real wave functions and in the case of TDDFT,

Casida demonstrated that one can simplify the problem to the following eigenvalue equation

[36, 42, 124, 126]:

[
Hdiag

] 1
2
([
Hdiag

]
+ 4

{[
Hexch

]
+ [Hxc]

}) [
Hdiag

] 1
2

[X] = ε2
m [X] ,

for which e�cient algorithms, such as Haydock's recursion method [127], can be applied

[36, 42]. The eigenvalues are the square of the excitation energies and the eigenvectors are

related to oscillator strengths.
[
Hdiag

]
,
[
Hexch

]
and [Hxc] represent matrix operators, whose
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elements read:

Hdiag
ml,m′l′ = δmm′δll′

(
ε0
l − ε0

m

)
,

Hexch
ml,m′l′ =

´
drdr′φm (r)φ∗l (r) v (r, r′) φ∗m′ (r

′)φl′ (r
′) ,

Hxc
ml,m′l′ =

´
drdr′φm (r)φ∗l (r) fxc (r, r′) φ∗m′ (r

′)φl′ (r
′) .

A direct comparison of the resonant part Hres of the BSE and the TDDFT formalism,

Hres = Hdiag +Hexch +Hscr/xc,

reveals that in TDDFT one also starts from a single-particle excitation spectrum (the di-

agonal Hdiag term) and then includes electron-hole interactions through the two remaining

contributions. The diagonal terms within BSE and TDDFT are similar, however, in one

case Kohn-Sham eigenvalues are taken as a starting point and in the other case quasiparticle

excitation energies. The �exchange� terms are totally equal, whereas the screening is included

through the static and non-local exchange-correlation kernel fxc (r, r′) within TDDFT and

through the static and non-local screened Coulomb potential Wstat (r, r′) within BSE, re-

spectively. In the case of TDLDA, the exchange-correlation kernel becomes the static and

local LDA functional, i.e. the screened exchange contribution simpli�es to:

Hxc,LDA
ml,m′l′ =

ˆ
dr φm (r)φ∗l (r)

∂V LDA
xc [n]

∂n (r)
φ∗m′ (r)φl′ (r) .

Important di�erences between TDDFT with (semi)local kernels and BSE in the electron and

hole space integration variables will be highlighted later in the course of the discussion of

charge-transfer optical excitations.

By expressing the response equation in transition space, one has to solve, similar to the

BSE approach, a four-point problem. Whereas this is inevitable in BSE, one can choose

between a representation in the transition space basis consisting of pairs of occupied and

unoccupied states and a two-point problem in TDDFT, since χ is governed by a closed Dyson-

like two-point response equation. The advantage of the transition space representation is that

a direct comparison with BSE is possible. Moreover, one can directly access the character of

a transition, i.e. the mainly contributing occupied and unoccupied orbitals, associated with

a speci�c excitation energy. This information is not provided by the solution of the two-

point equation, where one only obtains excitation energies and the corresponding oscillator

strengths. However, from a computational point of view, the four-point representation is only

convenient if the diagonalization of the e�ective eigenvalue problem is less demanding than

the inversion of the response equation for several frequencies, which automatically implies

frequency-independent kernels [36]. Moreover, the quadratic basis of contributing occupied

and unoccupied states must be smaller than the real-space (reciprocal-space) basis for the

corresponding two-point problem. In TDDFT, this is only the case for small �nite systems

with well separated energy levels, where only a small part of the optical spectrum is of
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interest [36]. For these systems, Casida's TDDFT approach to calculate optical excitation

spectra is most popular. Later in this work, a detailed comparison of the seemingly so similar,

but nevertheless conceptually di�erent TDDFT linear response and GW/BSE approach is

presented for organic molecules in the gas phase.

93





2 | Details on the Implementation

Many-body perturbation theory GW/BSE calculations, as presented later in this work, have

been carried out using the FIESTA package [6, 8, 7]. The latter is a recent Gaussian-basis

implementation of the GW/BSE formalisms, suited for calculations on �nite systems. Com-

putationally demanding non-local quantities, such as the irreducible polarizability or the

screened Coulomb potential, are expressed within an auxiliary basis instead of a full prod-

uct basis. Both the resolution of the identity technique (RI-SVS) and the resolution of the

identity Coulomb metric technique (RI-V) are available to express the auxiliary basis. The

self-energy is obtained by explicitly evaluating the frequency integral over the one-particle

Green's function and the screened Coulomb potential using contour deformation techniques,

i.e. one goes beyond any plasmon pole approximation. Details on the mentioned aspects are

given in the following.

2.1. Ab initio calculations using a Gaussian basis

The equations derived in the last chapter, ranging from Hartree-Fock to TDDFT, provide

mathematical formalisms to describe matter at a quantum level. Although approximations

and simpli�cations have already been carried out in their derivation, one ends up with compu-

tationally demanding integro-di�erential equations, depending on a multitude of arguments.

Due to their complexity, it is not evident that an analytic solution exists.

2.1.1. The Linear Combination of Atomic orbitals (LCAO) approach

Numerically, di�erent approaches to tackle these complicated equations have been developed.

One approach consists of expressing these problems in terms of basis sets. The advantage is

that the resulting equations can be readily transformed into matrix equations. This reduces

the original problem to a system of linear equations, a task for which computers are more than

suited and for which e�cient algorithms have been developed [128]. This will be demonstrated

for eigenvalue problems of the type [69]:

Ô |f〉 = w |f〉 . (2.1)

Here, |f〉 is an eigenvector to the operator Ô with eigenvalue w. In the following, we are

working in the real space representation, i.e. f (r) = 〈r |f〉 and Ô (r) = 〈r| Ô |r〉. Several

equations already encountered in preceding chapters represent eigenvalue problems, such as
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the Hartree-Fock, the Kohn-Sham or the quasiparticle equation.

The basis set is introduced by expanding the eigenfunctions f (r) in a complete set of basis

functions {αµ} with weighting coe�cients cµ:

f (r) =
∞∑
µ=1

cµαµ (r) . (2.2)

We assume the general case of non-orthogonal basis sets, for which the matrix elements of the

overlap matrix [S] are given by:

Sµν =

ˆ
d3r α∗µ (r)αν (r) .

Inserting (2.2) into equation (2.1) leads to:

∞∑
µ=1

Ô (r) cµαµ (r) =

∞∑
µ=1

w cµαµ (r) .

Multiplication by an arbitrary basis function αν (r) from the left and integration over d3r

results in:

∞∑
µ=1

cµ

ˆ
d3r αν (r) Ô (r)αµ (r) =

∞∑
µ=1

w cµ

ˆ
d3r αν (r)αµ (r) =

∞∑
µ=1

w cµSµν ,

i.e. the introduction of a basis {αµ} transforms equation (2.1) into a generalized eigenvalue

matrix equation:

[O] [c] = w [c] [S] , (2.3)

where the vector [c] contains the weighting coe�cients [c]µ = cµ and where the matrix elements

of [O] denoteOµν =
´
drα∗µ (r) Ô (r) αν (r). Once the matrix elements are calculated, e�cient

linear algebra routines exist to solve equation (2.3). In the case of orthogonal basis sets, the

overlap matrix [S] simply reduces to the unitary matrix.

In principle, the {αµ} form a complete basis set, i.e. on the one hand any f (r) is reproduced

exactly, but on the other hand Ō becomes an in�nite matrix. In practice, a certain cut-o� N

is chosen limiting the amount of available basis functions:

f (r) ≈
N∑
µ=1

cµαµ (r) .

In that way, the eigenvalue problem is reduced to a N ×N problem, where the calculated N

eigenvalues approximate the true eigenvalues. This implies that the basis set has to be selected

very carefully, since it has a strong impact on the quality of the results within the chosen level

of theory (HF , DFT -KS, GW ). In the case of orthogonal basis sets, the inclusion of more and

more basis functions always improves the completeness, i.e. these basis sets are systematic.

However, as it will be detailed later in this section, this is not the case for non-orthogonal

basis sets, where therefore special care must be taken.
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Within the Linear Combination of Atomic Orbitals (LCAO) approach, molecular wave

functions are expanded in atom-centered basis functions, such as Gaussian functions. These

atom-centered functions consist of single-electron functions localized at the nuclei of the spe-

ci�c atoms, which very e�ciently describe the critical region near the nuclei. It tends to

produce, in particular for �nite size systems, much more compact basis sets than plane wave

or real-space basis sets, even though convergency is a more di�cult issue. A detailed review

of state-of-the-art atom-centered basis sets is provided by Ref. [129].

2.1.2. From a product to an auxiliary basis

Introducing a basis {α} consisting of N basis functions leads for matrix elements of non-local

operators such as the screened Coulomb potential W , the irreducible susceptibility P and the

Fock operator VF to four-center-two-electron integrals of the type:

´
d3r d3r′ α∗µ (r)α∗κ′ (r

′) Ô (r, r′) ακ (r)αν (r′) . (2.4)

Evaluating these matrix elements is equivalent to working in a so-called product basis:

Pµκ (r) = α∗µ (r)ακ (r) ,

containing N2

2 di�erent elements. This implies rather large basis sets compared to the original

{α (r)} basis and consequently high computational costs. Moreover, assuming a Gaussian

function basis set for {α (r)}, their product is not further centered on single atoms, but on

barycentric points P. By way of example, for two unnormalized primitive s-type Gaussian

functions G1 = e−γ1(r−A)2

and G2 = e−γ2(r−B)2

centered at atoms A and B one �nds (see

Appendix A.10):

G1G2 = C e−η(r−P)2

,

with (η = γ1 + γ2), P = γ1A+γ2B
η and C = e

− γ1γ2(A−B)
γ1+γ2

2

. The mentioned points suggest

not to work in the full product basis, but in a smaller basis consisting of L elements which

approximately reproduces the product basis. Such a basis is called an auxiliary basis {β (r)}:

Pµκ (r) '
L∑
λ

cµκλβλ (r) ,

where cµκλ are weighting coe�cients. The equality can become exact for L→∞. Concerning

the character of the auxiliary basis {β (r)}, no general form is speci�ed. For {α (r)} consisting
of Gaussian functions of the type e−µ(r−A)2

, it seems convenient to choose an auxiliary basis

with Gaussian functions centered on speci�c atoms. The number of considered auxiliary basis

functions per atom and the best exponential coe�cients µ represent a crucial point which

requires extensive accuracy tests. Even though representing a strong approximation to the

full product basis, auxiliary basis sets strongly reduce computational costs and make the

evaluation of matrix elements for large systems technically feasible.

Supposing for the moment that {β (r)} is complete, one can de�ne two di�erent closure
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relations, namely: ∑
λλ′

|βλ〉S−1
λλ′ 〈βλ′ | = 1̄ (2.5)

and ∑
λλ′

|v̂βλ〉 [v̂]−1
λλ′ 〈βλ′ | = 1̄, (2.6)

with [v̂]λλ′ = 〈βλ (r)| v̂ (r, r′) |βλ′ (r′)〉 and Sλλ′ = 〈βλ| βλ′〉. Based on these closure relations,

matrix elements for non-local operators can be formulated in two ways.

The resolution of the identity technique (RI-SVS) is based on equation (2.5) and yields:

〈αµ (r)αν (r)| Ô (r, r′) |ατ (r′)ασ (r′)〉 =
∑

λλ′ cµνλc
∗
τσλ′

〈
Ô
〉
λλ′

,

where the coe�cients are given by:

cµνλ = 〈αµ (r)αν (r)| βλ (r)〉

c∗τσλ′ = 〈βλ′ (r′)| ατ (r′)ασ (r′)〉 .

The matrix elements read: 〈
Ô
〉
λλ′

= S−1
λλ′

[
Ô
]
λλ′

S−1
λλ′ ,

[
Ô
]
λλ′

= 〈βλ (r)| Ô (r, r′) |βλ′ (r′)〉 .
(2.7)

Consequently, only three ingredients are necessary in the RI-SVS representation: the inverse

overlap between auxiliary basis functions S−1, the overlap 〈αµαν | βλ〉 between the original

basis {α} and the auxiliary basis {β}, and the matrix elements 〈βλ| Ô |βλ′〉, whose number is
signi�cantly reduced due to the limited number of used auxiliary basis functions. For Dyson-

like equations, such as W = v + vPW , one thus obtains within the RI-SVS equations of the

type:

〈W 〉 = 〈v〉+ 〈v〉 [P ] 〈W 〉 , (2.8)

as it can be easily veri�ed by inserting (2.5). These equations are solved by inversion, following:

〈W 〉 = 〈v〉 (1̄− 〈v〉 [P ])−1 .

Within the resolution of the identity Coulomb metric technique (RI-V), matrix elements are

expressed according to equation (2.6):

〈αµ (r)αν (r)| Ô (r, r′) |ατ (r′)ασ (r′)〉 =∑
λλ′ 〈αµ (r)αν (r)| v̂βλ (r)〉 [v̂]−1

λλ′

〈
βλ′ (r

′) Ô
∣∣∣ατ (r′)ασ (r′)

〉
.

To conclude, within the resolution of the identity framework, four-center-two-electron in-

tegrals are transformed to expressions containing only two- and three-center integrals. The

latter can be e�ciently computed in a Gaussian basis, which will be demonstrated later in this
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Figure 2.1.: Convergence plot of the GW gap energy of the benzene molecule with respect
to the number N of Gaussian functions per angular channel of the auxiliary
basis within the RI-SVS and the RI-V approach, respectively. The calculations
have been carried out using a TZ2P Kohn-Sham basis and a Gaussian function
auxiliary basis (e−αr

2
) with an even-tempered distribution of the localization

coe�cients α ranging from αmin = 0.10 Bohr−2 to αmax = 3.2 Bohr−2 and
N Gaussian functions per l-channel, with lmax = 1 . . . 3. Clearly, the gap con-
verges signi�cantly faster with respect to N and lmax within the RI-V approach,
allowing thus for the utilization of smaller basis sets within this method. Figure
reproduced by courtesy of P. Boulanger.

chapter. The RI-SVS method bears the advantage of producing sparse matrices, reducing sig-

ni�cantly computational costs. This is not the case for the RI-V approach, which is therefore

more expensive (by way of example see Table 2.1). Reducing the number of auxiliary basis

functions to L, an error on the matrix elements is introduced. Provided that the operator Ô

in the above equations corresponds to the Coulomb operator v̂, i.e. for Coulomb integrals, it

can be shown that the error cancels to �rst order in the RI-V approach [130]. On the contrary,

within RI-SVS non-zero �rst order terms arise. Consequently, errors in the Coulomb integrals

due to the incompleteness of the auxiliary basis are minimized using the RI-V rather than

the RI-SVS technique (see Fig. 2.1).

2.1.3. Common atom-centered basis sets

Slater-type orbitals Slater introduced so-called Slater-type orbitals (STO), which resemble

the wave functions of the hydrogen atom. They consist of a radial and angular part, following:

with
αSTO = αSTOn (|r|) Ylm (φ, ϕ) ,

αSTOn (|r|) = |r|n−1 e−γ|r|.
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Ylm are spherical harmonics describing the angular part of the wave function and γ is a

constant accounting for the screening of the nuclear charge by the surrounding electrons. The

main quantum number is presented by n, the angular momentum quantum number by l and

the magnetic quantum number by m. The radial part of the wave function is represented by

αSTOnl (|r|). This basis is very suited for atomic calculations, since the cusp condition at the

origin and the exponential decay known from the hydrogen atom are well satis�ed. However,

matrix elements become computationally very demanding, because simple analytic relations

valid for e.g. Gaussian functions do not exist.

Gaussian-type functions To circumvent this problem, Boys introduced Gaussian-type or-

bitals (GTO) in 1950 [65, 131]. The angular part is still described by spherical harmonics,

however, for the radial part Gaussian functions are introduced:

αGTO (r) = e−γr2
.

As it will be shown later in this chapter, matrix elements are tremendously simpli�ed in this

basis, counterbalancing their improper behavior both for r at the nucleus and at in�nity.

Indeed, they show neither a cusp at the origin nor the right e−|r| decay for r→∞.

Combining both numerical e�ciency and a reasonable physical behavior is achieved by

introducing contracted Gaussian functions (CGF ). They are based on the fact that a Slater-

type function can already be well reproduced using a linear combination of only a few di�erent

Gaussian-type functions [132]:

αCGF =
∑
n

dnα
GTO
n .

Typically, (n = 2-6) Gaussian-type functions are su�cient to �t a Slater-type orbital. The

simplest basis set using these contracted Gaussian functions is the STO-nG basis set. By way

of example, in the case of the STO-3G basis set, one attempts to �t a Slater-type function by

a linear combination of three di�erent GTOs.

Minimal basis sets STO-nG belong to the so-called group of minimal basis sets. The latter

include only one CGF per occupied orbital in the neutral atom. For the hydrogen atom, only

a single 1s CGF , while for the carbon atom �ve CGF for the 1s, 2s, and three 2p orbitals

are considered. The CGF , in turn, are obtained by linear combinations of Gaussian-type

functions. Calculations performed with these basis sets are very fast, however, they provide

only qualitative results suited as a starting point for more precise calculations.

Split-valence basis sets An expansion to minimal basis sets are so-called split-valence basis

sets. They are taking into account that valence electrons are much more involved in chemi-

cal processes compared to the nearly chemically inert core electrons. Therefore, instead of a

single CGF , a linear combination of several CGF is used to describe a valence orbital. Cor-

responding to the number of CGF included, these basis sets are called split-valence (double-,

triple-, quadruple-)zeta basis sets. The group of Pople [133] introduced the following notation
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for split-valence basis sets:

X − Y Zg,

where X represents the number of Gaussian-type functions g comprised in the �t of each core

orbital. Y and Z denote that valence orbitals are a linear combination of two CGF , each of

them composed of Y and Z Gaussian-type functions. Split-valence triple- or quadruple-zeta

basis sets are denoted X − Y ZWg and X − Y ZWV g, respectively.

Only increasing the number of CGF per atomic orbital does not automatically improve the

quality of the basis. In addition, one should also include CGF s whose character signi�cantly

di�ers from the ones already considered. One possibility is to add polarization functions, i.e.

functions with higher angular channels. They increase the �exibility of the atom to form

chemical bonds in every direction and thus improve the calculated molecular structures. In

the notation of Pople, an asterisk denotes additional polarization orbitals:

X − Y Zg ∗ .

Two asterisks signify that polarization orbitals are also added to light atoms. For the hydrogen

atom, this means adding a p-like function to the basis. Another possibility is to include di�use

functions, i.e. very shallow Gaussian-type functions:

X − Y Z + g.

In Pople's notation, they are represented by one/two plus sign(s). They are used to describe

more accurately the tail of molecular orbitals. For the sake of illustration, a 6-31+g* basis set

contracts sixGTO to one CGT for each core orbital, whereas the valence orbitals are described

by linear combinations of two CGT � one of them consisting of three GTO, the other one of a

single GTO. Moreover, except for light atoms, polarization and di�usive functions are added.

2.1.4. Gaussian function basis sets and analytic properties

Basis sets using Gaussian functions [65, 129, 131] are commonly used in quantum chemistry

calculations on molecules. First, physical meaningful STO can be reproduced by contracting

only a few GTO, i.e. the size of the basis is not signi�cantly augmented compared to a

STO basis. Moreover, Gaussian functions provide mathematical properties which transform

complicated matrix elements in simple analytic expressions making calculations extremely

e�cient. These mathematical properties are presented in detail in this subsection.

2.1.4.1. General de�nitions

Before presenting in detail mathematical advantages, the common nomenclature is shortly

reviewed in order to avoid confusion. Gaussian functions are called primitive, if they consist of

a single Gaussian function. They have to be distinguished from contracted Gaussian functions

which are a linear combination of several primitive Gaussian functions located at the same

center. Moreover, one distinguishes between Cartesian and spherical Gaussian functions. An
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unnormalized primitive Cartesian Gaussian function centered at A reads:

αGTO (r) = (rx −Ax)h (ry −Ay)i (rz −Az)j e−γ(r−A)2

,

where (h, i, j) are natural numbers and γ the exponential coe�cient. Similar to the wave

functions of the hydrogen atom, we can de�ne the angular momentum quantum number using

the exponents like (l = h+ i+ j). For (l = 0), we obtain a s-orbital-like Gaussian function,

(αGTOs (r) = e−γr2
), for (l = 1) p-like functions, (αGTOp (r) = rxe

−γr2
, rye

−γr2
, rze

−γr2
),

et cetera. Besides Cartesian Gaussian functions, so-called Spherical Gaussian functions are

widely used:

αGTO = |r−A|l e−γ(r−A)2

Ylm (φ, ϕ) ,

where m is the magnetic quantum number and Ylm (φ, ϕ) spherical harmonics. Cartesian

and Spherical Gaussian function basis sets are only equivalent up to (l = 1), so one has to

be careful which type of Gaussian functions is actually implemented. Nevertheless, unitary

transformations allow one to easily switch between one representation and the other.

2.1.4.2. Advantages and subtleties of Gaussian basis sets

Using Gaussian function basis sets results in important computational advantages. Demand-

ing parts of the calculation, which are otherwise only solvable with much computational

e�ort, can be treated analytically. However, some subtleties have to be considered in order to

produce accurate results. Once these points are respected, the ratio between e�ciency and

accuracy is impressive.

Calculating matrix elements in a Gaussian basis Calculating matrix elements denotes

the main step in most ab initio calculations and, once this is done, e�cient linear algebra

routines exist to solve systems of linear equations. Basis sets with Gaussian functions bare

the advantage that a lot of matrix elements can be transformed in analytic expressions using

for example the Gaussian product theorem or the Gaussian integral properties (see Appendix

A.10). In turn, these analytic expressions can be evaluated e�ciently on computers. For the

sake of illustration, this is demonstrated for two examples. The �rst one is the three-center

integral

Mµνλ = 〈αµαν | βλ〉 ,

which has been already encountered previously within the RI-SVS formalism and which is

frequently needed in calculations dealing with non-local operators. For the sake of clarity,

we choose αµ, αν and βκ to be unnormalized primitive s-like Gaussian functions centered at

atoms Rµ,Rν and Rλ, respectively. Following the Gaussian product theorem, the product of

three Gaussians yields a Gaussian function, multiplied by a constant C and centered at the

barycentric point P =
µRµ+λRλ+νRν

η with an exponential coe�cient (η = µ+ λ+ ν):

Mµνλ =
´
d3r e−µ(r-Rµ)2

e−λ(r-Rλ)2

e−ν(r-Rν)2

= Cµνλ
´
d3r e−η(r−P)2

.
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This Gaussian integral can be straightforwardly solved by separation and gives:

Mµνλ = Cµνλ
´
d3rx e

−η(rx−Px)2 ´
d3ry e

−η(ry−Py)2 ´
d3rz e

−η(rz−Pz)2

= Cµνλ

(
π
η

) 3
2
,

an analytic expression easily computed. Moreover, taking for illustration the derivative of

Mµνλ with respect to Px, leads to the product of a primitive s-like and px-like Gaussian

function, initiating by successive derivations e�cient recursion relations.

We now come to the central Coulomb integrals, which, in an auxiliary basis {β} within the

RI-SVS representation, read:

[VC ]λλ′ =

¨
d3rd3r′

β∗λ (r) βλ′ (r
′)

|r-r′|
.

In a Gaussian function auxiliary basis, this demanding non-local integral reduces to a simple

analytic expression. This is demonstrated in detail in Appendix A.10 for two unnormalized,

primitive s-like Gaussian functions centered at A and B and results in:

[VC ]s,s′ =
´ ´

d3r d3r′ e
−κ|r−A|2e−λ|r

′−B|2

|r−r′|

=
(
π
κ

) 3
2
(
π
λ

) 3
2 1

Rerf
(√

R2

4γ

)
,

where we de�ned (R = A−B) and
(
γ = 1

4κ + 1
4λ

)
. We also introduced the error function[

erf (y) = 2√
π

´ y
0 du e

−u2
]
. The latter is directly related to the so-called Boys function Fn of

order n [65, 131], obeying:

Fn (x) =
´ 1

0 dt t
2ne−xt

2

F0 (x) =
√
π

2
√
x
erf (
√
x) , x > 0.

The Boys function plays a key role in one- or two-electron Coulomb integral evaluation, since

e�cient evaluation methods based on upward/downward recursion exist [134]:

Fn(x) = 1
2x [(2n=1)Fn=1(x)=e=x] ,

Fn(x) = 1
2n+1 [2xFn+1(x)=e=x] .

Rewriting the Coulomb matrix elements for two s-like Gaussian functions in terms of the Boys

function gives:

[VC ]s,s′ =
1√
π
√
γ

(π
κ

) 3
2
(π
λ

) 3
2
F0

(
R2

4γ

)
.

[VC ]s,s′ can not only be e�ciently calculated, moreover it serves as a starting point for the

calculation of the Coulomb integrals between higher l-number orbitals, such as [VC ]s,px . A

derivation from scratch is not necessary, but solutions can be obtained using the analytical

expression obtained for [VC ]s,s′ . This is shown for the s-like and px-like Gaussian interaction
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in Appendix A.10, resulting in:

[VC ]s,px = −1

κ

1√
π
γ−

3
2

(π
κ

) 3
2
(π
λ

) 3
2
Rx F1

(
R2

4γ

)
.

Following the same procedure and taking [VC ]s,px as a starting point, we can derive an ana-

lytical expression for a px-like and py-like Gaussian interaction:

[VC ]px,py = − 1

8κ2λ

1√
π
γ−

5
2

(π
κ

) 3
2
(π
λ

) 3
2
RxRy F2

(
R2

4γ

)
.

Step by step, expressions for the di�erent Coulomb matrix elements can be derived, using

the previous analytic solutions. As a result, we obtain analytical expressions for the two-

electron bare exchange interaction containing Boys functions of di�erent order. As already

mentioned, these can be e�ciently evaluated applying recursion. This clearly demonstrates

the computational advantages of Gaussian basis sets.

Non-Orthogonality Despite the advantages a Gaussian basis o�ers, one has to bear in mind

that these basis sets are not orthogonal. As a consequence, basis sets have to be chosen

carefully in order to minimize linear dependencies and generalized eigenvalue problem routines

have to be used, removing overlap matrix eigenvectors which yield too small eigenvalues for

numerical stability (see below).

Another subtlety arising from non-orthogonality is the non-systematic extension of the

basis set. For orthogonal basis sets, a complete basis set (CBS), i.e. the inclusion of N →∞
basis functions, reproduces wave functions exactly. Since this is technically impossible to

realize, introducing a �nite basis set represents a major approximation. The calculated wave

functions and observables are only solutions in the function space of the basis within the

chosen level of theory. The introduced error is called basis set superposition error (BSSE),

which can be diminished by including more basis functions. For non-orthogonal basis sets,

however, the inclusion of more basis functions does not automatically improve the result,

i.e. the problem does not converge systematically like it is the case for orthogonal basis

sets. Adding a basis function does not necessarily add supplemental information, but the

added function can be very similar to a function already contained in the basis set. That

leads to an unphysical weighting of directions and consequently unpredictable changes in the

overlap and other observables. Therefore, convergence tests are of crucial importance for

non-orthogonal basis sets. In the case of Gaussian functions, special basis sets, such as the

correlation-consistent bases of Dunning [135], have been speci�cally designed to smoothly

converge to the complete basis set limit. The basic idea of these basis sets is to compare the

incremental change in correlation energy calculated at the con�guration interaction to second

order (CISD) level upon addition of higher angular momentum functions. The important

outcome is that added functions separate in groups de�ned by the amount of correlation

energy they cover. Each added group after the �rst one has less and less contributions to the

correlation energy. By way of example, for the oxygen atom, adding a 3d-function has the

largest e�ect in terms of correlation energy, this function is part of the �rst group. Contrary,
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Dipeptide C60 NKX-2677

Kohn-Sham basis TZ2P TZ2P TZP TZ2P
Auxiliary basis 6G, RI-SVS 6G, RI-V 4G, RI-SVS 6G, RI-SVS
# atoms 19 19 60 57
# valence bands 26 26 120 99
# Kohn-Sham basis functions 288 288 1020 1110
# Auxiliary basis functions 1006 963 2160 3426
# GW corrected bands 20 20 28 20
# Processors 4 4 576 256
Wall time 1 GW cycle 276 s 627 s 215 s 1450 s

Table 2.1.: Compilation of technical speci�cations for three molecular systems, namely a
model dipeptide, the Buckminster fullerene C60 and the coumarin molecule
NKX-2677, in order to give a rough estimate of the computational costs for
GW calculations using the FIESTA package. The label 6G in the auxiliary ba-
sis speci�cation stands for a basis containing 6 Gaussian functions per angular
momentum channel with an even-tempered distribution of the exponential co-
e�cients between 0.1 and 3.2. Similar, 4G represents an auxiliary basis with 4
Gaussian functions per angular momentum channel with an even-tempered dis-
tribution of the exponential coe�cients between 0.2 and 3.2. The number of
auxiliary basis functions corresponds to the number after the basis re�nement,
where linear dependencies have been removed. The given wall time, i.e. the real
elapsed time per processor, corresponds to a G0W0 calculation, where the GW
correction has been explicitly calculated for several bands around the gap (see
chapter �GW/BSE in practice�).

been applied. By way of example, in the case of the TZDP basis, the �rst basis orbitals of

the valence s, p-channels are taken to be the 2s and 2p eigenfunctions of isolated atoms in the

corresponding pseudopotential approximation. This is analogue to strategies developed for

post-Hartree-Fock correlated calculations, along the line of natural atomic orbitals (NAO).

The additional valence channels are taken to be two primitive Gaussian functions, which

are optimized in order to minimize the total energy at the DFT -LDA level. For carbon,

the resulting most di�use Gaussian functions present a decay coe�cient α =0.1 Bohr−2, very

close to the values optimized by Dunning at the cc-pVQZ level [135]. Following Ref. [136], the

�rst d-channel orbital is taken to be the polarization orbital of the atomic p-orbital, namely

the d-component of the perturbation induced by a uniform electric �eld, complemented by a

primitive Gaussian with decay constant α =0.3 Bohr−2 for carbon. Following Dunning, we

�nally add a single primitive Gaussian for the f -channel with e.g. α =0.76 Bohr−2 for carbon.

See Table (2.2) for a typical convergency test with respect to the used correlation-consistent

Kohn-Sham basis.

The used auxiliary basis is composed of atomic-like orbitals centered at the atoms A, with

real spherical harmonics for the angular part and a radial dependence composed of Gaussian

functions:

β (r, φ, ϕ) = |r−A|l e−α(r−A)2

Rlm (φ, ϕ) .

Real spherical harmonics are used instead of complex spherical harmonics Ylm, since this is
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Excitation energy Oscillator strength

cc-pVXZ aug-cc-pVXZ cc-pVXZ aug-cc-pVXZ
X=D 5.17 4.92 0.53 0.49

X=T 4.96 4.82 0.49 0.48

X=Q 4.87 4.81 0.49 0.47

Table 2.2.: Convergency test of the �rst Bethe-Salpeter singlet excitation energy (in eV)
and oscillator strength with respect to the used standard correlation-consistent
Kohn-Sham basis set of Dunning [135] for the cyanine CN5 molecule (see Ref.
[141] and Fig. 2.3). It is important to note that the augmentation by di�use
orbitals is very important in order to obtain highly converged excitation energies.
The oscillator strengths are less a�ected, except for the smallest cc-pvdz basis.

computationally more e�cient [6]. The choice of the optimal decay coe�cients α for the

radial part, i.e. the speci�c extent of the basis functions, is crucial for the quality of the

result. For the presented calculations, even-tempered auxiliary basis sets have been employed

[6, 137, 138]. The latter come from the assumption that it is advantageous to generate a

series of α coe�cients with (αi + 1) /αi = constant, rather than taking uniformly spread

values between αmin and αmax. This goes back to the observation that the overlap of two

Gaussian functions depends on the ratio of their α coe�cients. Imposing a constant overlap

between joining Gaussian functions with αi and αi±1 allows to better span the corresponding

Hilbert space [6, 138]. Consequently, αmin, αmax and the number of Gaussian functions per

l-channel given, the remaining decay coe�cients can be readily generated. Fig. (2.3) provides

a typical plot of convergence concerning the number of used primitive Gaussian functions per

angular momentum channel.

An important point to mention are numerical di�culties arising from the non-orthogonality

and the possible over-completeness of Gaussian function basis sets. Calculating the overlap

between auxiliary basis functions, one observes that it tends to be rather large for di�use

auxiliary functions on neighboring atoms. While auxiliary functions belonging to the same

atom can be easily orthogonalized using e.g. a Gram-Schmidt procedure, a di�erent scheme

is necessary to avoid singularities in the overlap matrix stemming from neighboring basis

functions [6]. Referring to a method conceived for full product basis sets [139, 140], the

problem is transformed to the eigenvector space of the overlap matrix S, where eigenvectors

yielding eigenvalues smaller than 10=8 are typically removed [6]. This does not signi�cantly

reduce the number of basis functions, however, prevents from possible numerical instabilities

associated with the inversion of a quasi-singular S matrix and the ampli�cation of errors due

to the transformations
〈
Ô
〉

= S−1
λλ′

[
Ô
]
S−1
λλ′ .

Apart from computational advantages a Gaussian basis o�ers by providing analytic expres-

sions for demanding matrix elements, another convenient factor is that these basis sets are

widely applied in the quantum chemistry community. That way, one can resort to a large ex-

perience, which is crucial when converging non-orthogonal basis sets. Moreover, there is also

the possibility of using eigenvalues and eigenstates generated by DFT quantum chemistry

codes, where all-electron calculations and the use of hybrid functionals are standard. This
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where η → 0+ and W̃ = W − v. The main di�culty stems from the evaluation of the non-

local and frequency dependent screened Coulomb potential W̃ , whose calculation implies the

construction of the irreducible polarizability P . Imagine the �rst iteration of a GW cycle, P

is based on single-particle wave functions and eigenvalues, following:

PIP (r1, r2;ω) =
∑
m,l

φl (r1)φ∗l (r2)φm (r2)φ∗m (r1)

ω −
(
ε0
l − ε0

m

)
+ iη

−
φm (r1)φ∗m (r2)φl (r2)φ∗l (r1)

ω +
(
ε0
l − ε0

m

)
− iη

.

Due to its more complex form � as compared to the Green's function G � involving the

summation over four wave functions, the polarizability represents, even within the presented

RPA expression, a computationally demanding object. The screened Coulomb potential

is then obtained through a Dyson-like equation, which reads in matrix notation following

equation (2.8): 〈
WRPA

〉
= 〈v〉+ 〈v〉 [PIP ]

〈
WRPA

〉
.

Here, W is expressed in terms of the auxiliary basis within the RI-SV S representation. The

above equation is solved by inversion following:

〈
WRPA

〉
= (1̄− 〈v〉 [PIP ])−1 〈v〉 .

Dealing with frequency dependent quantities, the above procedure has to be performed on

a frequency grid in order to obtain the frequency dependence of W . Since G (ω) and W (ω)

represent strongly varying functions along the real frequency axis, the latter have to be eval-

uated on rather closely spaced grid points. The calculation of W presents one of the crucial

steps in a GW calculation and improvements in terms of e�ciency have a large impact on the

necessary computational requirements.

The plasmon pole approximation One way to facilitate the calculation of the correla-

tion contribution to the self-energy Σc is the so-called plasmon pole approximation (PPA).

Here, the frequency dependence of the screened Coulomb potential is not explicitly calcu-

lated, but a simpler and physically meaningful form of W̃ is constructed, yielding an ap-

proximate correlation contribution to the self-energy. The screened Coulomb potential W̃

is composed of the bare Coulomb potential v and the inverse of the dielectric function

ε−1, following: W (12) =
´
d3 ε−1(13) v(32). Di�erent approaches to model W (ω) exist

[3, 143, 144, 145, 146, 147, 148]. They are based on the observation that the imaginary part

of ε−1 (ω) is a function with peaks at the neutral excitation energies. It is supposed that one

main peak is dominating the spectrum, originating from plasmon excitations. In the most

straightforward approach, =
[
ε−1 (ω)

]
is simply approximated by a single narrow Lorentzian

peak. The resulting dielectric function ε−1 then also has a simple peaked form, where the

peak position ω̃k and the peak strength Ak have to be �tted for the particular system and

must obey certain limits or constraints. The advantage of the PPA is that the convolution

of G and W simpli�es to an analytic expression, superseding the demanding integration in

equation (2.9). However, one can not access the imaginary part of the self-energy, i.e. quasi-
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particle lifetimes, since ImΣc is zero everywhere except at ω̃k. Further, molecular systems do

usually not possess a simple peaked structure for ε−1.

Exact calculation of Σc using contour deformation techniques The Fiesta package [6, 7, 8]

does not make use of plasmon pole models, instead, a reformulation of equation (2.9) using

contour deformation techniques is applied. The latter opens the way to an exact and, in

addition, e�cient evaluation of the correlation energy integral as compared to the direct

integration along the real frequency axis.

In order to �nd a suited reformulation of equation (2.9), one tries to replace the integral

along the real frequency axis by an equivalent, but computationally less demanding expression

[149, 150]. For convenience and without loss of generality, the non-interacting Green's function

G0 and W̃ in the Lehmann representation are used for the demonstration:

G0 (r, r´, ω + E) =
occ∑
m

φ∗m (r)φm (r′)

E + ω − εm − iη
+
unocc∑
l

φ∗l (r′)φl (r)

E + ω − εl + iη

W̃ (r, r´, ω) =
∑
k

2ωk Vk (r)V ∗k (r′)

(ω + ωk − iδ) (ω − ωk + iδ)
,

with Vk (r) =
´
d3r′ v (r, r′) 〈N, k| n̂ (r′) |N, 0〉 . The indices m and l label occupied and un-

occupied states, respectively. φm,l and εm,l are single-particle wave functions and energies.

Neutral excitation energies are represented by ωk. Applying analytic continuation, equation

(2.9) is transferred from real space to the complex plane (ω → ω̄).1 The resulting complex

integral is evaluated along the closed contour depicted in Fig. (2.4) using contour deformation

techniques:

¸
dω̄ f (ω̄) =

¸
C dω̄ f (ω̄) +

¸
D dω̄ f (ω̄)¸

C dω̄ f (ω̄) =
´∞

0 dω′ f (ω′) +
´ π

2
0 dϕ iReiρf

(
Reiρ

)
−
´∞

0 dω′′ f (ω′′)¸
D dω̄ f (ω̄) =

´ 0
−∞ dω

′ f (ω′) +
´ π

3π
2
dΘ iReiΘf

(
ReiΘ

)
−
´ 0
−∞ dω

′′ f (ω′′) ,

where
[
f (ω̄) = i

2πe
iηω̄ G0 (r, r′, ω̄ + E) W̃ (r, r′, ω̄)

]
with η → 0+. One thus deals with inte-

grals of the form: ˛
dω̄ f (ω̄) =

˛
C
dω̄

g (ω̄) eiηω̄

(ω̄ − ω̄i)n
, (2.10)

where n is the order of the poles ω̄i originating from the Green's function and the screened

Coulomb potential.

A short overview of the theorems used in the following is provided in Appendix A.9. Cor-

responding to the residue theorem, a closed path integral over a function f(z) with z∈ C
yields:

1ω̄ = ω′ + iω� = Reiϕ with R =
√

(ω′)2 + (ω′′)2 and ϕ = arctan
(
ω′′

ω′

)
.

110



CHAPTER 2. DETAILS ON THE IMPLEMENTATION

Figure 2.4.: The chosen closed contour consists of contours C and D as illustrated. The
poles of W̃ at the neutral excitation energies are represented by orange squares.
The poles of the non-interacting single-particle Green's function G0 (r, r′, ω)
are in the upper-half plane for occupied states and in the lower-half complex
plane for unoccupied states (blue crosses), while the poles of G0 (r, r′, ω + E)
are shifted by E with respect to them (yellow dots). Consequently, part of these
poles are within the closed contour C.

˛
dz f (z) =

 0, if no poles are enclosed

2πi
∑

iRes (f, zi) , if poles at zi are enclosed.

Res (f, zi) denotes the so-called residue of the function f at the enclosed pole zi of order n. It

is the coe�cient of the (z − zi)−1 summand in a Laurent expansion and is evaluated following:

Res (f, zi) =
1

(n− 1)!

dn−1

dzn−1
[(z − zi)n f (z)]z=zi . (2.11)

The poles of the screened Coulomb potential are not enclosed by the chosen contour, thus

they do not require further discussion. However, for the poles of the Green's function, a

case-by-case study is necessary. As depicted in Fig. (2.4), the energy zero is chosen to be in

the center of the energy gap between occupied and unoccupied states. The contour C thus

contains poles, if (ω = εi − E > 0). These poles stem from the poles of the Green's function

for occupied states, i.e. εi < 0 and consequently E < 0. In this case, the contour D encloses

no poles and one thus deduces from the residue theorem:

˛
dω̄ f (ω̄) =

˛
C
dω̄ f (ω̄) = 2πiΘ (−εi) Θ (εi − E)

∑
i

Res (f, ω̄i) .

For the case (ω = εi − E < 0), the contour integral along C vanishes. On the contrary, contour

D now encloses poles of the Green's function for unoccupied states, i.e. εi > 0 and thus E > 0:

˛
dω̄ f (ω̄) =

˛
D
dω̄ f (ω̄) = 2πiΘ (εi) Θ (E − εi)

∑
i

Res (f, ω̄i) .
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A detailed discussion of the two presented cases follows. In the �rst one, the fact that

contour D vanishes can be used to deduce an expression for the integral along the positive

real frequency axis:

¸
D dω̄ f (ω̄) =

´ 0
−∞ dω

′ f (ω′) +
´ π

3π
2
dΘ iReiΘf

(
ReiΘ

)
−
´ 0
−∞ dω

′′ f (ω′′) = 0,´ 0
−∞ dω

′ f (ω′) = −
´ π

3π
2
dΘ iReiΘf

(
ReiΘ

)
+
´ 0
−∞ dω

′′ f (ω′′) .

The integral in the lower half plane from
[
Θ = 3π

2 . . . π
]
can be expressed in terms of

[
ϕ = 0 . . . π2

]
,

following:

Θ = − (ϕ+ π)

dΘ = −dϕ
ReiΘ = −R cos (ϕ+ π)− iR sin (ϕ+ π) = R cosϕ+ iR sinϕ = Reiϕ,

where we applied the addition theorem for sine and cosine. For the integral it follows with

ω̄ = Reiϕ:

ˆ π

3π
2

dΘ iReiΘf
(
ReiΘ

)
= −

ˆ π

0
dϕ iReiϕ

g
(
Reiϕ

)
(Reiϕ − ω̄i)n

eiηR cosϕe−ηR sinϕ

and for the limit R→∞, respectively:

lim
R→∞

ˆ π

0
dϕ . . .

e−ηR sin ρ

Rn−1
.

Corresponding to Jordan's lemma, the circular integral vanishes and one thus obtains:

ˆ 0

−∞
dω′ f

(
ω′
)

=

ˆ 0

−∞
dω′′ f

(
ω′′
)
,

i.e. the integral along the negative real axis can be replaced by an integral along the negative

imaginary axis. Concerning the positive real axis, the contour integral along C has to be

evaluated. In this case, it directly follows from Jordan's lemma that the circular integral

vanishes, resulting in:

ˆ ∞
0

dω′ f
(
ω′
)

=

ˆ ∞
0

dω′′ f
(
ω′′
)

+ 2πiΘ (−εi) Θ (εi − E)
∑
i

Res (f, ω̄i) .

Following equation (2.11), the residues are calculated to:

2πi
∑
i

Res (ω̄i) = −
∑
i

φ∗i (r)φi
(
r′
)
W̃
(
r, r′, εi − E

)
,

where η has been set to zero. Combining the obtained results, the correlation part of the
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self-energy Σc along the entire real axis can be evaluated through:

Σc (r, r′, E) =
´∞
−∞ dω

′ f (ω′)

=
´∞
−∞ dω

′′ f (ω′′)−Θ (−εi) Θ (εi − E)
∑

i φ
∗
i (r)φi (r′) W̃ (r, r′, εi − E) .

(2.12)

For the second case, i.e. (ω = εi − E < 0), an analogue expression is obtained. Again, the

circular integrals vanish, resulting in:

´∞
0 dω′ f (ω′) =

´∞
0 dω′′ f (ω′′)´ 0

−∞ dω
′ f (ω′) =

´ 0
−∞ dω

′′ f (ω′′) + 2πiΘ (εi) Θ (E − εi)
∑

iRes (f, ω̄i) ,

where the residues are:

2πi
∑
i

Res (ω̄i) = −
∑
i

φ∗i (r)φi
(
r′
)
W̃
(
r, r′, εi − E

)
.

Combining the two cases leads for Σc to:

Σc (r, r′, E) =
´∞
−∞ dω

′′ f (ω′′)

− [Θ (−εi) Θ (εi − E) + Θ (εi) Θ (E − εi)]
∑

i φ
∗
i (r)φi (r′) W̃ (r, r′, εi − E) .

The residues in equation (2.12) can be e�ciently calculated, since W̃ has only to be evalu-

ated at the poles εi of the Green's function, which fall within contour C or D. Replacing the

integration along the real axis by an integration along the imaginary axis has the advantage

that one avoids the strong pole structure along the real axis, since G0 and W̃ are well behaved

along the imaginary frequency axis [149, 150]. Consequently, the frequency grid on which the

integral is numerically evaluated can be much rougher compared to a grid on the real axis.

As implemented in the FIESTA package, the smooth function W̃ (ω′′) can be fold onto the

�nite [0, 1] interval by a change of variable, which allows to perform a Gaussian quadrature

procedure for the integral, ˆ
dx f(x) ≈

N∑
i=1

wi f(xi),

with as little as N = 12 points [6]. The e�ciency and accuracy of the presented contour

deformation techniques method has been recently successfully tested for molecular systems

[6, 7, 12, 126, 151]. Furthermore, the results presented later in this work clearly show that

contour deformation techniques o�er an accurate and fairly e�cient way to evaluate the

correlation contributions to the self-energy.
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3 | The GW/BSE method in practice

3.1. Preliminary considerations and motivation

3.1.1. The band gap problem

In order to predict suited material combinations for organic solar cells and to study in detail

the underlying fundamental processes from �rst principles, one needs an universal ab initio

formalism. By universal, we mean a parameter-free approach likely to be reliable for diverse

systems, such as bulk systems, surfaces, molecules, metals, semiconductors or insulators. Since

gap energies, band o�sets and optical excitation energies are the experimental quantities of

interest and since usually the experimentally aspired accuracy is of the order of 0.1-0.2 eV,

our computational results are only interesting, if they meet the same error range. In addition,

since typical molecular building blocks of interest for the targeted photovoltaic applications

may contain hundreds of atoms, such as functionalized polythiophene chains, the chosen

computational approach must be tractable on available computers.

Due to its favorable scaling, DFT -KS is the method of choice concerning ab initio cal-

culations on ground state properties. DFT within the Kohn-Sham formulation allows one

to access ground state total energies and densities. By way of example, related quantities

such as bond lengths, bulk moduli or phonon frequencies usually come in excellent agree-

ment (< 1%) with experiments [152, 153]. The available codes scale with N3 or even linearly

[136, 154, 155]. However, serious discrepancies are observed, when the DFT -KS approach is

used to predict excited state properties. In principle, the ground state density contains all

information to set up the many-body Hamiltonian. However, up to now, no solution schemes

are available to extract information about excited states. Di�culties are especially encoun-

tered, when DFT -KS eigenvalues are directly compared to one-particle excitation energies

measured in photoemission experiments. In principle, as already discussed in detail in pre-

ceding chapters, DFT -KS eigenvalues are pure mathematical tools entering the formalism

as Lagrange multipliers in order to ensure orthogonality for the wave functions. Referring

to the ionization potential theorem, only the eigenvalue of the highest occupied level can

be associated with the negative value of the ionization energy, IE ≡ EN−1
ho − EN0 , provided

that the exact exchange-correlation functional is used. Nevertheless, it is common practice to

associate the complete Kohn-Sham eigenvalue spectrum with experimental band structures,

where in addition approximate exchange-correlation functionals are applied. This is moti-

vated by the apparent similarities between the Kohn-Sham and the Hartree-Fock equations.

115



CHAPTER 3. THE GW/BSE METHOD IN PRACTICE

For the latter, Koopmans theorem directly connects the HF eigenvalues to excitation energies

within the frozen orbital approximation. Following this approach on the DFT level, in some

cases the obtained band structures agree surprisingly well with experiment � at least from

a qualitative point of view [156]. Concerning quantitative results, systematic studies on the

band gap have been carried out [3, 4, 152, 156, 157, 158, 159]. In these studies, the true

fundamental gap, de�ned as the di�erence between the ionization energy IE and the electron

a�nity (EA = EN0 − E
N+1
lu ),

Eg = IE − EA = EN+1
lu + EN−1

ho − 2EN , (3.1)

is compared to the standard DFT -KS gap:

EKSg = εDFTlu − εDFTho ,

where εDFTho represents the eigenvalue of the highest occupied (ho) level and εDFTlu the eigen-

value of the lowest unoccupied (lu) Kohn-Sham level in a N particle system. These studies

demonstrated that standard DFT -KS calculations applying (semi)local exchange-correlation

functionals, such as LDA, severely underestimate the band gap by up to several eV [3, 4, 152,

156, 157, 158, 159]. This is known as the band gap problem and is depicted in Fig. (3.1) for

selected semiconductors and insulators.

3.1.2. Excited states within DFT-KS

The calculation and interpretation of excited state properties takes a prominent place within

the DFT community. The reason is that the determination of excitation energies from Kohn-

Sham eigenvalues is not straightforward and associated with certain subtleties. Since the

quality of the obtained excitation energies can strongly depend both on the system itself and

on the used approximate functional, much care is needed. This problem also a�ects our many-

body perturbation theory GW/BSE results, sinceDFT -KS eigenvalues and eigenstates serve

as a starting point. As it will be pointed out later, especially for the �single-shot� G0W0

approach, a reliable DFT -KS starting point is indispensable.

In order to get to the heart of the band gap problem and to estimate the errors introduced

both by the use of approximate exchange-correlation functionals and the association of DFT

eigenvalues with single-particle excitation energies, two limiting cases are discussed in the

following � the homogeneous electron gas and the free atom. These are thought as a guideline

to assess the reliability of DFT -KS calculations. For the electron gas, the exact exchange-

correlation functional Vxc is by construction the LDA one. This o�ers the possibility to

carry out an exact DFT calculation and to compare the obtained eigenvalues to many-body

perturbation theory quasiparticle energies [145]. Concerning the highest occupied eigenvalue,

the two methods perfectly agree. This underlines the validity of the ionization potential

theorem. However, for the remaining spectrum, discrepancies occur, which simply arise from

the association of DFT -KS eigenvalues with excitation energies. Di�erences are small for

(un)occupied states close to the Fermi energy EF , however, increase for states farther from

116



DFT LDA GW

DFT LDA

0.1 0.2
GW

EF

DFT

DFT LDA HF

DFT

HF DFT LDA

DFT LDA

DFT LDA LDA

HF

�
DFT KS

DFT,



CHAPTER 3. THE GW/BSE METHOD IN PRACTICE

the 4SCF method [87, 161, 162, 163]. The procedure consists of performing three di�erent

DFT -KS ground state calculations, namely for the N -electron and for the corresponding

(N ± 1) system. Subtracting the resulting ground state energies provides the ionization energy

IE, the electron a�nity EA and consequently also the gap Eg following equation (3.1).

Since ground state energies calculated within DFT are usually in very good agreement with

experiment, one obtains reliable binding energies and gaps at reasonable computational costs.

It is important to note, however, that 4SCF only provides the ionization energy and the

electron a�nity, whereas the remaining excitation energies can not be accessed. This is due to

the fact that the charged system is relaxed in its ground state and consequently total energies

other than EN±1
s=0 are not accessible. Another drawback is that this method can only be

applied for �nite systems. Usually, periodic boundary conditions are used in solids, leading to

a �Coulomb explosion�, i.e. an unphysical charging of the system by adding an electron (hole)

to each of the unit cells. Even though techniques exist, where a positive background charge is

introduced as compensation, it is not clear how to straightforwardly deduce the fundamental

gap from the obtained total energies [83, 164, 165].

The DFT-KS derivative discontinuity As an alternative approach to obtain withinDFT -KS

the ionization energy, the electron a�nity and thus the band gap, the ionization potential the-

orem suggests to calculate the derivative of the total energy for a N0 and (N0 + 1) system

with respect to the fractional occupation number ñi ∈ [0, 1]:

−IE (N0) = εDFTho=N0
=
∂EN0

∂ñho

∣∣∣∣
ñho=1−η

,

−EA (N0) = εDFTho=N0+1 =
∂EN0+1

∂ñho

∣∣∣∣
ñho=1−η

, (3.2)

where η = 0+. Since charged con�gurations are disadvantageous for in�nite systems, one

makes use of the fact that the total energy is a piecewise function with respect to the fractional

particle number N (see Fig. 1.4a). This allows to evaluate the electron a�nity by analyzing

the right limit εDFTho (N0 + δ) of the neutral system instead of working with the left limit of

the charged system εDFTho (N0 + 1− δ) as suggested by equation (3.2):

Eg = IE − EA = εN0+δ
ho − εN0−δ

ho . (3.3)

As shown in Fig. (1.4b), when in�nitesimally crossing the integer value N0 from (N0 − δ) to
(N0 + δ), the Kohn-Sham eigenvalue εho is subject to an abrupt change. In this context, it

is important to mention that the Kohn-Sham eigenvalues, as calculated in a single DFT -KS

calculation on N0 particles, correspond to the left limit, i.e. (N0 − δ) [82]. Since the external
and the Hartree potential are continuous with respect to the density, within the DFT -KS

formalism, the discontinuity can stem either from the kinetic energy of the non-interacting

electrons or the exchange-correlation energy contribution [82]. First, the abrupt slope change

in the kinetic energy is due to a change in the leading orbital, i.e. the fact that the state

labeled ho at the left is not identical to the ho state on the right, since one already starts to in-
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�nitesimally occupy the next available state. The ho state on the right thus corresponds to the

lowest unoccupied state (lu) on the left. Second, the change in the exchange-correlation en-

ergy is due to a spatially constant discontinuity in the exchange-correlation potential, usually

termed derivative discontinuity ∆xc [82]. The ho state on the left can therefore be expressed

in terms of the lu state on the left and the derivative discontinuity [82, 83]:

εN0+δ
ho = εN0−δ

lu + ∆xc.

Consequently, one obtains for the band gap:

Eg = IE − EA = εN0−δ
lu − εN0−δ

ho + ∆xc. (3.4)

This is an important outcome, since it shows that even for the exact exchange-correlation

functional, the Kohn-Sham gap (EKSg = εN0−δ
lu − εN0−δ

ho ) obtained from a single calculation

on a N -body system does not exactly yield the fundamental gap Eg. Instead, the derivative

discontinuity has to be taken into account. Depending on the system, the magnitude of the

latter can vary from negligible amounts, i.e. the jump is too a large amount described by

the kinetic energy term, to values of the order of EKSg [82, 87]. For approximate exchange-

correlation functionals, the degree by which equation (3.4) is ful�lled di�ers [83]. In these

cases, discrepancies between EKSg and the true gap can thus arise both from the discontinuity

and from the approximate nature of the functional. Determining the discontinuity is a highly

non-trivial task and the reader is referred to Ref. [83] for a comprehensive overview of current

approaches.

An alternative to the standard Kohn-Sham scheme is the so-called generalized Kohn-Sham

(GKS) approach, where non-local potentials are introduced. The idea is that discontinuity

e�ects, which are not already covered by the kinetic energy, are not solely shouldered by

the unknown local KS exchange-correlation potential. Instead, they are supposed to auto-

matically come in through non-local potentials, such as e.g. the Fock term [82]. The GKS

equations take the following form:(
Ô [{φi}] + Vext (r) + Vr [n] (r)

)
φi (r) = εiφi (r) ,

where Ô [{φi}] is a non-local, orbital-dependent operator and Vr the local �remainder� po-

tential determined by the derivative of the remainder energy with respect to the density.

In the case where Ô [{φi}] is chosen to be the single-particle kinetic operator, one retrieves

the standard Kohn-Sham equations, where the remainder contains the Hartree and the usual

exchange-correlation contribution. If instead Ô [{φi}] is the kinetic energy operator and the

Hartree-Fock operator, one obtains a Hartree-Fock-Kohn-Sham scheme, which is in principle

exact and where the remainder accounts for correlation only. Unfortunately, only very little

is known about the correct form of the remainder in this case, making this scheme di�cult to

apply in practice [82]. Apart from these two limiting cases, the most common applications of

the GKS are hybrid exchange-correlation functionals. The latter contain a certain amount α of

Fock exchange V̂F , a complementary amount (1− α) of the standard approximate (semi)local
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exchange V sl
x and correlation V sl

c contributions [82]:(
−∇

2

2
+ Vext (r) + VH [n] (r) + αV̂F + (1− α)V sl

x [n] (r) + V sl
c [n] (r)

)
φi (r) = εiφi (r) .

These functionals are a special case of the GKS scheme, where Ô [{φi}] consists of the ki-

netic energy operator and a fraction of the Hartree-Fock operator [82]. As a consequence,

one obtains the kinetic energy and a fraction of the Hartree and of the Fock contribution,

whereas one chooses the remainder to contain the rest of the Hartree term and the (semi)local

exchange-correlation contributions. By way of example, the LDA and PBE [74] functionals

correspond to (α = 0), while Hartree-Fock is characterized by (α = 1) and
(
V sl
x = V sl

c = 0
)
.

One of the most popular hybrid functionals, the already introduced B3LYP functional [75],

is determined by (α = 0.2), the similar PBE0 functional [166] by (α = 0.25) [48]. The choice

of α crucially in�uences the accuracy of the methods. Usually, α is either obtained by semi-

empirical �tting on a set of study case systems or formal considerations. However, there is

no transferability from one system to another, so describing semi-conducting, metallic, �-

nite or extended systems on the same footing is questionable [82]. Nevertheless, as already

discussed for the limiting case of a free atom and as depicted in Fig. (3.2) for three organic

molecules, hybrid functionals usually signi�cantly improve over (semi)local functionals such as

LDA or GGA. However, since self-interaction errors are only partly removed, non-negligible

discrepancies with correlated theories and experiment and thus the band gap problem still

persist.

A promising extension of hybrid functionals are so-called range-separated hybrid (RSH)

functionals. Based on the work of Savin and coworkers [168, 169, 170], range-separated hybrid

(RSH) functionals have been speci�cally designed to tackle the band gap problem. The idea

is to separate the exchange energy functional into a short-range (SR) and a long-range (LR)

part. This is achieved by a decomposition of the Coulomb potential, following e.g.:

1

|r− r′|
=

1− erf (κ, |r− r′|)
|r− r′|

+
erf (κ, |r− r′|)
|r− r′|

, (3.5)

where erf is the error function and κ a parameter characterizing the range-separation, i.e.

the spatial extent of the short-range interaction [171]. At a characteristic distance of around

∼ 2/κ, short-range contributions become negligible. Bearing an important in�uence on the

accuracy of the obtained results, the range-separation parameter κ has to be carefully cho-

sen, either through �tting or physical considerations. The �rst term in equation (3.5), i.e.

the short-range contribution V sr,κ
x , is not evaluated directly, but replaced by a standard

(semi)local DFT exchange functional, whereas the long-range is governed by a Hartree-Fock

like operator V̂ lr,κ
F [82]:(

−∇
2

2
+ Vext (r) + VH [n] (r) + V̂ lr,κ

F + V sr,κ
x [n] (r) + V sl

c [n] (r)

)
φi (r) = εiφi (r) .

This o�ers the possibility to include the full exact exchange in the long range regime, yielding
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[α+ β (κ, |r− r′|)]
|r− r′|

LDA PBE 0.0 α = β = 0
1.0 V sl

x = V sl
c = 0 α = 1 β = 0

(−1/ |r− r′|)

1

|r− r′|
=

1− [α+ β (κ, |r− r′|)]
|r− r′|

+
α+ β (κ, |r− r′|)

|r− r′|
.

α β (0 ≤ α ≤ 1) (0 ≤ β ≤ 1) (0 ≤ α+ β ≤ 1)

DFT

|r− r′| = ∞ |r− r′| = 0

DFT

α

|r− r′|
+

β (κ, |r− r′|)
|r− r′|

,

|r− r′| = 0 DFT

α

|r− r′| = ∞
[1− (α+ β)]
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remaining contribution of (α+ β). As a consequence, for (semi)local DFT exchange function-

als which vanish in this limit, the exchange interaction is solely governed by the second term

and thus reduces from the correct physical limit of 1 to (α+ β). Later in this chapter, conse-

quences of this reduction will be discussed in detail in the context of optical charge-transfer

excitations. A popular representative of the CAM functionals, which will be important in the

following, is the CAM-B3LYP functional [49] with α = 0.19, β = 0.46 and κ = 0.33. Apart

from CAM functionals, a variety of RSH functionals has been developed, yielding very satisfy-

ing results for gap energies (see Fig. 3.2). Important representatives are among others HSE06

[173], long-range corrected (LRC or LC) RSH functionals reproducing the physical long-range

limit, such as LC-BLYP [174, 175], or the Baer, Neuhauser and Livshits (BNL) RSH func-

tional [176, 177]. The exact exchange contribution [α+ β erf (κ, |r− r′|)] with respect to the

inter-electron distance |r− r′| is provided by Fig. (3.3) for diverse functionals.

In the following, the band gap problem is revisited from the viewpoint of many-body per-

turbation theory. Here, the calculated quasiparticle energies can be directly connected to

excitation energies. Even though usually more expensive in terms of necessary computing

power than DFT -KS, the universality and accuracy of the GW/BSE approach are striking.

3.1.3. The many-body perturbation theory GW formalism in practice

The �rst fullGW calculation of the self-energy goes back to the 1960s, where Hedin studied the

electron gas and demonstrated a systematic way to expand the electron-electron self-energy

in terms of the screened Coulomb potential [1]. However, due to computational di�culties,

GW calculations on real systems have not been carried out until the 1980s [3, 149, 178,

179]. The latter provided promising results, yielding signi�cantly improved excitation energies

compared to DFT -KS. A compelling example is the case of lanthanum hydride LaH3, where

DFT -LDA predicts a semi-metal (see Fig. 3.4), whereas experiments document a semi-

conducting behavior. The latter is well reproduced within GW [180]. It is interesting to note

that for this system, DFT -LDA already gives good qualitative characteristics and that GW

then corrects the quantitative values by an opening of the band gap. This is a typical outcome

and therefore GW is often equated with a scissor operator, which cuts the band structure

within the gap and shifts occupied and unoccupied states apart from each other. Up to now,

systematic studies on a variety of systems demonstrated the reliability and the accuracy of the

GW method for the qualitative and quantitative prediction of band structures [4, 157], with

the exception of strongly-correlated materials, such as e.g. Mott insulators. A compilation is

provided by Fig. (3.1).

3.1.3.1. GW for �nite systems

Originating from the solid state community, most of the popular GW implementations are

conceived for periodic systems [181, 182, 183]. Finite systems, such as molecules or clusters,

can in principle be treated within the same framework by introducing an arti�cial period-

icity. This implies that one constructs periodically repeated supercells containing the �nite

electronic system under study. In order to avoid an unphysical interaction between the cells,
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Figure 3.4.: From semi-metallic to semi-conducting: in the case of lanthanum hydride LaH3,
DFT -LDA band structure calculations predict a semi-metal (left), whereas
experiment yields a semi-conducting system. Within GW , the band gap is
opened and the correct semi-conducting behavior is reproduced (right). Figure
taken from Ref. [180].

either large cells are needed or special techniques to attenuate Coulomb interactions at the

cell borders have to be introduced. An additional di�culty arises from the fact that most of

the standard GW implementations use plane wave basis sets, where the number of included

basis functions increases with the volume of the unit cell. Therefore, for �nite systems with

satisfactorily large unit cells, a non-negligible amount of plane waves is required. This signi�-

cantly enhances the computational e�ort and explains the relatively small number of available

GW studies on molecules in gas phase. After the pioneering work of Shirley in 1993 [184],

only very recently, GW has been applied to atomic and molecular systems and implementa-

tions have been designed to speci�cally account for the requirements which come along with

localized systems [6, 48, 126, 151, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,

197, 198, 199, 200, 201, 202, 203, 204]. This meets the demand of upcoming �elds, such as

organic electronics or organic photovoltaics, which de�nitely seek for accurate single-particle

excitation energies. Nevertheless, contrary to the case of periodic systems, systematic studies

on the performance of the GW formalism for molecular systems remain scarce. Hence, the

present work focuses on exploring the merits and limitations of GW for molecules.

3.1.3.2. From G0W0 to self-consistency

The G0W0 approach As already detailed in preceding chapters, in order to obtain one-

particle excitation energies within the many-body Green's function framework, one has to

solve the quasiparticle eigenvalue equation:

H0 (r)ψqpν (r) +

ˆ
dr′′Σ

(
r, r′′, εqp

)
ψqpν

(
r′′
)

= εqpψ
qp
ν (r) , (3.7)

where H0 contains contributions from the kinetic energy, the external potential and the

Hartree potential. All interactions beyond Hartree are governed by the self-energy Σ, which is

non-local, non-Hermitian and energy-dependent. As a consequence, the resulting quasiparticle
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wave functions ψqpν are not orthogonal and quasiparticle energies are complex.

In most GW applications, a perturbative approach is used to solve equation (3.7). Based

on the similarity of the quasiparticle and the Kohn-Sham equations, one usually supposes that

the Kohn-Sham wave functions are in close agreement with the quasiparticle wave functions

and that the perturbation (Σ− Vxc) is small with respect to the complete Hamiltonian [55].

It has been demonstrated early, in the case of silicon, that the self-energy is indeed diagonal

in the DFT -LDA basis [3]. To �rst order in the perturbation, one can then approximate the

quasiparticle energy by:

εqp,ν = εKSν +
〈
ψKSν

∣∣Σ (εqp,ν)− Vxc
∣∣ψKSν 〉

. (3.8)

Linearizing the above equation in the vicinity of the Kohn-Sham eigenvalues εKSν removes the

dependence of Σ on the solution εqp,ν and leads to:

εqp,ν ≈ εKSν + ZKSν

〈
ψKSν

∣∣Σ (εKSν )
− Vxc

∣∣ψKSν 〉
, (3.9)

where the renormalization factor,

ZKSν =

1− ∂Σνν (ω)

∂ω

∣∣∣∣∣
ω=εKSν

−1

with Σνν (ω) =
〈
ψKSν |Σ (ω)|ψKSν

〉
,

accounts for dynamical e�ects of the self-energy. In the standard procedure, quasiparticle

energies are obtained within a single-shot GW approach from equation (3.9), usually referred

to as G0W0 method [3]. Single-particle Kohn-Sham eigenvalues are used to construct the

non-interacting (mean-�eld) Green's function G0, from which in turn the non-interacting

irreducible polarizability, the zero-order screened Coulomb potential and the single-shot self-

energy are obtained:

εKS , ψKS

⇓
G0 =

∑
ν

ψ∗KS,ν(r)ψKS,ν(r′)

ω−εKSν ±iη =⇒ P0 = −iG0G0 =⇒W0 = v + vP0W0 =⇒ Σ = iG0W0.

Here, the laborious calculation of self-consistent GW quantities is avoided, thus providing a

computationally feasible and consequently a very popular GW scheme. However, since input

single-particle energies are corrected within one cycle only, a dependence of the GW result on

the underlying single-particle calculation is induced. This has been recently demonstrated for

several molecular systems, where both Hartree-Fock and DFT calculations applying diverse

(semi)local and hybrid functionals have been evaluated as a starting point [6, 7, 48, 130,

196, 201]. Discrepancies concerning the quasiparticle energies amount to 1 eV for very small

molecules. Further, it was shown that standard G0W0 calculations based on DFT -LDA

obviously underestimate fundamental gaps (see Fig. 3.2), due to an overscreening when

building the screened Coulomb potential with too small DFT -LDA gaps. DFT -KS with

hybrid functionals seems to be a more suited starting point compared to (semi)local functionals

125



CHAPTER 3. THE GW/BSE METHOD IN PRACTICE

such as LDA or PBE [48]. However, it is indicated that none of the approaches can be

considered as generally reliable and that the amount of exact exchange needed to be included

in the hybrid functional is not clear at �rst sight. This points out the need to improve on the

standard G0W0 scheme. By way of example, there are approaches searching for a unique and

consistent DFT -KS starting point by determining the appropriate amount of exact exchange

in the hybrid functional for each system under study [201]. In this work, we rather focus on

self-consistency in the GW scheme as a mean to overcome the starting point dependence.

Self-consistent schemes In order to bypass the starting point dependency of the pertur-

bative G0W0 approach, it would be desirable to have a self-consistent scheme starting from

input single-particle eigenstates and eigenvalues, which are iteratively updated and converged.

The most intuitive way is to start from a non-interacting Green's function G0, which is used

to obtain the corresponding self-energy through Hedin's cycle. The latter in turn serves to

calculate an updated Green's function through the inversion of Dyson's equation. One thus

repeats the following cycle until the Green's function obtained from the Dyson equation equals

the G used to calculate Σ:

εKS , ψKS

⇓
G0, G =⇒ P = −iGG
⇑ ⇓
Σ = iGW ⇐= W = v + vPW

Such a fully-self-consistent scheme guarantees that the obtained results are independent of

the starting point. It allows to obtain self-consistent Green's functions, from which converged

spectral functions or total energies, e.g. through the Galitskii-Migdal equation [92], can be

directly deduced. If one is interested in the excitation energy spectrum, a similar scheme

involving the self-consistent solution of the quasiparticle equation can be applied. This is

computationally very demanding, since, due to the non-Hermitian nature of the self-energy,

left and right eigenvectors of the Hamiltonian (H0 + Σ) have to be considered and its energy-

dependence implies a matrix eigenvalue problem for each energy grid point. Due to the

enormous workload fully self-consistent schemes imply, only few works have been carried out

so far. For solids, the quality of fully self-consistent schemes is strongly debated [150, 205,

206, 207, 208]. By way of example, for the homogeneous electron gas, a worsening of the

spectral function with a strong underestimation of the quasiparticle weight as compared to

the incoherent part has been observed, whereas the total energy shows an excellent agreement

with Monte Carlo calculations [205]. On the contrary, in the case of Si andGe an improvement

of the band gaps compared to perturbative single-shot calculations has been demonstrated

[206]. Concerning �nite systems, such as atoms or molecules, full self-consistency seems to

perform better than G0W0 starting from (semi)local functionals, however, G0W0 calculations

based on hybrid functionals yield an equivalent quality. Again, owing to the complexity of

the problem, only few studies are available [189, 193, 202].

As an alternative to fully self-consistent schemes, di�erent less demanding self-consistent
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self-consistency on:

wave functions eigenvalues
evCOHSEX �

√

scCOHSEX
√ √

G0W0 � �
evGW �

√

Table 3.1.: Short overview of the di�erent many-body perturbation theory GW and COH-
SEX schemes available in the FIESTA code [6].

GW approaches have been recently introduced. Faleev and coworkers [208] developed the

so-called quasiparticle self-consistent GW scheme (QPscGW ), where the true self-energy is

�rst approximated by a Hermitian self-energy, following:

〈i|ΣQPscGW |j〉 =
1

2
< [〈i|Σ (εqp,j) |j〉+ 〈j|Σ (εqp,i) |i〉] .

This greatly simpli�es the fully self-consistent solution. After convergency is reached, equation

(3.8) is evaluated at the obtained quasiparticle energies. This approach has been shown

to yield accurate quasiparticle energies in solids [208, 209]. However, even though much

less demanding than a standard fully self-consistent scheme, its computational costs are not

negligible [151]. In this work, we want to access the reliability of two self-consistent schemes,

which are less expensive and thus promising for calculations on large molecular systems. One

is a simple partially self-consistent approach, where only the eigenvalues are updated in each

cycle, whereas the DFT -KS input eigenstates are unchanged [6, 7, 10, 210]. This approach

will be labeled evGW in the following. The other one consists of a self-consistent COHSEX

calculation to improve the DFT -KS starting point, followed by a partially self-consistent GW

calculation to obtain converged quasiparticle energies. Self-consistency at the COHSEX level

can be partial, i.e. on the eigenvalues only (evGW@evCOHSEX), or both on the eigenvalues

and eigenfunctions (evGW@scCOHSEX) [10, 209]. See Table (3.1) for an overview of the

di�erent approaches.

3.2. The GW formalism applied

3.2.1. The studied system: the model dipeptide

The present GW study [10] comprises a small - even though delicate - system, namely a model

dipeptide based on the N-methylacetamide C3H7NO molecule (see Fig. 3.5). It represents a

model system which was initially chosen by Serrano-Andrès and Fülscher [47] to mimic the

essential optical properties of polypeptides, i.e. small proteins consisting of amino acides. The

latter are biologically important organic compounds possessing at least one amine (−NH2)

and one carboxylic acid (−COOH) functional group. In peptides and proteins, they are cova-

lently bound to each other through peptide bonds [−C(= O)NH−] and form long molecular

chains. Due to the large amount of atoms present in polypeptides, ab initio studies on their

optical properties are very demanding. However, since optical spectra are supposed to be
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Figure 3.6: Isocontour representation of the Kohn-Sham
wave functions around the gap classi�ed by
their σ- or π-character. The highest occupied
molecular orbital (HOMO) and the lowest un-
occupied molecular orbital (LUMO) are sin-
gled out in a green and orange box, respec-
tively. The asterisk denotes unoccupied or-
bitals, the subscripts (1, 2) the peptide unit
on which the orbital is localized. The order-
ing corresponds to the DFT -LDA ordering.
Carbon atoms are represented in gray, oxy-
gen in red, nitrogen in orange and hydrogen
in white, respectively.

basis combined with standard RI-V techniques [130, 214, 215]. The used auxiliary basis is

composed of six primitive Gaussian functions (e−αr
2
) per l-channel, up to l = 2 orbitals for

�rst row elements. The localization coe�cients α possess an even-tempered distribution [138]

ranging from αmin = 0.10 Bohr−2 to αmax = 3.2 Bohr−2, except for hydrogen, where the

coe�cient goes from αmin = 0.10 Bohr−2 to αmax = 1.5 Bohr−2.

3.2.3. Beyond the scissor operator: level crossings

Following the results of previous G0W0@LDA studies, showing that this approach leads to

too small ionization energies, gaps and optical excitation energies [6, 7, 8], we test the par-

tial self-consistency evGW scheme for the dipeptide with an update of the eigenvalues [10].

It is important to note that we explicitly calculate the quasiparticle correction for several

occupied and unoccupied energy levels around the gap, while the remaining eigenvalues are

correspondingly shifted.2 This is an extension to standard G0W0 approaches, in the following

denoted GW Scissor, where usually only a quasiparticle correction to the HOMO and LUMO

is calculated. The partially self-consistent cycle is repeated until convergency is reached for

the quasiparticle energies. Implying a threshold of about 0.01 eV, the quasiparticle energies

2We performed a convergency test with a GW correction on the 10/15/20 highest occupied and lowest
unoccupied states. The resulting excitation energies for the W1, W2, CTa and the CTb exciton converge
within 0.05 eV with respect to the number of self-consistently corrected (un)occupied states.
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state DFT-LDA scCOHSEX
HOMO -6.20 -10.63
HOMO-1 -5.79 -10.88
HOMO-2 -6.89 -11.37
HOMO-3 -6.68 -11.62

evGW@LDA evGW@scCOHSEX G0W0@LDA G0W0@scCOHSEX
HOMO -9.47 -9.31 -8.71 -9.46
HOMO-1 -9.60 -9.57 -8.44 -9.75
HOMO-2 -10.28 -10.06 -9.46 -10.21
HOMO-3 -10.34 -10.28 -9.23 -10.46

Table 3.2.: Compilation of the four highest occupied energy level eigenvalues as obtained
within the di�erent approaches discussed in the text. Notice that the given
DFT -LDA and G0W0@LDA eigenvalues are switched, in order to match them
to the correct evGW ordering. The presented GW results correspond to a quasi-
particle correction explicitly calculated for 20 states around the gap. DFT -LDA
eigenvalues strongly di�er from evGW , whereas a self-consistent scCOHSEX al-
ready gives the right ordering and level spacing. Even though the occupied
levels are shifted by about 1 eV to too low energies, the scCOHSEX approach
is a valuable starting point for evGW and even G0W0 calculations (see col-
umn evGW@scCOHSEX and G0W0@scCOHSEX). Concerning the G0W0@LDA
approach, even though several states around the gap are corrected, the right or-
dering can not be restored within a single-shot G0W0 calculation. Consequently,
the reliability of the G0W0 Scissor approach as commonly applied seems ques-
tionable in this case.

Hermitian within this approach. This opens the door to e�cient fully self-consistent quasi-

particle calculations, since the eigenvectors are orthogonal and solutions to the same static

and Hermitian operator.

The approach studied in this work [10] consists of fully self-consistent scCOHSEX calcu-

lations with an update of both eigenvalues and eigenfunctions. These serve as an input for

subsequent G0W0 or evGW calculations [209]. The obtained results are compiled in Table

(3.2). In the case of transparent conductive oxides and quaternary thin �lms for photovoltaics

[217, 218] or for bulk gold [219], the G0W0@scCOHSEX approach has been shown to yield

excellent results in semiconductors combining extended and localized states [209, 220]. Very

recently, Korbel and coworkers con�rmed this observation for small transition metal clusters

using the FIESTA package [221].

In this section, we are interested in assessing the quality of the self-consistent scCOHSEX

scheme as a starting point for evGW calculations on molecules. It is important to have

in mind that in the present contour deformation implementation, calculating repeatedly the

GW correction to several states away from the gap turns out to be expensive due to the poles

contribution. In addition, we want to test one of the common approximations in the GW

community, namely the assumption that the Kohn-Sham and quasiparticle eigenfunctions

strongly overlap, even though the energy gap may di�er signi�cantly. By way of example, in

the case of simple bulk systems, an agreement of 99.9% has been claimed [3], which justi�es

the presented perturbative GW approach. However, a well-known example, where such an
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is a π1 state, located (0.25, 0.74, 0.99) eV above the σ1, π2 and σ2 states, respectively. This

can be compared to spacings of (0.26, 0.75, 0.97) eV within the evGW@scCOHSEX value.

Such an excellent agreement in level ordering and energy spacing, together with a better

HOMO-LUMO gap, indicates that the scCOHSEX eigenvalue spectrum is certainly a better

starting point for evGW calculations as compared to the DFT -LDA approach. In particular,

a simple G0W0@scCOHSEX Scissor approach, correcting only the HOMO and LUMO, yields

already very similar results as compared to a full evGW@scCOHSEX calculation correcting

a large number of states around the fundamental gap.

Inferring a better quality of the scCOHSEX eigenfunctions from the strongly ameliorated

energy spectrum, as compared to Kohn-Sham DFT -LDA calculations, remains a di�cult

issue. However, the analysis of the scCOHSEX σ1 and π∗2 states indicates that they project

within 99.8% and 98.9%, respectively, onto the corresponding DFT -LDA eigenstates. This

demonstrates that the Kohn-Sham and scCOHSEX eigenstates do not di�er signi�cantly, in

contrast to the very large discrepancy for the eigenvalue spectra. For the sake of illustration,

in Fig. (3.8), we plot the DFT -LDA, scCOHSEX and Hartree-Fock σ1 and π∗2 wave functions,

where the charge is averaged within planes perpendicular to the molecular "axis". For the

occupied σ1 state, theDFT -LDA, scCOHSEX and Hartree-Fock wave functions (dotted lines)

are nearly indistinguishable. However, for the π∗2 state (full lines), di�erences start to appear

in particular at the Hartree-Fock level. Clearly, the scCOHSEX wave function is closer to the

DFT -LDA one, even though the scCOHSEX (and evGW ) quasiparticle spectrum is closer

to the Hartree-Fock one.

3.2.5. Conclusion

In conclusion, the presented GW results on the model dipeptide aimed at studying the per-

formance of two computationally e�cient self-consistent GW schemes. We now summarize

the main conclusions of the present study:

� The G0W0@LDA Scissor approach, where only HOMO and LUMO are explicitly cor-

rected, fails as the HOMO-LUMO gap is underestimated and, importantly, the ordering

of occupied states close to the gap is wrong. This subsequently leads to optical spectra

di�cult to compare to experiment.

� WhileDFT calculations with hybrid functionals may possibly be a better starting point,

we explored inexpensive partially self-consistency GW schemes in order to come up with

an approach that does not depend on the starting guess. Moreover, this approach is

supposed to work equally well for extended solids of various kind (sp- or spd-systems)

and molecular systems.

� The evGW@LDA scheme, namely an approach where only the eigenstates are updated,

has been shown to yield very accurate quasiparticle energies for the present π-conjugated

molecules without transition metal atoms. This was demonstrated for example during

our diploma thesis in the case of DNA/RNA nucleobases (for details see Ref. [7]),
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showing similar important level crossings from DFT -LDA to GW . However, the prob-

lem of level crossings requires that GW calculations are performed several times for a

large number of corrected states, implying important computational costs related to the

present contour deformation techniques (contribution from the poles).

� The inexpensive self-consistent scCOHSEX scheme leads to a much better starting point

for GW calculation. Not only the gap is closer to the quasiparticle value, but the order-

ing and spacing of the occupied state is found to be accurate. Consequently, an evGW

correction calculated for the HOMO and LUMO only, or even a G0W0@scCOHSEX

calculation, leads to results of the same quality than performing evGW on a large set

of levels. Therefore, this is becoming our preferred option for large molecular systems.

� For the model dipeptide, despite the presence of localized σ-states su�ering from signif-

icant self-interaction problems, the scCOHSEX wave functions were not found to di�er

very signi�cantly from the DFT -LDA ones, just as usually assumed in extended solids

with delocalized (s,p) electrons.

We �nally conclude this section by admitting that, contrary to the DNA/RNA nucleobases,

our evGW calculations could not be compared to higher level theory or experimental data.

Since the "proof of the pudding is in the eating", we now turn to the absorption spectrum for

which comparisons can be directly drawn.

3.3. The BSE formalism applied: charge-transfer excitations

3.3.1. Charge-transfer excitations

In the presented BSE calculations, we study the optical properties of two systems, one is

the already introduced dipeptide, the other one is a family of organic dyes, namely coumarin

molecules of interest for dye-sensitized solar cells. They have in common that their lowest-

lying optical excitations are so-called charge-transfer (CT ) excitations. The latter are a

special class of electron-hole excitations, where the excited electron and the created hole

are spatially separated from each other. These non-local excitations are very interesting

both from a fundamental and an applied point of view. Apart from the fact that they

are often the principal excitations in organic molecules composed of functional groups with

di�erent electro-negativity (push-pull systems), they are believed to represent the intermediate

state between bound electron-hole pairs and dissociated free carriers in organic solar cells

[39, 40, 41]. However, the exact mechanisms leading to charge separation remain rather

controversial [21, 37, 38], urging for computational quantum mechanical studies which allow an

accurate exploration of local and CT excitations at various energies. Moreover, since it is also

believed that they allow an e�cient charge separation, molecules characterized by low-lying

CT excitations are promising candidates for organic photovoltaics [50, 28, 29, 222, 223, 224].

Recently, we already demonstrated that our GW/BSE approach works well for intermolecular

CT excitations, where the excited electron and hole are located on two di�erent molecules
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[8, 44]. We now want to tackle a situation which often occurs in nature, namely the problem of

intramolecular CT excitations, where donor and acceptor are situated on the same molecule.

Treating CT excitations theoretically using ab initio methods remains di�cult. Wave

function-based quantum chemistry methods such as complete active space second order pertur-

bation theory (CASPT2) or multi-reference con�guration interaction (MRCI) methods [225]

yield accurate results, however, they are computationally too demanding to treat systems

with more than a few tens of atoms. At the density functional theory level, constrained DFT

formalisms [226, 227] have proven to be extremely e�cient in providing a good description of

the lowest-lying CT excitations in rather large systems, but generalizing such techniques to

higher excited states remains a di�cult issue. Further, excited states wave functions, needed

to calculate e.g. transfer rates, are not available. Another candidate is time-dependent density

functional theory (TDDFT) [35, 36, 125], where one obtains optical excitations properties of

systems signi�cantly larger than that amenable to e.g. CASPT2 or MRCI approaches. While

describing very well local optical excitations, applied with standard (semi-)local functionals,

it fails in reproducing CT excitations in most instances and can not be considered reliable.

The reason is that long-range interactions between electrons and holes which are distant to

each other and which are (almost) not overlapping can not be treated properly with these

local functionals [228, 229, 230]. This can be made clear by considering the TDLDA case,

where one �nds within Casida's e�ective eigenvalue formulation [124] that the resonant matrix

elements read (see preceding chapters):

Hdiag
vc,v′c′ = δvv′δcc′

(
ε0
c − ε0

v

)
,

Hexch
vc,v′c′ =

´
drdr′φv (r)φ∗c (r) v (r, r′) φ∗v′ (r

′)φc′ (r
′) ,

HLDA
vc,v′c′ =

´
drφv (r)φ∗c (r) ∂V LDAxc

∂n(r) φ∗v′ (r)φc′ (r) .

Clearly, the product of φv (r) and φc (r), and consequently the two electron-hole interaction

terms, go to zero for excitations, where the electron φc and the hole φv do not overlap, since

the wave functions depend on the same space variable. As a consequence, one ends up with

the diagonal part, i.e. with the time-independent Kohn-Sham eigenvalue di�erences
(
ε0
c − ε0

v

)
,

and electron-hole interactions are neglected. More speci�cally, for long-range CT excitations,

where an electron is promoted from a donor to a distant acceptor,5 Mulliken's rule should

be satis�ed. The latter states that the lowest charge-transfer excitation energy EexcCT equals

[82, 231]:

EexcCT = IED − EAA −
1

R
,

where IED is the ionization energy of the donor, EAA the electron a�nity of the accep-

tor and R = |〈re〉 − 〈rh〉| the donor-acceptor distance, given by the average position of the

excited electron 〈re〉 and hole 〈rh〉. This implies that the charge-transfer excitation energy

is determined by the fundamental energy gap of the entire complex (IED − EAA) and the

5It is assumed that the chemical interaction between the donor and the acceptor is negligible.
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electron-hole binding energy (1/R). Within TDLDA, this limit is not correctly reproduced

and the 1/R term is completely neglected [50]. Further, (IED − EAA) reduces to the too

small DFT -LDA gap. Within the BSE approach, the exchange contribution Hexch also

vanishes for CT excitations. However, the screened part Hscr does not necessarily go to zero,

since the electron wave function φc and the hole wave function φv depend on di�erent space

coordinates. Instead, φv (φc) and φv′ (φc′ ) depend on the same space coordinate, which

yields non-zero densities for v = v′ and c = c′ weighted by the non-local screened Coulomb

potential W :

Hscr
vc,v′c′ = −

ˆ
drr′φv (r)φ∗c

(
r′
)
Wstat

(
r′, r

)
φ∗c′
(
r′
)
φv′ (r) .

Clearly, the correct 1/R Mulliken limit is automatically obtained within BSE, which can be

made clear setting v = v′, c = c′, |φv (r)|2 = δ (r− 〈rh〉) and |φc (r)|2 = δ (r− 〈re〉). This

yields for the screened exchange term:

Hscr
LR = − 1

εM R
,

which is the long-range limit ofWstat. For donor-acceptor systems in vacuum, the macroscopic

dielectric function equals εM = 1. Since the diagonal part of the Bethe-Salpeter resonant

Hamiltonian yields the quasiparticle energy di�erences
(
εGWc − εGWv

)
and since the exchange

term goes to zero for charge-transfer excitations, one directly arrives within the long-range

limit of the screened exchange contribution Hscr
LR in vacuum at the Mulliken limit:

EexcCT = IEGWD − EAGWA − 1

R
.

This has been recently shown for the case of intermolecular CT excitations in the zinc-

bacteriochlorin/bacteriochlorin complex [44], as depicted in Fig. (3.9).

The encountered di�culties within TDLDA paved the way for the success of non-local

hybrid functionals [49, 82, 174, 175, 176]. Analogue to the time-independent case, one can

also set up a generalized TDDFT scheme with Fock-like non-local potentials. In this case, an

additional term appears in the Hxc
vc,v′c′ contribution:

Hxc
vc,v′c′ =

´
drφv (r)φ∗c (r) fsl,γxc (r) φ∗v′ (r)φc′ (r)

+
´
drdr′φv (r)φ∗v′ (r) uκ (r, r′) φ∗c (r′)φc′ (r

′) .
(3.10)

The short-range exchange and correlation are governed by the (semi)local exchange-correlation

kernel fsl,γxc , whereas long-range is included through uκ (r, r′) = erf(κ|r,r′)
|r−r′| . This is the most

general form, also applicable for range-separated hybrid functionals. Concerning limiting

cases, provided that uκ is zero and fsl,γxc the standard LDA exchange-correlation functional,

one retrieves the TDLDA scheme. The case of TDDFT with hybrid functionals is obtained

by setting uκ to (α/ |r− r′|), i.e. by introducing a �xed amount of exact exchange [82].

Concerning charge-transfer optical excitations, from equation (3.10), it becomes immediately

clear that similar to (semi)local functionals, also standard hybrid functionals do not correctly
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Figure 3.9.: GW/BSE optical excitation energies as a function of the zinc-bacteriochlorin
(ZnBC) to bacteriochlorin (BC) distance R. The small box on the right indi-
cates the represented GW/BSE intramolecular (Q-band and higher lying Soret
B transitions) or charge-transfer transitions between the two molecules. The
lowest lying ZnBC→BC charge-transfer excitation energy is compared to the
(EGWg −e2/D) Mulliken limit (thick gray line), where EGWg is the GW quasipar-
ticle gap of the dimer in the large D limit, where D is the distance between the
two molecule centers. For the sake of comparison, the TDLDA values for the
two lowest lying CT excitations are indicated by the two non-dispersive dotted
lines below 1.5 eV. The two vertical arrows indicate the di�erence between the
TDLDA and GW/BSE values. Figure and caption (both modi�ed) taken from
Ref. [44].

reproduce the long-range Mulliken limit. Since Hexch and the local exchange-correlation term

in Hxc vanish for a small overlap of the excited electron and the hole, the lowest excitation

energy is given by:

EexcCT = IED − EAA −
ˆ
drdr′φv (r)φ∗v′ (r) uκ

(
r, r′

)
φ∗c
(
r′
)
φc′
(
r′
)
.

As it is depicted in Fig. (3.3), only certain, speci�cally designed range-separated hybrid

functionals show the right 1/R dependence in the long-range and correctly describe charge-

transfer excitations. However, for standard hybrid functionals, the lowest CT excitation

energy reduces to:

EexcCT = IED − EAA −
α

R
,

i.e. one �nds a reduced electron-hole binding energy of e.g. 20% in the case of B3LYP.

Range-separated hybrids give precise results both for local and CT excitations [49, 82, 174,

175, 176]. However, they contain adjustable parameters, which are not known a priori. They

have to be determined either semi-empirically by �tting ground state properties of a given

set of molecules or by taking into account physical criteria applying to the speci�c system
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[50]. The transferability from one system to another remains di�cult, since it has been shown

that the optimal value for these parameters can be strongly system-dependent and even state-

dependent [223, 232, 233]. Within GW/BSE, on the contrary, the screening is determined by

the system itself instead of being �xed at the beginning. This makes this approach universal

and systems ranging from metals with a very e�ective screening to molecules with poor screen-

ing properties should be equally accessible. The strength of the screening is automatically

adjusted and thus both local and CT excitations are reproduced. In the following, this will

be discussed �rst for the model dipeptide and second for the coumarin family, both showing

intramolecular CT excitations. High-quality quantum chemistry and TDDFT calculations

serve as a valuable reference.

3.3.2. Charge-transfer excitations in the model dipeptide

3.3.2.1. Background and Notation

The studied model dipeptide was originally introduced in Ref. [47] to rationalize the origin

of the 7.3-7.5 eV absorption structure common to many polypeptides in gas phase. This

work revealed the importance of intramolecular CT excitations between neighboring peptide

units and subsequently, the dipeptide served as a test case for intramolecular CT excitations.

It is one of the �rst examples, where large errors have been observed at the TDDFT level.

This triggered its study by a large variety of approaches, including CASPT2 [47], TDDFT

with various (semi)local, hybrid or range-separated hybrid functionals [49, 234, 235] and

also a Bethe-Salpeter study based on an empirical scissor approach [236]. Di�culties were

encountered to reproduce the CASPT2 results [47] with unusual discrepancies between the

mentioned state-of-the-art techniques. Moreover, a very large sensitivity of CT excitation

energies on the chosen functional parameters within e.g. the same CAM-B3LYP TDDFT

framework was observed [49, 234].

In this work, we focus on two di�erent kinds of optical excitations. On the one hand,

we are interested in valence transitions between states localized on the same peptide unit.

These are labeled W1 and W2 and the electron is promoted from an occupied σi-state to an

unoccupied π∗i -state. On the other hand, we study CT excitations between states localized

on di�erent peptide groups, namely the CTa exciton, a σ1 → π∗2 transition, and the CTb

exciton, a π1 → π∗2 transition. As a reminder, the corresponding Kohn-Sham wave functions

are depicted in Fig. (3.6). Anticipating on our BSE results, Fig. (3.10) illustrates the

studied excitations by providing an isocontour representation of the hole-averaged electron

distribution (transparent green) as obtained from the expectation value of the electron density

operator δ(r − re) on the corresponding two-body ψ(re, rh) BSE eigenstate. Similarly, the

electron-averaged hole distribution is represented (gray wireframe). The clear CT character

of the CTa transition and the partial CT character of the CTb excitation can be readily

veri�ed.

Concerning the technical details of the BSE calculations presented in the following, we go

beyond the already introduced Tamm-Danco� approximation (TDA). This implies that the

coupling between resonant (R) and anti-resonant (R∗) transitions is explicitly treated, i.e.
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TDDFT
LDA B3LYP LC-LYP CAM-B3LYP

Ref. [236] FIESTA Refs. [49, 234] Ref. [49] (0.65)
a

(0.8)
b

W1 5.30 5.40 5.49/5.55 5.56 (0.001) 5.65/5.68 (0.001) 5.72 (0.001)
W2 5.66 5.73 5.73/5.77 5.80 (0.000) 5.88/5.92 (0.000) 5.95 (0.000)
CTb 5.15 5.13 6.06/6.15 7.02 (0.043) 6.94/7.00 (0.018) 7.24 (0.040)
CTa 4.61 4.63 6.24/6.31 8.38 (0.000) 7.88/7.84 (0.000) 8.58 (0.000)

GW/BSE CASPT2c

@LDA @COHSEX
W1 5.55 (0.001) 5.58 (0.001) 5.62 (0.001)
W2 5.79 (0.000) 5.80 (0.000) 5.79 (0.001)
CTb 7.20 (0.095) 7.13 (0.063) 7.18 (0.134)
CTa 8.36 (0.000) 8.58 (0.000) 8.07 (0.000)

Table 3.3.: Singlet excitation energies for the model dipeptide as obtained within various TDDFT,
many-body perturbation theory and CASPT2 approaches. Energies are in eV. For
the CAM-B3LYP columns, the (0.65) and (0.8) numbers indicate the (α + β) param-
eter that controls in particular the percentage of long-range exchange. The @LDA

and @COHSEX columns indicate evGW calculations with either DFT -LDA or self-
consistent COHSEX eigenstates as a starting point. Numbers in parenthesis are the
oscillator strengths. Oscillator strengths in the (α + β = 0.65) CAM-B3LYP column
are taken from Ref. [49].
a Refs. [49, 234]
b Ref. [49]
c Ref. [47] (Table II, structure 1a)

The main outcome of the TDLDA or TDDFT-PBE calculations is that CT excitation

energies are much too small. The CT excitations are located below the lowest intramonomer

W1 or W2 transitions. This is in great contrast to the CASPT2 results, where the CT

excitations are found to lie about 1.4 eV to 2.4 eV above the W1 and W2 excitations. Our

TDLDA value (4.63 eV) for the CTa transition, which consists nearly entirely of a transition

between the Kohn-Sham HOMO and LUMO, can be compared to the HOMO-LUMO Kohn-

Sham gap of 4.62 eV. This con�rms that within TDDFT using local exchange-correlation

functionals, the electron-hole interaction term vanishes for spatially separated electron and

hole states and one is left with the energy di�erence between Kohn-Sham states. On the other

hand, the localW1 andW2 transitions, with a strong overlap between �nal and initial states,

are much better described, even though showing a 0.2−0.3 eV red shift for the W1 transition

as compared to CASPT2.

Introducing some amount of exact exchange to the TDDFT kernel allows even spatially

separated electrons and holes to partially interact. Previous TDDFT-B3LYP calculations

(see Table 3.3) indeed show some improvement as compared to TDLDA by locating the CT

states above the W1 and W2 transitions. However, compared to CASPT2 calculations, the

CT excitations energies are still about 1 eV to 1.8 eV too small, as a reminder that the

B3LYP functional captures only 20% of exact exchange. This problem can be cured using

range-separated functionals such as LC-BLYP or CAM-B3LYP, where the CT excitations

come in much better agreement [49, 234] with the quantum-chemistry reference as indicated
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Figure 3.11.: Excitation energies as provided within several theoretical frameworks plotted
against the CASPT2 results (�rst diagonal in red). The TDDFT values with
the B3LYP (blue up triangles) and the CAM-B3LYP (open circles) functionals,
and the present GW/BSE@LDA calculations (green squares) are depicted.
Several CAM-B3LYP values are found for each excitation, showing in partic-
ular the spread of values as a function of the (α+ β) parameter. Energies are
given in eV.

in Table (3.3). Nevertheless, within the CAM-B3LYP method itself, one observes energy

di�erences of the order of 0.7 eV for the CTa exciton, leading to the standard question of the

proper choice of the parameters (α+ β = 0.65 or α+ β = 0.8 in the present case).

Comparing our GW/BSE calculations (@LDA column in Table 3.3) to CASPT2 values, we

�nd an excellent agreement for the W1, W2 and the CTb excitation. The maximum discrep-

ancy is 0.07 eV for theW1 transition, while remarkably both the localW2 and charge-transfer

CTb excitation agree within 0.02 eV.7 Clearly, tuning the (α, β) and range-separation param-

eters may bring the CAM-B3LYP calculations in better agreement with CASPT2 values, but

we emphasize that the present GW/BSE scheme does not contain any adjustable parameters.

Concerning the oscillator strengths of the respective transitions (see numbers in parenthesis

in Table 3.3), the GW/BSE values are in reasonable agreement with the CASPT2 reference.

The LC-BLYP and CAM-B3LYP values also agree for the transitions with vanishing oscil-

lator strength, whereas they signi�cantly underestimate the value of the oscillator strength

for the CTb exciton, where the GW/BSE oscillator strength is closer to the CASPT2 value.

Obtaining an excellent agreement between the various formalisms proves more di�cult for

the oscillator strengths than for the corresponding excitation energies.

The largest discrepancy between the present GW/BSE@LDA and available CASPT2 cal-

culations is of 0.3 eV for the CTa excitation. For such a transition, our GW/BSE value is

7The use of the Tamm-Danco� approximation at the GW/BSE level leads to increased excitation energies
and a deteriorated spectrum as compared to CASPT2. In agreement with the 0.15 eV blue shift reported
by Rocca and coworkers [236], the largest TDA induced shift concerns the CTb excitation energy, which is
blue-shifted by 0.17 eV in our calculations. The TDA further induces a small blue-shift of 0.03 eV for the
W1 and W2 transitions, in perfect agreement with Ref. [236]. The CTa charge-transfer state is marginally
a�ected by a 0.01 eV blue-shift.
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in nearly perfect agreement with the LC-BLYP prediction, lying in between the two CAM-

B3LYP values. As evidenced in Table (3.3) and Fig. (3.11), observing the rather large ∼ 0.7

eV variation between the two CAM-B3LYP values, such a transition is clearly very sensitive to

the details of the exchange and correlation potential. Before commenting on such a deviation,

we will test the impact of using frozen Kohn-Sham LDA eigenstates in the present GW and

Bethe-Salpeter approach here below.

3.3.2.3. GW/BSE calculations starting from self-consistent COHSEX eigenstates

The results of our GW/BSE study starting from self-consistent COHSEX eigenstates and

eigenvalues is presented in the column "@COHSEX" of Table (3.3). As compared to

GW/BSE calculations where the Kohn-Sham eigenstates are kept frozen ("@LDA" column),

the W1 and W2 excitation energies hardly change by a maximum of 0.03 eV for the W1 tran-

sition. The largest variation is again related to the CTa transition, with an increase of 0.22

eV. This worsens the agreement with the CASPT2 value, but brings our GW/BSE calcula-

tions in excellent agreement with the CAM-B3LYP (α+ β = 0.8) results. Such an evolution

can be traced back to a ∼ 0.2 eV blue-shift of the π∗2 energy level within GW@COHSEX as

compared to GW@LDA. The oscillator strength associated with this transition is also seen

to adopt a smaller value, worsening the agreement with the CASPT2 value, but improving

the agreement with the CAM-B3LYP result.

It is interesting to observe that what we may consider to be our most accurate values, namely

our evGW/BSE calculations based on scCOHSEX eigenstates, come in excellent agreement

with the CAM-B3LYP value with enhanced long-range exchange, namely setting (α + β) to

0.8 instead of the original 0.65 value. In the case of CT excitations, the correct long-range

Mulliken limit can only be reproduced with a long-range (α+ β = 1) parametrization of the

CAM-B3LYP functional (see Fig. 3.3). As such, the (α + β = 0.8) functional provides in

principle a better description of the long-range CT electron-hole interaction. Very consistently,

the LC-BLYP functional, with a proper asymptotic scaling, locates the CTa transition at 8.38

eV [49], in much better agreement with our GW/BSE values than the CASPT2 prediction.

However, the analysis of the contributing wave functions in Fig. (3.10) shows that the CTa

transition in the dipeptide is far from the ideal case of the long-range well-separated electron-

hole CT limit. Overall, our GW/BSE@COHSEX results show a mean absolute error of 0.1

eV and 0.08 eV as compared to CAM-B3LYP (α+ β = 0.8) and LC-BLYP, respectively.

Regarding previous studies on CT excitations within the present GW/BSE formalism,

with typical errors of the order of 0.1 eV as compared to experiment, TDDFT with optimized

range-separated functionals or CASPT2 calculations [8, 44, 240], the present 0.3 eV to 0.5

eV discrepancies for the CTa transition are somehow unusual, even though dramatically

smaller than the typical errors induced by TDDFT calculation with (semi)local kernels or

even B3LYP. The 0.7 eV di�erence obtained between CAM-B3LYP calculations with various

parametrizations [49] indicates that such variations cannot be explained by di�erences in

running parameters (basis sizes and type, pseudopotential, etc.), but really hinge on the

sensitivity of this transition onto the balance between short- and long-range exchange and
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correlation.

While we cannot comment on the accuracy and limitations of the available CASPT2 calcu-

lations, we certainly can emphasize in particular the lack of double-excitations in the present

GW/BSE formalism and in TDDFT calculations, a possible explanation that would require

more sophisticated treatments such as the inclusion of dynamical e�ects in the screened

Coulomb potential matrix elements at the BSE level [241]. While this is certainly beyond

the scope of the present work, we can conclude that as it stands, the present parameter-free

GW/BSE approach o�ers an accuracy comparable to TDDFT calculations performed with

the best available parametrized range-separated functionals.

3.3.2.4. Conclusion

We studied within the many-body Green's function GW/BSE approach the excitation en-

ergies of a paradigmatic dipeptide. The latter served as a benchmark for describing in-

tramolecular CT excitations in organic systems within various theoretical frameworks, in-

cluding TDDFT with local, classical hybrid and range-separated hybrid functionals, CASPT2

calculations and a previous Bethe-Salpeter study based on an empirical GW Scissor ap-

proach. Based on evGW calculations, our calculated optical excitation energies are found to

agree with CASPT2 calculations within 0.07 eV for the localW1, W2 and the charge-transfer

CTb excitation and a maximum discrepancy of 0.3 eV for the CTa transition. The e�ect of

further updating self-consistently the quasiparticle wave functions within the static COHSEX

approximation leads to rather marginal variations for the W1, W2 and CTb excitations, but

shifts the discrepancy to 0.5 eV as compared to CASPT2 for the ubiquitous CTa transition.

Our BSE calculations based on the GW@COHSEX eigenvalues and eigenfunctions agree very

well with both CAM-B3LYP calculations with enhanced long-range exchange (α + β = 0.8)

and the original LC-BLYP formulation, with a maximum mean absolute error of 0.1 eV. The

present results con�rm the reliability of the parameter-free GW/BSE formalism in describ-

ing local and charge-transfer excitations in organic systems of interest e.g. for photovoltaics,

photosynthesis or photocatalysis.

3.3.3. Charge-transfer excitations in the coumarin family

3.3.3.1. The studied system: the coumarin molecules

Promising to become a low-cost alternative to standard silicon-based photovoltaics, dye-

sensitized solar cells (DSSCs) have been intensively studied over the past 20 years [27, 242].

The most prominent modern DSSCs, also known as Grätzel cells, consist of porous layers of

titanium dioxide (TiO2) nanoparticles covered by a monolayer of an organic dye absorbing the

sun light. The working principle is schematically illustrated in Fig. (3.12). While the most

e�cient sensitizers are composed of ruthenium dye complexes, intense research is conducted

so as to �nd molecular alternatives which are cheaper, easier to synthesize and free from the

resource limitations related to the noble metal ruthenium. As a promising direction, Hara

and coworkers demonstrated that coumarin-based dyes, such as the so-called NKX-2xxx fam-
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ily (see Fig. 3.13), could lead to conversion e�ciencies approaching that of ruthenium-based

DSSCs [28, 29, 30, 31].

Coumarins show very good photoelectric properties [28, 30] and they are an impressive ex-

ample of chemical molecular design. Starting from the originally tested C343 coumarin [243],

the introduction of (-C=C-) methine fragments between the coumarin unit and the terminal

(-COOH) carboxyl group (see Fig. 3.14) induces a red shift of the absorption spectrum [28].

This improves the light harvesting in the visible range, since the absorption edge is shifted to

lower energies (see Fig. 3.16). The resulting molecular structures of the NKX-2xxx family are

represented in Fig. (3.13) showing the so-called (cis) conformations, with a (trans) structural

isomer represented in Fig. (3.14) for one of them. Further, inclusion of the cyano (-C=N)

group enhances the acceptor character of the combined (-COOH) and (-C=N) cyanoacrylic

acid group, increasing the charge-transfer character of the internal excitations. This is be-

lieved to favor the injection of the photoelectron into the TiO2 conduction band through the

anchoring (-COOH) carboxylic unit [28]. Finally, the replacement of the methine spacer by

thiophene chains reduces the adverse aggregation of dyes onto the TiO2 surface, leading to

the NKX-2677 dye with a solar-energy-to-electricity conversion e�ciency of 7.7% [29].

Due to its internal donor-acceptor structure, this family of molecules became also a bench-

Figure 3.12.: Functional principle of an exemplary DSSC with the NKX-2677 coumarin dye:
light is absorbed in the monolayer of the NKX-2677 dye, creating as lowest-
lying excitation a CT state (averaged electron/ hole distribution in green/
orange). The excited electron then goes from the conduction band of the dye
into the conduction band of TiO2 (lower in energy) and �nally in the anode
(not shown). The circuit is closed, as the redox system I−/I−3 transports
electrons from the cathode (not shown) to the dye, which in turn recovers
charge neutrality.
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Figure 3.13.: Symbolic representation of the studied coumarins: (a) parent C343, (b) NKX-
2388 (cis), (c) NKX-2311 (cis), (d) NKX-2586 (cis) and (e) NKX-2677. The
di�erence with the corresponding (trans) structures is represented in Fig.
(3.14) for the NKX-2311 case. Black, white, red, blue and yellow atoms rep-
resent carbon, hydrogen, oxygen, nitrogen and sulfur, respectively.

mark for theoretical studies aiming at solving the already mentioned problem of describing

CT excitations within time-dependent density functional theory (TDDFT) [228, 230]. In

particular, TDDFT calculations with (semi)local [224] and hybrid [50, 222, 223] kernels were

conducted and compared to reference quantum chemistry coupled-cluster CC2 calculations

[222] in order to assess the accuracy of the various approaches. This o�ers us a broad spectrum

of ab initio reference data. In the present work, we analyze the (singlet) excitation energies

of various coumarin-based molecules such as the parent C343 dye and the related NKX-2388,

NKX-2311, NKX-2586 and NKX-2677 structures.

3.3.3.2. Technical details

The used molecular structures have been relaxed at the all-electron DFT-B3LYP 6-311G(d,p)

level using the Gaussian09 package [211]. As a single-particle starting point for the GW/BSE

calculations, DFT -LDA eigenstates and eigenvalues as provided by the SIESTA package [136]

with a large triple-zeta plus double polarization basis (TZDP) are used.

The GW correction is explicitly calculated for the 10 highest occupied and lowest unoc-

cupied levels, whereas the remaining levels are rigidly shifted. We performed iterative GW

calculations with a simple self-consistency on the eigenvalues as presented in the preceding

section. Our auxiliary basis contains six e−αr
2
Gaussian functions for the radial part of each

(s, p, d) channel, with an even-tempered distribution of the localization coe�cients α rang-

ing from 0.1 to 3.2, except for hydrogen, where the range is set to 0.1 to 1.5. As such, our

auxiliary basis contains typically 54 orbitals per atom. Using these running parameters, the
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Figure 3.15.: Calculated lowest optical excitation energies (in eV) as a function of the
coupled-cluster CC2 reference values. Results in perfect agreement with
the CC2 calculations should fall on the diagonal (black line). The present
GW/BSE calculations (empty red squares) are compared to the TD-B3LYP
results of Refs. [222] and [223] (�lled black circles) and the TD-LC-BLYP
data from Ref. [223] (blue triangles up). The coumarins are indicated by
their number (removing the NKX pre�x) with (c) standing for (cis) and (t)
for (trans). The axes' physical length is scaled according to their respective
energy range.

0.48 eV for the NKX-2677 structure. This is certainly the signature that in the long-range

charge-separation limit, the restricted amount of exact exchange in the B3LYP functional [75]

is not enough to account for the correct electron-hole interaction. To illustrate that point,

we plot in Fig. (3.16) the Kohn-Sham HOMO (a, d) and LUMO (b, e) eigenstates associated

with the C343 and NKX-2677 structures. While the HOMO states are found to be rather

delocalized, the LUMO in the NKX-2677 dye is clearly much more localized close to the

electron-acceptor cyanoacrylic group. This results in an enhanced CT character as compared

to the C343 parent molecule.

The nature of the transitions can be better quanti�ed by studying the electron and hole

spatial localization in the excited states. This can be achieved by taking the expectation

value of the electron position operator δ(r=re) over the two-body ψ(re, rh) BSE excitonic

wave function, leading to an electron probability of presence averaged over the hole position.

A similar quantity can be de�ned for the hole spatial distribution. The resulting densities

are provided in Fig. (3.16) with an isocontour representation for the C343 and NKX-2677

molecules. These densities allow to obtain the mean electron or hole positions (see red arrows

in Fig. 3.16) and the related average electron-hole separation distance which amounts to 3.2 Å

in C343. This clear CT character is certainly at the origin of the di�culties met by TDLDA

or TD-PBE to describe such an excitation. In the NKX-2677 case, this average distance

increases to 4.6 Å as a signature of the enhanced CT character, explaining that the B3LYP

results signi�cantly worsen from C343 to NKX-2677.

We now come to the central results of the present study, namely the many-body pertur-
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Figure 3.16.: Isocontour representation of the C343 HOMO (a) and LUMO (b) Kohn-Sham
eigenstates. Di�erent colors indicate di�erent signs of the wave function. In
panels (d) and (e), similar plots for NKX-2677. In panels (c) and (f), isocon-
tour representation of the electron (yellow) and hole (light blue) probability
distribution for the lowest C343 and NKX-2677 optical excited states, re-
spectively, as obtained within BSE. The red arrows indicate the average hole
(left arrow) and electron (right arrow) positions. The C343 and NKX-2677
molecules are not represented on the same scale.

bation theory data. In contrast to the TDLDA, TD-PBE or even TD-B3LYP results, our

GW/BSE values (empty red squares in Fig. 3.15) are in much better agreement with the

CC2 data points, with a mean absolute error of 0.06 eV. Such an agreement is remarkable

accounting for the fact that the present GW/BSE approach does not contain any adjustable

parameter. Concerning the longest NKX-2677 dye, which shows the largest discrepancy with

CC2 calculations, we observe that our result falls within the values provided by the range-

separated hybrid BNL functional study of Ref. [50], where two di�erent strategies to optimize

non-empirically the range-separation parameter have been tested.8 As compared to the RSH-

BNL study, our GW/BSE results di�er by a MAE ranging from 0.04 to 0.07 eV, which is well

within the target maximum error of 0.1 eV. As emphasized in Ref. [50], the CC2 approach is

also not free from approximations and di�erences of the order of 0.1 eV as compared to more

accurate e.g. CASPT2 calculations are certainly to be expected.9

8The range separation parameter is obtained ab initio by minimizing the MAE between the Kohn-Sham
HOMO and/or LUMO eigenvalues and the corresponding quantities obtained with a much more accurate
∆SCF approach for the neutral and charged systems. Depending on the chosen criteria, i.e optimization
of the HOMO only of the neutral and charged systems (�J1� scheme) or of the HOMO and LUMO of the
neutral system (�J2� scheme), slightly di�erent values can be obtained. See Ref. [50].

9It is to be observed that due to computational costs at the time of publication, the CC2 calculations have
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LDA/PBEa B3LYPb LC-BLYPc BNLd J1/J2 CC2b GW -BSE
C343 2.96/3.0 (0.36/) 3.32 (0.60) 3.36 (0.57) 3.5/3.4 (0.7/0.6) 3.44 (0.74) 3.44 (0.57)
2388 (t) 2.90 (0.94) 3.01 (0.88) 3.1/2.9 (1.0/0.9) 2.99 (1.06) 3.04 (0.88)
2388 (c) 2.78 (0.87) 2.85 (0.80) 2.9/2.8 (0.9/0.9) 2.80 (1.00) 2.85 (0.80)
2311 (t) 2.70 (1.35) 2.91 (1.34) 2.9/2.8 (1.6/1.5) 2.89 (1.51) 2.88 (1.37)
2311 (c) 2.35/2.35 (1.05/) 2.56 (1.19) 2.73 (1.12) 2.7/2.6 (1.3/1.2) 2.71 (1.33) 2.67 (1.13)
2586 (t) 2.50 (1.71) 2.81 (1.83) 2.8/2.6 (2.1/2.0) 2.81 (2.01) 2.74 (1.88)
2586 (c) 2.10/2.15 (1.23/) 2.40 (1.55) 2.66 (1.52) 2.6/2.5 (1.7/1.7) 2.66 (1.74) 2.57 (1.59)
2677 2.23 (1.49) 2.67 (1.76) 2.7/2.5 (2.0/1.8) 2.71 (2.17) 2.56 (1.69)

Table 3.4.: Calculated lowest transition singlet energies (eV). The GW/BSE results calcu-
lated in the present study are compared to the TDLDA, TD-PBE, TD-B3LYP,
TD-LC-BLYP, TD-BNL and CC2 calculations. We provide the TD-B3LYP re-
sults from Ref. [222], which are in excellent agreement with the results of Ref.
[223]. The numbers in parentheses indicate the associated oscillator strengths.
The coumarins are indicated by their number (without the NKX pre�x), where
(c) stands for (cis) and (t) for (trans).
a Ref. [224], b Ref. [222], c Ref. [223], d Ref. [50]

Clearly, as compiled in Table (3.4), TDDFT calculations with the LC-BLYP functional [175]

also provide excellent results [223], with a MAE of 0.03 eV as compared to CC2, smaller than

our GW/BSE MAE of 0.06 eV. However, as emphasized in Ref. [223], the range-separation

parameter κ in the LC-BLYP study has been precisely adjusted to minimize the root mean

square error compared to CC2 calculations. The best-�t κ value for these systems (κ = 0.17)

is found to be much smaller than the original value (κ = 0.33) advocated by Iikura and

coworkers [175]. The strong dependence of the optical excitation energies as a function of

κ indicates that the choice of the originally recommended κ = 0.33 value would lead to a

signi�cant overestimation of the transition energies (by as much as 0.3�0.4 eV; see Fig. 4 of

Ref. [223]). This leads to the standard question of the choice and transferability of the range-

separation parameter. One observes, however, that with the best-�t κ value, the correlation

between LC-BLYP and CC2 results is very remarkable, showing that this class of systems can

be described by a unique parameter.

Bearing important consequences on the use of such dyes in DSSCs, our GW/BSE calcula-

tions show as expected that the onset of absorption is signi�cantly red shifted with increasing

size length (see Fig. 3.17). This evolution is in clear contrast with the behavior of CT excita-

tions in well-separated gas phase donor-acceptor dyads where the exciton binding energy scales

as the inverse distance between the two molecules, leading to an increase of the absorption

energy onset. However, contrary to well separated donor or acceptor systems, the quasiparti-

cle HOMO-LUMO gap in donor or acceptor dyads connected by a conducting π-conjugated

bridge does not remain constant with varying bridge length. This is clearly exempli�ed in

Table (3.5), where the GW gap is found to quickly decrease from the C343 molecule to the

longest NKX-2677 dye. Except for the large variation of the electronic a�nity (EA) from the

C343 parent to the NKX-2388 system, analysis of the GW HOMO and LUMO quasiparticle

energies indicates that this gap reduction stems both from a destabilization of the HOMO

been performed with a limited SV(P) basis. See Ref. [222].
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-IE -EA Eg Ee−hb

C343 7.21 0.60 6.61 3.17
2388 (t) 7.12 1.33 5.79 2.75
2388 (c) 7.11 1.50 5.61 2.76
2311 (t) 6.93 1.55 5.38 2.50
2311 (c) 6.92 1.71 5.21 2.54
2586 (t) 6.76 1.70 5.06 2.32
2586 (c) 6.77 1.85 4.91 2.34
2677 6.52 1.62 4.90 2.33

Table 3.5.: Calculated GW ionization energy (IE), electronic a�nity (EA) and HOMO-
LUMO gap Eg. The given electron-hole binding energy Ee−hb equals the GW
gap minus the �rst optical excitation energy, Ee−hb = Eg −Eexc1 . Energies are in
eV.

explaining that it leads to one of the largest conversion e�ciencies in coumarin based DSSCs.

3.3.3.4. Conclusion

In conclusion, we have studied within the many-body Green's function GW/BSE approach

the excitation energies of a family of coumarin dyes recently shown to be very promising

candidates for replacing ruthenium-based chromophores in dye-sensitized solar cells (DSSCs).

In such donor-bridge-acceptor molecules, the lowest singlet excitations are characterized by a

charge-transfer character that varies with the length of the π-conjugated bridge. As a result,

TD-B3LYP calculations can lead to an error as large as 0.5 eV as compared to reference quan-

tum chemistry coupled-cluster CC2 calculations, despite the 20% of exact exchange contained

in its functional form. We demonstrate that the GW/BSE approach leads to an excellent

agreement with CC2 data with a mean absolute error of the order of 0.06 eV for the excitation

energies. Such an accuracy is comparable to the best results provided by TDDFT calculations

with optimized long-range corrected range-separated hybrids, but with a parameter-free ap-

proach that performs equally well for extended insulating or metallic systems and gas phase

organic molecules. Such an excellent agreement is also demonstrated for the related oscillator

strengths. The ability of the GW/BSE approach to describe both localized and charge-

transfer excitations in �nite size molecular systems or extended semiconductors originates

in particular from the use of the screened Coulomb potential W that automatically adjusts

the strength and range of the Coulomb interactions. This �exibility may prove as a signi�-

cant advantage in the study of DSSCs, where both the organic dye and the extended TiO2

semiconductor must be treated with su�cient accuracy.

After having carefully tested the validity range and accuracy of the presented GW/BSE

approach with respect to ab initio quantum chemistry methods, DFT and TDDFT, we go on

by studying its quality concerning a property directly related to the quasiparticle energies,

namely the electron-phonon coupling (EPC). As discussed in detail in the subsequent section,

electron-phonon coupling in molecular systems is at the heart of several important physical

phenomena, such as the mobility of charge carriers in organic electronic devices [244, 245,

246, 247]. In the following, we study the electron-phonon coupling in two di�erent systems:
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Figure 3.18.: Theoretical oscillator strength as a function of the GW/BSE excitation en-
ergies (eV). The GW/BSE values (red empty squares) are compared to the
CC2 (black diamond), LC-BLYP (blue triangle up) and the BNL J1/J2 (empty
green circles) results. Results for the NKX-2677 and NKX-2586 (cis) molecule
in the dashed box are reproduced in the upper-right inset.

the molecular Buckminster fullerene C60 and the most popular semi-metal graphene.

3.4. E�cient ab initio calculation of electron-phonon coupling

matrix elements

Electron-phonon coupling (EPC), i.e. the interplay between electrons and vibrational eigen-

modes, takes an important place in diverse �elds of research. By way of example, it is

believed to play a prominent role for the transport properties of organic semiconductors

[244, 245, 246, 247], for the exciton dissociation at the donor-acceptor interface in organic pho-

tovoltaics [248], for the life-time of hot electrons in semiconductors [249, 250] and it is also at

the heart of the BCS phonon-mediated theory of superconductivity [251, 252, 253, 254]. Con-

cerning organic systems, we recently demonstrated that the inclusion of electron-phonon cou-

pling e�ects is crucial to obtain accurate band structures in the case of crystalline pentacene

[247, 255]. Organic semiconductor crystals are, contrary to standard inorganic semiconduc-

tors with strongly covalently bound atoms, composed of molecules which are weakly connected

through van der Waals interactions. As such, electronic bands dispersion and electron-phonon

coupling strengths may be of the same magnitude. In the case of crystalline pentacene, which

is a typical study case for organic semiconductors, accurate GW band structure calculations

[256] revealed important discrepancies with experimental ARPES results. Since the GW ap-

proach is among the best available ab initio band structure theories, the errors could not

be explained on the electronic level. Instead, we demonstrated that it is indispensable to

include the interaction of the electrons with the internal vibrations of the molecules. In a
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Figure 3.19.: (a) Color density plot of experimental ARPES data for the two highest occu-
pied bands H1 and H2. The (green) dots are the peak positions as derived from
Gaussian �ts of the individual spectra. The gray line is the ab initio DFT
band dispersion from Ref. [257], in close agreement with GW calculations
within this energy window [256]. (b) Calculated spectrum in the presence of
EPC interactions and disorder (see text). The dots are the experimental peak
positions from panel (a), but now the color density plot originates from the the-
oretical spectra including electronic lifetimes and thus a broadening through
electron-phonon scattering. Figure and caption (modi�ed) taken from Ref.
[247].

non-perturbative dynamical mean-�eld theory (DMFT) approach (S. Ciuchi, S. Fratini), the

intramolecular electron-phonon coupling strength (Holstein approximation) calculated for a

single pentacene molecule at the GW level has been combined with an ab initio band structure

of the pentacene crystal [257] in order to describe simultaneously the molecular (vibrational)

and crystalline nature (band structure) of these materials. The obtained band structure is

in extremely good agreement with the experimental measurements, which is shown in Fig.

(3.19) for the two highest occupied bands, important for hole carrier transport. Our combined

experimental and theoretical study on pentacene has demonstrated unambiguously that �n-

gerprints of the molecular constituents are clearly visible in the electronic energy spectrum.

Since our contribution was �limited� to providing on-site electron-phonon coupling matrix

elements within the many-body GW formalism, a subject that we describe here below in

detail for the Buckminster fullerene case, we do not discuss further this speci�c example, but

directly start analyzing how accurately EPC energies can be calculated.

Concerning ab initio calculations of EPC matrix elements, up to now, mainly DFT -KS and

its perturbative linear response extension (DFPT ) [258, 259] have been applied, providing

remarkable information at the microscopic level. However, several recent studies questioned

the accuracy of the EPC matrix elements calculated within the standard DFT approaches us-

ing (semi)local exchange-correlation functionals, such as LDA. The average electron-phonon

coupling of speci�c phonon modes in graphene [51], the value of the electron-phonon av-

erage potential in the electron-doped Buckminster fullerene C60 [12, 260], superconducting

bismuthates and transition-metal chloronitrides [261], or the renormalization of the photoe-

mission band structure of pentacene [247] and diamond crystals [52], were all shown to be
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strongly a�ected by a signi�cant underestimation of the strength of the EPC matrix elements

as calculated within DFT -KS and (semi)local exchange-correlation functionals. In the fol-

lowing we comment in detail on three of the mentioned cases, namely C60, graphene and

diamond.

The magnitude of the EPC in C60 has been subject to numerous theoretical and experi-

mental studies since the early 90ies, o�ering a variety of reference data. Such a wealth of

data can be explained by the observed superconducting transition of alkali-doped (n-doped)

fullerides, which has been subject of intense research [252]. On the ab initio level, (semi)local

DFT -LDA [12] and DFT -PBE [260] calculations yield a total EPC strength of 73 meV and

76 meV, respectively, for the coupling of all modes to the LUMO level (see below). This is

drastically smaller than available experimental values extracted from PES experiments on C60

in the gas phase, which range from 107 meV to 158 meV. A signi�cant increase on the DFT

level could be achieved by employing the hybrid functional B3LYP, yielding an EPC strength

of 94 meV [260]. Moreover, by varying the amount of exact exchange in the hybrid functional

from the original 20% value to 30%, the EPC strength could be augmented to up to 111

meV [260], resulting in an excellent agreement with the lower and most recent experimental

limit of 107 meV [262, 263]. This demonstrates the sensitivity of the EPC strength on the

used amount of exact exchange. Certainly, it would be possible to build a hybrid functional,

which yields a perfect match with experiment. However, without comparison to experimental

reference data, an estimation of the appropriate amount of exact exchange is di�cult and the

predictive power of this method thus limited. Moreover, the needed amount of exact exchange

may vary from one system to another. Such di�culties do not arise within the GW formalism,

where the screening is, as already discussed in preceding sections, intrinsically adjusted by

the system itself and not arti�cially �xed at the beginning. That gives this method a large

�exibility and systems of di�erent kinds should be accessible on the same footing. Concerning

the C60 molecule, our recent evGW study, as described here below, shows an EPC strength

of 101 meV, which is in excellent agreement with the two most recent experimental results

and 43% larger than the reference DFT -LDA value. This clearly points out the necessity to

go beyond the DFT -LDA approach for the calculation of the EPC in C60.

A similar result has been recently obtained in the case of graphene [51]. Here, the EPC

matrix elements for the coupling of the Γ-E2g and K-A′1 phonon modes with the electronic

states at the Fermi level were studied within a non-self-consistent G0W0 approach starting

from DFT -LDA. Within G0W0, the square of the corresponding EPC matrix elements

(see de�nition below) were shown to increase by 41% and 114%, respectively, as compared

to DFT -LDA. This is consistent with the case of C60. Very importantly, this study on

graphene also demonstrated that DFT -B3LYP yields, contrary to the presented results on

C60, signi�cantly too large coupling constants as compared to experiment. This certainly

points out the di�culty in obtaining hybrid functionals, which are accurate both for �nite

and extended systems.

Concerning the case of diamond, very recently, the band-gap renormalization by zero-point

motion has been studied by means of DFT -LDA, G0W0 and GW [52]. In this context, the

corresponding EPC matrix elements for band edges have been evaluated, since they can be
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directly related to the temperature dependent renormalization of the electronic bands. In Ref.

[264], it was already shown that standard DFT and DFPT methods strongly underestimate

the zero-point renormalization of the direct gap of diamond compared to experiment. By

increasing the zero-point renormalization by more than 40% compared to DFT -LDA, the

recent G0W0/GW calculations from Ref. [52] remedied the discrepancies and restored a good

agreement between theory and experiment.

To conclude, the hitherto results suggest that the EPC strength is signi�cantly a�ected

by the GW correction in both �nite and extended systems. It is therefore important to

go beyond the DFT -KS approach. However, the computational costs of such techniques

represent strong limitations to their application. Unfortunately, the kind of theories that

are available within DFT , and in particular the e�cient density functional perturbation

theory, are not yet available within the framework of many-body perturbation theory. As

detailed later in this section, for GW calculations, one has to pass by demanding frozen-

phonon techniques. These are only feasible for zone-center or zone-boundary phonon modes,

since otherwise large unit cells are needed implying high computational costs. In this work,

we explore less demanding many-body perturbation theory approaches to calculate the EPC.

Namely, we study the accuracy of the COHSEX approximation, both in its single-shot and

its self-consistent version. Further, we also examine the accuracy of a constant screening

approximation, namely we neglect the variations of the screened Coulomb potential W upon

small changes of the atomic positions along the vibrational eigenmodes. These approximations

are evaluated by means of studies on the molecule C60 and the popular semi-metal graphene.

3.4.1. The studied systems

3.4.1.1. Electron-phonon coupling in C60

Electronic properties As already mentioned before, electron-doped fullerenes, so-called ful-

lerides, have attracted much attention, since they show phonon-mediated superconducting

transitions [251, 252, 253]. Fullerenes are cage-like molecules, where one of the most promi-

nent examples of the fullerene family is the Buckminster fullerene C60 (see Fig. 3.20). Under

doping, e.g. with alkali atoms such as sodium or potassium, the electronic structure of the

neutral C60 fullerene is not fundamentally changed. The s-type levels of the alkali atoms

appear close to the second lowest-lying unoccupied C60 level (denoted LUMO-1 in the follow-

ing). Moreover, the C60 LUMO becomes half-�lled by the additional electrons of the dopant,

shifting the Fermi level up from the gap center into the LUMO (see Fig. 3.21).

Following second order perturbation theory for electron-phonon scattering in extended

solids, one obtains the e�ective phonon-mediated attractive potential Vep, i.e. a measure

of the attractive interaction between electrons in a Cooper pair, via [265]:

Vep =
1

M

1

[N (EF )]2

∑
i,j,k

∑
ν,q

gν,q
ω2
ν,q

∣∣∣∣〈ψi,k| ∂V∂uν,q
|ψj,k+q〉

∣∣∣∣2 δ (εi,k) δ (εj,k+q − εi,k − ~ων,q) ,

(3.11)

where M is the atomic mass, N (EF ) the number of states at the Fermi level, ων,q the eigen-
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frequency of the phonon mode and gν,q its degeneracy. Here, an electron in state ψi with wave

vector k is scattered into an unoccupied state ψj with wave vector (k + q) through a phonon

of frequency ων . The phonon gradient represents the variation of the self-consistent potential

V felt by the electrons with respect to the distortion along the vibrational eigenmode uυ,q.

Energy conservation is ensured by the δ−functions. Since phonon energies are typically rather
small, namely only of the order of several meV, only electrons near the Fermi level e�ectively

scatter, where occupied and unoccupied states are close in energy. For molecules, the above

equation valid for solids needs to be adapted to discrete energy levels and becomes in the

so-called molecular limit [266, 265]:

Vep =
1

9M

∑
ν

gν
ω2
ν

3∑
i,j=1

∣∣∣∣〈ψi| ∂V∂uν
|ψj〉

∣∣∣∣2 , (3.12)

where i and j run over states near the Fermi level, i.e. in the case of the electron-doped C60

over the three degenerate LUMO levels.

Phonon properties Within the harmonic approximation, phonon frequencies ων and dis-

placement patterns uIα for an atom I along Cartesian components α can be obtained by

solving the following secular equation:∑
J,β

(
[D]αβIJ − δIJδαβMIω

2
)
uI,β = 0,

where [D] the so-called dynamical or inter-atomic force constant (IFC) matrix:

[D]IJ ≡
∂2E (R)

∂RαI ∂R
β
J

.

Here, E (R) is the Born-Oppenheimer energy surface, i.e. the total energy of the electronic

system depending parametrically on the ion core positions R. As detailed in Ref. [259],

within the framework of DFT -KS, density functional perturbation theory (DFPT) has been

conceived to e�ciently access the second order derivative of the Born-Oppenheimer energy

surface with respect to the atomic positions. Going into details of this formalism is clearly

Figure 3.20: Molecular structure of the Buckminster fullerene
C60: this fullerene is often compared to a soccer
ball, consisting of 12 pentagons and 20 hexagons.
Every carbon atom is covalently bound to three
neighboring atoms. The valence electrons form
three σ-bonds per carbon atom at the molecule's
surface, while the fourth electron is part of a de-
localized π-system perpendicular to the surface.
Due to the curvature of the molecular surface, π-
bonds have both a perpendicular and an in-plane
component, i.e. C60 is partly sp2- and partly sp3-
hybridized.
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beyond the scope of this work and the reader is referred to Refs. [258, 259] for a comprehensive

overview. The phonon eigenmodes and eigenfrequencies used in the presented study on the

C60 molecule are identical to those of Refs. [12, 260] and have been calculated at a DFT -

B3LYP level with a 6-311G* basis. This was shown to yield excellent phonon eigenfrequencies

as compared to Raman experiments [260].

Evaluation of the electron-phonon coupling We now make the connection between EPC

matrix elements and GW calculations. It can be shown that within the present frozen-

phonon approach, the explicit deformation of the molecule diagonalizes the eigenstates with

respect to the perturbation, leaving only the intraband transitions [12, 260, 265]. Further,

using the Hellman-Feynman theorem [267, 268], the expectation value of (∂V/∂uν) on the

|ψi〉 eigenstate can be expressed as the gradient (∂εi/∂uν) of the corresponding energy level,

namely:

V ep = 1
9M

∑
ν
gν
ω2
ν

∑3
i=1

∣∣∣〈ψi| ∂V∂uν
|ψi〉

∣∣∣2
= 1

9M

∑
ν
gν
ω2
ν

∑3
i=1

∣∣∣ ∂εi∂uν

∣∣∣2 , (3.13)

where εi are the LUMO energy eigenvalues as calculated withinDFT -LDA, GW or COHSEX.

Clearly, assuming that the uν vibrational modes are well described within DFT , the quality

of the V ep is directly related to the that of the εi eigenvalues.

For evaluating the matrix element of the electron-phonon coupling, the question arises,

which phonon modes can couple to the LUMO states, i.e. for which modes the matrix element

〈ψi| ∂V∂uν
|ψi〉 is non-zero. Group theory analysis show that the Kronecker product t1u ⊗ t1u of

the LUMO states character only projects on the non-degenerate Ag modes and on the �ve-

fold degenerate Hg modes (see Fig. 3.22). This signi�cantly reduces the number of matrix

elements to be calculated. In total, ten modes can contribute to the coupling, two of Ag and

eight of Hg symmetry. The electron-phonon coupling involving the Ag modes does not lift

the degeneracy, i.e. the three LUMO states change their energy by the same amount under

distortion. On the contrary, concerning the coupling to the Hg modes, the LUMO levels split

Figure 3.21: Schematic representation of the elec-
tronic structure of the alkali-doped C60

fulleride: the completely �lled HOMO
level (blue) is �ve-fold degenerate and
has hu symmetry. The three-fold de-
generate LUMO (orange) has t1u sym-
metry and is half-�lled by the additional
electrons of the alkali dopants. Their s-
orbitals (black), which are nearly degen-
erate with the LUMO+1 state (black),
are therefore empty. As a guide for the
eye, the molecular levels are arti�cially
broadened.
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Figure 3.24.: Electronic dispersion of the valence and conduction bands in graphene as cal-
culated within a tight-binding model. The zoom in shows the energy bands
close to one of the Dirac points. Figure taken from Ref. [277].

Electronic properties For a subsequent discussion of the electron-phonon coupling, we �rst

want to brie�y comment on the electronic properties. Graphene consists of a honeycomb

lattice of sp2-hybridized carbon atoms, i.e. it is characterized by a system of delocalized π-

conjugated electrons. As it is depicted in Fig. (3.23), its honeycomb structure can be expressed

as a triangular lattice with a basis of two atoms per unit cell. The latter is determined by

two lattice vectors a1 and a2, with length

|a1| = |a2| =
√

3a ≈ 2.46 Å,

where a ≈ 1.42 Å is the lattice constant. Its Brillouin zone (BZ) is spanned by two lattice

vectors in reciprocal space, b1 and b2 [277]. Of particular importance for the physics of

graphene are two points of the BZ, namely the so-called Dirac points K =
(

2π
3a ,

2π
3
√

3a

)
and

K′ =
(

2π
3a ,−

2π
3
√

3a

)
[277]. The band structure in the vicinity of these points as obtained in

a tight-binding approach is depicted in Fig. (3.24). The Dirac points are the only points in

the band structure, where the valence and the conduction band touch each other, i.e. there

is no gap between occupied and unoccupied states. Very importantly, in the vicinity of the

Dirac points, the energy shows a linear dispersion with respect to k, just as for relativistic

particles. Together with the large group velocity, which is the �rst derivatives of the band

energy with respect to k, these properties are amongst others often used to rationalize the

excellent conductance of graphene.

Electron-phonon coupling Graphene is a fundamentally important material, since the EPC

strength for certain phonon modes can be directly obtained from experiment. This makes

graphene a valuable reference for our ab initio EPC calculations. As elaborated in Ref. [278]

and depicted in Fig. (3.25), the phonon dispersion of graphene possesses two discontinuities

in the frequency derivative for the highest optical-phonon branch (HOB), namely at the zone

center (q = Γ) and at the symmetry (q = K) point. In general, kinks in the phonon dispersion

are called Kohn anomalies [279]. They can be observed in metals, where the screening of

the atomic vibrations by the conduction electrons can rapidly change for phonons related
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Figure 3.25.: Phonon dispersion of graphene (GE) as calculated (lines) at the experimental
and equilibrium lattice spacings (aexp and ath). The points represent experi-
mental data [280]. The red straight lines at Γ and at K �t the slopes. Figure
and caption taken from Ref. [278].

to certain q points. They are determined by the shape of the electronic Fermi surface and

occur when the scattering electronic states |ψi,k〉 and |ψj,k+q〉 are both at the Fermi level.

For graphene, this consequently implies kinks at (q = Γ) and (q = K). We thus consider

processes, where electrons ψi,K at (k = K) with Fermi energy are either vertically scattered

in unoccupied states ψi,K+q through phonons with wave vector q = Γ = 0, or horizontally in

unoccupied states of the neighboring k = K′ point through phonons with wave vector q = K.

In Ref. [278], it has been demonstrated that the slope of the kink is proportional to the

square of the EPC matrix element of the respective phonon mode. The phonon modes showing

a Kohn anomaly are the so-called E2g and A
′
1 phonon modes, corresponding to the HOB at

Γ and at K, respectively. As a consequence, one can directly deduce the EPC strength of

these modes from experimental phonon dispersions [51, 278]. The contribution to the EPC of

the other phonon modes at Γ and K has been shown to be negligible, consistent with their

well-behaved continuous dispersion [278].

In the following, it will be discussed how the EPC matrix elements D are accessed within

a frozen-phonon approach. The latter originate from the following expression [51]:

D = 〈ψi,k|
∂V

∂uν,q
|ψj,k+q〉 ,

where ∂V/∂u is the derivation of the e�ective potential with respect to the phonon modes.

In order to determine the EPC associated with the E2g phonon, the basis atoms are step-

wise displaced corresponding to the phonon pattern in Fig. (3.26a). Following Ref. [51], the

square of the corresponding EPC matrix element becomes in this frozen-phonon scheme for

graphene: 〈
D2

Γ

〉
F

= lim
d→0

1

16

(
∆EΓ

d

)2

.

Here, each atom is displaced by d and 〈. . .〉F represents an average over the Fermi surface.

∆EΓ is the splitting between the doubly degenerate π-states with Fermi energy at (k = K),

namely the opening of the gap induced by the coupling of these π-states with the Γ-E2g

phonon mode. In a similar way, the square of the EPC matrix element associated with the
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COHSEX The already introduced static COHSEX approach represents a drastic approxima-

tion to the GW self-energy and was shown to yield too large gaps in the case of semiconductors

[3]. By way of example, in the present case of C60, the COHSEX gap is found to be 5.3 eV

(B3LYP geometry). This can be compared to the ∼ 4.9 eV experimental gap. Even though

yielding a too large gap, we note that it is much better than the starting 1.6 eV DFT -LDA

Kohn-Sham value.

While it cannot be claimed that the static COHSEX approach is a good approximation to

absolute quasiparticle energies, we emphasize that we are interested in quasiparticle energy

di�erences upon small (in�nitesimal) atomic lattice displacements. The main assumption on

which we rely to calculate the electron-phonon coupling within the COHSEX approximation

is that the variations of the dynamical contribution to the self-energy can be neglected. This

can be certainly rationalized by emphasizing that dynamical interactions are driven by the

plasmons dynamics, collective excitations much less sensitive to small atomic displacements

than single-particle excitation energies and wave functions. In this work, we both test single-

shot COHSEX and partially self-consistent COHSEX calculations with an update of the

eigenvalues, in the following labeled COHSEX and evCOHSEX, respectively. The obtained

data is compared to G0W0 and evGW reference values.

Constant screening In addition to the static COHSEX approximation, we want to assess

the quality of the so-called constant screening approximation. Namely, the screened Coulomb

potentialW is calculated once for the undistorted structure, while it is read in for the distorted

frozen phonon con�gurations. Namely, we assume that (∂W/∂uν) is zero. Since the calcula-

tion of W denotes one of the most expensive parts, this dramatically reduces computational

costs.

Many-body calculations on the C60 molecule are carried out using the FIESTA package.

The constant screening approximation is tested both within a single-shot COHSEX and an

evCOHSEX approach with self-consistency on the eigenvalues. These approaches are labeled

COHSEX(W ) and evCOHSEX(W ), respectively, in the following. We restrict our consid-

erations on the (ev)COHSEX level, since the constant screening approach within evGW is

computationally not straightforward. This is due to the evaluation of the correlation part

of the self-energy using contour deformation techniques with an explicit calculation of the

residues. Further, since calculations are performed within a non-orthogonal Gaussian basis,

special care must be taken implementing such a constant-screening approximation. As already

discussed in preceding chapters, non-local operators such as the bare and screened Coulomb

potential are expressed in terms of an atom-centered auxiliary basis {β} within the RI-SVS

technique, following:

[W ]β,β′ =
´ ´

drdr′ β(r)W (r, r′)β′(r′)

W (r, r′) =
∑

β,β′ β(r)
(
S−1[W ]S−1

)
β,β′

β′(r′),

where S is the overlap matrix in the auxiliary basis. Using now the notation: W and β for
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the screened Coulomb potential and the auxiliary basis for the slightly distorted system, the

assumption: W (r, r′) 'W (r, r′) leads straightforwardly to the condition:

[W ]β,β′ ' Sββ[W ]β,β′Sβ′β′ ,

where Sββ =< β|β > is an overlap matrix between the auxiliary bases for the perturbed and

unperturbed systems, respectively.

Calculations on graphene are performed using the Yambo code [183] within the plasmon

pole approximation. We scrutinize the constant-screening approximation within a single-shot

COHSEX approach, as in the case of C60, but also at the G0W0 level (labeled G0W0 (W ) in

the following). This is possible due to the use of a �xed plasmon pole frequency, independent

of structural deformations. Further, starting from a correct band gap at the DFT -LDA level,

the e�ect of self-consistency is not as important as in the case of C60 and was shown to have

only minor e�ects.

In order to rationalize the constant screening approach, we brie�y discuss similarities to the

BSE formalism. As discussed in detail in preceding chapters, the latter is based on two main

assumptions, which have been shown to be remarkably accurate [122, 123, 281]. The �rst

one is the replacement of the dynamically screened Coulomb potential by its static analogue,

which is similar to the static COHSEX approximation. The second one is the neglect of the

variation (∂W/∂G), assumed to be negligible. In the present constant screening approach, we

also neglect variations of W . However, the �perturbation� is not the single-particle Green's

function G, but the vibrational distortion of the system in this case.

3.4.3. Results and discussion

The COHSEX approximation Our results are compiled in Table (3.6) for C60 and in Table

(3.7) for graphene, respectively. For the sake of illustration, the evolution of the lowest

unoccupied 3-fold electronic energy level with respect to the phonon displacement along the

strongest coupling C60 eigenmode Hg(7) is represented in Fig. (3.27).

For C60, the total evGW coupling potential is within 8% of that found by Ref. [12], as a

result of the larger basis set we used. For graphene, our DFT -LDA and G0W0 values are close

to those of Ref. [51], namely 197 eV/Å withinG0W0 for the largest matrix element of the K-A
′
1

phonon in the present study, to be compared to 193 eV/Å in the previous one. The di�erence

can be explained by an increased �ve point �nite-di�erence formula, instead of only two points,

and by shifting the Godby-Needs plasmon model input �nite frequency from the (default)

27 eV value in Ref. [51] to 7 eV and thus closer to the π-plasmon resonance in graphene.

Such di�erences are negligible with respect to the more than 100% increase as compared

to the DFT -LDA value. Further, we emphasize that we are interested in the di�erences

between the GW values and the presented COHSEX and constant screening approaches,

where all running parameters are the same.

In the case of C60, comparing evGW and evCOHSEX calculations, a global raise of about

7% can be noted, which has to be compared to the 30% increase from DFT -LDA to evGW .

Besides the Hg (4) and Ag (1) modes, showing very small couplings, the evCOHSEX approx-
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Figure 3.27.: Evolution of the 3-fold degenerate lowest-unoccupied molecular orbital in C60

with respect to a deformation α of −0.1Å ≥ α ≤ 0.1Å along the HG07 eigen-
mode, the strongest coupling mode. DFT -LDA (red circles) yields slopes
and hence an electron-phonon potential which are much smaller than the cor-
responding evGW (blue downward triangles) calculations. COHSEX (green
diamonds) and evCOHSEX (orange squares) are in very close agreement with
evGW results. The evCOHSEX(W ) approach (black stars) excellently repro-
duces the evCOHSEX results.

of C60. This situation can be tentatively ascribed to the very peculiar nature of the Fermi

surface and the presence of low-energy plasmons [282], which decreases the validity of the

static approximation.

The constant screening approach The results of the constant screening approximation are

compiled in Table (3.6) for C60 and in Table (3.7) for graphene. For C60, where we test the

constant screening approximation at the COHSEX level, an excellent agreement is obtained

within evCOHSEX(W ) compared to the corresponding evCOHSEX calculations. In total,

evCOHSEX(W ) agrees within 1.5% compared to evCOHSEX.

In the case of graphene, we remind that di�culties have been encountered at the COH-

SEX level. Concerning the constant screening approach, the coupling with the zone-center

optical mode Γ-E2g provides the best results, with a 5% error when comparing G0W0(W ) to

G0W0 and COHSEX(W ) to COHSEX. For the coupling with the zone-corner K-A
′
1 mode,

discrepancies are not larger than 6% and 7%, applying the constant screening approximation

to G0W0 and COHSEX, respectively. This is much smaller than the error induced by the

standard DFT -LDA approach.

Clearly, among the two approximations tested above, the constant screening approach

stands as a much better approximation than the static COHSEX one in the present case

of electron-phonon coupling, in particular in the somehow pathological case of graphene.
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Mode LDA G0W0 G0W0 (W ) COHSEX COHSEX(W )
Graphene

Γ-E2g 45 65.5 (62.8a) 69 77 81
K-A

′

1 90 197 (193a) 209 255 237

Table 3.7.: Calculated EPC for graphene, which corresponds to the splitting of the degenerate
HOMO and LUMO π-levels at the Dirac point. Values given in (eV/Å)2. The lower
panel provides a visualization of the EPC as calculated within the di�erent approaches,
where the blue background represents the DFT -LDA value.
a Ref. [51];

Coming back to the analogue approximations implemented in standard GW/BSE calcula-

tions, namely a static screened Coulomb potential W and (∂W/∂G = 0), it is commonly as-

sumed that the GW/BSE approach is much more resistant to approximations on the screened

Coulomb potentialW as compared to the GW approach for (charged) excitations. This is due

to cancellations of errors between the electron-electron and electron-hole interactions. Namely,

any error introduced inW is expected to a�ect excitonic interactions and quasiparticle gaps in

opposite ways. Clearly, the present GW study of the variations of a given quasiparticle energy

with respect to ionic positions cannot bene�t from such cancellation of errors. Nevertheless,

the constant screening approximation turns out to be a reliable approach, which allows to

tremendously save on computational costs.

An important consequence of the present �ndings is that once the screened Coulomb poten-

tial W (r, r′;ω) is built for the equilibrium geometry, the calculation of the variations of the

quasiparticle energies with respect to the perturbation (λ) only requires the evaluation of the

variations of the Green's function G with respect to the perturbation. This can be straightfor-

wardly performed within standard DFPT techniques, at least in the case of non-self-consistent

G0W0 calculations, where the Green's function is directly constructed from input DFT eigen-

states. This may invite, for molecular systems such as C60, to rely on G0W0 calculations

starting from DFT eigenstates obtained with hybrid functionals, which have been shown to

be a better starting point for organic systems [48, 198], instead of carrying out self-consistent

GW calculations.
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3.4.4. Conclusion

Electron-phonon coupling plays a prominent role in organic semiconductors. As shown here

above for several important systems, its accurate description from �rst principles necessitates

to go beyond DFT/DFPT with standard (semi)local functionals. GW clearly demonstrated

to be a promising alternative, however, up to now, this approach is limited to small systems

and zone-center phonons due to tremendous computational costs within the frozen-phonon

technique. This points out the need for methods which are accurate and computationally rea-

sonable at the same time. Inspired from the GW/BSE formalism, we tested two approaches,

namely the static COHSEX approximation and the constant screening approach. Since the

calculation of theW denotes the most expensive part of a GW calculation, this greatly reduces

the computational e�ort.

Concerning the accuracy of the tested approaches, our �ndings suggest that the COHSEX

approximation may not be reliable, in particular in the case of graphene. However, the

constant screening hypothesis, namely assuming that W remains to �rst order constant with

respect to small ionic displacements, seems to be valid. In the case of C60, it introduces a

small error of about 2%. Preliminary results on the extended semiconductor diamond con�rm

this excellent agreement. Concerning the paradigmatic case of graphene, where the phonon

perturbation dramatically a�ects the Dirac cone and the semi-metallic character, a maximum

discrepancy of 7% is found. The present results o�er promising perspectives to carry on

such many-body evaluations of the electron-phonon coupling gradients with much reduced

computer costs on realistic systems. However, further studies are required both on a larger

set of systems and physical observables in order to better assess the validity of the presented

approach.
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4 | Conclusion & Perspectives

Organic photovoltaics o�ers unique perspectives for a sustainable electricity generation from

sun light. The assortment of appropriate organic semiconductors is vast and can be thereto

largely increased by molecular engineering. However, the design of e�cient organic solar cells

is a highly non-trivial optimization problem, where material combinations with well matching

electronic levels and optical gaps have to be found.

The present project aimed to assess the ability of the many-body perturbation theory

GW/BSE formalism to describe electronic and optical properties of organic systems, in order

to contribute to the understanding of fundamental microscopic processes and to actively steer

experimental materials research. In this context, we studied the electronic and optical proper-

ties for molecules in the gas phase in order to assess the quality of the GW/BSE formalism for

�nite systems. On the electronic structure level, we chose a model dipeptide, a paradigmatic

molecule which raised our interest due to signi�cant discrepancies in the optical spectra within

reference TDDFT and quantum chemistry methods [10, 47]. Already its electronic structure

is an interesting study case, where large discrepancies between the starting DFT -LDA and

the GW electronic structure are observed. The many-body GW correction not only opens

the gap and shifts the occupied levels to lower energies, but important level crossings and

changes in the level spacings can be noted. This is similar to the previously studied case of

the DNA/RNA nucleobases [7] and demonstrates that a simple GW Scissor approach with

an explicit correction of the HOMO and the LUMO only is not enough. Instead, the GW

correction should be calculated self-consistently with an update of the eigenvalues (evGW

approach) for several states around the gap. Since this approach quickly becomes expensive

for large systems, we tested the quality of the inexpensive static COHSEX approximation. We

showed that self-consistent COHSEX calculations, even though overestimating fundamental

gaps, yield results in much better agreement with the �nal evGW electronic structure than

DFT -LDA and thus o�er an ideal starting point for inexpensive non-self-consistent G0W0 or

GW Scissor operator calculations.

Concerning optical absorption properties, the model dipeptide is characterized by low-lying

intramolecular charge-transfer excitations. As expected, TDDFT with (semi)local exchange-

correlation functionals fails to reproduce the latter, drastically underestimating the electron-

hole Coulomb interaction. TDDFT with range-separated hybrid functionals cures the problem

and brings the CT excitations energies in good agreement with the higher-level correlated

quantum chemistry reference. However, parameters are introduced which have to be adjusted

for the respective problem. On the contrary, our combined GW/BSE approach comes in
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close agreement with the quantum chemistry data, while being parameter-free and system-

independent. As a second case study showing intramolecular charge-transfer excitations, we

focused on the optical spectra of a family of coumarin dyes [11]. These molecules recently

attracted much attention, namely as all-organic, transition metal free absorbers in Grätzel

cells with very promising power-conversion e�ciencies. Moreover, they are an impressive

example of molecular design, where the gap and structural properties have been systematically

optimized [28, 29]. Again, TDDFT with (semi)local exchange-correlation functionals has

problems in reproducing the charge-transfer excitation energies from the quantum chemistry

reference and range-separated hybrid functionals are needed. The tested GW/BSE approach,

however, intrinsically adjusts the electron-hole Coulomb interaction and consequently gives

charge-transfer excitation energies in good agreement with quantum chemistry calculations.

As a further important issue, we could also assess the quality of GW/BSE oscillator strengths,

in the interesting case of molecular systems, where not only the onset of absorption, but also

the oscillator strength has been chemically engineered in order to optimize the matching with

the solar spectrum.

After having carefully tested the accuracy of the presented GW/BSE approach for the elec-

tronic and optical properties of the model dipeptide and the coumarin dyes, we also studied its

quality concerning the electron-phonon coupling (EPC). The latter takes a prominent place

in organic semiconductors and an accurate calculation from �rst principles is indispensable

for a realistic modeling. Even though DFT , and especially density functional perturbation

theory (DFPT ), provides a most e�cient way to access the electron-phonon coupling, recent

studies showed a clear underestimation of the EPC of up to 50% as compared to experiment

when using standard (semi-)local exchange-correlation functionals. The problem is cured on

the many-body GW level, where EPC strengths come in close agreement with experiment

[12, 51, 52]. However, within GW , e�cient techniques as in the case of DFPT are not avail-

able and an expensive frozen-phonon approach with step-wise atomic displacements along

the phonon modes has to be carried out. In this work, we tested two alternative many-body

approaches for the calculation of the EPC, namely the static COHSEX and the constant

screening approximation, which are supposed to yield much less demanding frozen-phonon

calculations. We studied their validity range by means of the fullerene C60 and the popular

two-dimensional semi-metal graphene. Concerning the static COHSEX approach, we demon-

strated that it results in signi�cant discrepancies as compared to the GW reference, especially

in the case of graphene. The constant screening approach, where we neglect the variations of

the screened Coulomb potential with respect to small deformations around the equilibrium

structure, gives, however, results in excellent agreement with the corresponding GW refer-

ence. Even though this approach has still to be validated for a larger variety of systems, the

obtained results are promising and open the door to an inexpensive and reliable many-body

treatment of the electron-phonon coupling.

Embedding techniques The presented studies aimed at the validation of GW/BSE calcu-

lations for isolated molecular systems. Not only the accurate determination of electronic and

optical excitation energies (ionization energy, electronic a�nity, optical gap), but also the cal-
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A | Appendix: Details and derivations

A.1. Mathematical background and notation

Notation For the sake of clarity, a shorthand notation is introduced. Space and time coor-

dinates are combined to natural numbers, e.g.

1(+) ≡ {r1, t1 (+η)} ,

where η is an in�nitesimal positive time. The δ-function is represented by

δ (1, 2) = δ (r1 − r2) δ (t1 − t2)

and integrals are carried out like

ˆ
d1 =

ˆ
d3r1

ˆ +∞

−∞
dt1.

Further,

v (1, 2) = v (r1 − r2) δ (t1 − t2) =
1

|r1 − r2|
δ (t1 − t2)

is the bare Coulomb potential and the operator h0 represents the single-particle Hamiltonian,

h0 = −1

2
∇2 + Vext (r) .

Functional derivatives For the following derivations, some mathematical background is

needed, namely the theory of functional derivative. Usually, one deals with functions, which

map one number x onto another number y:

f (x) : x→ y.

In many-body theory, functionals one often encounters functionals, i.e. functions whose ar-

guments themselves are functions:

F [f (x)] : f (x)→ y.

To di�erentiate between a function and a functional, square brackets are used. One prominent

example for a functional is the ground state energy of a many-body system depending on the
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ground state density which is in turn a function of r: E0 [n0 (r)]. Derivatives can be carried

out following:
dF [f (x)]

df (x)
=

ˆ
dx

∂F [f (x)]

∂f (x)
.

A short overview of very useful relations follows [2]:

1. ∂F (1)
∂F (2) = δ (1− 2)

2. The product rule denotes:

∂

∂Ψ (2)
(F [Ψ (1)]G [Ψ (1)]) =

∂F [Ψ (1)]

∂Ψ (2)
G [Ψ (1)] +

∂G [Ψ (1)]

∂Ψ (2)
F [Ψ (1)] . (A.1)

3. ∂
∂Ψ(2)

(
F [Ψ(1)]
G[Ψ(1)]

)
= 1

G[Ψ(1)]2

(
∂F [Ψ(1)]
∂Ψ(2) G [Ψ (1)]− ∂G[Ψ(1)]

∂Ψ(2) F [Ψ (1)]
)

4. For F [G [Ψ (1) ; 2]] a chain rule exists:

∂F

∂Ψ (1)
=

ˆ
d2

∂F

∂G (2)

∂G (2)

∂Ψ (1)
. (A.2)

5. For F [Ψ (1) ; 2, 3] being the inverse of G [Ψ (1) ; 2, 3] it holds:

ˆ
d4 F [Ψ (1) ; 2, 4]G [Ψ (1) ; 4, 3] = δ (2− 3) .

6. De�nition (5) can be used to derive a very useful relation:

∂F [Ψ (1) ; 2, 3]

∂Ψ (6)
= −

ˆ
d4d5 F [Ψ (1) ; 2, 4]

∂G [Ψ (1) ; 4, 5]

∂Ψ (6)
F [Ψ (1) ; 5, 3] . (A.3)

The derivation starts with F (12) =
˜
d3d4F (13)G (34) F (42) which is a reformulation

of de�nition (5). We proceed as follows:

∂F (12)
∂Ψ(3) =

=
∂(
˜
d4d5 F (14)G(45) F (52))

∂Ψ(3)

=
˜
d4d5∂F (14)

∂Ψ(3) G (45)F (52) +
˜
d4d5F (14) ∂G(45)

∂Ψ(3) F (52) +
˜
d4d5F (14)G (45) ∂F (52)

∂Ψ(3)

=
´
d4∂F (14)

∂Ψ(3) δ (4− 2) +
˜
d4d5 F (14) ∂G(45)

∂Ψ(3) F (52) +
´
d5 δ (1− 5) ∂F (52)

∂Ψ(3)

= ∂F (12)
∂Ψ(3) +

˜
d4d5 F (14) ∂G(45)

∂Ψ(3) F (52) + ∂F (12)
∂Ψ(3)

→ ∂F (12)
∂Ψ(3) = −

˜
d4d5 F (14) ∂G(45)

∂Ψ(3) F (52) .
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Field operators Field operators create (Φ̂†(r, t)) or annihilate (Φ̂(r′, t′)) a particle at (r, t)

and (r′, t′), respectively [90]. Their commutation relations are given by:[
Φ̂(r′, t′), Φ̂†(r, t)

]
+

= δ(r− r′)δ
(
t− t′

)
[
Φ̂(†)(r, t), Φ̂(†)(r′, t′)

]
+

= 0.

These relations hold for fermions, for bosons the �eld operators commutate.

The Hamiltonian for a system of N interacting electrons,

Ĥ =
N∑
i=1

[
−1

2
∇2
i + Vext (ri)

]
+

1

2

∑
i6=j

v (ri − rj) ,

can be expressed in �eld operator notation following the transformation rules for operators.

Sums over 1-particle operators Ô (r) are transformed by:

N∑
i=1

Ô (ri) =

ˆ
d3r Φ̂†(r, t)Ô (r) Φ̂(r, t).

Analogue, for 2-particle operators like he Coulomb potential, it holds:

N∑
ij

Ô (ri, rj) =

ˆ
d3rd3r′ Φ̂†(r′, t)Φ̂†(r, t)Ô

(
r, r′

)
Φ̂(r, t)Φ̂(r′, t).

For the Hamiltonian we thus obtain:

Ĥ =

ˆ
d3r Φ̂†(r) h0 (r) Φ̂(r) +

1

2

¨
d3rd3r′ Φ̂†(r, t)Φ̂†(r′, t) v

(
r− r′

)
Φ̂(r′, t)Φ̂(r, t),

with h0 (r) = −1
2∇

2 + Vext (r).

We work in the Heisenberg representation, assuming that the Hamiltonian has no explicit

time-dependence. The time-dependent �eld operators ful�ll Heisenberg's equation of motion,

i.e

i~
∂Φ̂(r, t)

∂t
=
[
Φ̂(r, t), Ĥ

]
−

and

−i~∂Φ̂†(r, t)

∂t
=
[
Ĥ, Φ̂†(r, t)

]
−
,

respectively, which describes the time evolution of a Heisenberg operator in the same way

that the time-dependent Schrödinger equation describes the time evolution of a wave func-

tion. Inserting Ĥ and using the commutation relations for �eld operators leads to an explicit

expression for the equation of motion of an annihilation �eld operator:

i~
∂Φ̂(r, t)

∂t
= h0 (r) Φ̂(r, t) +

ˆ
d3r′ v

(
r− r′

)
Φ̂†(r′, t)Φ̂(r′, t)Φ̂(r, t). (A.4)
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The two-body Green's function G2 An important conceptual quantity which will be needed

in the following is the so-called two-particle Green´s function G2 [2, 90]. Analogue to the

de�nition of the one-electron Green's function Ge1,

(i~)2 Ge2 (1234) =
〈
ΨN

0

∣∣ Φ̂(r1, t1)Φ̂(r2, t2) Φ̂†(r4, t4)Φ̂†(r3, t3)
∣∣ΨN

0

〉
θ
(
t− t′

)
,

describes the probability of �nding an electron at (r1, t1) and a second at (r2, t2) after the

injection of two electrons at (r3, t3) and (r4, t4), respectively. Similar, a Green's function for

the propagation o two holes, Gh2 , can be de�ned, which in turn is combined with Ge2 to the

time-ordered two-particle Green's function G2:

G2 (1234) =
1

(i~)2

〈
ΨN

0

∣∣T [Φ̂(r1, t1)Φ̂(r2, t2) Φ̂†(r4, t4)Φ̂†(r3, t3)
] ∣∣ΨN

0

〉
. (A.5)

As a reminder, we are working in second quantization, so that
〈
ΨN

0

∣∣ . . . ∣∣ΨN
0

〉
does not denote

an integral
´
d3r, but an averaging over Fock states.

G2 is an important quantity giving direct access to many non-equilibrium properties like

the electric conductivity or the magnetic susceptibility. It can be written in terms of the one-

particle Green's function G1 and a non-local external potential Uext which is introduced in

addition to the external core ion potential Vext included in h0. It is an arti�cially introduced

external potential which will be set to zero in the end:

G2

(
1, r′t; 2, rt+

)
= G1 (1, 2)G1

(
r′t, rt+

)
− ∂G1 (1, 2)

∂Uext (r, r′, t)
. (A.6)

For local potentials we �nd:

G2

(
1, 3, 2, 3+

)
= G1 (1, 2)G1

(
3, 3+

)
− ∂G1 (1, 2)

∂Uext (3)
, (A.7)

The one-particle Green's function thus generates higher-order Green's function under the

in�uence of an external potential. The derivation of the above formulas starts by transforming

G1 from the Heisenberg representation into the interaction picture:

i~G1 (1, 2) =

〈
ΨN

0

∣∣T [Sev (∞,−∞) Φ̂(1) Φ̂†(2)
] ∣∣ΨN

0

〉〈
ΨN

0

∣∣T [Sev (∞,−∞)]
∣∣ΨN

0

〉 ,

where the time evolution operator Sev is given by:

T [Sev (∞,−∞)] = Te−i
´∞
−∞ dt

´
drdr′ Φ̂†(r,t+)Uext(r,r′,t)Φ̂(r′,t).

The time-dependence of the �eld operators is still governed by the equilibrium Hamiltonian,

while the time-dependence due to the additional potential is completely contained in Sev.

Di�erentiating G1 in the interaction representation with respect to a local external �eld Uext
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and applying the product and chain rule, leads to:

i~∂G1(1,2)
∂Uext(3) =

=
〈ΨN0 |T

[
∂Sev

∂Uext(3)
Φ̂(1) Φ̂†(2)

]
|ΨN0 〉

〈ΨN0 |T [Sev ]|ΨN0 〉
− 〈Ψ

N
0 |T [Sev Φ̂(1) Φ̂†(2)]|ΨN0 〉
〈ΨN0 |T [Sev ]|ΨN0 〉

2

〈
ΨN

0

∣∣ T [∂Sev ]
∂Uext(3)

∣∣ΨN
0

〉
=

〈ΨN0 |T
[

∂Sev
∂Uext(3)

Φ̂(1) Φ̂†(2)
]
|ΨN0 〉

〈ΨN0 |T [Sev ]|ΨN0 〉
− 〈Ψ

N
0 |T [Sev Φ̂(1) Φ̂†(2)]|ΨN0 〉
〈ΨN0 |T [Sev ]|ΨN0 〉

〈ΨN0 | T [∂Sev ]
∂Uext(3) |ΨN0 〉

〈ΨN0 |T [Sev ]|ΨN0 〉

=
〈ΨN0 |T

[
∂Sev

∂Uext(3)
Φ̂(1) Φ̂†(2)

]
|ΨN0 〉

〈ΨN0 |T [Sev ]|ΨN0 〉
− i~G1 (1, 2)

〈ΨN0 | T [∂Sev ]
∂Uext(3) |ΨN0 〉

〈ΨN0 |T [Sev ]|ΨN0 〉
.

The derivation of time-evolution operator with respect to the external �eld obeys:

T [∂Sev]

∂Uext (3)
=

1

i~
T
[
Sev Φ̂†(3)Φ̂(3)

]
.

Consequently, we obtain:

i~∂G1(1,2)
∂Uext(3) =

= 1
i~
〈ΨN0 |T [SevΦ̂†(3)Φ̂(3)Φ̂(1)Φ̂†(2)]|ΨN0 〉

〈ΨN0 |T [Sev ]|ΨN0 〉
− i~G1 (1, 2) 1

i~
〈ΨN0 |T [Sev Φ̂†(3)Φ̂(3)]|ΨN0 〉
〈ΨN0 |T [Sev ]|ΨN0 〉

= − 1
i~
〈ΨN0 |T [SevΦ̂(1)Φ̂(3)Φ̂†(3)Φ̂†(2)]|ΨN0 〉

〈ΨN0 |T [Sev ]|ΨN0 〉
+ i~G1 (1, 2) 1

i~
〈ΨN0 |T [Sev Φ̂(3)Φ̂†(3)]|ΨN0 〉
〈ΨN0 |T [Sev ]|ΨN0 〉

= −i~G2 (1, 3, 2, 3+) + i~G1 (1, 2)G1 (3, 3+)

→ ∂G1(1,2)
∂Uext(3) = −G2 (1, 3, 2, 3+) +G1 (1, 2)G1 (3, 3+) ,

where we introduced 3+ = (r3, t3 + η) with η → 0 to ensure the right time order.

A.2. Lehmann representation of the one-particle Green's

function

In the so-called Lehmann representation [90], the eigenfunctions
{∣∣ΨN

n

〉}
of the many-body

Hamiltonian Ĥ, solutions to Ĥ
∣∣ΨN

n

〉
= ENn

∣∣ΨN
n

〉
, are used as a basis set, in which the Green's

function is expressed. This set contains for example the ground state wave function
∣∣ΨN

0

〉
.

Since the Hamiltonian is a Hermitian operator, its eigenvalues ENn are real. In �eld operator

notation, where Φ̂†(r, t) creates and Φ̂(r, t) annihilates a particle at (r, t), Ĥ is given by:

Ĥ =

ˆ
d3r Φ̂+(r) h0 (r) Φ̂(r) +

1

2

¨
d3rd3r′ Φ̂†(r, t)Φ̂†(r′, t) v

(
r− r′

)
Φ̂(r′, t)Φ̂(r, t),

where the one-particle potentials are collected in h0 (r) = −1
2∇

2+Vext (r) and where v (r− r′) =
1

|r−r′| is the Coulomb potential.

In the following, we derive an expression for the time-ordered single-particle Green's func-

tion in this basis. The single-electron Green's function at non-zero temperature is de�ned as

the following thermal average:
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Ge(rt, r′t′) = − i
~

〈
Φ̂(r, t) Φ̂†(r′, t′)

〉
Θ (t− t′)

= − i
~

1
Z

∑
n

〈
ΨN
n

∣∣ e−βĤ Φ̂(r, t) Φ̂†(r′, t′)
∣∣ΨN

n

〉
Θ (t− t′) ,

where Z is de�ned in the grand canonical ensemble as Z =
∑

n e
βENn , with β = 1/kBT . For

the sake of clarity, we already used a shorthand notation, where we de�ned Ĥ ≡ Ĥ − µN̂
including the chemical potential µ and the number operator N̂ . Moreover,

{∣∣ΨN
n

〉}
and ENn

are eigenfunctions and eigenvalues to
(
Ĥ − µN̂

)
, the Hamiltonian of a system exchanging

energy and particles with a reservoir, i.e. a grand canonical ensemble. Since
{∣∣ΨN

n

〉}
are

eigenfunctions of Ĥ, we can use the property,

eĤ
∣∣ΨN

n

〉
=
∑
k

Hk

k!

∣∣ΨN
n

〉
=
∑
k

Ekn
k!

∣∣ΨN
n

〉
= eE

N
n
∣∣ΨN

n

〉
,

in order to obtain:

Ge(rt, r′t′) = − i
~

1
Z

∑
n

〈
ΨN
n

∣∣ e−βENn Φ̂(r, t) Φ̂†(r′, t′)
∣∣ΨN

n

〉
Θ (t− t′)

= − i
~

1
Z

∑
n e
−βENn

〈
ΨN
n

∣∣ Φ̂(r, t) Φ̂†(r′, t′)
∣∣ΨN

n

〉
Θ (t− t′) .

In the Heisenberg picture the time-dependence of an operator Ô is governed by the relation:

Ô(t) = eiĤtÔ(t = 0)e−iĤt,

yielding for the single-electron Green's function:

Ge(rt, r′t′) = − i
~

1
Z

∑
n e
−βENn

〈
ΨN
n

∣∣ eiĤtΦ̂(r)e−iĤt eiĤt
′
Φ̂†(r′)e−iĤt

′ ∣∣ΨN
n

〉
Θ (t− t′)

= − i
~

1
Z

∑
n e
−βENn

〈
ΨN
n

∣∣ eiENn tΦ̂(r)e−iĤt eiĤt
′
Φ̂†(r′)e−iE

N
n t
′ ∣∣ΨN

n

〉
Θ (t− t′) .

Extracting the exponentials from the expectation value and inserting the completeness rela-

tion,
∑

m |Ψm〉 〈Ψm| = 1̄, in between the �eld operators results in:

Ge(rt, r′t′) =

= − i
~

1
Z

∑
n,m e

−βENn eiE
N
n te−iE

N
n t
′ 〈

ΨN
n

∣∣ Φ̂(r)e−iĤt |Ψm〉 〈Ψm| eiĤt
′
Φ̂†(r′)

∣∣ΨN
n

〉
Θ (t− t′)

= − i
~

1
Z

∑
n,m e

−βENn eiE
N
n te−iE

N
n t
′ 〈

ΨN
n

∣∣ Φ̂(r) e−iEmt |Ψm〉 〈Ψm| eiEmt
′
Φ̂†(r′)

∣∣ΨN
n

〉
Θ (t− t′)

= − i
~

1
Z

∑
n,m e

−βENn ei(E
N
n −Em)tei(Em−E

N
n )t′

〈
ΨN
n

∣∣ Φ̂(r) |Ψm〉 〈Ψm| Φ̂†(r′)
∣∣ΨN

n

〉
Θ (t− t′)

= − i
~

1
Z

∑
n,m e

−βENn e−i(Em−E
N
n )τ

〈
ΨN
n

∣∣ Φ̂(r) |Ψm〉 〈Ψm| Φ̂†(r′)
∣∣ΨN

n

〉
Θ (τ) ,

where we introduced τ = t− t′ and where we assumed that {|Ψm〉} are also eigenfunctions of
the Hamiltonian with corresponding eigenvalues Em. From the last equality, we draw the con-

clusion that the {|Ψm〉} have to be a basis of a (N + 1) Hilbert space. Bases of di�erent Hilbert
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spaces, i.e. describing systems of varying particle number, form the Fock space and are orthog-

onal,
〈
ΨN

∣∣ΨP 6=N〉 = 0. This would cause for example 〈Ψm| Φ̂†(r′)
∣∣ΨN

n

〉
= 〈Ψm| ΨN+1

〉
to be

zero. That means, the index m denotes both the number of particles in the system: (N + 1)

and the con�guration, i.e. representing e.g. the ground state
∣∣∣ΨN+1

0

〉
or the �rst excited state

of the N + 1 particle system. For the sake of clarity, we use the notation |Ψm〉 ≡
∣∣ΨN+1

m

〉
here and in the following. Likewise, EN+1

m is the total energy of a N + 1 particle system in

con�guration m. Both
{∣∣ΨN

n

〉}
and

{∣∣ΨN+1
m

〉}
can be solutions to the eigenvalue problem of

H, since the latter is expressed in �eld operator notation, where the number of particles is

not �xed. In exactly the same manner, the single-hole Green's function Gh(r′t′, rt) can be

rewritten, giving:

Gh(r′, r, τ) = − i
~

1

Z

∑
n,l

e−βE
N
n e−i(E

N
n −E

N−1
l )τ

〈
ΨN
n

∣∣ Φ̂†(r′) |Ψl〉 〈Ψl| Φ̂(r)
∣∣ΨN

n

〉
Θ (−τ) ,

where l stands for a state of a N − 1 particle system.

De�nitions In order to facilitate the notation, the following quantities are introduced:

� the Lehmann amplitude of the (N + 1) system: fm(r) =
〈
ΨN+1
m

∣∣ Φ̂†(r)
∣∣ΨN

n

〉
and f∗m(r) =〈

ΨN
n

∣∣ Φ̂(r)
∣∣ΨN+1

m

〉
� the Lehmann amplitude of the (N − 1) system: gl(r) =

〈
ΨN−1
l

∣∣∣ Φ̂(r)
∣∣ΨN

n

〉
and g∗l (r) =〈

ΨN
n

∣∣ Φ̂†(r)
∣∣∣ΨN−1

l

〉
� the excitation energy needed to insert an electron to the N particle system resulting in

a state
∣∣ΨN+1

m

〉
: εm = EN+1

m − EN0

� the excitation energy needed to remove an electron resulting in a state
∣∣∣ΨN−1

l

〉
: εl =

EN0 − E
N−1
l

Using these de�nitions, the Green's functions Ge and Gh can be written in a more compact

form:

Ge(r, r′, τ) = − i
~

1

Z

∑
n,m

e−βE
N
n e−i(E

N+1
m −ENn )τ f∗m(r)fm(r′) Θ (τ)

Gh(r′, r, τ) = − i
~

1

Z

∑
n,l

e−βE
N
n e−i(E

N
n −E

N−1
l )τ g∗l (r

′)gl(r) Θ (−τ) .

The Green's function at zero temperature T Since we are interested in the low temperature

regime, where kBT 6 |Ei − E0| holds, the thermal energy is not su�cient to excite the initial
system and consequently we assume the system to be in its ground state. Thus, the sum over

excited states n of the N particle system becomes redundant and only the sums over m and

l remain, because the latter describe excitations caused by photons or other higher energy

sources. For instance, the prefactor Z becomes: Z =
∑

n e
βENn

T'0−→ eβE
N
0 . This simpli�es the
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above equations to:

Ge(r, r′, τ) = − i
~
∑
m

e−i(E
N+1
m −EN0 )τ f∗m(r)fm(r′) Θ (τ)

Gh(r′, r, τ) = − i
~
∑
l

e−i(E
N
0 −E

N−1
l )τ g∗l (r

′)gl(r) Θ (−τ) .

and

Ge(r, r′, τ) = − i
~
∑
m

e−iεmτ f∗m(r)fm(r′) Θ (τ) (A.8)

Gh(r′, r, τ) = − i
~
∑
l

e−iεlτ g∗l (r
′)gl(r) Θ (−τ) , (A.9)

respectively.

Transformation into frequency space Having in mind photoemission experiments, where

the energy is usually expressed in terms of ~ω, it is suitable to transform equation (A.8) and

(A.9) into frequency space using the Fourier transformation:

G(r, r′, ω) =
´∞
−∞ dτ eiωτG(r, r′, τ)

G(r, r′, τ) = 1
2π

´∞
−∞ dω e−iωτG(r, r′, ω).

For the single-electron Green's function this gives:

Ge(r, r′, ω) = − i
~
´∞
−∞ dτ e

iωτ Θ (τ)
∑

m e
−iεmτ f∗m(r)fm(r′)

= − i
~
∑

m f∗m(r)fm(r′)
´∞

0 dτ ei(ω−εm)τ

= − i
~
∑

m f∗m(r)fm(r′)
[

1
i(ω−εm)e

i(ω−εm)τ
]∞
τ=0

.

At this point, a case-by-case analysis is necessary. For τ = 0, we obviously get:

Ge(r, r′, ω) = −1

~
∑
m

f∗m(r)fm(r′)
1

ω − εm
.

On the contrary, the problem does not converge for τ →∞. Therefore, we have to introduce

a factor ei(iδ)τ with δ → 0:

G(r, r′, ω) =

ˆ ∞
−∞

dτ ei(ω+iδ)τG(r, r′, τ).

Like this, we get:

Ge(r, r′, ω) = − i
~
∑

m f∗m(r)fm(r′)
´∞

0 dτ ei(ω−εm+iδ)τ

= − i
~
∑

m f∗m(r)fm(r′)
´∞

0 dτ ei(ω−εm)τe−δτ .
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⇒ Ge(r, r′, ω) =
1

~
∑
m

f∗m(r)fm(r′)
1

ω − εm + iδ
.

An analogue calculation for the single-hole Green's function results in:

⇒ Gh(r, r′, ω) = −1

~
∑
l

g∗l (r
′)gl(r)

1

ω − εl − iδ
.

Combining the last two equations yields the time-ordered one-particle Green's function in the

Lehmann representation:

GT (r, r′, ω) =
1

~

unocc∑
m

f∗m(r)fm(r′)

ω − εm + iδ
+

1

~

occ∑
l

g∗l (r
′)gl(r)

ω − εl − iδ
.

We have to bear in mind that m stands for excitations, where an electron is inserted, and

l for excitations, where an electron is removed from the N -particle system. Analogue, the

retarded and advanced Green's functions are:

GR(r, r′, ω) =
1

~

unocc∑
m

f∗m(r)fm(r′)

ω − εm + iδ
+

1

~

occ∑
l

g∗l (r
′)gl(r)

ω − εl + iδ

GA(r, r′, ω) =
1

~

unocc∑
m

f∗m(r)fm(r′)

ω − εm − iδ
+

1

~

occ∑
l

g∗l (r
′)gl(r)

ω − εl − iδ
,

with poles only in the upper (for GA) or lower half plane (for GR). Moreover, GA and GR

are complex conjugates of each other: GR =
[
GA
]∗.

A.3. Hedin's equations

Equation of motion of the single-particle Green's function Di�erentiating the single-

particle Green's function with respect to one of its two time variables reveals important

properties of the latter [2, 90]. Starting from the time-ordered one-particle Green's function

at zero temperature:

G(rt, r′t′) = 1
i~
〈
ΨN

0

∣∣T [Φ̂(r, t) Φ̂†(r′, t′)
] ∣∣ΨN

0

〉
= Ge(rt, r′t′)−Gh(r′t′, rt),

= 1
i~
〈
ΨN

0

∣∣ Φ̂(r, t) Φ̂†(r′, t′)
∣∣ΨN

0

〉
θ (t− t′)

− 1
i~
〈
ΨN

0

∣∣ Φ̂†(r′, t′) Φ̂(r, t)
∣∣ΨN

0

〉
θ (t′ − t)

and using the product rule, one obtains:

i~∂G(rt,r′t′)
∂t =

〈
ΨN

0

∣∣ Φ̂(r, t) Φ̂†(r′, t′)
∣∣ΨN

0

〉 ∂θ(t−t′)
∂t −

〈
ΨN

0

∣∣ Φ̂†(r′, t′) Φ̂(r, t)
∣∣ΨN

0

〉 ∂θ(t′−t)
∂t +〈

ΨN
0

∣∣ ∂Φ̂(r,t)
∂t Φ̂†(r′, t′)

∣∣ΨN
0

〉
θ (t− t′)−

〈
ΨN

0

∣∣ Φ̂†(r′, t′) ∂Φ̂(r,t)
∂t

∣∣ΨN
0

〉
θ (t′ − t)

i~∂G(rt,r′t′)
∂t = δ (t, t′)

[〈
ΨN

0

∣∣ Φ̂(r, t) Φ̂†(r′, t′)
∣∣ΨN

0

〉
+
〈
ΨN

0

∣∣ Φ̂†(r′, t′) Φ̂(r, t)
∣∣ΨN

0

〉]
+〈

ΨN
0

∣∣ ∂Φ̂(r,t)
∂t Φ̂†(r′, t′)

∣∣ΨN
0

〉
θ (t− t′)−

〈
ΨN

0

∣∣ Φ̂†(r′, t′) ∂Φ̂(r,t)
∂t

∣∣ΨN
0

〉
θ (t′ − t) ,
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where we used the fact that the derivative of a step function is a δ-function:

∂θ(t−t′)
∂t = −∂θ(t′−t)

∂t = δ(t− t′).

Further, using that [
Φ̂(r) Φ̂†(r′)

]
+

= δ
(
r− r′

)
for equal times t and t′ [90], the �rst two terms of the above equation simplify to:

δ
(
t, t′
) 〈

ΨN
0

∣∣ Φ̂(r, t) Φ̂†(r′, t′) + Φ̂†(r′, t′) Φ̂(r, t)
∣∣ΨN

0

〉
= δ

(
t, t′
)
δ
(
r− r′

)
.

Concerning the remaining two terms, they can be combined to:

〈
ΨN

0

∣∣T [∂Φ̂(r, t)

∂t
Φ̂†(r′, t′)

] ∣∣ΨN
0

〉
.

Further, inserting expression (A.4) for the equation of motion of the annihilation operator

results in:

i~∂G(rt,r′t′)
∂t = δ (r− r′) δ (t, t′) +

〈
ΨN

0

∣∣T [∂Φ̂(r,t)
∂t Φ̂†(r′, t′)

] ∣∣ΨN
0

〉
= δ (r− r′) δ (t, t′) +

1
i~
〈
ΨN

0

∣∣T [{h0 (r) Φ̂(r, t) +
´
d3r′′ v (r− r′′) Φ̂†(r′′, t)Φ̂(r′′, t)Φ̂(r, t)

}
Φ̂†(r′, t′)

] ∣∣ΨN
0

〉
= δ (r− r′) δ (t, t′) +

1
i~
〈
ΨN

0

∣∣T [h0 (r) Φ̂(r, t)Φ̂†(r′, t′)
] ∣∣ΨN

0

〉
+

1
i~
〈
ΨN

0

∣∣T [´ d3r′′ v (r− r′′) Φ̂†(r′′, t)Φ̂(r′′, t)Φ̂(r, t)Φ̂†(r′, t′)
] ∣∣ΨN

0

〉
.

Since h0 (r) and v (r− r′′) are just functions and no operators in second quantization, they

can be put in front of the corresponding matrix elements:

i~∂G(rt,r′t′)
∂t = δ (r− r′) δ (t, t′) +

h0 (r) 1
i~
〈
ΨN

0

∣∣T [Φ̂(r, t)Φ̂†(r′, t′)
] ∣∣ΨN

0

〉
+´

d3r′′ v (r− r′′) 1
i~
〈
ΨN

0

∣∣T [Φ̂†(r′′, t)Φ̂(r′′, t)Φ̂(r, t)Φ̂†(r′, t′)
] ∣∣ΨN

0

〉
= δ (r− r′) δ (t, t′) + h0 (r)G(rt, r′t′)+´

d3r′′ v (r− r′′) 1
i~
〈
ΨN

0

∣∣T [Φ̂†(r′′, t)Φ̂(r′′, t)Φ̂(r, t)Φ̂†(r′, t′)
] ∣∣ΨN

0

〉
.

The time-ordered product containing four �eld operators governs the full electron-electron

interaction. We can rewrite this term respecting that every exchange of �eld operators causes

a minus sign:

i~∂G(rt,r′t′)
∂t = δ (r− r′) δ (t, t′) + h0 (r)G(rt, r′t′)

−
´
d3r′ v (r− r′) 1

i~
〈
ΨN

0

∣∣T [Φ̂(r, t)Φ̂(r′′, t)Φ̂†(r′′, t)Φ̂†(r′, t′)
] ∣∣ΨN

0

〉
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and introduce the two-particle Green's function G2 (A.5):

G2

(
rt; r′′t; r′, t′; r′′t+

)
=

1

(i~)2

〈
ΨN

0

∣∣T [Φ̂(r, t)Φ̂(r′′, t)Φ̂†(r′′, t+)Φ̂†(r′, t′)
] ∣∣ΨN

0

〉
.

Finally one obtains for the equation of motion of the single-particle Green's function:(
i~

∂

∂t1
− h0 (r1)

)
G(11′) + i~

ˆ
d3r2 v (r1 − r2) G2

(
12, 1′2+

)
= δ

(
1, 1′

)
. (A.10)

Concerning the shorthand notation, 1 represents (r, t), 1′ ≡ (r′, t′), 2 ≡ (r′′, t) and 2+ ≡
(r′′, t+ η), where η with η → 0 is introduced to ensure the right time order.

The Dyson equation Following Schwinger's functional derivative approach for the derivation

of Hedin's equations, we introduce a time-dependent external potential Uext, which is set to

zero at the end of the derivation. This way, the two-particle Green's function in equation

(A.10) can be substituted by equation (A.7):

G2

(
121′2+

)
= G

(
11′
)
G
(
22+

)
− ∂G (11′)

∂Uext (2)
.

This results in:

i~∂G(11′)
∂t1

= δ (1, 1′) + h0 (r1)G (1, 1′)− i~
´
d3r2 v (r1 − r2) G2 (12, 1′2+)

= δ (1, 1′) + h0 (r1)G (1, 1′)

−i~
[´
d3r2 v (r1 − r2) G (22+)

]
G (11′) + i~

´
d3r2 v (r1 − r2) ∂G(11′)

∂Uext(2)

⇒ i~∂G(11′)
∂t1

= δ (1, 1′) + h0 (r1)G (1, 1′) + VH (r1)G (11′) +
´
d2 Σ (12)G (21′) .

(A.11)

For the last identity we introduced the Hartree potential VH (r1):

VH (r1) =

ˆ
d3r2 v (r1 − r2) G

(
22+

)
, (A.12)

where we used that −i~G(22+) equals the electron density n(2), which is the expectation

value of the density operator n̂(2) = Φ̂†(2)Φ̂(2) as de�ned in Chapter I of the Appendix.

Moreover, we de�ned the self-energy Σ as:

Σ (12) = i~
¨

d3d4 v (r1 − r3)
∂G (14)

∂Uext (3)
G−1 (42) ,

where we used that δ (12) =
´
d3G−1 (13)G (32) . The expression for Σ can be further modi-

�ed considering equation (A.3) and (A.2), leading to:
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Σ (12) = −i~
ˇ

d3d4d5d6 v (r1 − r3) G (15) ∂G
−1(56)

∂Uext(3) G (64) G−1 (42)

= −i~
˜
d3d5 v (r1 − r3) G (15) ∂G−1(52)

∂Uext(3)

= −i~
˝

d3d4d5 v (r1 − r3) G (15) ∂G−1(52)
∂Vtot(4)

∂Vtot(4)
∂Uext(3)

⇒ Σ (12) = i~
˜
d4d5G (15) Γ (52; 4)W (14) ,

(A.13)

where we introduced a total potential Vtot = Uext + Vind, the vertex function Γ(52; 4) =

−∂G−1(52)
∂Vtot(4) and the screened Coulomb potential W (14) =

´
d3 v (r1 − r3) ∂Vtot(4)

∂Uext(3) .

Incorporating the Hartree potential in the one-particle operator (H0 = h0 + VH), we can

write the equation of motion (A.11) as follows :(
i~

∂

∂t1
−H0 (r1)

)
G(11′)−

ˆ
d3 Σ (13)G

(
31′
)

= δ
(
1, 1′

)
. (A.14)

For a non-interacting system (Σ = 0), the latter simpli�es to:(
i~

∂

∂t1
−H0 (r1)

)
G0

(
11′
)

= δ
(
1, 1′

)
, (A.15)

i.e.

G0

(
1, 1′

)
= δ

(
1, 1′

)(
i~

∂

∂t1
−H0 (r1)

)−1

. (A.16)

Multiplying equation (A.14) by G0 (21) from the left and integrating over d1 results in the

Dyson equation:

ˆ
d1 δ (21)

(
i~

∂

∂t2
−H0 (r2)

)−1(
i~

∂

∂t1
−H0 (r1)

)
G(11′)−

¨
d3d1G0 (21) Σ (13)G

(
31′
)

=

ˆ
d1G0 (21) δ

(
11′
)

G(21′)−
¨

d3d1G0 (21) Σ (13)G
(
31′
)

= G0

(
21′
)

G
(
21′
)

= G0

(
21′
)

+

¨
d3d1G0 (21) Σ (13)G

(
31′
)
, (A.17)

which can be reformulated using δ (12) =
´
d3G−1 (13)G (32) to:

G−1 (54) = G−1
0 (54)− Σ (54) .

Using the fact that the Fourier transformation of a derivative ∂
∂t becomes −iω and that δ-

functions δ (τ) give unity, we can readily transform the above equation to frequency space,

yielding:
G−1 (r5r4, ω) = G−1

0 (r5r4, ω)− Σ (r5r4, ω)

= δ (r5r4) [~ω −H0 (r5)]− Σ (r5r4, ω) .
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Consequently, for the EOM expressed in terms of the self-energy, we obtain:

ˆ
dr4G

−1 (r5r4, ω)G (r4r3, ω) =

ˆ
dr4G

−1
0 (r5r4, ω)G (r4r3, ω)−

ˆ
dr4 Σ (r5r4, ω)G (r4r3, ω)

δ (r5r3) =

ˆ
dr4 δ (r5r4) [~ω −H0 (r5)]G (r4r3, ω)−

ˆ
dr4 Σ (r5r4, ω)G (r4r3, ω) ,

→ [~ω −H0 (r5)]G (r5r3, ω)−
ˆ
dr4 Σ (r5r4, ω)G (r4r3, ω) = δ (r5r3) . (A.18)

Schwinger's functional derivative approach for the Hedin's equations The Dyson equation

derived within Schwinger's functional derivative approach can be directly used to determine

the irreducible vertex function Γ:

Γ(1, 2; 3) ≡ −∂G
−1(1, 2)

∂Vtot(3)
= −∂G

−1
0 (1, 2)

∂Vtot(3)
+
∂Σ(1, 2)

∂Vtot(3)
,

where ∂Vtot = ∂Uext+∂VH . It is important to keep in mind that G0 originates from a system

governed by the Hamiltonian H0 = −1
2∇

2 + Vext + VH , where Vext accounts for the core ion

potential. Inserting expression (A.16) for G0, applying the chain rule (A.2) and using relation

(A.3) leads to:

Γ(1, 2; 3) = −
∂
[
δ(1,2)

(
i~ ∂
∂t1

+ 1
2
∇2−Vext(1)−VH(1)

)]
∂Vtot(3) +

˜
d4d5 ∂Σ(12)

∂G(45)
∂G(45)
∂Vtot(3)

= δ (1, 2) ∂VH(1)
∂VH(3) +

˜
d4d5 ∂Σ(12)

∂G(45)
∂G(45)
∂Vtot(3)

= δ (1, 2) δ (1, 3) +
˜
d4d5 ∂Σ(12)

∂G(45)
∂G(45)
∂Vtot(3)

= δ (1, 2) δ (1, 3)−
˜
d4567 ∂Σ(12)

∂G(45)G (46) ∂G
−1(67)

∂Vtot(3) G (75) .

This �nally results in the Hedin equation for the irreducible vertex function Γ:

⇒ Γ(1, 2; 3) = δ(12)δ (13) +

˘
d4567

∂Σ (12)

∂G (45)
G (46) Γ (6, 7; 3)G (75) . (A.19)

Analogously, by using identity (A.3) and the de�nition of the vertex function Γ, the irre-

ducible polarizability P (1, 2) ≡ ∂nind(1)
∂Vtot(2) can be derived:

P (1, 2) = −i~∂G(11+)
∂Vtot(2)

= i~
˜
d3d4G (13) ∂G

−1(34)
∂Vtot(2) G (41)

⇒ P (1, 2) = −i~
˜
d3d4G (13) Γ (3, 4; 2)G (41) .

(A.20)

After having derived the Dyson equation for the Green's function (A.17), an explicit ex-

pression for the self-energy (A.13), the irreducible vertex function (A.19) and the irreducible

polarizability (A.20), we conclude this section by introducing the screened Coulomb potential

W ,

W (12) =

ˆ
d3 ε−1 (13) v (32) .
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Using the chain rule (A.2) and the de�nition of the Hartree potential (A.12), the inverse

dielectric function can be expressed via:

ε−1 (12) ≡ ∂Vtot(1)
∂Uext(2) = (∂Uext(1)+∂VH(1))

∂Uext(2)

= δ (12) +
´
d3 v (13)

∂G(33+)
∂Uext(2)

= δ (12) +
´
d34 v (13)

∂G(33+)
∂Vtot(4)

∂Vtot(4)
∂Uext(2)

= δ (12) +
´
d34 v (13)P (34) ε−1 (42) .

From this, it follows for the screened Coulomb potential W (12) =
´
d3 ε−1(13) v(32):

W (12) =
´
d3 δ (13) v (32) +

´
d345 v (14)P (45) ε−1 (53) v (32) ,

⇒ W (12) = v (12) +

¨
d45 v (14)P (45)W (52) . (A.21)

A.4. The GW formalism

A.4.1. Introduction of the quasiparticle weight

The single-particle Green's function can be written in a diagonal single-particle Hartree basis

as follows:

Gii (ω) ≡ 1

ω − εH,i − Σii (ω)
.

Expanding the real part of the self-energy ReΣ (ω) around the quasiparticle poles εqp in a

Taylor series and assuming ImΣ (ω)→ 0,

ReΣii (ω) = ReΣii (εqp,i) +
∂ReΣii (ω)

∂ω

∣∣∣∣
ω=εqp,i

(ω − εqp,i) + . . . ,

yields for the Green's function a decomposition into a coherent and incoherent part:

Gii (ω) = 1

ω−εH,i−ReΣii(εqp,i)−
∂ReΣii(ω)

∂ω

∣∣∣
ω=εqp,i

(ω−εqp,i)−...

= Zqp,i
1

ω−εH,i−ReΣii(εqp,i) + (1− Zqp,i)Ginc.

The introduced quasiparticle weight Zqp,i is de�ned as

Zqp,i ≡

(
1− ∂ReΣii (ω)

∂ω

∣∣∣∣
ω=εqp,i

)−1

,
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following from:

G−1
coh (ω) = Z−1

qp,i

(
1

ω−εH,i−ReΣii(εqp,i)

)−1

=

(
1− ∂ReΣii(ω)

∂ω

∣∣∣
ω=εqp,i

)
(ω − εH,i −ReΣii (εqp,i)) ,

G−1
coh (ω) = ω − εH,i −ReΣii (εqp,i)− ω ∂ReΣii(ω)

∂ω

∣∣∣+ εH,i
∂ReΣii(ω)

∂ω

∣∣∣+ ∂ReΣii(ω)
∂ω

∣∣∣
= ω − εH,i −ReΣii (εqp,i)− ∂ReΣii(ω)

∂ω

∣∣∣ (ω − εH,i −ReΣii (εqp,i))

= ω − εH,i −ReΣii (εqp,i)− ∂ReΣii(ω)
∂ω

∣∣∣ (ω − εqp,i) .
A.4.2. The quasiparticle equation

In order to facilitate the derivation, we generalize all quantities from real frequency space ω

to the complex plane z ∈ C. Consequently, the biorthonormal representation of the single-

particle Green's function is represented by [98]:

GT (r, r′, z) =
∑
λ

ψλ (r, z)ψλ (r′, z)

z − Eλ (z)
.

ψλ and ψλ are left and right eigenvectors of the non-Hermitian operator H̃,

H̃ (z) = Ĥ0 + Σ
(
r, r′, z

)
= −1

2
∇2 + Vext (r) + VH (r) + Σ

(
r, r′, z

)
,

and Eλ (z) is the corresponding eigenvalue. Ĥ0 regroups the kinetic energy, the external

potential Vext arising from the ion cores and the Hartree potential VH . Inserting this repre-

sentation of the Green's function in the equation of motion (EOM) in frequency space (A.18)

yields:

[z −H0 (r)]G (r, r′, z)−
´
dr′′Σ (r, r′′, z)G (r′′, r′, z) = δ (r− r′)

∑
λ [z − Eλ (z)]−1 { [z −H0 (r)]ψλ (r, z)ψλ (r′, z)

−ψλ (r′, z)
´
dr′′Σ (r, r′′, z)ψλ (r′′, z) } = δ (r− r′)

∑
λ [z − Eλ (z)]−1 { [z −H0 (r)]ψλ (r, z)

´
dr′ψν (r′, z)ψλ (r′, z)

−
´
dr′ψν (r′, z)ψλ (r′, z)

´
dr′′Σ (r, r′′, z)ψλ (r′′, z) } =

´
dr′ψν (r′, z) δ (r− r′)

∑
λ [z − Eλ (z)]−1 { [z −H0 (r)]ψλ (r, z) δνλ

−δνλ
´
dr′′Σ (r, r′′, z)ψλ (r′′, z) } = ψν (r, z)

[z −H0 (r)]ψν (r, z)−
´
dr′′Σ (r, r′′, z)ψν (r′′, z) = [z − Eν (z)]ψν (r, z)

H0 (r)ψν (r, z) +
´
dr′′Σ (r, r′′, z)ψν (r′′, z) = Eν (z)ψν (r, z) .
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The obtained equation is still general and in order to arrive at the quasiparticle equation we

only consider z at the complex quasiparticle energy εqp, i.e. the pole of

ω − Eν (z) = 0 =⇒ εqp − Eν (εqp) = 0.

De�ning the quasiparticle wave functions as:

ψqpν (r) ≡ ψν (r, z = εqp) ,

where we neglect the frequency dependency of the wave functions, and further imposing

z = εqp, we obtain the quasiparticle equation:

H0 (r)ψqpν (r) +

ˆ
dr′′Σ

(
r, r′′, εqp

)
ψqpν

(
r′′
)

= εqpψ
qp
ν (r) .

A.4.3. Approximation of the quasiparticle energy in a state-independent

framework

The di�cult part in calculating the quasiparticle energy following

εqp,ν = εKSν +
〈
ψKSν

∣∣Σ (εqp,ν)− Vxc
∣∣ψKSν 〉

(A.22)

is the dependence of the self-energy Σ on the quasiparticle energy εqp,ν itself. An approxima-

tion is to expand Σ up to the linear term in a Taylor series around the known DFT Kohn-Sham

energy εKSν :

Σ(εqp,ν) ≈ Σ(εKSν ) +
∂Σ(ω)

∂ω

∣∣∣∣
ω=εKSν

(εqp,ν − εKSν ).

Inserting the above expansion in equation (A.22) yields:

εqp,ν ≈ εKSν +

〈
ψKSν

∣∣∣∣∣Σ(εKSν ) +
∂Σ(ω)

∂ω

∣∣∣∣
ω=εKSν

(εqp,ν − εKSν ) − Vxc

∣∣∣∣∣ψKSν
〉
,

which can be transformed as follows:

εqp,ν = εKSν +
〈
ψKSν

∣∣Σ(εKSν )− Vxc
∣∣ψKSν 〉

+

〈
ψKSν

∣∣∣∣ ∂Σ(ω)
∂ω

∣∣∣
ω=εKSν

(εqp,ν − εKSν )

∣∣∣∣ψKSν 〉

= εKSν +
〈
ψKSν

∣∣Σ(εKSν )− Vxc
∣∣ψKSν 〉

+

〈
ψKSν

∣∣∣∣ ∂Σ(ω)
∂ω

∣∣∣
ω=εKSν

∣∣∣∣ψKSν 〉
(εqp,ν − εKSν )

= εKSν +
〈
ψKSν

∣∣Σ(εKSν )− Vxc
∣∣ψKSν 〉

+
∂〈ψKSν |Σ(ω)|ψKSν 〉

∂ω

∣∣∣∣
ω=εKSν

(εqp,ν − εKSν )

(
εqp,ν − εKSν

)
−
(
εqp,ν − εKSν

) ∂ 〈ψKSν |Σ(ω)|ψKSν
〉

∂ω

∣∣∣∣∣
ω=εKSν

=
〈
ψKSν

∣∣Σ(εKSν )− Vxc
∣∣ψKSν 〉
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(
εqp,ν − εKSν

)
=

1−
∂
〈
ψKSν |Σ(ω)|ψKSν

〉
∂ω

∣∣∣∣∣
ω=εKSν

−1 〈
ψKSν

∣∣Σ(εKSν )− Vxc
∣∣ψKSν 〉

to the �nal equation:

εqp,ν ≈ εKSν + ZKSν

〈
ψKSν

∣∣Σ(εKSν )− Vxc
∣∣ψKSν 〉

.

A.5. The COHSEX formulation

We want to derive an expression for the self-energy Σ, where the latter is separated into two

terms, namely the Coulomb hole ΣCOH and screened exchange ΣSEX contribution:

Σ(r, r′, E) =
i

2π

ˆ ∞
−∞

dω eiηωG(r, r′, E + ω)W
(
r, r′, ω

)
= ΣSEX + ΣCOH.

For the derivation, we use the non-interacting Green's function G0,

G0(r, r′, ω) =

occ∑
l

φ∗l (r′)φl (r)

ω − εl − iη
+

unocc∑
m

φ∗m (r)φm (r′)

ω − εm + iη
,

and the screened Coulomb potential W in its Lehmann representation:

W
(
r, r′, ω

)
= v

(
r, r′

)
+
∑
k

2 εk Vk (r)V ∗k (r′)

ω2 − (εk − iδ)2 = v
(
r, r′

)
+
∑
k

2 εk Vk (r)V ∗k (r′)

(ω + εk − iδ) (ω − εk + iδ)
,

where δ is an in�nitesimal parameter and where Vk (r) represents �uctuation potentials,

Vk (r) =

ˆ
d3r′ v

(
r, r′

)
〈N, k| n̂

(
r′
)
|N, 0〉 .

The neutral excitation energies are given by εk = EN,k−EN,0, where EN denote total energies

of the N -particle system.

The self-energy integral is transformed into a complex integral following ω → ω̄ = ω′+iω′′ =

Reiϕ with R2 = (ω′)2 + (ω′′)2 and ϕ = arctan
(
ω′′

ω′

)
:

Σ(r, r′, E) =

= i
2π

¸
C dω̄

∑
k e

iηω̄
(∑occ

l
φ∗l (r′)φl(r)
E+ω̄−εl−iη +

∑unocc
m

φ∗m(r)φm(r′)
E+ω̄−εm+iη

)(
v (r, r′) +

2 εk Vk(r)V ∗k (r′)
(ω̄+εk−iδ)(ω̄−εk+iδ)

)
= i

2π

¸
C dω̄ g (ω̄) .

This is advantageous, since complex contour integration techniques can be used. A detailed

overview of the theorems used in the following can be found in Appendix A.9. The residue

theorem states that a closed path integral over a function g(z) with z∈ C yields:

˛
C
dz g (z) =

 0,

2πi
∑

iRes (g, zi)

if no poles are enclosed

if poles at zi are enclosed.
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The residue Res (g, zi) can be calculated following:

Res (g, zi) =
1

(n− 1)!

dn−1

dzn−1
[(z − zi)n g (z)]z=zi , (A.23)

where n is the order of the pole. Expanding g (ω̄) results in:

¸
C dω̄ g (ω̄) =

¸
C dω̄

∑
m eiηω̄

(
φ∗m(r)φm(r′)
E+ω̄−εm+iη

)
v (r, r′)

+
¸
C dω̄

∑
m,k e

iηω̄
(
φ∗m(r)φm(r′)
E+ω̄−εm+iη

)(
2 εk Vk(r)V ∗k (r′)

(ω̄+εk−iδ)(ω̄−εk+iδ)

)
+
¸
C dω̄

∑
l e

iηω̄
(
φ∗l (r′)φl(r)
E+ω̄−εl−iη

)
v (r, r′)

+
¸
C dω̄

∑
k,l e

iηω̄
(
φ∗l (r′)φl(r)
E+ω̄−εl−iη

)(
2 εk Vk(r)V ∗k (r′)

(ω̄+εk−iδ)(ω̄−εk+iδ)

)
.

That means we can split the problem in four subproblems, following:

˛
C
dω̄ g (ω̄) =

˛
dω̄ g1 (ω̄) +

˛
dω̄ g2 (ω̄) +

˛
dω̄ g3 (ω̄) +

˛
dω̄ g4 (ω̄) .

To arrive at the COHSEX representation, the closed contour is chosen to consist of the entire

real axis and a semi-circle with in�nite radius R in the upper half complex plane (see Fig.

A.1): ˛
C
dω̄ g (ω̄) =

˛
C1

dω̄ g (ω̄) +

˛
C2

dω̄ g (ω̄) .

Since g1 has only poles in the third and fourth quadrant, the contour encloses no poles and

consequently the integral vanishes. Concerning the remaining integrals g2−4, the residues have

to be calculated. Corresponding to Jordan's lemma, the integral along contour C2 vanishes

for R→∞ in the case of higher order poles n > 1. This holds both for contours in the upper

and in the lower half plane and concerns g2 and g4. The integrand g3 has poles of �rst order,

however, corresponding to Jordan's Lemma, for η > 0 the factor eiηω̄ ensures that the integral

along a semi-circle in the upper half plane vanishes.1 Consequently, one �nds:

˛
upper

dω̄ g (ω̄) =
∑
k

Res2 (g2, ω̄k) +
∑
l

Res3 (g3, ω̄l) +
∑
kl

Res4 (g4, ω̄l, ω̄k) .

In order to arrive at the COHSEX formulation, we proceed in that way that we calculate

the individual residues which are then grouped together in contributions originating from

1Jordan's lemma states that for a factor eiωt and t > 0, the semi-circle has to be in the upper half plane.
For a semi-circle in the lower half plane, the integral diverges. For the same reasons, a semi-circle in the
lower half plane has to be chosen for t < 0.
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poles of G0 and poles of W , respectively. The function g2,

g2 =
∑
m,k

eiηω̄
(

φ∗m (r)φm (r′)

E + ω̄ − εm + iη

)(
2 εk Vk (r)V ∗k (r′)

(ω̄ + εk − iδ) (ω̄ − εk + iδ)

)
,

has single poles in the upper half plane at ω̄k = −εk + iδ which solely stem from the W

contribution. According to equation (A.23), the residue can be calculated as follows:∑
k Res2 (g2, ω̄k) =

= limω̄→ω̄k
∑

m,k e
iηω̄

(
φ∗m(r)φm(r′)
E+ω̄−εm+iη

)(
2 εk Vk(r)V ∗k (r′)(ω̄+εk−iδ)

(ω̄+εk−iδ)(ω̄−εk+iδ)

)
=

∑
m,k e

iηω̄k
(
φ∗m(r)φm(r′)
E+ω̄k−εm+iη

)(
2εk Vk(r)V ∗k (r′)
−2εk+i2δ

)
.

For the third integrand g3,

g3 =
∑
l

eiηω̄
(

φ∗l (r′)φl (r)

E + ω̄ − εl − iη

)
v
(
r, r′

)
,

one identi�es single poles at ω̄l = εl−E+iη originating from the Green's function for occupied

states. The residue is: ∑
l Res3 (g3, ω̄l) =

= limω̄→ω̄l
∑

l e
iηω̄

(
φ∗l (r′)φl(r)(E+ω̄−εl−iη)

E+ω̄−εl−iη

)
v (r, r′)

=
∑

l e
iηω̄l φ∗l (r′)φl (r) v (r, r′) .

The fourth integrand g4,

g4 =
∑
k,l

eiηω̄
(

φ∗l (r′)φl (r)

E + ω̄ − εl − iη

)(
2 εk Vk (r)V ∗k (r′)

(ω̄ + εk − iδ) (ω̄ − εk + iδ)

)
,

includes poles in the upper half plane both at ω̄k = −εk + iδ from W and at ω̄l = εl −E + iη

from the Green's function:∑
kl Res4 (g4, ω̄k,l) =

=
∑

iRes (g4, ω̄k) +
∑

iRes (g4, ω̄l)

= limω̄→ω̄k
∑

k,l e
iηω̄

(
φ∗l (r′)φl(r)
E+ω̄−εl−iη

)(
2 εk Vk(r)V ∗k (r′)(ω̄+εk−iδ)

(ω̄+εk−iδ)(ω̄−εk+iδ)

)
+ limω̄→ω̄l

∑
k,l e

iηω̄
(
φ∗l (r′)φl(r)(E+ω̄−εl−iη)

E+ω̄−εl−iη

)(
2 εk Vk(r)V ∗k (r′)

(ω̄+εk−iδ)(ω̄−εk+iδ)

)
=

∑
k,l e

iηω̄k
(

φ∗l (r′)φl(r)
E+ω̄k−εl−iη

)(
2εk Vk(r)V ∗k (r′)
−2εk+i2δ

)
+
∑

k,l e
iηω̄l φ∗l (r′)φl (r)

2 εk Vk(r)V ∗k (r′)
(ω̄l+εk−iδ)(ω̄l−εk+iδ) .
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Having evaluated the four residues, one �nds for the self-energy:

Σ(r, r′, E) = −
∑

m,k e
iηω̄k

(
φ∗m(r)φm(r′)
E+ω̄k−εm+iη

)(
2εk Vk(r)V ∗k (r′)
−2εk+i2δ

)
−
∑

l e
iηω̄l φ∗l (r′)φl (r) v (r, r′)

−
∑

k,l e
iηω̄k

(
φ∗l (r′)φl(r)
E+ω̄k−εl−iη

)(
2εk Vk(r)V ∗k (r′)
−2εk+i2δ

)
−
∑

k,l e
iηω̄l φ∗l (r′)φl (r)

2 εk Vk(r)V ∗k (r′)
(ω̄l+εk−iδ)(ω̄l−εk+iδ) .

Reordering yields:

Σ(r, r′, E) =

−
∑occ

k,l e
iηω̄l φ∗l (r′)φl (r)

(
v (r, r′) +

2 εk Vk(r)V ∗k (r′)
(ω̄l+εk−iδ)(ω̄l−εk+iδ)

)
−

∑
k,l,m eiηω̄k

(
2εk Vk(r)V ∗k (r′)
−2εk+i2δ

)(
φ∗m(r)φm(r′)
E+ω̄k−εm+iη +

φ∗l (r′)φl(r)
E+ω̄k−εl−iη

)
.

Setting η and δ to zero, this equals:

Σ(r, r′, E) =

−
∑occ

l φ∗l (r′)φl (r) W (r, r′, E − εl)

+
∑

k,o Vk (r)V ∗k (r′) φ
∗
o(r)φo(r′)
E+εk−εo

= ΣSEX + ΣCOH,

where we introduced the summation index o including occupied and unoccupied states and

thus combining l and m.

A.6. Calculation of the bare exchange using contour

deformation techniques

In the following, we demonstrate that the bare exchange contribution of the self-energy,

Σx
(
r, r′, τ

)
= iG0

(
r, r′, τ

)
v
(
rr′
)
,

is equivalent to the Fock exchange in Hartree-Fock theory,

〈φk,0| V̂F |φk,0〉 = −
occ∑
n

ˆ
drdr′

φk,0 (r)φn,0 (r′)φ∗k,0 (r′)φ∗n,0 (r)

|r− r′|
.
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Figure A.1.: The complex integration along the contour C consists of a contour C1 along the
real axis and a semi-circle C2. The poles of the non-interacting Green's function
are at the real single-particle energies εl and εm (blue crosses), respectively.
However, they are slightly shifted into the complex plane by the in�nitesimal
value ±η. The poles of the screened Coulomb potential are found at the neutral
excitation energies εk (orange squares), which are shifted by the in�nitesimal
value ±δ in the complex plane. Only the poles of the Green's function for
occupied states at ω̄l = εl + iη and the poles of W at ω̄k = −εk + iδ are
enclosed by the contour, whereas the remaining poles are not concerned.

Working in frequency space, the following integral has to be solved:

Σx(r, r′) =
i

2π
v(r, r′)

+∞ˆ

−∞

dω eiηωG0(r, r′, ω).

According to analytic continuation, we change to the complex plane (ω → ω̄ = ω′ + iω′′) and

evaluate the complex integral

Σx(r, r′) =
i

2π
v
(
r, r′

) ˛
C
dω̄ eiηω̄G0(r, r′, ω̄)

using contour deformation techniques. The contour C is chosen like depicted in �gure (A.2),

where the radius of the semi-circle R goes to in�nity. Inserting the non-interacting Green's

function G0,

G0(r, r′, ω̄) =

occ∑
l

φ∗l (r′)φl (r)

ω̄ − εl − iη
+
unocc∑
m

φ∗m (r)φm (r′)

ω̄ − εm + iη
,

where η is an in�nitesimal parameter, the pole structure of Σx can be evaluated. The latter

has poles in the complex plane both at ω̄l = εl + iη and ω̄m = εm − iη, however, only poles

ω̄l for occupied states are enclosed by the contour. Using the same contour deformation rules
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Figure A.2.: The complex integral is carried out along the contour C, which decomposes
into an integration along C1 and C2. The poles of the Green's function are at
the real excitation energies εm (blue crosses), however, they are slightly shifted
into the complex plane by the in�nitesimal value ±η. Only the poles of the
Green's function for occupied states at ω̄l = εl+iη are enclosed by the contour,
whereas the poles for unoccupied states at ω̄m = εm − iη are outside.

as presented in the preceding section and in Appendix A.9, results in:

Σx (r, r′) = i
2πv (r, r′)

¸
C dω̄ e

iηω̄G0(r, r′, ω̄)

= i
2πv (r, r′)

[´
C1
dω̄ eiηω̄G0(r, r′, ω̄) +

´
C2
dω̄ eiηω̄G0(r, r′, ω̄)

]
= i

2πv (r, r′) · 2πi
∑

ω̄l
Res (G0, ω̄l) .

Corresponding to Jordan's lemma, the factor eiηω̄ ensures that integral along contour C2

vanishes for R→∞. Consequently, one obtains:

ˆ
C1

dω̄ eiηω̄G0(r, r′, ω̄) = 2πi
∑
ω̄l

Res (G0, ω̄l) .

Following equation (A.23), the residues of G0 are calculated to:

∑
ω̄l
Res (G0, ω̄l) =

∑
l φ
∗
l (r)φl (r

′) ,

where η → 0. Finally, taking the expectation value of Σx with single-particle states φk,0, one

obtains:

〈φk,0|Σx |φk,0〉 = −
occ∑
l

ˆ
drdr′

φk,0 (r)φl,0 (r′)φ∗k,0 (r′)φ∗l,0 (r)

|r− r′|
,

where v (r, r′) = 1
|r−r′| has been inserted. This is nothing else than the bare Fock exchange

from Hartree-Fock theory.
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A.7. Lehmann representation of the irreducible polarizability

In the following, the Lehmann representation for the irreducible polarizability P (12) within

GW -RPA is derived. In principle, P is a two-point quantity, however, we calculate with its

four-point extension in order to draw direct conclusions for the quasi-independent-particle

(QIP) polarizability:

LQIP
(
1, 2; 1′, 2′

)
≡ G

(
1, 2′

)
G
(
2, 1′

)
.

The latter describes the independent propagation of an electron and its hole via the time-

ordered one-particle Green's functions G. The notation �quasi-independent� refers to the fact

that the two particles indeed propagate without interacting with each other, however, both are

quasi-particles and interact with the surrounding medium. The independent-particle quantity

LIP can be obtained by inserting G0
1 instead of G into the above equation:

LIP ≡ G0
1

(
1, 2′

)
G0

1

(
2, 1′

)
.

To come back to the actual problem, PGW reads:

PGW
(
r1, r2; r

′
1, r

′
2; t1 − t

′
2; t2 − t

′
1

)
≡ −iG

(
r1, r

′
2, t1 − t

′
2

)
G
(
r2, r

′
1, t2 − t

′
1

)
.

Assuming that the electron and the hole propagate simultaneously, we set t1 = t
′
1 and t

′
2 = t2.

This yields:

PGW
(
r1, r2; r

′
1, r

′
2; τ
)
≡ −iG

(
r1, r

′
2, τ
)
G
(
r2, r

′
1,−τ

)
,

where τ = t1 − t
′
2. To derive the Lehmann representation, i.e. in order to express it in

the basis spanned by the eigenfunctions of the Hamiltonian operator, we start by a Fourier

transformation to frequency space. Further, we make use of the convolution theorem,

F (t) = g1 (t) g2 (t)

F (E) = 1
2π [g1 ? g2] (E) = 1

2π

´
dω g1 (E − ω) g2 (ω) ,

which states that the Fourier transform of a product of two functions is given by the convo-

lution in Fourier space. Applied to PGW we obtain:

PGW
(
r1, r2; r

′
1, r

′
2;E

)
= − i

2π

ˆ
dωG (E + ω)G (ω) .

Inserting the one-particle Green's function in its Lehmann representation gives:

PGW = − i
2π

∑
m,l

´∞
−∞ dω

(
fm(r1)f∗m(r′2)
E+ω−εm−iη +

fl(r1)f∗l (r′2)
E+ω−εl+iη

)(
fm(r2)f∗m(r′1)
ω−εm−iη +

fl(r2)f∗l (r′1)
ω−εl+iη

)
.

= − i
2π

∑
m,l

´∞
−∞ dω I

(
r1, r2; r

′
1, r

′
2;ω
)
.

The integral can be solved by going to the complex plane according to analytic continuation

(ω → ω̄ = ω′+ iω′′, R =
√

(ω′)2 + (ω′′)2). As a consequence, a closed integral in the complex

plane has to be evaluated using complex contour deformation theory. A detailed overview of
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Figure A.3.: The complex integral is carried out along the contour C, which decomposes
into an integration along C1 and C2. The poles of one Green's function occur
at ω = εm,l ± iη (blue crosses), while the poles of the other one (yellow dots)
are at ω = εm,l − E ± iη. Only the poles for occupied states at ω̄1 = εm1 + iη
and ω̄2 = εm2 − E + iη are enclosed by the contour, whereas the poles for
unoccupied states are outlying.

the theorems used in the following can be found in Appendix A.9.

Expanding I (ω̄) results in:

I (ω̄) =

(
fm(r1)f∗m(r′2)
E+ω̄−εm1−iη

)(
fm(r2)f∗m(r′1)
ω̄−εm2−iη

)
+

(
fl(r1)f∗l (r′2)
E+ω̄−εl1+iη

)(
fm(r2)f∗m(r′1)
ω̄−εm2−iη

)
+

(
fm(r1)f∗m(r′2)
E+ω̄−εm1−iη

)(
fl(r2)f∗l (r′1)
ω̄−εl2+iη

)
+

(
fl(r1)f∗l (r′2)
E+ω̄−εl1+iη

)(
fl(r2)f∗l (r′1)
ω̄−εl2+iη

)
= I1 + I2 + I3 + I4.

That implies that for each of the four summands, a closed integral has to be solved:

˛
C
dω̄ I (ω̄) =

4∑
i=1

˛
C
dω̄ Ii (ω̄) .

The residue theorem states that a closed integral gives either zero, if no poles of the function

are enclosed, or yields 2πi
∑

j Res (I, ω̄j) in the case when poles ω̄j of order n are contained.

The closed contour C is chosen to consist of the entire real axis and a semi-circle in the upper

half plane (see Fig. (A.2)) or a semi-circle in the lower half plane. Corresponding to Jordan's

lemma, the integral along the semi-circle vanishes for R → ∞ for higher order poles n > 1,

both for contours in the upper and in the lower half plane. Since the above summands Ii only

show higher order poles, one can freely choose either an integration in the upper or in lower

half plane and one obtains:

˛
C
dω̄ I2,3 (ω̄) =

ˆ ∞
−∞

dω′ I2,3

(
ω′
)
.

The choice of the contour depends on the position of the poles and one tries to avoid including

the latter into the contour. Since I1 and I4 only have poles either in the upper or in the lower

half plane, one can choose the path correspondingly, resulting in vanishing integrals. However,
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since I2 and I3 have poles both in the upper and in the lower half plane, the residues have to

be calculated:
˛
C
dω̄ I2,3 (ω̄) =

ˆ ∞
−∞

dω′ I2,3

(
ω′
)

= 2πi
∑
j

Res (I2,3, ω̄j) .

The latter can be obtained by solving:

Res (I2,3, ω̄j) =
1

(n− 1)!

dn−1

dω̄n−1
[(ω̄ − ω̄j)n f (ω̄)]ω̄=ω̄j

.

Choosing a semi-circle in the upper half plane, poles at ω̄m2 = εm2 + iη are enclosed for I2.

This yields for the residue:

Res (I2, ω̄m2) =
fl(r1)f∗l (r′2)fm(r2)f∗m(r′1)

E+ω̄m2−εl1+iη

=
fl(r1)f∗l (r′2)fm(r2)f∗m(r′1)

E+εm2+iη−εl1+iη

=
fl(r1)f∗l (r′2)fm(r2)f∗m(r′1)

E−(εl1−εm2)+2iη .

For I3, poles at ω̄m1 = −E + εm1 + iη are enclosed by a contour in the upper half plane,

leading to:

Res (I3, ω̄m1) =
fm(r1)f∗m(r′2)fl(r2)f∗l (r′1)

ω̄m1−εl2+iη

=
fm(r1)f∗m(r′2)fl(r2)f∗l (r′1)
−E+εm1+iη−εl2+iη

= − fm(r1)f∗m(r′2)fl(r2)f∗l (r′1)
E+(εl2−εm1)−2iη .

Combining the obtained results leads to:

PGW
(
r1, r2; r

′
1, r

′
2;E

)
= −2πi i

2π

∑
m,l

fl(r1)f∗l (r′2)fm(r2)f∗m(r′1)
E−(εl−εm)+iη − fm(r1)f∗m(r′2)fl(r2)f∗l (r′1)

E+(εl−εm)−iη

=
∑

m,l

fl(r1)f∗l (r′2)fm(r2)f∗m(r′1)
E−(εl−εm)+iη − fm(r1)f∗m(r′2)fl(r2)f∗l (r′1)

E+(εl−εm)−iη ,

(A.24)

where we set εl1 = εl2 and εm1 = εm2, because the discrimination had only been introduced

for the sake of clarity in the derivation.

From this result, the two-point irreducible polarizability within GW -RPA can be con-

tracted:

PGW (r1, r2;E) =
∑
m,l

fl (r1) f∗l (r2) fm (r2) f∗m (r1)

E − (εl − εm) + iη
−
fm (r1) f∗m (r2) fl (r2) f∗l (r1)

E + (εl − εm)− iη
.

Moreover, the Lehmann representation of P within the RPA can be readily deduced by

replacing the Lehmann amplitudes fm,l and the excitation energies εm,l by single-particle

wave functions φm,l and energies ε0
m,l:

PRPA (r1, r2;E) =
∑
m,l

φl (r1)φ∗l (r2)φm (r2)φ∗m (r1)

E −
(
ε0
l − ε0

m

)
+ iη

−
φm (r1)φ∗m (r2)φl (r2)φ∗l (r1)

E +
(
ε0
l − ε0

m

)
− iη

.

Furthermore, from equation (A.24), the quasi-independent-particle polarizability LQIP as
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needed for the Bethe-Salpeter equation can be readily obtained in its Lehmann representation

by:

LQIP (1, 2; 1′, 2′; τ) = G (1, 2′; τ)G (2, 1′;−τ) = iPGW (1, 2; 1′, 2′; τ)

LQIP (r1, r2; r′1, r
′
2;E) = iPGW (r1, r2; r′1, r

′
2;E)

= i
∑

m,l

fl(r1)f∗l (r′2)fm(r2)f∗m(r′1)
E−(εl−εm)+iη − fm(r1)f∗m(r′2)fl(r2)f∗l (r′1)

E+(εl−εm)−iη .

A.8. The Bethe-Salpeter equations

Derivation of the Bethe-Salpeter equation for L In order to account for excitonic e�ects

in optical absorption, we introduce the two-particle correlation function L:

L(1,x′t; 2,xt+) = −G2(1,x′t; 2,xt+) +G1(1, 2)G1(x′t,xt+),

which contains both the independent propagation of two particles through the one-particle

Green's functions G1 and their coupled motion through the two-particle Green's function G2.

From equation (A.6), we directly �nd:

L(1,x′t; 2,xt+) =
∂G1 (1, 2)

∂Uext (x,x′, t)
.

Using relation (A.3) yields:

L(1,x′t; 2,xt+) = −
´
d3d4G1 (1, 3)

∂G−1
1 (3,4)

∂Uext(x,x′,t)
G1 (4, 2) .

From the Dyson equation:

G1 = G0
1 +G0

1 (M + Uext)G1,

where M is the mass operator containing all possible interactions and where G0
1 is the one-

particle Green's function for a system of non-interacting particles, we obtain:

G−1
1 =

(
G0

1

)−1 − (M + Uext) .

Inserting this in the equation for L gives:

L(1,x′t; 2,xt+) =

= −
´
d3d4G1 (1, 3)

[
∂(G0

1(3,4))
−1

∂Uext(x,x′,t)
− ∂M(3,4)

∂Uext(x,x′,t)
− ∂Uext(3,4)

∂Uext(x,x′,t)

]
G1 (4, 2)

= −
´
d3d4G1 (1, 3)

[
− ∂M(3,4)
∂Uext(x,x′,t)

− δ (x,x3) δ (x4,x
′) δ (t3, t4) δ (t4, t)

]
G1 (4, 2)

=
´
d3456G1 (1, 3) ∂M(3,4)

∂G1(5,6)
∂G1(5,6)

∂Uext(x,x′,t)
G1 (4, 2)

+
´
d3d4G1 (1, 3) δ (x,x3) δ (x4,x

′) δ (t3, t4) δ (t4, t)G1 (4, 2) ,
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where we applied the chain rule (A.2) for the derivation of M with respect to the external

potential and where

∂Uext (3, 4)

∂Uext (x,x′, t)
= δ (x,x3) δ

(
x4,x

′) δ (t3, t4) δ (t4, t)

and
∂
(
G0

1 (3, 4)
)−1

∂Uext (x,x′, t)
= 0,

since G0
1 governs only unperturbed non-interacting systems with h0 (r) = −1

2∇
2 + Vion (r).

Simplifying the obtained equation even further, we �nally arrive at a Dyson-like equation for

L,

L(1,x′t; 2,xt+) = G1 (1,xt)G1

(
x′t, 2

)
+

ˆ
d3456G1 (1, 3)G1 (4, 2)

∂M (3, 4)

∂G1 (5, 6)
L(6,x′t; 5,xt+),

where the two-particle propagation is described by both the propagation of two quasi-independent

particles and their motion coupled by an e�ective two-particle interaction, the so-called kernel

K:

K ≡ ∂M (3, 4)

∂G1 (5, 6)
.

The Dyson-like equation for L has to be valid for arbitrary external time variables t and t′,

resulting in a compact notation:

L(1, 2; 1′, 2′) = G1

(
1, 2′

)
G1

(
2, 1′

)
+

ˆ
d3456G1 (1, 3)G1

(
4, 1′

)
K (3, 5; 4, 6) L(6, 2; 5, 2′),

(A.25)

which is known as the Bethe-Salpeter equation for L [2, 42, 43, 117, 118, 119]. Once the Bethe-

Salpeter equation is solved, L is hence contracted to χ following χ (1, 2) = −iL (1, 2; 1, 2). This

yields:

−iL(1, 2; 1, 2) = −iG1 (1, 2)G1 (2, 1)

+
´
d3456 [−iG1 (1, 4)G1 (4, 1)] iK (3, 5; 4, 6) [−iL(6, 2; 6, 2)]

χ (1, 2) = PGW (1, 2) +
´
d3456PGW (1, 4) iK (3, 5; 4, 6) χ (6, 2) ,

(A.26)

where PGW (1, 2) = −iG1 (1, 2)G1 (2, 1).

Reducible and irreducible quantities In order to single out the Coulomb term from the

e�ective two-particle interaction K, we split the mass operator into the Hartree term and the

self-energy Σ:

M = VH + Σ,
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with VH (1, 2) = δ (1, 2)
[
−i
´
d3 v (1, 3)G1 (3, 3+)

]
. Inserting this into the kernel K gives:

K = ∂Σ(3,4)
∂G1(5,6) + ∂VH(3,4)

∂G1(5,6)

= ∂Σ(3,4)
∂G1(5,6) − iδ (3, 4)

´
d7 v (3, 7)

∂G1(7,7+)
∂G1(5,6)

= ∂Σ(3,4)
∂G1(5,6) − iδ (3, 4) δ (5, 6) v (3, 5) .

That means we can separate the kernelK into the Hartree termKH = −iδ (3, 4) δ (5, 6) v (3, 5)

and the remainder KR = ∂Σ(3,4)
∂G1(5,6) . This splitting can be used to de�ne the irreducible quantity

L̃, which obeys:

L̃(1, 2; 1′, 2′) = G1

(
1, 2′

)
G1

(
2, 1′

)
+

ˆ
d3456G1 (1, 3)G1

(
4, 1′

)
KR (3, 5; 4, 6) L̃(6, 2; 5, 2′).

Having solved the integral equation for L̃, the reducible L can be obtained via:

L(1, 2; 1′, 2′) = L̃(1, 2; 1′, 2′) +

ˆ
d3456 L̃(1, 4; 1′, 3)KH (3, 5; 4, 6) L(6, 2; 5, 2′).

The choice of the kernel So far, the kernel K accounts for all correlations and is hence a

very complicated object. A possible simpli�cation consists of approximating the self-energy

Σ by its bare exchange part Σx:

Σ ≈ Σx = iG (1, 2, τ) v (1, 2) .

For the kernel, we thus have:

KTDHF (3, 5; 4, 6) = ∂Σx(3,4)
∂G1(5,6) − iδ (3, 4) δ (5, 6) v (3, 5)

= i ∂G(3,4)
∂G1(5,6)v (3, 4)− iδ (3, 4) δ (5, 6) v (3, 5)

= i δ(3, 5)δ (4, 6) v (3, 4)− iδ (3, 4) δ (5, 6) v (3, 5) .

Inserting this into the Bethe-Salpeter equation yields:

LTDHF (1, 2; 1′, 2′) =

= G1 (1, 2′)G1 (2, 1′)

+
´
d3456G1 (1, 3)G1 (4, 1′) [iδ(3, 5)δ (4, 6) v (3, 4)− iδ (3, 4) δ (5, 6) v (3, 5)]L(6, 2; 5, 2′)

= G1 (1, 2′)G1 (2, 1′)

+i
´
d56G1 (1, 5)G1 (6, 1′) v (5, 6) L(6, 2; 5, 2′)− i

´
d46G1 (1, 4)G1 (4, 1′) v (4, 6)L(6, 2; 6, 2′),

which represents a time-dependent Hartree-Fock approach. The �rst summand accounts for

the bare or Hartree-Fock exchange and the second for the classical Hartree contribution.

Correlation is not taken into account.

Another approach, accounting also for screening e�ects, is to use the already introduced
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GW approximation for Σ. For the kernel we thus get:

KTDSHF (3, 5; 4, 6) = ∂ΣGW (3,4)
∂G1(5,6) − iδ (3, 4) δ (5, 6) v (3, 5)

= ∂iG(3,4)W (3,4)
∂G1(5,6) − iδ (3, 4) δ (5, 6) v (3, 5) .

Applying the product rule (A.1), yields:

KTDSHF (3, 5; 4, 6) = i∂G1(3,4)
∂G1(5,6)W (3, 4) + iG1 (3, 4) ∂W (3,4)

∂G1(5,6) − iδ (3, 4) δ (5, 6) v (3, 5)

≈ iδ (3, 5) δ (4, 6)W (3, 4)− iδ (3, 4) δ (5, 6) v (3, 5) ,

where - in addition to the GW approximation for the self-energy - we further neglected the

dependence of the screened Coulomb potential on the propagation of the particle. Inserted

into the Bethe-Salpeter equation,

LTDSHF (1, 2; 1′, 2′) =

= G1 (1, 2′)G1 (2, 1′) +

+
´
d3456G1 (1, 3)G1 (4, 1′) [iδ (3, 5) δ (4, 6)W (3, 4)− iδ (3, 4) δ (5, 6) v (3, 5)] L(6, 2; 5, 2′)

= G1 (1, 2′)G1 (2, 1′) +

+i
´
d56G1 (1, 5)G1 (6, 1′) W (5, 6) L(6, 2; 5, 2′)− i

´
d46G1 (1, 4)G1 (4, 1′) v (4, 6)L(6, 2; 6, 2′)

= LQIP (121′2′) +

+i
´
d56LQIP (161′5)W (5, 6) L(6, 2; 5, 2′)− i

´
d56 LQIP (151′5) v (5, 6)L(6, 2; 6, 2′),

(A.27)

it is clear that we deal in this case with a time-dependent screened Hartree-Fock approach.

The �rst summand accounts for the dynamical screened exchange, while the second term

represents the Hartree contribution.

Fourier transformation to frequency space and the static approximation Since L is a

four-point quantity, in principle it depends on four di�erent time arguments. However, the

Coulomb potential v is instantaneous,

v (1, 2) = v (x1x2) δ (t1 − t2) ,

and also the one-particle Green's functions in equation (A.27) only depend on time di�erences.

This suggests that the time arguments can be contracted to a single one in order to permit

a straightforward Fourier transformation to frequency space. However, this is not possible

without further ado and approximations are implied. First, one assumes translational time

invariance and an isochronous propagation of the electron and the hole. 2 In addition, the

dynamically screened interaction W is approximated within its static limit:

W (1, 2) ≈Wstat (x1x2) δ (t1 − t2) .

2For L = L (1234), i.e. L = L (t1 − t4; t2 − t3), we set t1 = t3; t2 = t4.
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This signi�cantly simpli�es equation (A.27):

L
(
t1 − t

′
2; t2 − t

′
1

)
=

= LQIP

(
t1 − t

′
2; t2 − t

′
1

)
+i
´
dt3t4 LQIP

(
t1 − t3; t4 − t

′
1

)
Wstat (x3x4) δ (t3 − t4)L

(
t4 − t

′
2; t2 − t3

)
−i
´
dt3t4 LQIP

(
t1 − t3, t3 − t

′
1

)
v (x3x4) δ (t3 − t4)L(t4 − t

′
2, t2 − t4)

= LQIP

(
t1 − t

′
2; t2 − t

′
1

)
+i
´
dt4 LQIP

(
t1 − t4; t4 − t

′
1

)
Wstat (x3x4)L

(
t4 − t

′
2; t2 − t4

)
−i
´
dt4 LQIP

(
t1 − t4, t4 − t

′
1

)
v (x3x4)L(t4 − t

′
2, t2 − t4)

L
(
t1 − t

′
2; t
′
2 − t1

)
=

= LQIP

(
t1 − t

′
2; t
′
2 − t1

)
+i
´
dt4 LQIP (t1 − t4; t4 − t1)Wstat (x3x4)L

(
t4 − t

′
2; t
′
2 − t4

)
−i
´
dt4 LQIP (t1 − t4, t4 − t1) v (x3x4)L(t4 − t

′
2, t
′
2 − t4)

= LQIP (τ ;−τ)

+i
´
dτ ′ LQIP (−τ ′; τ ′)Wstat (x3x4)L (τ ′ + τ ;−τ ′ − τ)

−i
´
dτ ′ LQIP (−τ ′; τ ′) v (x3x4)L(τ ′ + τ,−τ ′ − τ)

L (τ ;−τ) = LQIP (τ ;−τ)

+i
´
dτ ′ LQIP (−τ ′; τ ′)Wstat (x3x4)L (τ ′ + τ ;− (τ ′ + τ))

−i
´
dτ ′ LQIP (−τ ′; τ ′) v (x3x4)L (τ ′ + τ ;− (τ ′ + τ))

L (τ) = LQIP (τ)

+i
´
dτ ′ LQIP (τ ′)L (τ − τ ′)Wstat (x3x4)− i

´
dτ ′ LQIP (τ ′)L (τ − τ ′) v (x3x4) ,

where τ = t1− t
′
2 and τ

′ = t4− t1. For the sake of clarity we used a simpli�ed notation, where

we dropped the space coordinates. We consequently simpli�ed the time-dependent equation

for L so far that we are now able to perform a straightforward Fourier transformation using

the convolution theorem:

L (ω) = LQIP (ω) + iLQIP (ω)L (ω)Wstat (x3x4)− iLQIP (ω)L (ω) v (x3x4) .

We now reintroduce the space coordinates, yielding:

L
(
x1x2; x

′
1x
′
2;ω
)

= LQIP

(
x1x2; x

′
1x
′
2;ω
)

+i
´
dx3x4 LQIP

(
x1x4; x

′
1x3;ω

)
Wstat (x3x4)L

(
x4x2; x3x

′
2;ω
)

−i
´
dx3x4 LQIP

(
x1x3; x

′
1x3;ω

)
v (x3x4)L

(
x4x2; x4x

′
2;ω
)

= LQIP

(
x1x2; x

′
1x
′
2;ω
)

+
´
dx3x4x5x6 LQIP

(
x1x4; x

′
1x3;ω

)
L
(
x6x2; x5x

′
2;ω
)
×

× [iδ (x5,x3) δ (x6,x4)Wstat (x3x4)− iδ (x3,x4) δ (x5,x6) v (x3x5)] ,
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with

LQIP

(
x1x2; x

′
1x
′
2;ω
)

=
1

2π

ˆ
dω′G1

(
x1x

′
2;ω + ω′

)
G1

(
x2x

′
1;ω′

)
being the Fourier transform of the already introduced quasi-independent two-particle correla-

tion function LQIP , where we also made use of the convolution theorem. In a short notation,

we �nally arrive at:

L
(
x1x2; x

′
1x
′
2;ω
)

= LQIP

(
x1x2; x

′
1x
′
2;ω
)

+
´
dx3x4x5x6 LQIP

(
x1x4; x

′
1x3;ω

)
K (x3x4; x5x6)L

(
x6x2; x5x

′
2;ω
)
,

(A.28)

where

K (x3x4; x5x6) = iδ (x5,x3) δ (x6,x4)Wstat (x3x4)− iδ (x3,x4) δ (x5,x6) v (x3x5)

is the many-body perturbation theory kernel. We have to keep in mind that the Fourier

transformation in the presented way is only possible due to the use of a static, i.e. strongly

approximated, screened Coulomb potential W .

The e�ective two-particle problem Using the Lehmann representation of the Green's func-

tion in Fourier space, we can �nd an explicit expression for the quasi-independent two-particle

correlation function LQIP (see Appendix A.7):

−iLQIP
(
x1x2; x

′
1x
′
2;ω
)
≈
∑
m,l

φl (x1)φm (x2)φ∗m

(
x
′
1

)
φ∗l

(
x
′
2

)
ω − (εl − εm) + iη

−
φ∗m

(
x
′
2

)
φl (x2)φ∗l

(
x
′
1

)
φm (x1)

ω + (εl − εm)− iη
.

(A.29)

Here, LQIP is approximated by using single-particle wave functions φm,l instead of Lehmann

amplitudes fm,l. The energies εm,l originate from a DFT −KS calculation (i.e. LQIP ≈ LIP )
or can be quasiparticle energies obtained within a GW calculation. The index m denotes

occupied, l unoccupied states. The form of LQIP suggests to work in transition space, i.e. to

de�ne a two-particle excitonic basis {ψexc},

ψexci (x1,x2) ≡
∑
n1n2

ci,n1n2φn1 (x1)φ∗n2
(x2) ,

based on the same single-particle basis functions φm,l as G0 and LRPAQIP . The transformation

of any four-point quantity F (x1x2x3x4) to this basis follows:

F (x1x2; x3x4) =
∑

n1n2n3n4

φn1 (x1)φ∗n2
(x2)Fn1n2n3n4φn3 (x3)φ∗n4

(x4)

with

Fn1n2n3n4 =

ˆ
dx1x2x3x4φn1 (x1)φ∗n2

(x2)F (x1x2; x3x4;ω)φn3 (x3)φ∗n4
(x4) .
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For the Bethe-Salpeter equation (A.28), we thus obtain:

L (x1x2; x3x4;ω) =
∑

n1n2n3n4
φn1 (x1)φ∗n2

(x2)Ln1n2n3n4 (ω)φn3 (x3)φ∗n4
(x4)

=
∑

n1n2n3n4
φn1 (x1)φ∗n2

(x2)Ln1n2n3n4
QIP (ω)φn3 (x3)φ∗n4

(x4) +∑
n1n2n3n4

∑
n5n6n7n8

´
dx5x6x7x8

φn1 (x1)φ∗n2
(x2) Ln1n2n5n6

QIP (ω) φn5 (x5)φ∗n6
(x6)×

φn5 (x5)φ∗n6
(x6) Kn5n6n7n8 φn7 (x7)φ∗n8

(x8)×
φn7 (x7)φ∗n8

(x8) Ln7n8n3n4 (ω) φn3 (x3)φ∗n4
(x4)

→ Ln1n2n3n4 (ω) = Ln1n2n3n4
QIP (ω) + Ln1n2n5n6

QIP (ω) Kn5n6n7n8 Ln7n8n3n4 (ω) ,

which denotes in matrix notation:

[L (ω)] = [LQIP (ω)] + [LQIP (ω)] [K] [L (ω)] .

At this point it is useful to multiply the Bethe-Salpeter equation with a factor (−i) following
equation (A.26), since in the end of the calculation one is interested in contracting L to χ:

χ (1, 2) = −iL(1, 2; 1+, 2+).

One thus �nds for the matrix equation:

[−iL (ω)] = [−iLQIP (ω)] + [−iLQIP (ω)] [iK] [−iL (ω)] .

The quasi-independent polarizability LQIP can be explicitly calculated in this basis starting

from equation (A.29):

−iLn1n2n3n4
QIP (ω) = −i

´
dx1x

′
1x2x

′
2φn1

(
x
′
1

)
φ∗n2

(x1) LQIP

(
x1x2; x

′
1x
′
2;ω
)
φ∗n3

(x2)φn4

(
x
′
2

)
=
´
dx1x

′
1x2x

′
2φn1

(
x
′
1

)
φ∗n2

(x1) φ∗n3
(x2)φn4

(
x
′
2

)
×

[∑
m,l

φl(x1)φm(x2)φ∗m

(
x
′
1

)
φ∗l

(
x
′
2

)
ω−(εl−εm)+iη −

φ∗m

(
x
′
2

)
φl(x2)φ∗l

(
x
′
1

)
φm(x1)

ω+(εl−εm)−iη

]

=
∑

m,l
δ(n1,m)δ(n2,l)δ(n3,m)δ(n4,l)

ω−(n2−n1)+iη −
∑

m,l
δ(n1,l)δ(n2,m)δ(n3,l)δ(n4,m)

ω+(n1−n2)−iη ,

where m stands for occupied and l for unoccupied states and where we assumed an orthogonal

and complete basis: ´
drφ∗i (r)φj (r) = δ (i, j)

∑
i φ
∗
i (r)φi (r′) = δ (r− r′) .

We can draw an important conclusion from this result, namely that [LQIP ] is diagonal in the

transition basis (n1 = n3, n2 = n4). Moreover, only (occupied → unoccupied) or (unoccu-

pied → occupied) transitions contribute, whereas (occupied → occupied) or (unoccupied →
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unoccupied) are not important. This can be depicted in a (n1n2, n3n4) matrix:

[−iLQIP (ω)] =

(n1n2) (n3n4)→ mm ll ml lm

↓
mm 0 0 0 0

ll 0 0 0 0

ml 0 0 −1
∆εn2n1−ω

0

lm 0 0 0 1
∆εn2n1−ω

where ∆εn2n1 = εn2 − εn1 and ∆εn1n2 = −∆εn2n1 . It is convenient to rewrite the matrix

element Ln1n2n3n4
QIP in a short notation using the occupation factors fi (fm = 1, fl = 0):

−iLn1n2n3n4
QIP (ω) =

(fn2 − fn1) δ (n1, n3) δ (n2, n4)

∆εn2n1 − ω
,

where zeros on the diagonal appear when fn2 = fn1 . From now on, we only work in the

physical meaningful (ml, lm) subspace, where [LQIP ] has no non-zero diagonal elements and

is thus invertible. Moreover, we introduce an occupation matrix [F ],

Fn1n2n3n4 = (fn2 − fn1) δ (n1, n3) δ (n2, n4) ,

which also has only non-zero elements in the chosen subspace. It follows:

[−iLQIP (ω)] =
[
−iL̆QIP (ω)

]
[F ]

with

[
−iL̆QIP (ω)

]
[F ] =

(
1

∆εn2n1−ω
0

0 1
∆εn2n1−ω

)
f (n2 − n1)︸ ︷︷ ︸

−1

0

0 f (n2 − n1)︸ ︷︷ ︸
1

 .

Consequently, we can rewrite the Bethe-Salpeter matrix equation as follows:

[−iL (ω)] =
[
−iL̆QIP (ω)

]
[F ] +

[
−iL̆QIP (ω)

]
[F ] [iK] [−iL (ω)]

=
(

1−
[
−iL̆QIP (ω)

]
[F ] [iK]

)−1 [
−iL̆QIP (ω)

]
[F ]

=

([
−iL̆QIP (ω)

]−1
− [F ] [iK]

)−1

[F ] .
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Many mathematical simpli�cations follow from the fact that
[
−iL̆QIP

]
is a diagonal matrix.

For example, its inverse is readily calculated to:

[
−iL̆QIP (ω)

]−1
=

(
∆εn2n1 − ω 0

0 ∆εn2n1 − ω

)
.

It is convenient to single out the frequency dependence:

[
−iL̆QIP (ω)

]−1
=

(
∆εn2n1 0

0 −∆εn2n1

)
− ω

(
1 0

0 1

)
,

enabling us to de�ne a frequency-independent two-particle e�ective Hamiltonian H2p:

[
H2p

]
=

(
∆εn2n1 0

0 ∆εn2n1

)
− [F ] [iK]

=

(
∆εn2n1 0

0 ∆εn2n1

)
+ i

(
Kml,m′l′ Kml,l′m′

−Klm,m′l′ −Klm,l′m′

)
.

In general, the two-particle e�ective Hamiltonian is non-hermitian and it denotes:

[
H2p

]
=

(
Hres Kcoupl

−
(
Kcoupl

)∗ − (Hres)∗

)
.

Hres is called resonant part, i.e. transitions between (occupied → unoccupied) states are

treated. Contrary, − (Hres)∗ is an anti-resonant part, where transitions between (unoccupied

→ occupied) states and thus negative frequency transitions are considered. The Kcoupl and

−
(
Kcoupl

)∗ blocks couple the resonant to the anti-resonant part and include both (occupied

→ unoccupied) and (unoccupied → occupied) transitions. The matrix element Hres
ml,m′l′ =

∆εlmδmm′δll′ + iKml,m′l′ denotes in detail:

Hres
ml,m′l′ = ∆εlmδmm′δll′

+i
´
dx1x

′
1x2x

′
2φm (x1)φ∗l

(
x
′
1

)
φ∗m′ (x2)φl′

(
x
′
2

)
K
(
x1x2; x

′
1x
′
2

)
= ∆εlmδmm′δll′

+i
´
dx1x

′
1x2x

′
2φm (x1)φ∗l

(
x
′
1

)
φ∗m′ (x2)φl′

(
x
′
2

)
×
[
iδ (x1,x2) δ

(
x
′
1,x

′
2

)
Wstat

(
x1x

′
1

)
− iδ

(
x
′
1,x1

)
δ
(
x
′
2,x2

)
v (x1x2)

]
= ∆εlmδmm′δll′

+
´
dx1x

′
1x2x

′
2φm (x1)φ∗l

(
x
′
1

)
φ∗m′ (x2)φl′

(
x
′
2

)
δ
(
x
′
1,x1

)
δ
(
x
′
2,x2

)
v (x1x2)

−
´
dx1x

′
1x2x

′
2φm (x1)φ∗l

(
x
′
1

)
φ∗m′ (x2)φl′

(
x
′
2

)
δ (x1,x2) δ

(
x
′
1,x

′
2

)
Wstat

(
x1x

′
1

)
= Hdiag

ml,ml +Hexch
ml,m′l′ +Hscr

ml,m′l′ ,
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where we split the resonant part into a diagonal, an electron-hole exchange and a screened

electron-hole interaction part following:

Hdiag
ml,ml = ∆εlmδmm′δll′ ,

Hexch
ml,m′l′ =

´
dx1x2φm (x1)φ∗l (x1) v (x2x1) φ∗m′ (x2)φl′ (x2) ,

Hscr
ml,m′l′ = −

´
dx1x2φm (x1)φ∗l (x2) Wstat (x1x2) φ∗m′ (x1)φl′ (x2) .

A.9. Contour deformation techniques

In the following, a short overview of contour deformation techniques is provided. For a detailed

derivation, the reader is referred to Ref. [284]. Assuming the following common type of an

closed integral: ˛
C
dz I (z) =

˛
C
dz

f (z) eitz

(z − zi)n
, (A.30)

where n is the order of the pole and z = (x, y)∈ C. The closed contour C can be freely chosen.

The residue theorem According to the residue theorem, a closed path integral over a func-

tion f(z) yields:

˛
dz f (z) =

 0, if no poles are enclosed

2πi
∑

iRes (f, zi) , if poles at zi are enclosed.

Res (f, zi) denotes the so-called residue of the function f at the enclosed pole zi and it is the

coe�cient of the (z − zi)−1 summand in a Laurent expansion. It can be calculated following:

Res (f, zi) =
1

(n− 1)!

dn−1

dzn−1
[(z − zi)n f (z)]z=zi . (A.31)

In this speci�c case, the contour C is chosen to consist of a counter-clockwise path along the

entire real and a semi-circle with radius R =
√
x2 + y2 in the upper half or in the lower half

plane (see Fig. (A.4)). In the former case, one deduces from the residue theorem:

˛
dz I (z) =

ˆ ∞
−∞

dx I (x) + lim
R→∞

ˆ π

0
dϕ iReiϕ I

(
Reiϕ

)
= 2πi

∑
i

Res (I, zi)

and in the latter:

˛
dz I (z) = −

ˆ ∞
−∞

dx I (x) + lim
R→∞

ˆ 2π

π
dΘ iReiΘ I

(
ReiΘ

)
= 2πi

∑
i

Res (I, zi) .

Jordan's lemma Analyzing the integral over the semi-circle for functions of the type A.30,

one �nds for the upper half plane with z = Reiϕ = R cosϕ+ iR sinϕ and dz = iReiϕdϕ:

ˆ π

0
dϕ iReiϕ I

(
Reiϕ

)
=

ˆ π

0
dϕ iReiϕ

f
(
Reiϕ

)
(Reiϕ − zi)n

eitR cosϕe−tR sinϕ
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and for the limit, respectively:

lim
R→∞

ˆ π

0
dϕ . . .

e−tR sin ρ

Rn−1
.

The integral in the lower half plane from Θ = π . . . 2π can be expressed in terms of ϕ = 0 . . . π,

following:

Θ = ϕ+ π

dΘ = dϕ

ReiΘ = R cos (ϕ+ π) + iR sin (ϕ+ π)

= R cosϕ cosπ +R sinϕ sinπ + iR sinϕ cosπ + iR cosϕ sinπ

= −R cosϕ− iR sinϕ

= −Reiϕ,

where we applied the addition theorem for sine and cosine. For the integral it follows with

z = −Reiϕ:
ˆ 2π

π
dΘ iReiΘ I

(
ReiΘ

)
=

ˆ π

0
dϕ iReiϕ

f
(
−Reiϕ

)
(−Reiϕ − zi)n

e−itR cosϕe+tR sinϕ

and for the limit, respectively:

lim
R→∞

ˆ π

0
dϕ . . .

etR sin ρ

Rn−1
.

Jordan's lemma now states that for poles of higher order (n > 1), the integral vanishes for

R → ∞. For poles of the order n = 1, a case-by-case analysis is necessary. For t > 0, the

integral only vanishes for contours in the upper half plane, however, for contours in the lower

half plane it diverges. Contrary, for t < 0, the integral vanishes for contours in the lower

half plane and diverges for contours in the upper half plane. It is therefore crucial, to wisely

choose the contour for a given problem.

Example: Step function The above theorems are applied to the step function Θ. In its

integral form, the latter reads:

Θ (t) = − 1

2πi

ˆ ∞
−∞

dω′
e−iω

′t

ω′ + iη
.

The complex integral of interest is thus:

˛
C
dω̄

e−iω̄t

ω̄ + iη
,

where ω̄ = ω + iω′′ and η → 0. One observes a pole of �rst order at ω̄0 = −iη, i.e. in the

lower half complex plane. Consequently, Jordan's Lemma has to be taken into account and

one has to do a case-by-case study. For t > 0, the contour is chosen to consist of the entire
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R → ∞

˛

C
dω̄

e−iω̄t

ω̄ + iη
=

ˆ ∞

−∞
dω′ e−iω′t

ω′ + iη
= −2πiRes (ω̄0) .

Res (ω̄0) = lim
η→0

e−i(iη)t = 1.

Θ(t > 0) :

Θ (t > 0) = 1.

t < 0

Θ (t < 0) = 0

A B

P

G1 = e−γ1(r−A)2 G2 = e−γ2(r−B)2

G3

P η

C

G3 = C e−η(r−P)2 ,
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with η = γ1 + γ2, P = γ1A+γ2B
η and C = e

− γ1γ2(A−B)
γ1+γ2

2

. The same is valid for two Gaussian

functions with arbitrary angular momentum, but the multiplication constant becomes more

sophisticated. Concerning products of several Gaussian functions, it is evident that the solu-

tion is again a Gaussian function, since the product can be evaluated two after two Gaussian

functions resulting in a Gaussian function centered at the common balance point.

Gaussian integrals Integrals over Gaussian functions often reduce to simple analytic expres-

sions and can be found in mathematical tables. They are of great use, since they can be solved

straightforwardly. Some of these helpful relations, which are also used for derivations in this

section, are the following:

´∞
−∞ dx e

−x2
=
√
π,

´∞
−∞ dx e

−c1x2
=
√

π
c1
,

´∞
−∞ dx e

−c1(x+c2)2
=
√

π
c1
.

Normalization Since it is convenient to work in a normalized basis, one imposes to the

so-called self-overlap SO:

SO =

ˆ
d3r α∗i (r)αi (r) = 1

and introduces a normalization constant N for a Cartesian Gaussian function centered at the

origin:

αi (r) = N rhxr
i
yr
j
z e
−γr2

.

Thus, one obtains:

SO = N2

ˆ
d3r r2h

x r
2i
y r

2j
z e−2γr2

= 1.

This integral can be easily solved by separation and integration by parts:

SO = N2

ˆ
drx r

2h
x e
−2γr2

x

ˆ
dry r

2i
y e
−2γr2

y

ˆ
drz r

2j
z e
−2γr2

z = 1.

Consequently, one �nds for the normalization constant of a primitive Gaussian function:

N =

(
2

π

) 3
4 2lγl/2

[(2h− 1)!! (2i− 1)!! (2j − 1)!!]1/2
,

where l = h + i + j is the angular momentum quantum number. For contracted Gaussian

functions the normalization constant can be calculated in a similar way.

A.10.2. Calculation of Coulomb integrals in a Gaussian basis

Assume the interaction between two unnormalized s-like Gaussians centered at A and B with

orbitals exponents κ and λ, the Coulomb integral VC = −
∑occ

n

´
d3rd3r′

αi(r)αn(r)α∗n(r′)α∗j (r′)

|r−r′|
reads in an auxiliary Gaussian basis {βi}:

V s,s′

C =

ˆ ˆ
d3r d3r′

e−κ|r−A|2e−λ|r
′−B|2

|r− r′|
. (A.32)
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Due to the operator 1/|r=r′|, the above integral does not factorize into products of x-, y- and
z-components. To circumvent this problem, one uses the Fourier transform of the Coulomb

potential instead of its representation in r-space:

1

|r− r′|
=

4π

(2π)3

ˆ
d3q

eiq(r−r′)

q2
.

This is one of the key steps in treating integrals containing the Coulomb potential, allowing

to separate the integral:

V s,s′

C =
4π

(2π)3

ˆ ˆ ˆ
d3q d3r d3r′

eiq(r−r′)

q2
e−κ|r−A|2e−λ|r

′−B|2

V s,s′

C =
4π

(2π)3

ˆ
d3q

1

q2

ˆ
d3r eiqre−κ|r−A|2

ˆ
d3r′ e−iqr′e−λ|r

′−B|2 .

The integrations over r and r′ can be carried out independently from each other applying the

same solution scheme. One starts by introducing the vector µ = r −A with d3µ = d3r =

dµxdµydµz:

Ir =
´
d3r eiqre−κ|r−A|2

= eiqA
´
d3µ eiqµe−κµ

2

= eiqA
˝

dµxdµydµz e
i(qxµx+qyµy+qzµz)e−κ(µ2

x+µ2
y+µ2

z)

= eiqAIqxr I
qy
r Iqzr ,

in order to separate the integration over dµ into three independent integrals which are identical

and which can be solved in the same manner. Exemplary, we give here the single steps for

the calculation of Iqxr :

Iqxr =
´
dµx e

iqxµxe−κµ
2
x

= e−
q2x
4κ

´
dµx e

−κ(µx− iqx2κ )
2

= e−
q2x
4κ
√

π
κ ,

where we completed the square, −κ
(
µ2
x − 2 iqxµx2κ

)
= −κ

[(
µx − iqx

2κ

)2
−
(
iqx
2κ

)2
]
, and where

we used essential properties of Gaussian integrals as presented in the preceding section. The

same procedure is used to evaluate Iqyr and Iqzr , respectively, and in total it follows for Ir:

Ir = eiqAe−
q2x+q2y+q2z

4κ

(π
κ

) 3
2

=
(π
κ

) 3
2
eiqAe−

q2

4κ .

We take advantage of the similarity of Ir and Ir′ =
´
d3r′ e−iqr′e−λ|r

′−B|2 and proceed in the

same way by paying attention to the di�erent signs. As a result, one obtains:

Ir′ =
(π
λ

) 3
2
e−iqBe−

q2

4λ .
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Combining the obtained expression, yields for the Coulomb integral:

V s,s′

C = 4π
(2π)3

(
π
κ

) 3
2
(
π
λ

) 3
2
´
d3q 1

q2 e
iqAe−

q2

4κ e−iqBe−
q2

4λ

= 4π
(2π)3

(
π
κ

) 3
2
(
π
λ

) 3
2
´
d3q 1

q2 e
iqRe−γq2

= 4π
(2π)3

(
π
κ

) 3
2
(
π
λ

) 3
2
´
d3q 1

q2 e
−γq2+iqR,

where we de�ned R = A−B and γ = 1
4κ + 1

4λ . To solve the remaining integral over d
3q, it is

�rst di�erentiated and then reintegrated with respect to a variable τ . This allows to simplify

the expression and to separate it:

Iq (τ) =

ˆ
d3q

1

q2
e−τq

2+iqR.

Here, τ corresponds to γ and we just renamed it in order to avoid confusion along the following

procedure. Di�erentiation of Iq with respect to τ yields:

dIq
dτ = −

´
d3q e−τq

2+iqR

= −Iqxq I
qy
q Iqzq ,

Iqxq =
´
dqx e

−τq2
x+iqxRx

= e−
R2
x

4τ

´
dqx e

−τ(qx− iRx2τ )
2

= e−
R2
x

4τ
√

π
τ .

Proceeding in the same way for Iqyq and Iqzq and combining all results, gives:

dIq
dτ

= −e−
R2

4τ

(π
τ

) 3
2
.

Integrating over this quantity holds an expression for Iq (τ), since choosing wisely the inte-

gration limits, we get:

∞̂

γ

dIq (τ)

dτ
dτ = Iq (∞)− Iq (γ) = −Iq (γ) ,

→ Iq (γ) = −
∞̂

γ

dIq (τ)

dτ
dτ =

∞̂

γ

dτ e−
R2

4x

(π
τ

) 3
2
.

This integral can be solved by substitution, where:

u2 = R2

4τ , x = R2

4u2 ,
dτ
du = −R2

2u3 .

Since τ goes from γ to ∞, u goes from
√

R2

4γ to limτ→∞

√
R2

4τ = 0. It follows:
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Iq (γ) = −
0ˆ

√
R2

4γ

du
R2

2u3
e−u

2 4u3

R3
π

3
2 ,

Iq (γ) = 4π
3
2

1

R

√
R2

4γˆ

0

du e−u
2
.

The integration over all space (A.32) has been replaced by a one-dimensional integration over

a �nite interval, which can be found in mathematical tables as error function erf(y):

ˆ y

0
du e−u

2
=

√
π

2
erf (y) .

This results in:

Iq (γ) = 2π2 1

R
erf

(√
R2

4γ

)
.

Consequently, the Coulomb integral between two unnormalized s-like Gaussian functions can

be calculated as:

V s,s′

C =
(π
κ

) 3
2
(π
λ

) 3
2 1

R
erf

(√
R2

4γ

)
. (A.33)

The introduced error function is strongly related to the so-called Boys function Fn of order

n [65, 131], obeying:

Fn (x) =

ˆ 1

0
dt t2ne−xt

2

F0 (x) =

√
π

2
√
x
erf
(√
x
)
, x > 0.

This function plays a key role in one- or two-electron integrals evaluation, since e�cient

evaluation methods based on upward/ downward recursion exist [?, 134]:

Fn(x) =
1

2x

[
(2n=1)Fn=1(x)=e=x

]
,

Fn(x) =
1

2n+1

[
2xFn+1(x)=e=x

]
.

Rewriting the Coulomb integral for two s-like Gaussian functions (A.33) in terms of the Boys

function gives:

V s,s′

C =
1√
π
√
γ

(π
κ

) 3
2
(π
λ

) 3
2
F0

(
R2

4γ

)
. (A.34)

This integral can not only be solved very e�ciently, moreover it serves as a starting point for

the calculation of the bare exchange interaction between the remaining orbitals. It can be

demonstrated that it is not necessary to carry out the derivation from scratch, but solutions

can be obtained based on V s,s′

C . This is exemplary shown for the s-like and px-like Gaussian
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((rx − Cx) e−σ|r−C|2) Coulomb integral in the following:

d
dAx

V s,s′

C = 2κ
´ ´

d3r d3r′ (rx−Ax)e−κ|r−A|2e−λ|r
′−B|2

|r−r′|
= 2κV s,px

C .

Consequently, V s,px
C can be evaluated using (A.34):

V s,px
C = 1

2κ
d
dAx

V s,s′

C

= 1
2κ

1√
π
√
γ

(
π
κ

) 3
2
(
π
λ

) 3
2 d
dAx

[
F0

(
R2

4γ

)]
= 1

2κ
1√
π
√
γ

(
π
κ

) 3
2
(
π
λ

) 3
2 d
dAx

[´ 1
0 dt e

−R2t2

4γ

]
= − 1

2κ
1√
π
√
γ

(
π
κ

) 3
2
(
π
λ

) 3
2
´ 1

0 dt
t2

2γ (Ax −Bx) e
−R2t2

4γ

= − 1
κ

1√
π
γ−

3
2

(
π
κ

) 3
2
(
π
λ

) 3
2 Rx

´ 1
0 dt t

2e
−R2t2

4γ ,

V s,px
C = −1

κ

1√
π
γ−

3
2

(π
κ

) 3
2
(π
λ

) 3
2
Rx F1

(
R2

4γ

)
.

Following the same procedure and taking V s,px
C as a starting point, we can derive an analytical

expression for a px−like and py−like Gaussian
(

(ry − Cy) e−σ|r−C|2
)
interaction:

d
dBy

V s,px
C = 4κλ

´ ´
d3r d3r′

(rx−Ax)e−κ|r−A|2 (ry−By)e−λ|r
′−B|2

|r−r′|
= 4κλV

px,py
C .

V
px,py
C = 1

4κλ
d
dBy

V s,px
C

= − 1
4κ2λ

1√
π
γ−

3
2

(
π
κ

) 3
2
(
π
λ

) 3
2 Rx

d
dBy

[
F1

(
R2

4γ

)]
= − 1

4κ2λ
1√
π
γ−

3
2

(
π
κ

) 3
2
(
π
λ

) 3
2 Rx

d
dBy

[´ 1
0 dt t

2e
−R2t2

4γ

]
= − 1

4κ2λ
1√
π
γ−

3
2

(
π
κ

) 3
2
(
π
λ

) 3
2 Rx

´ 1
0 dt

t4

2γ (Ay −By) e−
R2t2

4γ

= − 1
8κ2λ

1√
π
γ−

5
2

(
π
κ

) 3
2
(
π
λ

) 3
2 RxRy

´ 1
0 dt t

4e
−R2t2

4γ

V
px,py
C = − 1

8κ2λ

1√
π
γ−

5
2

(π
κ

) 3
2
(π
λ

) 3
2
RxRy F2

(
R2

4γ

)
.

Step by step, expressions for the di�erent bare exchange interactions can be derived using

the previous solutions following the demonstrated scheme. As a result, we get analytical

expressions for the Coulomb integral containing Boys functions of di�erent order. As already

mentioned above, these can be e�ciently evaluated applying recursion.
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� Faber, C., Attaccalite, C., Olevano, V., Runge, E. and Blase, X., 'First- principles GW

calculations for DNA and RNA nucleobases', Phys. Rev. B, 83, 115123 (2011)

� Faber, C., La�amme-Janssen, J., Côté, M., Runge, E. and Blase, X., 'Electron- phonon

coupling in the C60 fullerene within the many-body GW approach', Phys. Rev. B, 84,

155104 (2011)

� Ciuchi, S. et al., 'Molecular Fingerprints in the Electronic Properties of Crystalline

Organic Semiconductors: From Experiment to Theory ', Phys. Rev. Lett., 108, 256401

(2012)

� Faber, C. et al., 'Electron-Phonon coupling and charge-transfer excitations in organic

systems from many-body perturbation theory ', Journal of Materials Science, 47, 7472

(2012)

� Faber, C., Duchemin, I., Deutsch, T. and Blase, X., 'Many-body Green's function study

of coumarins for dye-sensitized solar cells', Phys. Rev. B, 86, 155315 (2012)

� Faber, C., Boulanger, P., Duchemin, I., Attaccalite, C. and Blase, X., 'Many- body

Green's function GW and Bethe-Salpeter study of the optical excitations in a paradig-

matic model dipeptide', The Journal of Chemical Physics, 139, 194308 (2013)

� Faber, C., Blase, X. and Fratini, S., 'Electrons go green: Exploring organic semiconduc-

tors', Institut Neel: Highlights 7 (2013)

� Faber, C., Boulanger, P., Attaccalite, C., Duchemin, I., and Blase, X., 'Excited states

properties of organic molecules: from density functional theory to the GW and Bethe-
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� Faber, C., Boulanger, P., Attaccalite, C., and Blase, X., 'Approximations to the GW

self-energy electron-phonon coupling gradients', in preparation
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� Invited talks: GDR Electronique Organique (Grenoble, 2011)

� Oral conference contributions:

ETSF Young Researcher Meeting 2012/2013/2014
March Meeting of the German Physical Society 2011/2012/2014
ETSF Conference (Zaragoza, 2014)

� Invited Group Seminars 2014:

Materials Theory Group (Prof. N. Spaldin, ETH Zürich)
Quantum Transport Group (Prof. M. Büttiker, University of Geneva)
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� Posters: ETSF Conference 2011/2013, ElecMol (Grenoble, 2012)

216



Bibliography

[1] Hedin, L., `New Method for Calculating the One-Particle Green's Function with Appli-

cation to the Electron-Gas Problem', Phys. Rev., 139, A796 (1965).

[2] Strinati, G., `Application of the Green's functions method to the study of the optical

properties of semiconductors', Rivista del nuovo cimento, 11, 1 (1988).

[3] Hybertsen, M.S. and Louie, S.G., `Electron correlation in semiconductors and insulators:

Band gaps and quasiparticle energies', Phys. Rev. B, 34, 5390 (1986).

[4] Aryasetiawan, F. and Gunnarsson, O., `The GW method', Rep. Prog. Phys., 61, 237

(1998).

[5] Aulbur, W.G., Jönsson, L. and Wilkins, J.W., `Quasiparticle Calculations in Solids', in

Solid State Physics, edited by H. Ehrenreich and F. Spaepen, Academic Press, London.

[6] Blase, X., Attaccalite, C. and Olevano, V., `First-principles GW calculations for

fullerenes, porphyrins, phtalocyanine, and other molecules of interest for organic pho-

tovoltaic applications', Phys. Rev. B, 83, 115103 (2011).

[7] Faber, C., Attaccalite, C., Olevano, V., Runge, E. and Blase, X., `First-principles GW

calculations for DNA and RNA nucleobases', Phys. Rev. B, 83, 115123 (2011).

[8] Blase, X. and Attaccalite, C., `Charge-transfer excitations in molecular donor-acceptor

complexes within the many-body Bethe-Salpeter approach', Appl. Phys. Lett., 99,

171909 (2011).

[9] Hedin, L., `On correlation e�ects in electron spectroscopies and the GW approximation',

Journal of Physics: Condensed Matter, 11, R489 (1999).

[10] Faber, C., Boulanger, P., Duchemin, I., Attaccalite, C. and Blase, X., `Many-body

Green's function GW and Bethe-Salpeter study of the optical excitations in a paradig-

matic model dipeptide', The Journal of Chemical Physics, 139, 194308 (2013).

[11] Faber, C., Duchemin, I., Deutsch, T. and Blase, X., `Many-body Green's function study

of coumarins for dye-sensitized solar cells', Phys. Rev. B, 86, 155315 (2012).

[12] Faber, C., La�amme-Janssen, J., Côté, M., Runge, E. and Blase, X., `Electron-phonon

coupling in the C60 fullerene within the many-body GW approach', Phys. Rev. B, 84,

155104 (2011).

217



Bibliography

[13] Benanti, T.L. and Venkataraman, D., `Organic solar cells: An overview focusing on

active layer morphology', Photosynthesis research, 87, 73 (2006).

[14] Kippelen, B. and Bredas, J.L., `Organic photovoltaics', Energy Environ. Sci., 2, 251

(2009).

[15] Su, Y.W., Lan, S.C. and Wei, K.H., `Organic photovoltaics', Materials Today, 15, 554

(2012).

[16] Mertens, K., Photovoltaik - Lehrbuch zu Grundlagen, Technologie und Praxis, Carl

Hanser Verlag, München (2013).

[17] Zeman, M., `Solar Cells', Lecture Notes, http://ocw.tudelft.nl/courses/microelectronics/

solar-cells/readings/.

[18] Hull, R., Properties of crystalline silicon, The Institution of Electrical Engineers, London

(1999).

[19] Shockley, W. and Queisser, H.J., `Detailed balance limit of e�ciency of p-n junction

solar cells', Journal of Applied Physics, 32, 510 (1961).

[20] Falk, F., `Physik und Technologie der Solarzellen', Lecture Notes, http://www.ipht-

jena.de/�leadmin/user_upload/redaktion/Lehre/Vorlesungsscripte/PVtot_deutsch.pdf.

[21] Bakulin, A.A. et al., `The Role of Driving Energy and Delocalized States for Charge

Separation in Organic Semiconductors', Science, 335, 1340 (2012).

[22] Grancini, G. et al., `Hot exciton dissociation in polymer solar cells', Nature materials,

12, 29 (2013).

[23] M., S., `Measuring internal quantum e�ciency to demonstrate hot exciton dissociation',

Nature materials, 12, 594 (2013).

[24] Chidichimo, G. and Filippelli, L., `Organic solar cells: problems and perspectives',

International Journal of Photoenergy, 2010 (2010).

[25] Tang, C.W., `Two-layer organic photovoltaic cell', Applied Physics Letters, 48, 183

(1986).

[26] Hardin, B.E., Snaith, H.J. and McGehee, M.D., `The renaissance of dye-sensitized solar

cells', Nature Photonics, 6, 162 (2012).

[27] O'Regan, B. and Graetzel, M., `A low-cost, high-e�ciency solar cell based on dye-

sensitized colloidal TiO2 �lms', Nature, 353 (1991).

[28] Hara, K. et al., `Molecular Design of Coumarin Dyes for E�cient Dye-Sensitized Solar

Cells', J. Phys. Chem. B, 107, 597 (2003).

[29] Hara, K. et al., `Design of new coumarin dyes having thiophene moieties for highly

e�cient organic-dye-sensitized solar cells', New J. Chem., 27, 783 (2003).

218



Bibliography

[30] Hara, K. et al., `Oligothiophene-Containing Coumarin Dyes for E�cient Dye-Sensitized

Solar Cells', The Journal of Physical Chemistry B, 109, 15476 (2005).

[31] Wang, Z.S. et al., `A High-Light-Harvesting-E�ciency Coumarin Dye for Stable Dye-

Sensitized Solar Cells', Advanced Materials, 19, 1138 (2007).

[32] Hohenberg, P. and Kohn, W., `Inhomogeneous Electron Gas', Phys. Rev., 136, B864

(1964).

[33] Kohn, W. and Sham, L.J., `Self-Consistent Equations Including Exchange and Correla-

tion E�ects', Phys. Rev., 140, A1133 (1965).

[34] Jensen, F., Introduction to Computational Chemistry, Wiley, New York (2013).

[35] Runge, E. and Gross, E.K.U., `Density-Functional Theory for Time-Dependent Sys-

tems', Phys. Rev. Lett., 52, 997 (1984).

[36] Marques, M.A.L. et al., Time-Dependent Density Functional Theory, Springer Verlag

Berlin Heidelberg (2006).

[37] Caruso, D. and Troisi, A., `Long-range exciton dissociation in organic solar cells', Proc.

Natl. Acad. Sci., 109, 13498 (2012).

[38] Yost, S.R. and Van Voorhis, T., `Electrostatic E�ects at Organic Semiconductor In-

terfaces: A Mechanism for "Cold" Exciton Breakup', J. Phys. Chem. C, 117, 5617

(2013).

[39] Sariciftci, N.S., Smilowitz, L., Heeger, A.J. andWudl, F., `Photoinduced Electron Trans-

fer from a Conducting Polymer to Buckminsterfullerene', Science, 258, 1474 (1992).

[40] Schmidt-Mende, L. et al., `Self-Organized Discotic Liquid Crystals for High-E�ciency

Organic Photovoltaics', Science, 293, 1119 (2001).

[41] Hardin, B.E., Snaith, H.J. and McGehee, M.D., `The renaissance of dye-sensitized solar

cells', Nat Photon, 6, 162 (2012).

[42] Onida, G., Reining, L. and Rubio, A., `Electronic excitations: density-functional versus

many-body Green's-function approaches', Rev. Mod. Phys., 74, 601 (2002).

[43] Bussi, G., `E�ects of the Electron-Hole Interaction on the Optical Properties of Mate-

rials: the Bethe-Salpeter Equation', Physica Scripta, 2004, 141 (2004).

[44] Duchemin, I., Deutsch, T. and Blase, X., `Short-Range to Long-Range Charge-Transfer

Excitations in the Zincbacteriochlorin-Bacteriochlorin Complex: A Bethe-Salpeter

Study', Phys. Rev. Lett., 109, 167801 (2012).

[45] Hüfner, S., Photoelectron Spectroscopy - Principles and Applications, Springer, Berlin

Heidelberg, 3rd ed. (2003).

219



Bibliography

[46] Reinert, F. and Hüfner, S., `Photoemission spectroscopy - from early days to recent

applications', New Journal of Physics, 7, 97 (2005).

[47] Serrano-Andres, L. and Fuelscher, M.P., `Theoretical Study of the Electronic Spec-

troscopy of Peptides. III. Charge-Transfer Transitions in Polypeptides', J. Am. Chem.

Soc., 120, 10912 (1998).

[48] Bruneval, F. and Marques, M.A.L., `Benchmarking the Starting Points of the GW

Approximation for Molecules', J. Chem. Theory Comput., 9, 324 (2013).

[49] Yanai, T., Tew, D.P. and Handy, N.C., `A new hybrid exchange-correlation functional

using the Coulomb-attenuating method (CAM-B3LYP)', Chem. Phys. Lett., 393, 51

(2004).

[50] Stein, T., Kronik, L. and Baer, R., `Prediction of charge-transfer excitations in

coumarin-based dyes using a range-separated functional tuned from �rst principles',

J. Chem. Phys., 131, 244119 (2009).

[51] Lazzeri, M., Attaccalite, C., Wirtz, L. and Mauri, F., `Impact of the electron-electron

correlation on phonon dispersion: Failure of LDA and GGA DFT functionals in

graphene and graphite', Phys. Rev. B, 78, 081406 (2008).

[52] Antonius, G., Poncé, S., Boulanger, P., Côté, M. and Gonze, X., `Many-Body E�ects on

the Zero-Point Renormalization of the Band Structure', Phys. Rev. Lett., 112, 215501

(2014).

[53] Hertz, H.R., `Über einen Ein�uÿ des ultravioletten Lichtes auf die electrische Entladung',

Ann. d. Physik und Chemie, 31, 983 (1887).

[54] Hallwachs, W., `Über den Ein�uÿ des Lichtes auf electrostatisch geladene Körper', Ann.

d. Physik und Chemie, 33, 301 (1888).

[55] Hedin, L., `Electron correlation: Keeping close to an orbital description', International

Journal of Quantum Chemistry, 56, 445 (1995).

[56] Papalazarou, E. et al., `Valence-band electronic structure of V2O3: Identi�cation of V

and O bands', Phys. Rev. B, 80, 155115 (2009).

[57] Born, M. and Oppenheimer, R., `Zur Quantentheorie der Molekeln', Ann. d. Physik,

84, 457 (1927).

[58] Born, M., `Theoretical investigations on the relation between crystal dynamics and x-ray

scattering', Rep. Progr. Physics, 9, 294 (1943).

[59] Koch, W. and Holthausen, M.C., A Chemist's Guide to Density Functional Theory,

Wiley, New York, 2nd ed. (2001).

[60] Parr, R.G. and Yang, W., Density-Functional Theory of Atoms and Molecules, Oxford

University Press, New York (1989).

220



Bibliography

[61] Lanczos, C., `An Iteration Method for the Solution of the Eigenvalue Problem of Lin-

ear Di�erential and Integral Operators', Journal of research of the National Bureau of

Standards, 45, 255 (1950).

[62] Pulay, P., `Convergence acceleration of iterative sequences. The case of SCF iteration',

Chemical Physics Letters, 73, 393 (1980).

[63] Fock, V., `Näherungsmethode zur Lösung des quanten-mechanischen Mehrkörperprob-

lems', Z. Phys., 61, 126 (1930).

[64] Slater, J.C., `Note on Hartree's Method', Phys. Rev., 35, 210 (1930).

[65] Boys, S.F., `Electronic Wave Functions. I. A General Method of Calculation for the

Stationary States of Any Molecular System', Proceedings of the Royal Society of London.

Series A. Mathematical and Physical Sciences, 200, 542 (1950).

[66] Dykstra, C.E., Ab initio calculation of the structures and properties of molecules, Else-

vier, Amsterdam (1988).

[67] Møller, C. and Plesset, M.S., `Note on an Approximation Treatment for Many-Electron

Systems', Phys. Rev., 46, 618 (1934).

[68] Shavitt, I. and Bartlett, R.J., Many-Body Methods in Chemistry and Physics - MBPT

and Coupled-Cluster Theory, Cambridge University Press, Cambridge (2009).

[69] Szabo, A. and Ostlund, N.S., Modern Quantum Chemistry - Introduction to Advanced

Electronic Structure Theory, Courier Dover Publications, Mineola, New York (2012).

[70] Gross, E.K.U. and Dreizler, R.M., Density Functional Theory, Springer, Berlin Heidel-

berg (1995).

[71] Perdew, J.P. and Zunger, A., `Self-interaction correction to density-functional approxi-

mations for many-electron systems', Phys. Rev. B, 23, 5048 (1981).

[72] Vosko, S.H., Wilk, L. and Nusair, M., `Accurate spin-dependent electron liquid correla-

tion energies for local spin density calculations: a critical analysis', Can. J. Phys., 58,

1200 (1980).

[73] Ceperley, D. and Alder, B., `Ground State of the Electron Gas by a Stochastic Method',

Phys. Rev. Lett., 45, 566 (1980).

[74] Perdew, J.P., Burke, K. and Ernzerhof, M., `Generalized Gradient Approximation Made

Simple', Phys. Rev. Lett., 77, 3865 (1996).

[75] Becke, A.D., `A new mixing of Hartree-Fock and local density-functional theories', J.

Chem. Phys., 98, 1372 (1993).

[76] Raghavachari, K., `Perspective on 'Density functional thermochemistry. III. The role of

exact exchange�, Theoretical Chemistry Accounts, 103, 361 (2000).

221



Bibliography

[77] Gunnarsson, O. and Jones, R.O., `Density Functional Calculations for Atoms, Molecules

and Clusters', Physica Scripta, 21, 394 (1980).

[78] Moruzzi, V.L., Janak, J.F. and Williams, A.R., `Calculations of electronic properties of

metals', (1978).

[79] Yin, M.T. and Cohen, M.L., `Theory of static structural properties, crystal stability,

and phase transformations: Application to Si and Ge', Phys. Rev. B, 26, 5668 (1982).

[80] Slater, J.C., Quantum Theory of Molecules and Solids: Insulators, semiconductors, and

metals, vol. IV, McGraw-Hill, New York (1974).

[81] Janak, J.F., `Proof that ∂E
∂n = ε in density-functional theory', Phys. Rev. B, 18, 7165

(1978).

[82] Kronik, L., Stein, T., Refaely-Abramson, S. and Baer, R., `Excitation Gaps of Finite-

Sized Systems from Optimally Tuned Range-Separated Hybrid Functionals', J. Chem.

Theory Comput., 8, 1515 (2012).

[83] Kraisler, E. and Kronik, L., `Fundamental gaps with approximate density functionals:

The derivative discontinuity revealed from ensemble considerations', The Journal of

Chemical Physics, 140, 18A540 (2014).

[84] Perdew, J.P., Parr, R.G., Levy, M. and Balduz, J.L., `Density-Functional Theory for

Fractional Particle Number: Derivative Discontinuities of the Energy', Phys. Rev. Lett.,

49, 1691 (1982).

[85] Levy, M., Perdew, J.P. and Sahni, V., `Exact di�erential equation for the density and

ionization energy of a many-particle system', Phys. Rev. A, 30, 2745 (1984).

[86] Almbladh, C.O. and von Barth, U., `Exact results for the charge and spin densities,

exchange-correlation potentials, and density-functional eigenvalues', Phys. Rev. B, 31,

3231 (1985).

[87] Jones, R.O. and Gunnarsson, O., `The density functional formalism, its applications

and prospects', Rev. Mod. Phys., 61, 689 (1989).

[88] Mahan, G.D., Many-Particle Physics, Springer, Berlin Heidelberg, 2nd ed. (1990).

[89] Gross, E.K.U., Runge, E. and Heinonen, O., Many-particle theory, A. Hilger, Bristol

(1991).

[90] Bruus, H. and Flensberg, K.,Many-Body Quantum Theory in Condensed Matter Physics

- An Introduction, OUP Oxford, New York, London (2004).

[91] Friedrich, C. and Schindlmayr, A., `Many-Body Perturbation Theory: The GW Ap-

proximation', in NIC Series Volume 31: Computational Nanoscience: Do It Yourself !,

edited by D.M. J. Grotendorst S. Blügel, John von Neumann Institute for Computing,

Jülich (2006).

222



Bibliography

[92] Galitskii, V. and Migdal, A., `Application of quantum �eld theory methods to the many

body problem', Sov. Phys., JETP, 7, 96 (1958).

[93] Dyson, F.J., `The Radiation Theories of Tomonaga, Schwinger, and Feynman', Phys.

Rev., 75, 486 (1949).

[94] Dyson, F.J., `The S Matrix in Quantum Electrodynamics', Phys. Rev., 75, 1736 (1949).

[95] Dirac, P.A.M., `The Quantum Theory of the Emission and Absorption of Radiation',

Proceedings of the Royal Society of London. Series A, 114, 243 (1927).

[96] Fermi, E., Nuclear Physics, University of Chicago Press, Chigago (1949).

[97] Landau, L.D. and Lifshitz, E.M., Statistical physics, Pergamon Press, Oxford, 3rd ed.

(1980).

[98] Layzer, A.J., `Properties of the One-Particle Green's Function for Nonuniform Many-

Fermion Systems', Phys. Rev., 129, 897 (1963).

[99] Schwinger, J., `On the Green's functions of quantized �elds. I', Proceedings of the Na-

tional Academy of Sciences, 37, 452 (1951).

[100] Martin, P.C. and Schwinger, J., `Theory of Many-Particle Systems. I', Phys. Rev., 115,

1342 (1959).

[101] YU, P. and Cardona, M., Fundamentals of Semiconductors - Physics and Materials

Properties, Springer, Berlin Heidelberg (2010).

[102] Schley, P., `Optische Eigenschaften von InN und InN-basierten Halbleitern', Ph.D. The-

sis, Ilmenau University of Technology, Germany (2010).

[103] Winzer, A., `Optische und elektronische Eigenschaften von AlGaN/GaN-

Heterostrukturen', Ph.D. Thesis, Ilmenau University of Technology, Germany

(2008).

[104] Chuang, S.L., Physics of Photonic Devices, Wiley, New York (2012).

[105] Frenkel, J., `On the Transformation of Light into Heat in Solids. II', Phys. Rev., 37,

1276 (1931).

[106] Wannier, G.H., `The Structure of Electronic Excitation Levels in Insulating Crystals',

Phys. Rev., 52, 191 (1937).

[107] Elliott, R.J., `Intensity of Optical Absorption by Excitons', Phys. Rev., 108, 1384

(1957).

[108] Klingshirn, C.F., Semiconductor Optics, Springer, Berlin Heidelberg (2012).

[109] Wu, J. et al., `E�ects of the narrow band gap on the properties of InN', Phys. Rev. B,

66, 201403 (2002).

223



Bibliography

[110] Fu, S.P. and Chen, Y.F., `E�ective mass of InN epilayers', Appl. Phys. Lett., 85, 1523

(2004).

[111] Vurgaftman, I. and Meyer, J.R., `Band parameters for nitrogen-containing semiconduc-

tors', Journal of Applied Physics, 94, 3675 (2003).

[112] Persson, C., da Silva, A.F., Ahuja, R. and Johansson, B., `First-principle calculations of

the dielectric function of zinc-blende and wurtzite InN', Journal of Physics: Condensed

Matter, 13, 8945 (2001).

[113] Grahn, H.T., Introduction to Semiconductor Physics, World Scienti�c, Singapur (1999).

[114] Adler, S.L., `Quantum Theory of the Dielectric Constant in Real Solids', Phys. Rev.,

126, 413 (1962).

[115] Wiser, N., `Dielectric Constant with Local Field E�ects Included', Phys. Rev., 129, 62

(1963).

[116] Ehrenreich, H., in The Optical Properties of Solids, edited by J. Tauc, Academic Press,

New York, proc. internat. school of physics 'enrico fermi' ed. (1966).

[117] Sottile, F., `Response functions of semiconductors and insulators: from the Bethe-

Salpeter equation to time-dependent density functional theory', Ph.D. Thesis, Ecole

Polytechnique Paris, France (2003).

[118] Bruneval, F., `Exchange and Correlation in the Electronic Structure of Solids, from

Silicon to Cuprous Oxide: GW Approximation and beyond', Ph.D. Thesis, Ecole Poly-

technique Paris, France (2005).

[119] Rebolini, E., Toulouse, J. and Savin, A., `Electronic excitation energies of molecular sys-

tems from the Bethe-Salpeter equation: Example of the H2 molecule', ArXiv:1304.1314

(2013).

[120] Onida, G., Reining, L., Godby, R.W., Del Sole, R. and Andreoni, W., `Ab Initio Calcu-

lations of the Quasiparticle and Absorption Spectra of Clusters: The Sodium Tetramer',

Phys. Rev. Lett., 75, 818 (1995).

[121] Rohl�ng, M. and Louie, S.G., `Excitons and Optical Spectrum of the Si(111)− (2× 1)

Surface', Phys. Rev. Lett., 83, 856 (1999).

[122] Albrecht, S., Reining, L., Del Sole, R. and Onida, G., `Ab Initio Calculation of Excitonic

E�ects in the Optical Spectra of Semiconductors', Phys. Rev. Lett., 80, 4510 (1998).

[123] Benedict, L.X., Shirley, E.L. and Bohn, R.B., `Optical Absorption of Insulators and the

Electron-Hole Interaction: An Ab Initio Calculation', Phys. Rev. Lett., 80, 4514 (1998).

[124] Casida, M.E., in Recent Advances in Density Functional Methods, Part I, edited by

D. Chong, World Scienti�c, Singapore (1995).

224



Bibliography

[125] Casida, M.E., `Time-dependent density-functional theory for molecules and molecular

solids', J. Mol. Struct.: Theochem, 914, 3 (2009).

[126] Tiago, M.L. and Chelikowsky, J.R., `Optical excitations in organic molecules, clusters,

and defects studied by �rst-principles Green's function methods', Phys. Rev. B, 73,

205334 (2006).

[127] Haydock, R., `Recursive Solution of the Schroedinger Equation', in Solid State Physics,

edited by H. Ehrenreich, Academic Press (1980).

[128] Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T., Numerical Recipes in

Fortran: The Art of Scienti�c Computing, Cambridge University Press, 2nd ed. (1992).

[129] Hill, J.G., `Gaussian basis sets for molecular applications', International Journal of

Quantum Chemistry, 113, 21 (2013).

[130] Ren, X. et al., `Resolution-of-identity approach to Hartree-Fock, hybrid density func-

tionals, RPA, MP2 and GW with numeric atom-centered orbital basis functions', New

Journal of Physics, 14, 053020 (2012).

[131] Boys, S., Cook, G., Reeves, C.M. and Shavitt, I., `Automatic Fundamental Calculations

of Molecular Structure', Nature, 178, 1207 (1956).

[132] Clementi, E. and Davis, D., `Electronic structure of large molecular systems', Journal

of Computational Physics, 1, 223 (1966).

[133] Ditch�eld, R., Hehre, W. and Pople, J.A., `Self-consistent Molecular-Orbital Meth-

ods. IX. An Extended Gaussian-Type Basis for Molecular Orbital Studies of Organic

Molecules', J. Chem. Phys., 54, 724 (1971).

[134] Shavitt, I., in Methods in Computational Physics, edited by B. Alder, S. Fernbach and

M. Rotenberg, Academic Press, New York (1963).

[135] Dunning, T.H., `Gaussian basis sets for use in correlated molecular calculations. I. The

atoms boron through neon and hydrogen', J. Chem. Phys., 90, 1007 (1989).

[136] Soler, J.M. et al., J. Phys.: Condens. Matter, 14, 2745 (2002).

[137] Reeves, C.M. and Harrison, M.C., `Use of Gaussian Functions in the Calculation of

Wavefunctions for Small Molecules. II. The Ammonia Molecule', The Journal of Chem-

ical Physics, 39, 11 (1963).

[138] Cherkes, I., Klaiman, S. and Moiseyev, N., `Spanning the Hilbert space with an even

tempered Gaussian basis set', Int. J. Quant. Chem., 109, 2996 (2009).

[139] Aryasetiawan, F. and Gunnarsson, O., `Product-basis method for calculating dielectric

matrices', Phys. Rev. B, 49, 16214 (1994).

225



Bibliography

[140] Foerster, D. and Koval, P., `On the Kohn-Sham density response in a localized basis

set', The Journal of Chemical Physics, 131, 044103 (2009).

[141] Boulanger, P., Jacquemin, D., Duchemin, I. and Blase, X., `Fast and Accurate Electronic

Excitations in Cyanines with the Many-Body Bethe-Salpeter Approach', Journal of

Chemical Theory and Computation, 10, 1212 (2014).

[142] Valiev, M. et al., `NWChem: A comprehensive and scalable open-source solution

for large scale molecular simulations', Computer Physics Communications, 181, 1477

(2010).

[143] Lundqvist, B.I., Phys. Kondens. Mater., 6, 206 (1967).

[144] Lundqvist, B.I., Phys. Kondens. Mater., 6, 193 (1967).

[145] Hedin, L. and Lundqvist, S., in Solid State Physics, edited by H. Ehrenreich, F. Seitz

and D. Turnbull, Academic Press, New York (1969).

[146] von der Linden, W. and Horsch, P., `Precise quasiparticle energies and Hartree-Fock

bands of semiconductors and insulators', Phys. Rev. B, 37, 8351 (1988).

[147] Hamada, N., Hwang, M. and Freeman, A.J., `Self-energy correction for the energy bands

of silicon by the full-potential linearized augmented-plane-wave method: E�ect of the

valence-band polarization', Phys. Rev. B, 41, 3620 (1990).

[148] Engel, G.E. and Farid, B., `Generalized plasmon-pole model and plasmon band struc-

tures of crystals', Phys. Rev. B, 47, 15931 (1993).

[149] Godby, R.W., Schlüter, M. and Sham, L.J., `Self-energy operators and exchange-

correlation potentials in semiconductors', Phys. Rev. B, 37, 10159 (1988).

[150] Schöne, W.D. and Eguiluz, A.G., `Self-Consistent Calculations of Quasiparticle States

in Metals and Semiconductors', Phys. Rev. Lett., 81, 1662 (1998).

[151] Bruneval, F., `Ionization energy of atoms obtained from GW self-energy or from random

phase approximation total energies', J. Chem. Phys., 136, 194107 (2012).

[152] Pickett, W.E., `Density Functional theory in Solids: II. Excited States', Comments Solid

State Phys., 12 (1985).

[153] Louie, S., in Electronic Structure, Dynamics, and Quantum Structural Properties of

Condensed Matter, edited by J.T. Devreese and P.V. Camp, Plenum Press, New York

(1985).

[154] Mohr, S. et al., `Daubechies wavelets for linear scaling density functional theory', J.

Chem. Phys., 140, 204110 (2014).

[155] Skylaris, C.K., Haynes, P.D., Mosto�, A.A. and Payne, M.C., `Introducing ONETEP:

Linear-scaling density functional simulations on parallel computers', The Journal of

chemical physics, 122, 084119 (2005).

226



Bibliography

[156] Bachelet, G.B. and Christensen, N.E., `Relativistic and core-relaxation e�ects on the

energy bands of gallium arsenide and germanium', Phys. Rev. B, 31, 879 (1985).

[157] Bechstedt, F., Adv. Solid State Phys. 32, 32 (1992).

[158] Pickett, W.E. and Wang, C.S., `Local-density approximation for dynamical correlation

corrections to single-particle excitations in insulators', Phys. Rev. B, 30, 4719 (1984).

[159] Bechstedt, F. and Del Sole, R., in Proc. 19th Internat. Conf. Phys. Semiconductors,

edited by W. Zawadzki, Institut of Physics, PAS, Warsaw (1988).

[160] Almbladh, C.O. and Pedroza, A.C., `Density-functional exchange-correlation potentials

and orbital eigenvalues for light atoms', Phys. Rev. A, 29, 2322 (1984).

[161] Ö§üt, S., Chelikowsky, J.R. and Louie, S.G., `Quantum Con�nement and Optical Gaps

in Si Nanocrystals', Phys. Rev. Lett., 79, 1770 (1997).

[162] Godby, R.W. and White, I.D., `Density-Relaxation Part of the Self-Energy', Phys. Rev.

Lett., 80, 3161 (1998).

[163] Tiago, M.L., Idrobo, J.C., Ö§üt, S., Jellinek, J. and Chelikowsky, J.R., `Electronic and

optical excitations in Agn clusters (n = 1˘8): Comparison of density-functional and

many-body theories', Phys. Rev. B, 79, 155419 (2009).

[164] Sharma, S., Dewhurst, J.K., Lathiotakis, N.N. and Gross, E.K.U., `Reduced density

matrix functional for many-electron systems', Phys. Rev. B, 78, 201103 (2008).

[165] Chan, M.K.Y. and Ceder, G., `E�cient Band Gap Prediction for Solids', Phys. Rev.

Lett., 105, 196403 (2010).

[166] Ernzerhof, M. and Scuseria, G.E., `Assessment of the Perdew-Burke-Ernzerhof

exchange-correlation functional', The Journal of Chemical Physics, 110, 5029 (1999).

[167] Refaely-Abramson, S., Baer, R. and Kronik, L., `Fundamental and excitation gaps in

molecules of relevance for organic photovoltaics from an optimally tuned range-separated

hybrid functional', Phys. Rev. B, 84, 075144 (2011).

[168] Savin, A., `On Degeneracy, Near-degeneracy and Density Functional Theory', in Recent

Developments and Applications of Modern Density Functional Theory, edited by J.M.

Seminario, Elsevier (1996).

[169] Leininger, T., Stoll, H., Werner, H.J. and Savin, A., `Combining long-range con�gu-

ration interaction with short-range density functionals', Chem. Phys. Lett., 275, 151

(1997).

[170] Toulouse, J., Colonna, F. and Savin, A., `Long-range/short-range separation of the

electron-electron interaction in density-functional theory', Phys. Rev. A, 70, 062505

(2004).

227



Bibliography

[171] Gerber, I.C., Ángyán, J.G., Marsman, M. and Kresse, G., `Range separated hybrid

density functional with long-range Hartree-Fock exchange applied to solids', The Journal

of Chemical Physics, 127, 054101 (2007).

[172] Okuno, K., Shigeta, Y., Kishi, R., Miyasaka, H. and Nakano, M., J. Photochem. Pho-

tobiol., A235, 29 (2012).

[173] Krukau, A.V., Vydrov, O.A., Izmaylov, A.F. and Scuseria, G.E., `In�uence of the ex-

change screening parameter on the performance of screened hybrid functionals', The

Journal of Chemical Physics, 125, 224106 (2006).

[174] Tawada, Y., Tsuneda, T., Yanagisawa, S., Yanai, T. and Hirao, K., `A long-range-

corrected time-dependent density functional theory', J. Chem. Phys., 120, 8425 (2004).

[175] Iikura, H., Tsuneda, T., Yanai, T. and Hirao, K., `A long-range correction scheme for

generalized-gradient-approximation exchange functionals', J. Chem. Phys., 115, 3540

(2001).

[176] Baer, R. and Neuhauser, D., `Density Functional Theory with Correct Long-Range

Asymptotic Behavior', Phys. Rev. Lett., 94, 043002 (2005).

[177] Livshits, E. and Baer, R., `A well-tempered density functional theory of electrons in

molecules', Phys. Chem. Chem. Phys., 9, 2932 (2007).

[178] Hybertsen, M.S. and Louie, S.G., `First-Principles Theory of Quasiparticles: Calculation

of Band Gaps in Semiconductors and Insulators', Phys. Rev. Lett., 55, 1418 (1985).

[179] Godby, R.W., Schlüter, M. and Sham, L.J., `Accurate Exchange-Correlation Potential

for Silicon and Its Discontinuity on Addition of an Electron', Phys. Rev. Lett., 56, 2415

(1986).

[180] Chang, E.K., Blase, X. and Louie, S.G., `Quasiparticle band structure of lanthanum

hydride', Phys. Rev. B, 64, 155108 (2001).

[181] Gonze, X. et al., `ABINIT: First-principles approach to material and nanosystem prop-

erties', Computer Physics Communications, 180, 2582 (2009).

[182] Deslippe, J. et al., `BerkeleyGW: A massively parallel computer package for the cal-

culation of the quasiparticle and optical properties of materials and nanostructures',

Computer Physics Communications, 183, 1269 (2012).

[183] Marini, A., Hogan, C., Gruning, M. and Varsano, D., `Yambo: An ab initio tool for

excited state calculations', Comput. Phys. Comm., 180, 1392 (2009).

[184] Shirley, E.L. and Martin, R.M., `GW quasiparticle calculations in atoms', Phys. Rev.

B, 47, 15404 (1993).

[185] Rohl�ng, M. and Louie, S.G., `Electron-hole excitations and optical spectra from �rst

principles', Phys. Rev. B, 62, 4927 (2000).

228



Bibliography

[186] Grossman, J.C., Rohl�ng, M., Mitas, L., Louie, S.G. and Cohen, M.L., `High Accuracy

Many-Body Calculational Approaches for Excitations in Molecules', Phys. Rev. Lett.,

86, 472 (2001).

[187] Tiago, M.L. and Chelikowsky, J.R., `First-principles GW-BSE excitations in organic

molecules', Solid State Communications, 136, 333 (2005).

[188] Dori, N. et al., `Valence electronic structure of gas-phase 3,4,9,10-perylene tetracar-

boxylic acid dianhydride: Experiment and theory', Phys. Rev. B, 73, 195208 (2006).

[189] Stan, A., Dahlen, N.E. and van Leeuwen, R., `Fully self-consistent GW calculations for

atoms and molecules', EPL (Europhysics Letters), 76, 298 (2006).

[190] Morris, A.J. et al., `Vertex corrections in localized and extended systems', Phys. Rev.

B, 76, 155106 (2007).

[191] Bruneval, F., `GW ', Phys. Rev. Lett., 103, 176403 (2009).

[192] Palummo, M., Hogan, C., Sottile, F., Bagala, P. and Rubio, A., `Ab initio electronic

and optical spectra of free-base porphyrins: The role of electronic correlation', J. Chem.

Phys., 131, 084102 (2009).

[193] Rostgaard, C., Jacobsen, K.W. and Thygesen, K.S., `Fully self-consistent GW calcula-

tions for molecules', Phys. Rev. B, 81, 085103 (2010).

[194] Ke, S.H., `All-electron GW methods implemented in molecular orbital space: Ionization

energy and electron a�nity of conjugated molecules', Phys. Rev. B, 84, 205415 (2011).

[195] Foerster, D., Koval, P. and Sanchez-Portal, D., `An O(N[sup 3]) implementation of

Hedin's GW approximation for molecules', J. Chem. Phys., 135, 074105 (2011).

[196] Marom, N., Ren, X., Moussa, J.E., Chelikowsky, J.R. and Kronik, L., `Electronic

structure of copper phthalocyanine from G0W0 calculations', Phys. Rev. B, 84, 195143

(2011).

[197] Samsonidze, G., Jain, M., Deslippe, J., Cohen, M.L. and Louie, S.G., `Simple Ap-

proximate Physical Orbitals for GW Quasiparticle Calculations', Phys. Rev. Lett., 107,

186404 (2011).

[198] Marom, N. et al., `Benchmark of GW methods for azabenzenes', Phys. Rev. B, 86,

245127 (2012).

[199] Sharifzadeh, S., Tamblyn, I., Doak, P., Darancet, P. and Neaton, J., `Quantitative

molecular orbital energies within a G0W0 approximation', Euro. Phys. J. B, 85, 1

(2012).

[200] Umari, P. and Fabris, S., `Importance of semicore states in GW calculations for simulat-

ing accurately the photoemission spectra of metal phthalocyanine molecules', J. Chem.

Phys., 136, 174310 (2012).

229



Bibliography

[201] Körzdörfer, T. and Marom, N., `Strategy for �nding a reliable starting point for G0W0

demonstrated for molecules', Phys. Rev. B, 86, 041110 (2012).

[202] Caruso, F., Rinke, P., Ren, X., Sche�er, M. and Rubio, A., `Uni�ed description of

ground and excited states of �nite systems: The self-consistent GW approach', Phys.

Rev. B, 86, 081102 (2012).

[203] van Setten, M.J., Weigend, F. and Evers, F., `The GW-Method for Quantum Chemistry

Applications: Theory and Implementation', J. Chem. Theory Comput., 9, 232 (2013).

[204] Pham, T.A., Nguyen, H.V., Rocca, D. and Galli, G., `GW calculations using the spec-

tral decomposition of the dielectric matrix: Veri�cation, validation, and comparison of

methods', Phys. Rev. B, 87, 155148 (2013).

[205] Holm, B. and von Barth, U., `Fully self-consistent GW self-energy of the electron gas',

Phys. Rev. B, 57, 2108 (1998).

[206] Ku, W. and Eguiluz, A.G., `Band-Gap Problem in Semiconductors Revisited: E�ects

of Core States and Many-Body Self-Consistency', Phys. Rev. Lett., 89, 126401 (2002).

[207] Delaney, K., Garcia-Gonzalez, P., Rubio, A., Rinke, P. and Godby, R.W., `Comment

on 'Band-Gap Problem in Semiconductors Revisited: E�ects of Core States and Many-

Body Self-Consistency�, Phys. Rev. Lett., 93, 249701 (2004).

[208] Faleev, S.V., van Schilfgaarde, M. and Kotani, T., `All-Electron Self-Consistent GW

Approximation: Application to Si, MnO, and NiO', Phys. Rev. Lett., 93, 126406 (2004).

[209] Bruneval, F., Vast, N. and Reining, L., `E�ect of self-consistency on quasiparticles in

solids', Phys. Rev. B, 74, 045102 (2006).

[210] Shishkin, M. and Kresse, G., `Self-consistent GW calculations for semiconductors and

insulators', Phys. Rev. B, 75, 235102 (2007).

[211] Frisch, M.J. et al., `Gaussian 09 Revision B.01', Gaussian Inc. Wallingford CT 2009.

[212] Troullier, N. and Martins, J.L., `E�cient pseudopotentials for plane-wave calculations',

Phys. Rev. B, 43, 1993 (1991).

[213] Savin, A., `Ground and low-lying excited states of interacting electron systems; A sur-

vey and some critical analyses', in Electron Correlation in the Solid State, edited by

N. March, World Scienti�c, Singapore (1999).
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