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Self-Consistent Calculations of Quasiparticle States in Metals and Semiconductors
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We solve the Dyson equation for the one-particle Green’s function in a periodic solid self-consistently
within the shielded-interaction (o6GW) approximation. The effect of self-consistency (propagator
renormalization) is found to be substantial. We illustrate this finding via calculations of quasiparticle
states in K and Si. In the case of Si we show that the current standaiul ioftio quasiparticle theory,
the GW self-energy diagram, fails to account for the observed value of the absolute band gap—if
properly, i.e., self-consistently, evaluated. [S0031-9007(98)06874-4]

PACS numbers: 71.20.Mq, 71.10.—w, 71.15.Mb

An ab initio investigation of the spectrum of elec- self-consistent solution of the Dyson equation. The
tronic excitations in “real-life” materials requires tack- self-energy is evaluated within the shielded-interaction
ling a formidable many-body problem for which only approximation (SIA) of Baym and Kadanoff [11]; this
partial benchmarks are available. In the case of semiapproximation, which is diagrammatically equivalent to
conductors, as is well known, the energy difference beHedin’s popularGW approximation [8], has the virtue
tween the lowest unoccupied and the highest occupiethat it fulfills all microscopic conservation laws [11]. We
Kohn-Sham eigenvalues [1] [typically obtained within the show that the trueGW band gap of Si disagrees with
local-density approximation (LDA) [1]] disagrees with experiment—in fact, th&W overestimates the absolute
the measured value of the absolute band gap by 50%gap by as much as the LDA underestimates it. Similarly,
100%. Thus, a large volume of work has been devoted ithe GW bandwidth of K is too wide (by-1 eV).
recent years to the study of the gap within the framework The starting point of a QP calculation is the Dyson
of quasiparticle (QP) theory [2—7]. The so-callédv  equation for the one-particle Green’s functici(1,1'),
approximation [8,9] yields results in apparepiantitative  which we write down as [11]
agreement with experimefierror < 0.1 eV), for the gap G '(1,1) = GL_II)A(L 1) — 2(1, 1), (1)
and for the valence and conduction bands of semiconduGghere G, pA(1,1) is the Green’s function for “free”
tors [2,4-9]. Thus, currently th&W one-electron band propagation in the LDA band structure, and the labels
structure is the standard [5] against which the quality ofj j/ denote space-time points; the time variables are
other approximate schemes is routinely judged. Matsubara time®) < 7,7’ = 8 [15]. All correlations

However, all of the published calculations for realistic beyond the LDA are contained in the self-eneﬁﬂ, 1),
models of semiconductors share one limitation [10]: th§ynich is a functional ofG—thus the self-consistent
neglect of full self-consistency—the requirement that the,ature of the problem. We emphasize that, 1') differs
propagators must be dressed self-consistently with thg,m the “free space” self-energl(1, 1) introduced in
self-energy [11]. Partial tests of self-consistency [2,4,5khe Baym-Kadanoff treatment; technically, we account

have commonly been taken as indicators of its presumegh; the “tadpole” diagrams, and avoid double-counting
quantitative irrelevance. Otherwise, the complicationsne interactions already built intGypa(1,1)), via the
of a full self-consistent treatment have motivated thefi*]efinition $,1) = 3(1,1) — [Va(1) + Vi (1)]8(1 —

adoption of shortcuts, such as the introduction of chemica; ), whereVy(1) and V(1) are, respectively, the Hartree

potential shifts, designed to circumvent the problem thaly exchange-correlation (XC) potentials entering the
lack of self-consistency leads to violation of conservationg ,nn-sham equation in LDA [1]. In more physical

laws [12]. _ language, we note that a solid must, first of all, bind—
_ Inthe case of metals, the impact of t6&V self-energy 54’ this the LDA does well; this essential feature is
insertion on the width of the occgp_led band of Na ar!dalready contained iy pa(1,1’). Thus, the expectation

K [13], and on the exchange splitting of the magneticis that this propagator provides a suitable starting point
bands of Ni [14], has been calculated—again, withoul, «go04 guess”) for a self-consistent solution of Eq. (1).
an attempt at self-consistency. Overall, the agreemeny}, ihe gIA [11], whose physical content is the dynamical

with experiment is not nearly as good as in the case Of¢reening of the Coulomb interaction, we have that
semiconductors.

In this Letter we elucidate the importance of self- 3(1,1) =601 — 1’)] d3v(l —3)G3B,37)
consistency in the QP band structure of periodic solids.
To this end we implement an efficient method for the + (1, 1), (2)
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where the XC self-energy is given by Eq. (5) the{¢;;(x)} are Kohn-Sham (Bloch) stateg, is
S (1,1) = —Vs(1,1)G(1,1)) (3 awave vector in the first Brillouin zone (BZ), ands a

: . ) _ band index. In this representation, Eq. (1) becomes
in terms of the shielded (or screened) interacti@ql, 1'),

the solution of the integral equation (G NG iwn)ly = [GfllyA(Zl;iwn)]j,j/ — ij’j/(i};ia)n),

Vs1) = w1 = 1)+ [ aT [ azu0 - T) ©)
. which is the form of the Dyson equation we actually
X P(1,2)Vs(2, 1), (4)  solve. Now, the XC self-energ®}% (g;iw,) involves
where v is the bare Coulomb interaction, amil,1’) =  convolutions over wave vectors and Matsubara frequen-
2G(1,1)G(1',1) is the polarizability. cies (in addition to a sum over four band indices, weighted

We note that Hedin'sGW approximation [8,9] is by integrals involving three Bloch states [16]). The con-
formally the same as the SIA. In Hedin’s approach ourvolutions are evaluated straightforwardly; in particular,
Vs(1,1') is denotedW(1,1') (i.e., 3y = —G*W); we since the sampling of the BZ is done for imaginary
adhere to the notation of Ref. [11] in order to emphasize»’s, the g convolution requires relatively coarse meshes.
that our work is centered on thexact fulfillment of  Although the p0|aflzabl|ltszJ(q,lwn) can also be ex-
conservation laws, which is the cornerstone of the metho@ressed as a convolution ovg's andw'’s, the latter con-
of Baym and Kadanoff, who showed that the solution ofvolution converges poorly. (Note that ~ G*G, and
the above system of equations is conservinigebtained G ~ w, ' for large w,; by contrast,>,. ~ VsG and
self-consistently. Vs ~ ;%) Thus, we obtainP; ;(¢;iw,) via a prior

We express the frequency-Fourier transform of all two_evaluatlon on the axis,
point functions according to

GiGpion = [ &x [ & 65066 Vsiv,)

X (X', (5) where Q is the volume of the macrocrystal, and for
where w, = (2n + 1)7/Bk, n being an integer (posi- brevity we omit reference to band indices, as we also do
tive, negative, or zero) an@ = 1/kgT; for bosonlike N Eq. (8); full expressions are given in [16]. We generate

quantities, such as the polarizability,, = 2n7/8%. In the Green’s function for times for a given iteration of
e solution of Eg. 0G, 11(g; iw,) according to
’ " | the solution of Eq. (6) foG; ;/(3; iw,) ding t

PG = & 6 -1GE + 37, ()
k

G(g.7) = ,Bii Xe “TG(gs iwn)
1 Y e GG, iw,) — Gu(Gsiws)} — e[w"+z‘(&)]7(1 T B 21( )] ) (8)
) n X ’ n n w[fr x q ’
Bh ilw,|=iwmax ¢ crl

where we have added and subtracted an auxiliary Greenaf one-particle states (DOS), given by the trace (sum
function, G,, defined according to Eg. (1), but with over bands and over the BZ) of the spectral function
the Fock self-energys, replacingX. Since3, is @ A;;(§;0) = —7 'ImG, ;(¢; »), Wherew is real. The
independent, the sum involving, is performed in closed analytic continuation ofG; ;(g;iw,) to real w’s was
form, the result being the last term in Eq. (8). Theperformed via Padé approximants [20]. Sintg(g; w)
remaining sum in Eq. (8) requires the use of a cutoffcontains sharp features, a degsmesh is required in the
wmax, however, sinceG — G, for large w, (correlation evaluation of the trace, while, as implied above, Eq. (6) is
becomes inoperative in this limit), this sum convergessolved on a coarser mesh [19,21,22]. A three-dimensional
rapidly [16,17]. From the knowledge af; ;(k;7) we interpolation scheme was used to generdie(g; ) for
obtain P; ;(¢; 7) according to Eq. (7), and the required the dense mesh [16].
coefficients P; ;(¢;iw,) are obtained via fast-Fourier-  The results shown in Fig. 1 correspond to the LDA (no
transform techniques. dynamical correlations), to the first evaluation of the self-
We start out with a well-converged LDA ground energyS[Gipal, and to the self-consisteB{G], G being
state [18]. The solution of Eq. (6) was iterated until the solution of Eq. (6) for the sanﬁ(same within the
for two consecutive iterations the largest change in anyolerance stated above). In each case the zero of energy is
element of the diagonal of thE matrix, for all g’s and  the chemical potentigk, obtained by solving the implicit
iw,’s, was <1% (typically, this involves six iterations; equationn =2Q~'3:(BR) 'Y, €' “°G(k;iw,) for
with this criterion, the Si band gap has converged toeach iteration of Eqg. (6). (A convergence algorithm simi-
within 1%). We consider first the case of K [19], the lar to the one outlined above faP was used here as
emphasis being placed on the impact of correlation onvell.) It is apparent thaf[Gy pa] induces a narrowing
the occupied bandwidth. Figure 1 shows the densityf the band relative to the LDA (Table I), which agrees
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FIG. 1. Calculated DOS for K. Shown are the LDA result 6 5 4 8 2 4 0 1 2 3 4
(dashes), and the results obtained fr&ifGpa] (dot-dashes) Eqp (eV) -

and from the self-consistent solution of Eq. (6) (solid line). The

zero of energy is the corresponding chemical potential. FIG. 2. Shift of the energy of QP states in Si near the absolute

gap relative to the corresponding LDA eigenvalues. The empty
circles correspond t&[Gypa]; the solid circles correspond to
qualitatively with experiment [23]. However, the self- the self-consistent solution of Eq. (6). Inset: Spectral function

. . o A; ;(g; w) for the states at the bottom (fourth badpoint) and
consistent treatment of the correlations built ir¥eG] tofpf (fifth band,g ~ 0.8TX) of the absolute gap, respectively.

yields a bandwidth which isignificantly wider(Table )  Shown are the LDA band states (dots), and the QP peaks for
[10,22]. the first (dashes) and self-consistent (solid line) evaluation of
This result is intimately connected with the reduction inthe self-energy.
the weight of the satellites which develop4n ;(¢; w) as
a feedback of the plasmon resonance onto the one-particlfyr results agree well with previous work (Table Il); the
spectrum. The holelike satellite structure below the bandma)| difference with thel = 0 K results of Refs. [6,7]
is quite apparent in the DOS obtained frafiGLpal;  (in which P was also evaluated without plasmon-pole
this structure is strongly suppressed in the self-consisteRfpproximations) is attributed to residual effects of finite
calculation. A concomitant result is the increase of theemperature [16,19]. The dominant feature of Fig. 2 is
weight of the QP state at the Fermi surface [15]; see  the correlation-induced widening of the gap relative to the
Table . This transfer of spectral weight from the satellite_ pA, by an amount which happens to agree well with
to the QP is controlled by (or is consistent with) sum rulesexperiment [24] (Table I). However, the self-consistent
obeyed byA, ;(¢; @) [15]. Specifically, we find that the  treatment of QP propagation built in&{G] (solid circles)
zero- and first-frequency moment sum rules are fulfilledyie|gs a much wider gap (Fig. 2 and Table II). Indeed,
to better than 1% [16,22]. the “true” GW band gap(~1.9 eV) deviates from the
We turn next to our results for QP states near thyperimental value (1.17 eV) by an amount comparable
absolute band gap of Si [19]. Figure 2 shows the shiftyith pbut of the opposite sign, the error built into the gap

of the energy of the QP state&qp, relative to the ptained from LDA eigenvalues (0.53 eV). This trend
Kohn-Sham LDA eigenvalugy pa, for the corresponding

band and wave vectoEpyp is obtained from the position

of the QP peak in4; ;(¢; w)—see inset]. The empty TABLE Il. Silicon: Occupied bandwidth, direct gap at tfie
circles in Fig. 2 represent the shift obtained when thePoint, and absolute gap (energies in eV)—comparison with pre-
self-energy iS[Grpa]. At this non-self-consistent level YI0uS GW calculations, and with experiment.

Occupied

bandwidth  Direct gap  Absolute gap

TABLE |. Potassium: Calculated values of the occupied band

width (in eV) and QP renormalization factor at the Fermi sur- Ref. [3] 12.04 3.35 1.29
face Z;,. The experimental value of the bandwidth is also Ref. [6] 12.35 3.33 117
given. Ref. [7] 3.29 1.29
: : Ref. [8] 11.57 3.23 1.19
Occupied bandwidth Zy LDA 11.93 257 0.53
LDA 2.21 1.0 Experiment [24] 125 * 0.6 3.4 1.17
From [Gypa] 2.04 0.60  Present work;
From self-consistent from 2[Grpa] 11.65 3.27 1.34
solution of Eq. (6),2[G] 2.64 0.72 Present work;
Experiment [23] 1.60 self-consistent 13.10 4.02 191
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