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We present a comparative study of particle-hole and particle-particle channels of random-phase approximation
(RPA) for molecular dissociations of different bonding types. We introduced a direct particle-particle RPA
scheme, in analogy to the direct particle-hole RPA formalism, whereby the exchange-type contributions are
excluded. This allows us to compare the behavior of the particle-hole and particle-particle RPA channels on
the same footing. Our study unravels the critical role of exchange contributions in determining behaviors of the
two RPA channels for describing stretched molecules. We also made an attempt to merge particle-hole RPA
and particle-particle RPA into a unified scheme, with the double-counting terms removed. However, benchmark
calculations indicate that a straightforward combination of the two RPA channels does not lead to a successful
computational scheme for describing molecular dissociations.
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I. INTRODUCTION

In the past two decades, the random-phase approximation
(RPA), originally formulated by Bohm and Pines [1,2] for the
homogeneous gas of interacting electrons, has been developed
into a versatile approach to compute the nonlocal electron
correlation energy in real molecules and materials [3–6].
Successful applications of RPA have been demonstrated for
molecules [7–13], solids [14–21], surfaces [22,23], inter-
faces [24,25], and defects [26–28]. As such, RPA sets a new
stage for first-principles electronic-structure calculations for
real materials. From the methodology point of view, RPA
represents a cornerstone connecting ground-state and time-
dependent density-functional theory (DFT) [29–31], the quan-
tum chemistry coupled cluster method [32], and the Green’s-
function-based many-body perturbation theory [5,33]. In the
context of DFT, via the adiabatic connection fluctuation
dissipation theorem, the RPA formalism opens an arena to
construct advanced exchange-correlation functionals in terms
of diagrammatic many-body perturbation theory. Further de-
velopment beyond RPA, aiming at addressing its remain-
ing shortcomings, has been an active research area. The
renormalized second-order perturbation theory (rPT2) [6,34],
the approximate exchange kernel correction [35,36], and the
power-series expansion scheme [37] represent the latest de-
velopments based on RPA.

In nuclear physics, the above-mentioned RPA approach
is referred to as particle-hole RPA (phRPA) because, in its
formulation, the correlation energy is determined in terms of
density fluctuations, originating from particle-hole (ph) pair
excitations. In parallel to the phRPA, another type of RPA
formulation, referred to as particle-particle RPA (ppRPA), is
also discussed [38,39]. In this case, the correlation energy
is obtained from the pairing matrix fluctuation, arising from
the process of creating two particles or two holes. From
a diagrammatic point of view, phRPA can be viewed as a

summation of ring diagrams to infinite order [40], whereas
the ppRPA can be interpreted as a summation of the so-
called ladder diagrams to infinite order [38,39]. In a series
of seminal papers, Yang and coworkers [41–43] developed an
adiabatic connection formalism which allows us to express
the exchange-correlation energy in terms of dynamical pair-
ing matrix fluctuation [41]. Within such a formulation, the
ppRPA is the leading-order approximation. The performance
of ppRPA for thermochemistry has been benchmarked for
small molecules, and its quality for describing molecular
dissociations has been analyzed in terms of fractional charge
and fractional spin errors [43,44]. Furthermore, in parallel
to time-dependent DFT (TDDFT), the ppRPA formulation
has been extended to excited state calculations [45]. Through
these pioneering works [41-45], Yang and coworkers brought
ppRPA to the attention of DFT/materials science commu-
nities. The equivalence of ppRPA to ladder coupled cluster
doubles (CCD) theory has been demonstrated independently
by Peng et al. [42] and Scuseria et al. [46].

Given the fact that there exist two RPA channels, it is
natural to ask if it is possible to combine them. From the
viewpoint of many-body perturbation theory, they contain dis-
tinct diagrams, except at the second order. In a sense, phRPA
and ppRPA can be viewed as different ways to “renormal-
ize” the bare second-order correlation energy. For correlated
methods, the correlation energy can often be linked to a self-
energy (obtained by taking the functional derivative of the
correlation energy with respect to the Green’s function) [47].
For instance, the phRPA correlation energy is intimately
connected to the GW self-energy [5,48]; the ppRPA, on the
other hand, is associated with the particle-particle (pp) T-
matrix approximation [49–52]. Physically speaking, phRPA
accounts for the nonlocal screening effect arising from the
long-range Coulomb interaction and shows best performance
in the high electron density regime. In contrast, the ppRPA
(and T-matrix approximation) describes local scattering of
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hard-core potentials [53], and represents a good approxima-
tion in the low electron density regime. In the past, attempts
have been made to combine the GW approximation and T-
matrix approximation for self-energy calculations [51]. It is
interesting to check if it is possible to merge their counterparts
for ground-state correlation energies—phRPA and ppRPA—
into one framework. In this paper, we implemented ppRPA in
the FHI-aims code package [54,55]. Together with our earlier
implementation of the phRPA, we are able to make an attempt
to check if a useful computational framework can be found
by combining phRPA and ppRPA and, moreover, compare the
behavior of phRPA and ppRPA in a systematic way.

When comparing the performance of phRPA and ppRPA
for molecules’ properties, it is important to note that phRPA
by default refers to the direct phRPA, without including
the exchange contributions, whereas ppRPA refers to the
full ppRPA, with the exchange contributions included. To
compare phRPA and ppRPA on the same footing, we also
implemented in this work the full phRPA in FHI-aims. This
allows us to examine and compare the performance of phRPA
and ppRPA for molecular dissociations in an unbiased way.

The rest of the paper is organized as follows. We briefly
recapitulate the basic equations of phRPA and ppRPA in
Sec. II. This is followed by a description of the implemen-
tation and computational details in Sec. III. The major results
and discussions of the behavior of the two channels of RPA,
as well as their combinations, are presented in Sec. IV for
prototypical molecular dimers. Finally, we conclude this paper
in Sec. V.

II. THEORY

Here we briefly review the basic equations of phRPA and
ppRPA to facilitate the subsequent comparative analysis of
the two schemes. More detailed accounts on their theoretical
foundations can be found, e.g., in Refs. [3–5,7,8,41]. Note
that both the phRPA and the ppRPA can be formulated as
an approximation to the exchange-correlation energy within
Kohn-Sham (KS) DFT via the adiabatic connection frame-
work. While the phRPA correlation energy can be expressed
in terms of an integration over the polarization propagator, the
ppRPA can be analogously obtained from the pp propagator,
or equivalently the pairing density fluctuation [41]. In partic-
ular, the ppRPA correlation energy is given by

EppRPA
c = 1

2π i

∫ +i∞

−i∞
Tr[ln[I − K0(ω)V] + K0(ω)V]dω,

(1)

where K0(ω) is the noninteracting pp propagator,

K0
pq,rs(ω) = (δprδqs − δpsδqr )

θ (εp − εF )θ (εq − εF )

ω − (εp + εq − 2μ) + iη

− (δprδqs − δpsδqr )
θ (εF − εp)θ (εF − εq)

ω − (εp + εq − 2μ) − iη
,

(2)

with θ (x) and δpr being, respectively, the Heaviside step
function and Kronecker delta function. Furthermore, εF is the
Fermi energy, and μ is the chemical potential set at the middle

of the gap between the highest occupied molecular orbital
and lowest unoccupied molecular orbital. Moreover, V is the
antisymmetrized two-electron Coulomb integrals,

Vpq,rs = 〈pq||rs〉 = 〈pq|rs〉 − 〈pq|sr〉
and

〈pq|rs〉 =
∫

φ∗
p(x1)φ∗

q (x2)φr (x1)φs(x2)

|r1 − r2| dx1dx2, (3)

with x1 = (r1, σ1) being the combined spatial-spin coordinate.
Here we follow the usual convention that p, q, r, s refer to gen-
eral single-particle spin orbitals, with i, j, k, l and a, b, c, d
being occupied and unoccupied spin orbitals, respectively.

As thoroughly discussed in the literature [4,5,7], the
phRPA correlation energy has a similar expression as Eq. (1).
The key difference is that the noninteracting pp propagator
K0(ω) is replaced by the noninteracting polarization operator
(or linear density response function) χ0,

χ0
pq,rs(ω) = δprδqs

θ (εp − εF )θ (εF − εq)

ω − (εp − εq) + iη

− δprδqs
θ (εF − εp)θ (εq − εF )

ω − (εp − εq) − iη
. (4)

Furthermore, if the Coulomb matrix V is not antisymmetrized
(i.e., Vpq,rs = 〈pq|rs〉), one will obtain the so-called direct
phRPA (d-phRPA), which is the standard RPA method em-
ployed in density-functional/materials science community. In
contrast, if the antisymmetrized V is employed, one will have
the full phRPA ( f -phRPA), which, however, received much
less attention and was only discussed in the quantum chem-
istry literature [56–59]. Different from the phRPA, the ppRPA
are only implemented and discussed with the antisymmetrized
Coulomb interaction [41–44]. In analogy to phRPA, in this
paper we shall term the standard ppRPA with antisymmetrized
Coulomb integrals the full ppRPA ( f -ppRPA), and the one
without antisymmetrizing the Coulomb integrals as direct
ppRPA (d-ppRPA). As mentioned above, this enables us to
benchmark phRPA and ppRPA on an equal footing, separating
the effect arising from the exchange interactions and that
arising from the ph or pp channel itself.

The RPA correlation energy can be calculated using
Eq. (1), with the frequency integration being carried out along
the imaginary axis. In case of the direct phRPA, the imag-
inary frequency integration combined with the resolution-
of-identity (RI) approximation [55,60] leads to an efficient
O(N4) scaling algorithm, with N being the basis size of the
system. An alternative way to obtain the phRPA correlation
energy is to cast the RPA equations into the following gener-
alized eigenvalue problem [7,32,56,61]:(

A B
B∗ A∗

)(
X
Y

)
= ωn

(
1 0
0 −1

)(
X
Y

)
, (5)

where A, B, X , Y are square matrices of dimension NhNp ×
NhNp, with Nh and Np being the number of occupied (hole) and
unoccupied (particle) orbitals, respectively. The eigenvalues
ωn form a vector of dimension NhNp, and correspond to the
neutral excitation energies at the RPA level. In case of full

195149-2



COMPARING PARTICLE-PARTICLE AND PARTICLE-HOLE … PHYSICAL REVIEW B 99, 195149 (2019)

phRPA,

Aia, jb = 〈
�a

i

∣∣Ĥ − E0

∣∣�b
j

〉 = δi jδab(εa − εi ) + 〈a j||ib〉,
Bia, jb = 〈�0|Ĥ − E0

∣∣�ab
i j

〉 = 〈i j||ab〉, (6)

where Ĥ is the Hamiltonian of interacting electrons, E0 =
〈�0|Ĥ |�0〉 is the Hartree-Fock ground-state energy, with �0

being the lowest-energy single Slater determinant. In Eq. (6),
�a

i and �ab
i j are singly and doubly excited configurations,

respectively. The corresponding full phRPA ( f -phRPA) cor-
relation energy can be obtained as [56]

E f -phRPA
c = 1

4

(∑
n

ωn − Tr{A}
)

. (7)

By contrast, the direct phRPA excitation energies and ampli-
tudes can be obtained by solving Eq. (5) with

Aia, jb = δi jδab(εa − εi ) + 〈a j|ib〉,
Bia, jb = 〈i j|ab〉 (8)

i.e., without antisymmetrizing the two-electron Coulomb in-
tegrals in the construction of A and B. Now the d-phRPA
correlation energy is given by

Ed-phRPA
c = 1

2

(∑
n

ωn − Tr{A}
)

. (9)

Note that the choice of different prefactors in Eqs. (7) and (9)
is to ensure that both theories have the correct behavior at
second order [56,58,62]. However, the choice of a factor of
1/2 in Eq. (7) has also been used in the literature [46]. The
meaning of d-phRPA correlation energy can be interpreted
as the difference of correlated and uncorrelated electronic
zero-point plasmonic energies [63].

The ppRPA, instead, can be cast into the following matrix
equation [41,46]:(

C B
B† D

)(
X
Y

)
= ωn

(
1 0
0 −1

)(
X
Y

)
, (10)

where

Cab,cd = 〈�0|ĉaĉb
(
Ĥ − E0

)
ĉ†

c ĉ†
d |�0〉

= δacδbd (εa + εb − 2μ) + 〈ab||cd〉, (11)

Di j,kl = 〈�0|ĉ†
i ĉ†

j

(
Ĥ − E0

)
ĉk ĉl |�0〉

= −δikδ jl (εi + ε j − 2μ) + 〈i j||kl〉. (12)

In Eq. (12), ĉ†
p(ĉp) is the creation (annihilation) operator

for a single-particle state p. Due to the symmetry properties
of the above integrals, within losing generality, the orbital
indices can be restricted to i < j, k < l , and a < b, c < d .
The indices of matrices C and D correspond to particle pairs
and hole pairs, respectively. The numbers of particle and hole
pairs are

Npp = Np(Np − 1)/2, Nhh = Nh(Nh − 1)/2.

Consequently, C, D are square matrices of dimensionality
Npp × Npp and Nhh × Nhh, respectively. On the other hand,

in contrast with the phRPA case, B in Eq. (10) becomes a
rectangular matrix of Npp × Nhh,

Bab,i j = 〈ab||i j〉. (13)

The eigenvalues ωn obtained from Eq. (10) are split into two
groups depending on their sign: The positive eigenvalues are
the excitation energies of the (N + 2)-particle system and the
negative eigenvalues correspond to (the negative of) excitation
energies of the (N − 2)-particle system. The corresponding
f -ppRPA correlation energy can be obtained as

E f -ppRPA
c =

Npp∑
n

ωN+2
n − Tr{C}, (14)

or, equivalently,

E f -ppRPA
c = −

Nhh∑
n

ωN−2
n − Tr{D}. (15)

It is worthwhile to point out that in ppRPA the inclusion of
chemical potential μ in the definition of matrices C and D
is not strictly necessary, and the eigenvectors and the final
ppRPA correlation energy are not affected by the μ value.
However, it is convenient to do so since then the obtained
eigenvalues ωn can be naturally grouped into positive modes
and negative modes, with clear physical meanings as stated
above.

In analogy to the d-phRPA, the d-ppRPA is defined by
solving Eq. (10) with the following definition of C, D, B
matrices,

Cab,cd = δacδbd (εa + εb − 2μ) + 〈ab|cd〉,
Di j,kl = −δikδ jl (εi + ε j − 2μ) + 〈i j|kl〉, (16)

Bab,i j = 〈ab|i j〉,
without antisymmetrizing the two-electron Coulomb inte-
grals. Here, it is important to note that, in contrast with
f -ppRPA, for d-ppRPA the orbital index restrictions (i < j,
k < l and a < b, c < d) should not be imposed any longer,
due to the loss of antisymmetry. The d-ppRPA correlation
energy expression is the same as the f -ppRPA case [Eqs. (14)
or (15)], but ωn should be the d-ppRPA eigenvalues and
C/D matrices should be the nonantisymmetrized integrals
as defined in Eq. (16). In Fig. 1, we present the Goldstone
diagrams [64] of second and third orders for ppRPA. These
diagrams in general have a ladder structure, but those in the
upper row with the two legs (particle or hole lines) closed into
themselves are direct diagrams and graphically represent the
d-ppRPA introduced in this paper.

The leading contribution in both ppRPA and phRPA is their
corresponding second-order terms, which are the same for
the two RPA channels, as can be easily seen from the cor-
responding Goldstone diagrams. The second-order correlation
energy in full phRPA or full ppRPA is equivalent to the Møller-
Plesset second-order perturbation theory (MP2) [65], if the
Hartree-Fock reference is used. In this paper, we term the
second-order correlation energy as MP2 for convenience, even
if the reference state is not obtained from the Hartree-Fock
theory. In the same language of phRPA and ppRPA discussed
above, we shall term the original MP2 as full MP2 ( f -MP2),
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(a)

(d)

(b) (c)

(e) (f)

FIG. 1. Goldstone diagrams of second [(a), (d)] and third orders
[(b), (c), (e), and (f)] for ppRPA, among which the graphs in the upper
row [(a)–(c)] correspond to the d-ppRPA.

whose correlation energy is given by

E f -MP2
c = −1

2

∑
i jab

〈i j|ab〉〈ab||i j〉
εa + εb − εi − ε j

. (17)

By contrast, the direct MP2 (d-MP2) correlation energy is
obtained as

Ed-MP2
c = −1

2

∑
i jab

〈i j|ab〉〈ab|i j〉
εa + εb − εi − ε j

. (18)

Both phRPA and ppRPA contain a subset of diagrams of
the CCD theory [32,42,46,66,67]. While both channels of
RPA show some promising performance, they also have some
known drawbacks. As discussed above, one of the motivations
of the present paper is to check if it is possible to combine
them to arrive at a better theory, while not going to the
full CCD method. A straightforward way to combine phRPA
and ppRPA is to add them up, while subtracting the double-
counted MP2 term:

E comb-RPA
c = EppRPA

c + EphRPA
c − EMP2

c . (19)

In this combined RPA (denoted as comb-RPA in the follow-
ing) scheme, all three correlation energies appearing on the
right-hand side are obtained either in their direct or full flavor,
but not mixing up the two flavors. The combination of the
f -phRPA and f -ppRPA, with f -MP2 subtracted, is termed as
f -comb-RPA; analogously, the combination of the d-phRPA
and d-ppRPA, with d-MP2 subtracted, is termed as d-comb-
RPA. We emphasize that both f -comb-RPA and d-comb-RPA
are free of double-counting effects at all orders.

We would like to point out that the combination scheme
defined in Eq. (19), despite being free of double counting,
is not derived rigorously from more fundamental theories.
It should rather be viewed as an empirical ansatz whose
performance needs to be checked a posteriori. One may
also design alternative double-counting-free schemes, e.g., by
simply averaging phRPA and ppRPA, or by combining the two
RPA flavors in a range-separation framework. In a pioneering
work by Shepherd et al. [68], short-range ppRPA and long-
range phRPA are combined. Initial tests of their scheme for
homogeneous electron gas show promising performance. In
this connection, it is also interesting to compare Eq. (19) to

the quasiparticle RPA (qp-RPA) scheme of Scuseria et al. [46],
which consists of a simple summation of ppRPA and phRPA,
without eliminating the double-counted MP2 term. It should
also be noted that, in qp-RPA a prefactor of 1/2 instead of 1/4
is used for f -phRPA.

III. COMPUTATIONAL DETAILS

Both the direct and full ppRPA equations are implemented
within the all-electron, numerical atomic orbital (NAO)-based
computer code package FHI-aims [54,55,69]. FHI-aims primar-
ily employs NAOs as basis functions to expand molecular
orbitals, but, if needed, Gaussian-type orbitals (GTOs) can
also be used for comparison purpose. The direct phRPA has
already been implemented in FHI-aims [55], based on the RI
technique, together with an integration over the imaginary fre-
quency axis. This allows for a relatively efficient O(N4) scal-
ing of direct phRPA calculations. However, such a low-scaling
algorithm cannot be applied to the full phRPA. In this paper,
we implemented Eqs. (7) and (9) straightforwardly, which
scales as O(N6), to obtain both the full and direct phRPA
correlation energies. In the d-phRPA case, the obtained results
agree with the previous RI-based implementation to a high
precision. The full ppRPA was implemented in FHI-aims,
following the work of Yang et al. [43]. The implementation
of direct ppRPA is straightforward by replacing the C, D, B
matrices defined in Eqs. (10) and (13) by those defined in
Eq. (16). However, due to the loss of symmetry properties,
for d-ppRPA the dimension of C, D, B matrices become
N2

p × N2
p , N2

h × N2
h , and N2

p × N2
h , respectively, as in f -ppRPA

for mixed-spin pair channels [43].
The restricted/unrestricted Hartree-Fock (RHF/UHF),

MP2 [64,65], and rPT2 [34] have already been implemented
in FHI-aims. In this paper, we also implemented the direct
MP2, as defined in Eq. (18), in FHI-aims. Our f -MP2 and
d-MP2 calculations can not only be done on top of the HF ref-
erence, but also on top of density-functional approximations
(DFAs).

In addition to the phRPA and ppRPA results, in this paper
we will also present results of Hartree-Fock, MP2, rPT2, the
coupled cluster theory with single and double substitutions
(CCSD) [66,70], and multireference configuration interaction
single double (MRCISD) [71] for comparison. The Hartree-
Fock, MP2, rPT2, and various flavors of RPA calculations
are done with FHI-aims. The CCSD calculations are done
with the GAUSSIAN 09 W package [72] with the exception
of H2 molecule based on UHF [Fig. 3], for which we used
the recent implementation of Shen et al. [73] in FHI-aims.
Finally, MRCISD calculations are done with the COLUMBUS

package [74].
We examine the binding energy curves of four homonu-

clear dimers, including the covalently bonded hydrogen dimer
(H2) and nitrogen dimer (N2), the ionically bonded hydro-
gen fluoride (HF) dimer, and van der Waals bound Argon
dimer (Ar2). For the former three dimers, the Gaussian cc-
pVTZ [75] basis sets are used, whereas for Ar2, the aug-
cc-pVTZ basis set was used instead. These basis sets ad-
mittedly cannot yield converged binding energy curves, but
are sufficient for the present purpose, i.e., comparing the
qualitative dissociation behavior of molecular dimers obtained
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by different methods. In Appendix A, the numerical settings
employed in our FHI-aims calculations are presented, together
with benchmark results of the f -ppRPA total energies for a
sequence of atoms, in comparison with published results in
Ref. [42].

IV. RESULTS AND DISCUSSION

We present in this section the calculated results for four
closed-shell dimers (H2, N2, HF, and Ar2) and one open-shell
dimer (H+

2 ). The obtained results of all correlated methods
depend on the reference state on which they are based. For
closed-shell molecules, spin-restricted references are often
used since they provide a stringent test for static correlation
errors. However, for stretched bonds, spin-unrestricted refer-
ences can yield lower energies and better behaved dissociation
curves, at the price of broken spatial and spin symmetries. In
this section, we mainly use RHF as the reference for closed-
shell dimers. For H2, results of correlated methods based
on UHF will also be shown for comparison. For the open-
shell molecule H+

2 , as a natural choice the UHF reference
will be used. For RPA methods, instead of Hartree-Fock,
the KS reference is often used in practical calculations. The
influence of preceding reference states obtained with different
functionals will be illustrated in Appendix B by presenting
binding energy curves for H2 and Ar2 based on the general-
ized gradient approximation of Perdew, Burke, and Ernzerhof
(PBE) [76]. Basis-set superposition errors are not corrected in
the presented results, since in this work we are focused on the
relative trends of different methods.

A. H2 and H+
2

The dissociation curves of the H2 and H+
2 are of particular

interest for testing DFAs and/or quantum chemistry methods.
It appears that none of the current DFAs are able to satisfac-
torily describe the dissociation behavior of both dimers [77].
Therefore, H2 and H+

2 dimers are the most important target
systems for recent efforts designing novel electronic-structure
methods [78,79]. Our purpose here is to examine the behavior
of both the direct and full RPA methods, and especially the
combination of ppRPA and phRPA (comb-RPA) as defined in
Eq. (19) for these two dimers.

The binding energy curves of H2 obtained from various
methods, based on the RHF reference, are presented in Fig. 2.
In Fig. 2(a), the results of the full RPA methods, including f -
ppRPA, f -phRPA, and f -comb-RPA, are presented, whereas
in Fig. 2(b), the results from the corresponding direct RPA
methods are presented. The f -MP2 and d-MP2 results are
also included in Figs. 2(a) and 2(b), respectively. In addition,
the rPT2 and CCSD results are presented in both panels
for comparison. Note that the latter two methods are treated
here as they are originally, without being further separated
into direct and full flavors. Especially, the CCSD results are
exact for one- and two-electron systems, and hence should
be regarded as the reference here. In this case, since the
Hartree-Fock reference is used, the rPT2 method reduces
to RPA+SOSEX [80,81]. To highlight the influence of the
preceding functionals on the obtained results, in Appendix B,
the same plots, albeit with the PBE reference, are presented
(cf. Fig. 8).
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FIG. 2. Binding energy curves for H2 with the RHF reference
and cc-pVTZ basis set. (a) RPA and MP2 calculations are done with
exchange contributions included (full RPA and MP2); (b) RPA and
MP2 calculations are done without including exchange contributions
(direct RPA and MP2). RHF, rPT2, and CCSD results are included
in both panels for comparison.

All RPA methods describe the H2 molecule satisfacto-
rily around the equilibrium bond length. For stretched H2,
the f -phRPA becomes unstable around the Coulson-Fisher
point [82] and the binding energy curve has a cusp for the
bonding distance around 1.3 Å. In fact, when passing the
Coulson-Fischer point, we saw one pair of eigenmodes of
the f -phRPA equation becomes purely imaginary for H2. In
the present paper, this pair of eigenmodes is excluded when
evaluating the f -phRPA correlation energy. Compared to the
direct RPA methods, the corresponding full RPA methods
are more repulsive, indicating that the exchange contributions
give rise to a positive contribution to the binding energies of
the H2 dimer. All RPA methods, except for d-ppRPA, are too
repulsive for the stretched H2. Namely, they yield an energy
that is too high for the stretched H2 dimer, similar to the
behavior of RHF. Only at the dissociation limit (not shown
here), d-phRPA and f -ppRPA have been shown to yield the
correct total energy (i.e., twice of the energy of an isolated
H atom) [8,11,41], although the asymptotic behavior of these
methods is still incorrect. In contrast, MP2 yields an energy
that is too low for the stretched dimer, and the MP2 energy
becomes diverging in the dissociation limit. At the intermedi-
ate bonding distance, the d-MP2 is more negative than the
f -MP2, indicating again that the exchange contribution is
positive. The behavior of d-ppRPA is somewhat similar to
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FIG. 3. Binding energy curves for H2 with the UHF refer-
ence and cc-pVTZ basis set. (a) Full RPA/MP2 results; (b) direct
RPA/MP2 results. The plots here differ from Fig. 2 only that the
UHF reference instead of RHF is used.

MP2, giving a binding energy that is too low at large bonding
distances. Putting phRPA and ppRPA together, the comb-RPA
defined in Eq. (19) leads to even more repulsive binding
energies for stretched H2, as can be seen in Figs. 2(a) and 2(b)
for both the full and direct RPA flavors. Mathematically, by
subtracting the very negative MP2 total energy, it comes out
naturally that the resultant comb-RPA total energies are much
too high. Also, the instability problem of f -phRPA around the
Coulson-Fisher point is inherited by the f -comb-RPA result.
In summary, although the comb-RPA scheme as defined in
Eq. (19) is free of double-counting, it unfortunately does
not work in practice for molecular dissociations, in both
full and direct flavors of RPA schemes, if one insists using
spin-restricted references. Furthermore, from this comparative
study, it is also clear that the phRPA behaves better in its direct
flavor, whereas the ppRPA behaves better in its full flavor.
The d-phRPA and f -ppRPA are indeed the usual choice in
the literature.

The situation is, however, quite different if the UHF ref-
erence is used. The UHF binding energy curve coincides
with the RHF one around the equilibrium distance; beyond
the Coulson-Fischer point, the UHF energy is consistently
lower, and follows correct asymptotic behavior toward the
dissociation limit. On top of UHF, all correlated methods
can produce the correct dissociation limit of H2. However,
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FIG. 4. Binding energy curves for H+
2 with the UHF reference

and cc-pVTZ basis set. (a) RPA and MP2 calculations are done with
exchange contributions included (full RPA and MP2); (b) RPA and
MP2 calculations are done without including exchange contributions
(direct RPA and MP2). UHF, rPT2, and CCSD results are included
in both panels for comparison.

the f -phRPA binding energy curve displays a well-known
cusp around the Coulson-Fischer point and this pathologi-
cal behavior carries over to the corresponding f -comb-RPA.
Other RPA schemes, as well as MP2 and rPT2, don’t suffer
from this problem. However, the binding energy curves from
these methods appear to decay faster to zero compared to the
reference CCSD@UHF reference. Note that for H2, the results
from CCSD@RHF and CCSD@UHF are identical, and both
are exact.

Similar comparative studies for the dissociation of the H+
2

molecule are presented in Fig. 4. Now the system contains
only one electron and the UHF method is exact and is taken
as the reference here. All other methods are based on the
UHF reference state. Besides the UHF, CCSD, and rPT2
are also exact for H+

2 in theory. Moreover, all the full RPA
schemes, as well as MP2, are able to produce the correct
dissociation curves for H+

2 , as can be seen in Fig. 4(a).
The incorporation of the exchange contributions cancels the
one-electron self-correlation energy, and consequently the full
RPA schemes correctly yield zero correlation energy for H+

2 .
In contrast, both the d-phRPA and d-ppRPA yield too low
energy for stretched H+

2 , indicating the presence of strong
charge delocalization errors in these two approaches. In fact,
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the problem is even more severe for d-MP2, which yields even
more negative (and eventually diverging) energy than direct
RPA’s. As a consequence, the d-comb-RPA binding energy
curve becomes much too repulsive for heavily stretched H+

2 .
In this context, we would like to briefly comment on the

delocalization error of the RPA methods. As first pointed out
by Mori-Sánchez et al. [61], the d-phRPA suffers from severe
delocalization errors, as manifested in the dissociation of H+

2 .
Here we can see this problem arises from the presence of
the artificial one-electron self-correlation energy in d-phRPA.
In fact, for ppRPA, when the exchange contributions are
taken out, the d-ppRPA also suffers from this error, though
to a less extent. We note that, for H2, such self-correlation
errors are still present in direct RPA. However, the negative
self-correlation energy becomes advantageous for H2 since it
cancels the positive RHF energy at the dissociation limit. This
is in line with the analysis of Henderson and Scuseria [83]
that the self-interaction errors of direct phRPA mimics the
static correlation effect. The high RHF energy for stretched H2

stems from the on-site Coulomb interaction of two electrons
occupying the same atom—a “double-occupation” (or ionic)
configuration that is unavoidable when a single-determinant
description of stretched H2 is employed. Such a high RHF
energy arising from the unphysical ionic configurations was
compensated by the negative RPA correlation energy of the
magnitude at the dissociation limit. However, since this com-
pensation is not complete except at the infinite separation, and
the asymptotic behavior of d-phRPA@RHF is still incorrect
for dissociating H2. In summary, d-phRPA correlation part
itself does not really behave differently for the dissociation
of H2 or H+

2 . It is the different behavior of the preceding
Hartree-Fock calculation in these two systems that leads to
an overall drastically different performance of the d-phRPA
scheme for these two systems.

B. N2

Now we look at the triply bonded nitrogen dimer (N2).
Correctly describing the dissociation behavior of N2 is a
longstanding challenge for any single-reference electronic-
structure method. Indeed, for N2 even the CCSD and coupled
cluster theory with singles, doubles, and perturbative triples
[CCSD(T)] methods do not work, and here we use the results
obtained by the MRCISD as the reference here. In Fig. 5, we
plotted the binding energy curves obtained by full and direct
RPA methods (based on the RHF reference), respectively, in
Figs. 5(a) and 5(b). The full and direct MP2, as well as the
rPT2 results are also plotted for comparison. For N2, the dif-
ferent methods already yield quite different binding energies
around the equilibrium distance. The d-phRPA was known to
be able to produce the correct dissociation limit for N2 [7],
although a positive bump was formed at intermediate bond
lengths. Comparing the results of f -phRPA to d-phRPA, we
see that the exchange terms increase the bond strength (more
attractive) around the equilibrium distance while weakening
it (more repulsive) at the intermediate and large bonding dis-
tances. This results in a very steep binding energy curve with
large curvature. Such an (unphysical) feature also carries over
to the f -comb-RPA scheme, as can be seen from Fig. 5. The
f -ppRPA performs well around the equilibrium region, but
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FIG. 5. Binding energy curves for N2 with the RHF reference
and cc-pVTZ basis set. (a) Full RPA/MP2 results; (b) direct
RPA/MP2 results. The curves are presented in the same way as
Fig. 2, except that the reference curve is now given by MRCISD.

forms a positive bump at the intermediate bonding distances,
and eventually goes below the energy zero at large bond
lengths.

Comparing Fig. 5(a) to 5(b) reveals that the exchange
terms, in general, makes the binding energy curve more
repulsive at intermediate and large bonding distances, not only
for phRPA, but also for ppRPA and MP2. Without including
exchange contributions, the binding energies of d-ppRPA
behaves similar to MP2, and falls below the energy zero
already at intermediate bonding distances. The rPT2 (i.e.,
d-phRPA+SOSEX here) result for N2 behaves similarly to d-
phRPA and f -ppRPA at the equilibrium distance, but saturates
at too high energies in the dissociation limit. Similar to the H2

case, the comb-RPA schemes again performs very badly for
N2. The rising of the f -comb-RPA binding energy curve is
even steeper than d-comb-RPA for increasing bond lengths,
arising from a similar behavior of f -phRPA.

C. HF

Next, we examine a dimer of ionic character—the HF
molecule. In Fig. 6, the RHF, RPA, MP2, and rPT2 results for
the HF dimer are presented. Now the CCSD result is not exact
for the HF dimer, but still provides a high-quality reference.
Similar to the N2 case, the f -phRPA already overbinds the HF
dimer around the equilibrium distance, suffers from instabili-
ties at bonding distances around 1.4 Å, and gets too repulsive
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FIG. 6. Binding energy curves for hydrogen fluoride (HF) with
the RHF reference and cc-pVTZ basis set. (a) Full RPA/MP2 results;
(b) direct RPA/MP2 results. The curves are presented in the same
way as Fig. 2.

for large bond lengths. Such these behaviors carry over to
f -comb-RPA. Surprisingly, MP2 performs rather well at the
equilibrium and intermediate bonding distances, but then
drops down (and eventually diverging) at large distances. The
f -ppRPA also performs well around the equilibrium distance,
and follows closely the (too repulsive) rPT2 curve for large
bond lengths. Removing the exchange contributions, the d-
phRPA behaves much more reasonably over a wide range of
bonding distances. On the other hand, the d-ppRPA curve
becomes attractive at large bonding distances, and falls below
the CCSD curve. The d-comb-RPA curve behaves similarly
to the d-phRPA around the equilibrium distance, but gets
too repulsive for large distances, arising from the opposite
behavior of d-MP2.

D. Ar2

Finally, we look at a prototypical dimer bound purely by
dispersion interactions—Ar2. The results from various meth-
ods are presented in Figs. 7(a) and 7(b). One can see that the
f -ppRPA performs rather well for Ar2, yielding a binding en-
ergy curve that follows closely the CCSD(T) reference curve.
In contrast with the covalently and ionically bonded dimers,
the f -phRPA does not exhibit any pathological behavior for
Ar2. This is because the Ar atom itself has a closed-shell
electronic structure, and the RHF solution is stable for Ar2

for all inter-atomic distances. As a consequence, MP2 is
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FIG. 7. Binding energy curves for Ar2 with the RHF reference
and Gaussian aug-cc-pVTZ basis set. (a) Full RPA/MP2 results;
(b) direct RPA/MP2 results. The curves are labeled in the same way
as Fig. 2, except that the reference curve is now given by CCSD(T).
The frozen-core approximation is used in all correlated calculations.

well-behaved for Ar2, although a well-known overbinding
behavior can be noticed. In this case, the f -phRPA result
closely resembles that of (full) MP2, and putting all three
ingredients together, the f -comb-RPA performs remarkably
well, producing a binding energy curve that is highly accu-
rate.

Remarkably, in the case of Ar2, the exchange contributions
seem to have an opposite effect on phRPA and ppRPA.
Without including the exchange contributions, the d-phRPA
curve becomes more repulsive, showing a well-known under-
binding behavior for Ar2. On the contrary, the d-ppRPA curve
becomes much more attractive, vastly overbinding Ar2. As a
consequence, in contrast to f -comb-RPA, the d-comb-RPA
overbinds the Ar2 dimer significantly. We note that the rPT2
underbinds Ar2 in Fig. 7; this is because rPT2 here is based on
the RHF reference and the renormalized singles contribution
is not included. The rPT2@PBE scheme instead yields an
accurate binding energy curve for Ar2, as can be seen from
Fig. 9 in Appendix B.

V. CONCLUSION

In this paper, we implemented the ppRPA scheme
within the all-electron, NAO-based code package—FHI-aims.
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Benchmark calculations show that our implementation, based
on the RI approximation to the two-electron Coulomb
integrals, agrees remarkably well with the previous imple-
mentation of Peng et al. [42]. We performed a systematic
comparative study of the behavior of the ppRPA and phRPA
for describing the dissociation of diatomic molecules of
different bonding characters. We introduce a direct ppRPA,
whereby the exchange contributions are excluded from the
formalism in a similar fashion as done in the direct phRPA.
This allows us to compare phRPA and ppRPA on an equal
footing, separately for direct and full RPA flavors. While
benchmark calculations show that both phRPA and ppRPA are
not able to dissociate correctly all types of dimers, generally
speaking, the phRPA is better employed in its direct flavor,
without including the exchange terms (i.e., d-phRPA), while
the full RPA is better employed in its full flavor, with exchange
terms included (i.e., f -ppRPA). In this paper, we also pointed
out the seemingly different performance of d-phRPA for H2

and H+
2 mainly arises from the preceding RHF/UHF for

H2 and H+
2 , and not from the d-phRPA correlation energy

itself.
In an attempt to combine both phRPA and ppRPA, we

examined a simple procedure [Eq. (19)], whereby the phRPA
and ppRPA correlation energies are added together, with the
double-counted second-order (MP2) correlation energy re-
moved. This scheme, although containing no double-counting
terms, yields worse and often unphysical results for the disso-
ciation of covalent and ionic diatomic molecules. The behav-
ior stems from the bad performance of MP2 for describing
stretched molecules, but is manifested in an opposite way,
resulting in too repulsive binding energy curves for large
bonding distances. In the quasiparticle RPA scheme examined
by Scuseria et al. [46], the phRPA and ppRPA correlation
energies are summed up, but the doubly counted MP2 terms
are not excluded. This quasiparticle RPA scheme does not
suffer from some of the drastic failures of the comb-RPA
scheme examined in this work, but vastly overestimates the
total and binding energies of molecular systems. Scuseria
et al. [46] attributed this failure to the neglecting of the
interchannel coupling terms between phRPA and ppRPA.

The pertinent question is if it is possible to develop a
theory between RPA and CCSD, which is close to RPA in the
computational cost, but close to CCSD in the accuracy. The
present paper shows that it is highly nontrivial to achieve this
goal. A straightforward combination of the ph and pp channels
of RPA does not work. More investigations along these lines
are required to answer this question.
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TABLE I. Deviations (in meV) of f -ppRPA@RHF total en-
ergy for N2 from the reference value due to the real-space in-
tegration grid governed by the number of radial shells Nr and
the angular grid points of the outermost shell outer_grid . In FHI-
aims [54], Nr = rm ∗ N0

r , where rm = 1, 2, 4, 6, · · · is the so-called
radial multiplier and N0

r = 46 for the N element. The total energy
E = −2972.67642407 eV, obtained with rm = 6 (Nr = 276) and
outer_grid = 1202, is taken as the reference value here. The cc-
pVTZ basis set is used in the calculation. The parameters η = 10−2

and θ = 10−5 are used for the RI decomposition of ERIs.

���������rm(Nr )
outer_grid

434 590 770 974 1202

2(92) 2.559 2.588 2.554 2.559 2.562
4(184) 0.653 0.669 0.652 0.653 0.654
6(276) −0.002 0.014 −0.002 −0.001 0.000

APPENDIX A: NUMERICAL ACCURACY OF OUR ppRPA
IMPLEMENTATION IN FHI-aims

As mentioned above, in this paper, we are concentrating on
the qualitative features of different computational schemes,
rather than presenting highly converged results with respect
to the basis set size. To facilitate a direct comparison with
literature results, we employed Gaussian basis sets, which are,
however, treated numerically in FHI-aims [54]. The real-space
integration is done by a summation over an atom-centered
overlapping numerical grid. The accuracy of the numerical
integration is controlled by two parameters of the spherical
grids positioned around each atom: the number of radial inte-
gration shells Nr and the angular grid points in the outermost
radial shell (denoted below as outer_grid). Furthermore, the
two-electron Coulomb repulsion integrals (ERI) are evaluated
using the RI approximation. In FHI-aims, the auxiliary basis
functions (ABFs) used in the RI expansion are generated from
“on-site” products of atomic orbitals, and the redundancy
of such products are further eliminated through the Gram-
Schmidt orthonormalization procedure [55,84]. The accuracy
of RI is affected by the number of ABFs, which is in turn
controlled by the threshold η (keyword prodbas_acc in FHI-
aims) in the Gram-Schmidt procedure, and by the threshold
θ (keyword prodbas_threshold) set for singular value de-
composition of the Coulomb matrix (to invert it) within the

TABLE II. Deviations (in meV) of the f -ppRPA@RHF to-
tal energy from the reference value due to the RI approxima-
tion. Here η (prodbas_acc) and θ (prodbas_threshold) are, re-
spectively, the thresholding parameter for the Gram-Schmidt or-
thonormalization and for the SVD decomposition. The total energy
E = −2972.67648033 eV, obtained with η = 10−4 and θ = 10−6,
is taken as the reference here. In all calculations, rm = 6 and
outer_grid = 770 are used for the real-space grid integration.

�����η

θ
10−3 10−4 10−5 10−6

10−2 8.821 0.416 0.058 0.052
10−3 7.234 0.212 0.152 0.004
10−4 6.636 0.295 0.046 0.000
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TABLE III. UHF and f -ppRPA@UHF total energies (in Hartree) for a series of atoms. Results obtained in this paper are compared to the
literature values of Peng et al. [42]. The Cartesian Gaussian cc-pVTZ basis set is used in both works. The Difference columns present the
UHF/ f -ppRPA total energy differences between this paper and Ref. [42].

HF f -ppRPA

Atom Ref. [42] This paper Difference Ref. [42] This paper Difference

He −2.861154 −2.861153 0.000001 −2.885608 −2.885608 0.000000
Li −7.432706 −7.432705 0.000001 −7.443903 −7.443903 0.000000
Be −14.572875 −14.572875 0.000000 −14.598923 −14.598926 −0.000003
B −24.532104 −24.532104 0.000000 −24.566435 −24.566439 −0.000004
C −37.691663 −37.691664 −0.000001 −37.746778 −37.746781 −0.000003
N −54.400883 −54.400885 −0.000002 −54.482916 −54.482918 −0.000002
O −74.811910 −74.811913 −0.000003 −74.933839 −74.933844 −0.000005
F −99.405657 −99.405660 −0.000003 −99.576884 −99.576891 −0.000007
Ne −128.532010 −128.532015 −0.000005 −128.760771 −128.760771 0.000000

ABFs. Thus, the numerical accuracy of RPA total energies in
FHI-aims, for a given set of single-particle atomic orbitals, are
affected both by the numerical integration grid and by the RI
accuracy.

In Table I, we present f -ppRPA total energies (more pre-
cisely the deviation from the reference value) for N2 (with
a bond length of 1.0 Å) molecule for a set of successively
denser integration grids. From Table I, one can see that, for
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FIG. 8. Binding energy curves for H2 with the PBE reference and
cc-pVTZ basis set. The plots here differ from Fig. 2 only that, except
for CCSD, all other methods are based on the PBE reference instead
of RHF.

rm >= 4, the error incurred by numerical integration is below
1 meV for the f -ppRPA total energy of N2. Similar accuracy
can be achieved for other types of RPA calculations. Table II
demonstrates the influence of two key parameters involved
in the RI approximation on the f -ppRPA total energy. One
can see that the results here are not that sensitive to the η

parameter for η � 10−2, but an appreciable dependence on the
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FIG. 9. Binding energy curves for Ar2 with the PBE reference
and aug-cc-pVTZ basis set. The plots here differ from Fig. 7 only
that, except for CCSD(T), all other methods are based on the PBE
reference instead of RHF. The frozen-core approximation is used for
the correlated methods.
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θ parameter is observed. From η � 10−4, an accuracy better
than 1 meV in the RPA total energy for N2 can be achieved.

Finally, to validate our ppRPA implementation in FHI-
aims, in Table III we present our calculated all-electron
f -ppRPA total energies, on top of the UHF reference, for a
selected set of atoms. Our results obtained using FHI-aims
are compared to those of Peng et al. [42]. The ground-state
UHF total energies are also presented for comparison. For
these calculations, we set rm = 6 and outer_grid = 770 for
the grid integration, and η = 10−4 and θ = 10−5 for the RI
approximation. We see that the differences in both UHF and
f -ppRPA total energies between our implementation and that
of Peng et al. [42] are vanishingly small—only noticeable
at the micro-Hartree (μHa) level. Such a μHa-level error in
f -ppRPA total energies indicates that our RI-based ppRPA
implementation is highly accurate.

APPENDIX B: BINDING ENERGY CURVES OF H2 AND Ar2

BASED ON THE PBE REFERENCE

In Fig 8, we present the binding energy curves for H2

obtained with RPA, MP2, and rPT2 methods based on the PBE
reference.

The CCSD result for H2 is still the reference curve here.
Comparing Fig. 8 to Fig. 2, one can observe that the RPA
methods on top of PBE in general yield less repulsive bind-
ing energy curves compared to their counterparts on top
of RHF. The f -phRPA seems to be the exception in the
sense that f -phRPA@PBE curve is even more repulsive than

f -phRPA@RHF. This unusual behavior also carries over to
f -comb-RPA.

In Fig 9, The binding energy curves for Ar2 obtained with
RPA, MP2, and rPT2 methods based on the PBE reference
are presented. Now the CCSD(T) curve is the reference curve
to compare with. Compared to Fig. 7, one can see that the
RPA and MP2 curves show a pronounced dependence on
the reference state, shifting downward when moving from
the the RHF reference to the PBE reference. In contrast
with f -ppRPA@RHF, which agrees with the CCSD(T) result
rather well, now f -ppRPA@PBE overbinds the Ar2 dimer
substantially. It is even more so for d-ppRPA@PBE, with
exchange contributions excluded. It is striking that the phRPA
shows an opposite trend compared to the ppRPA, in that the
d-phRPA@PBE is more repulsive than f -phRPA@PBE. The
comb-RPA curve now sits in between the ppRPA and phRPA
curves, for both direct and full flavors. The rPT2@PBE can
accurately reproduce the CCSD(T) curve, as already shown in
Ref. [34].

From the RHF reference to the PBE reference, one can see
that the RPA results have undergone substantial changes. A
pertinent question is that if an “optimal” reference state can be
found for practical RPA calculations. Recently, self-consistent
phRPA schemes, in which an “optimal” noninteracting ref-
erence is defined and iteratively optimized, were developed
by Jin et al. in the generalized optimized effective potential
framework [85] and by Voora et al. [86] in the generalized
KS framework. It has been shown [85,86] that the singles
excitation effect [12] can be automatically included in these
schemes.
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