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Motivated by recent suggestions—to split the electron-electron interaction into a short-range part, to be
treated within the density functional theory, and a long-range part, to be handled by other techniques—we
compute, with a diffusion Monte Carlo method, the ground-state energy of a uniform electron gas with a
modified, short-range-only electron-electron interaction erfcsmrd / r, for different values of the cutoff parameter
m and of the electron density. After deriving some exact limits, we propose an analytic representation of the
correlation energy which accurately fits our Monte Carlo data and also includes, by construction, these exact
limits, thus providing a reliable “short-range local-density functional.”
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I. INTRODUCTION AND SUMMARY OF RESULTS

Density functional theory1–3 (DFT) is nowadays the most
widely used method for electronic structure calculations, in
both condensed matter physics and quantum chemistry,
thanks to the combination of low computational cost and
remarkable accuracy for a wide variety of chemical bonds
and solid-state systems. There are, however, notable excep-
tions to such an accuracy. For example, even the best avail-
able approximations of the exchange-correlation functional,
the key ingredient of the DFT, fail to recover long-range van
der Waals interactions,4–6 are not completely safe for the
description of the hydrogen bond7 and have intrinsic prob-
lems with situations of near degeneracy(when two sets of
orbitals happen to have very close energies).8,9 More gener-
ally, the “chemical accuracy”(the accuracy needed to predict
the rates of chemical reactions) has not yet been reached. For
all these reasons the search for new approximate functionals,
or even new ways of exploiting the basic ideas and advan-
tages of the DFT, is very active.2,4–7,9

In this context several authors8–11 have suggested to split
the electron-electron interaction into a short-range part, to be
treated within the DFT, and a long-range part, to be handled
by other techniques. The motivation behind these “mixed
schemes” is that the DFT, even in the simplest local-density
approximation(LDA ), provides an accurate description of
the short-range electron-electron repulsion,12 while other
techniques which give a poor description of short-range
properties, like the configuration interaction(CI) method or
the random-phase approximation(RPA),13,14can, instead, ac-
curately capture long-range correlation effects. For instance,
preliminary tests of a “mixed scheme” designed to describe
near-degeneracy effects gave very interesting results for
small atoms and molecules.9

Of course there is no unique way to split the Coulomb
potential 1 /r into a short-range(SR) and a long-range(LR)
part. The error function and its complement

veesrd =
1

r
= vSRsrd + vLRsrd,

vSRsrd =
erfcsmrd

r
, s1d

vLRsrd =
erfsmrd

r
, s2d

have been already used for this purpose8,9,11(see Fig. 1), and
we stick to this choice, which yields analytic matrix elements
for both Gaussians and plane waves, i.e., the most common
basis functions in quantum chemistry and solid-state physics,
respectively. This form still leaves room for some arbitrari-
ness: The choice of the most convenient cut-off parameterm,
which may be different for different “mixed schemes.”

The combination of a short-range DFT calculation and a
different treatment of the long-range part of the electron-
electron interaction can be founded on a rigorous basis
through the adiabatic connection formalism.8–10,15 Depend-
ing on the specific problem addressed(van der Waals forces,
near-degeneracy, etc.), and thus on the particular approach to
the long-range part of the electron-electron interaction, dif-
ferent “mixed schemes” have been proposed.8–10But in all of
them, as in standard DFT, a crucial role is played by the
exchange-correlation functional, which now must be built for

FIG. 1. Splitting of the Coulomb electron-electron repulsion
vee=1/r into a short-range(SR) part and a long-range(LR) part,
according to Eqs.(1) and (2), with m=1.
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a modified electron-electron interaction. The scheme of Ref.
10 needs a pure short-range functional,Exc

SRfng, whose LDA
version is given by

Exc
SR,LDAfng =E nsr dexcsnsr d,mddr , s3d

whereexcsn,md is the exchange-correlation energy per elec-
tron of a uniform gas of densityn interacting with a short-
range potential like Eq.(1). The value ofm in Eq. (3) can be
either a constant, or, possibly, a convenient function of the
density, m=msnsr dd.16 The local functionalexcsn,md is the
quantity which we provide in this paper. We start from a
jellium-like Hamiltonian (in Hartree atomic units used
throughout this work)

H = −
1

2o
i=1

N

¹r i

2 + Vee
SR+ Veb

SR+ Vbb
SR, s4d

whereVee
SR is the modified electron-electron interaction

Vee
SR=

1

2 o
iÞ j=1

N
erfcsmur i − r jud

ur i − r ju
, s5d

Veb
SR is, accordingly, the interaction between the electrons and

a rigid, positive, uniform background of densityn
=s4prs

3/3d−1,

Veb
SR= − no

i=1

N E dx
erfcsmur i − xud

ur i − xu
, s6d

andVbb
SR is the corresponding background-background inter-

action

Vbb
SR=

n2

2
E dxE dx8

erfcsmux − x8ud
ux − x8u

. s7d

First we calculate the ground-state energy per electron of this
model Hamiltonian, as a function of the density parameterrs
and of the parameterm, with a diffusion Monte Carlo method
(Sec. II). Then we derive the asymptotic behaviors of the
correlation energyecsrs,md (Sec. III). On these grounds we
finally (Sec. IV) present a convenient analytic parametriza-
tion of the correlation energy, thus following in the footsteps
from quantum simulations of the regular jellium model to the
best available LDA functionals.17–20

II. DMC CALCULATION OF THE GROUND-STATE
ENERGY

A local density functional for the short-range potential of
Eqs. (5)–(7) should recover the Ceperley-Alder17 (CA) cor-
relation energy form→0. In this section we outline the im-
plications of this condition on the technical aspects of our
calculation, which is in all respects a standard application of
the diffusion Monte Carlo method in the fixed node approxi-
mation (FN-DMC).21

The FN-DMC method gives the energyEFN of the lowest-
lying Fermionic eigenstate of the Hamiltonian which has
the same nodes as the chosen trial functionCT. The error in

EFN is variational, and it vanishes as the nodal structure
of CT approaches the(unknown) nodal structure of the
exact ground state. The simplest choice for the trial function
of a homogeneous fluid17 is the Jastrow-Slater form,
CTsRd=JsRdDsRd, where the symmetric Jastrow factor
JsRd=expf−oi, jusr ijdg describes pair correlations, andD is
the product of one Slater determinant of plane waves(PW)
for each spin component(R denotes the coordinates of all the
particles). A better nodal structure is provided by the so-
called backflow(BF) wave function.22

The method used in Ref. 17 is in principle exact: It starts
from the FN solution and then it performs a “nodal relax-
ation,” whereby the energy converges to the exact ground-
state result. However, this second process is accompanied by
an increasing statistical noise, which may hinder full conver-
gence of the results. In practice, the results of Ref. 17 are
between the FN energies recently calculated with PW and BF
nodes,22 and actually somewhat closer to the former. Since,
on the one hand, BF calculations are considerably more de-
manding, and, on the other hand, the most widely used local-
density functionals are constructed to fit the quantum Monte
Carlo results of Ref. 17, we choose to stick to the simple trial
function with Slater determinants of plane waves. In this way
our “short-range local-density functional” will continuously
merge into the Ceperley-Alder17-based local-density func-
tionals asm→0.

All the other errors in the simulation can be controlled
and eliminated. It is easy to ensure that the biases due to a
finite time step and a finite population of walkers21 are much
smaller than the statistical uncertainty of the CA results,
which we set as our target precision. The number extrapola-
tion is more delicate. We simulateN particles in a cubic box
with periodic boundary conditions, interacting via the poten-
tial of Eq. (1). Since for small values ofm we rely on the
analytic asymptotic behavior described in Sec. III, the only
simulations we need to do will deal with really short-range
potentials, which we may safely treat using the minimum
image convention.23 The dependence of the energy on the
number of particles is determined with the variational Monte
Carlo(VMC) method, which calculates the expectation value
of the Hamiltonian operator on the trial wave function and is
cheaper than DMC. For several values ofN (namely 38, 54,
66, 114, 162), we use VMC to calculate(i) the variational
energyEV (after optimization of the Jastrow factor), and(ii )
the Hartree-Fock(HF) energyEHF, which corresponds toJ
=1. For each value ofrs andm, the resulting estimate of the
correlation energy per electron,ec=sEV−EHFd /N, is fitted to
the following form:

ecsrs,m;Nd = ecsrs,m;`d + asrs,mdfTs`d − TsNdg + bsrs,md/N.

s8d

HereTsNd is the kinetic energy ofN noninteracting electrons
at rs=1, andasrs,md, bsrs,md and the correlation energy in
the thermodynamic limit,ecsrs,m ;`d are fitting parameters.
The size dependence of the VMC result for the correlation
energy is shown in Fig. 2 for the case where it is largest
(small rs and smallm). We point out that the simple func-
tional guess of Eq.(8) (solid line) accurately models the size
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dependence of the VMC data which, although on a small
energy scale, are still far from a smooth dependence(dots
with error bars). Our final result for the correlation energy is
obtained by adding the infinite-size extrapolation obtained
from Eq. (8) to the result of a single DMC simulation with
N=54.

III. ASYMPTOTIC BEHAVIORS

In this section we derive some limiting behaviors of the
correlation energyecsrs,md, which will be used for its param-
etrization in Sec. IV. The detailed study carried out here can
be also of interest for the choice of a density-dependentm
parameter in the mixed schemes of Refs. 9 and 10, and for
the alternative splitting of exchange and correlation proposed
by Armiento and Mattsson.24

We consider two different regimes: When our system ap-
proaches the standard jellium model(i.e., full interaction
1/r), and when it approaches the noninteracting Fermi gas.
In the first case(Secs. III A and III B) we find that the cor-
relation energy is a function of the scaled variablemÎrs,
while in the second case(Sec. III C) the relevant scaled vari-
able ismrs.

A. Finite rs, and m\0

Since for smallm

erfcsmxd
x

=
1

x
−

2m

Îp
+

2

3

x2

Îp
m3 + Osm5d, s9d

if we fix the density and let the parameterm approach zero,
we can write

H = HCoul + mHs1d + m3Hs3d + Osm5d, s10d

where

Hs1d =
N
Îp

, s11d

Hs3d =
2

3Îp
S1

2o
iÞ j

ur i − r ju2 − no
i
E dxux − r iu2

+
n2

2
E dxE dx8ux − x8u2D . s12d

In Eq. (10), and in the rest of this paper, the suffix “Coul”

indicates quantities of the standard uniform electron gas(jel-
lium), with Coulomb interaction 1/r. Thus, for smallm we
are perturbing the jellium model,

Esmd = ECoul + mEs1d + m2Es2d + ¯ , s13d

Csmd = CCoul + mCs1d + m2Cs2d + ¯ . s14d

Since Hs1d is a constant, we immediately findEs1d=Hs1d

=N/Îp and Cs1d=0, which, combined withHs2d=0, also
givesCs2d=0 andEs2d=0. ThenEs3d is simply

Es3d = kCCouluHs3duCCoull, s15d

and can be easily evaluated, since it is related to the plasma
oscillation,25

Es3d = −
N

Îpvp

= − N
rs

3/2

Î3p
. s16d

Equations(13)–(15) hold because the expectation values of
Hs1d and Hs3d on CCoul exist, as it will be more explicitly
shown in Eqs.(18)–(21).

Taking the energy per particlee=E/N, and dividing it into
the noninteracting kinetic partts=

3
10kF

2 and the exchange-
correlation contributionexc, we then have the small-m expan-
sion

excsrs,m → 0d = exc
Coulsrsd +

m

Îp
−

rs
3/2

Î3p
m3 + Osm4d. s17d

The same result can be obtained by differentiation ofEsmd
with respect tom and by using the Helmann-Feynmann theo-
rem, which leads to the exact expression(see also Ref. 26):

]exc

]m
= −

3
Îp
E

0

`

ds s2e−m2rs
2s2

fgxcss,rs,md − 1g, s18d

where s=r / rs, and gxcss,rs,md is the pair-distribution
function27–29 corresponding to the Hamiltonian of Eq.(4).
The evaluation of Eq.(18) at m=0, immediately gives the
first-order result, 1 /Îp. Higher-order derivatives ofexc at
m=0 can be obtained by further differentiating Eq.(18), pro-
vided that the conditions for differentiation under the integral
sign are fulfilled. Since Cs1d=Cs2d=0 implies
u]gxcss,rs,md /]mum=0=0 and u]2gxcss,rs,md /]m2um=0=0, the
possibility of extracting the second and third derivatives of
exc at m=0 from Eq.(18) depends on whether the integrals

E
0

`

ds snfgxc
Coulss,rsd − 1g, s19d

with n=4 andn=6 exist. This is the case, sincegxc
Coulss,rsd

−1 is a well-behaved function whose oscillation-averaged
part30 goes to zero as27,28 1/s8 when s→`. We thus obtain
from Eq. (18),

U ]2exc

]m2 U
m=0

= 0, s20d

FIG. 2. Correlation energy per particle of the short-range inter-
acting gas atm=0.5 rs=1, for different numbers of particlesN. The
fitting function of Eq.(8) (line) favorably compares with the VMC
data(dots).
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U ]3exc

]m3 U
m=0

=
6

Îp
rs

2E
0

`

ds s4fgxc
Coulss,rsd − 1g

=
6

Îp
rs

2S−
1

rs
2vp

D = −
6

Î3p
rs

3/2, s21d

in agreement with Eq.(17). We see that sincegxc
Coulss

→` ,rsd−1~1/s8 no further information can be extracted
from Eq. (18), or, equivalently, by going further with the
expansion of Eq.(10).

One can divideexc into its exchange and correlation parts,
exc=ex+ec. The exchange energyex has been calculated by
Savin,8 and is reported in the Appendix. Its small-m expan-
sion is

exsrs,m → 0d = ex
Coulsrsd +

m

Îp
−

3ars

2p
m2 + Osm4d, s22d

where a=s4/9pd1/3. The m→0 behavior ofec=exc−ex, is
then

ecsrs,m → 0d = ec
Coulsrsd +

3ars

2p
m2 −

rs
3/2

Î3p
m3 + Osm4d.

s23d

Notice that if we divide the pair-distribution functiongxc into
its exchange and correlation parts,gxcss,rs,md=gxssd
+gcss,rs,md, we have

]ex

]m
= −

3
Îp
E

0

`

ds s2e−m2rs
2s2

fgxssd − 1g, s24d

]ec

]m
= −

3
Îp
E

0

`

ds s2e−m2rs
2s2

gcss,rs,md. s25d

(This follows directly from the Hellmann-Feynmann theo-
rem and from the fact thatgx corresponds to the noninteract-
ing gas and thus does not depend onm.) If we take the limit
m→0 of Eqs.(24) and(25) we recover the first-order result
in Eqs. (22) and (23). However, higher-order derivatives at
m=0 of ex andec cannot be obtained by differentiating Eqs.
(24) and (25). This is due to the long-range tail ofgxssd−1
andgc

Coulss,rsd: whens→` they both approach zero as27–29

1/s4. Thus, integrals of the kinde0
`s4fgx−1g and e0

`s4gc
Coul

diverge. The long-range tails ofgxssd−1 andgc
Coulss,rsd ex-

actly cancel27–29 in gxc
Coulss,rsd−1. This is why, at smallm,

both ex andec have terms~m2 which cancel out inexc.

B. Finite m, and rs\0

If we use the relevant scaled unitss=r / rs and we letrs
approach zero, the potential has the expansion

U 1

rs

erfcsmrssd
s

U
rs→0

=
1

rs
S1

s
−

2m

Îp
rs +

2

3

m3s2

Îp
rs

3 + ¯ D ,

which has the Coulomb interaction as leading term. We are
thus approaching again the jellium model, so that Eq.(23) is
also valid for finitem and rs→0.

In Eq. (23) the relevant scaled variable ismÎrs. This can
be understood in the following way. The Coulomb gas pre-
sents screening effects at lengthsr *1/qTF~Îrs, whereqTF
is the Thomas-Fermi(TF) wave vector. Since the erfc func-
tion amounts to some sort of artificial screening at lengths
r *m−1, the Thomas-Fermi screening appears, exactly as in
the Coulomb gas, whenÎrs!m−1.

C. mrsš1

When m→`, the potential terms of Eqs.(5)–(7) rapidly
vanishsVSR,e−m2r2

d. In this regime we can treat the whole
potential as a perturbation to the noninteracting Fermi gas.

The first-order(in the potential) correction to the nonin-
teracting energyts gives ex of the Appendix. The second-
order term can be computed by standard Rayleigh-
Schrödinger perturbation theory

es2d = −
1

N
o
nÞ0

k0uVSRunlknuVSRu0l
En − E0

. s26d

As in the case of jellium,es2d is the sum of a direct term and
of a second-order exchange term,25 which in Fourier space
read

edir
s2d = −

3

16p5 E dqS1 − e−q2kF
2/4m2

q2 D2E
uk+qu.1

dk

3Eup+qu.1dp
us1 − kdus1 − pd
q2 + q · sk + pd

s27d

eex
s2d =

3

32p5 E dq
1 − e−q2kF

2/4m2

q2 E
uk+qu.1

dk

3Eup+qu.1dp
1 − e−uq + k + pu2kF

2/4m2

uq + k + pu2
·

us1 − kdus1 − pd
q2 + q · sk + pd

.

s28d

Here all the momenta are expressed in units ofkF=sarsd−1,
and usxd is the Heaviside step function. Now, consider the
casemrs→` and divide the integral overq in Eqs.(27) and
(28) into two parts,

E
0

`

dq=E
0

q1

dq+E
q1

`

dq, with 1 ! q1 ! mrs.

In the first part, whenqP f0,q1g, we can write

1 − e−q2kF
2/4m2

<
q2kF

2

4m2 ,

1 − e−uq + k + pu2kF
2/4m2

<
uq + k + pu2kF

2

4m2

[sinceq1!mrs, and the integrals of Eqs.(27) and (28) are
restricted to the domainuk uø1, upuø1]. Equations(27) and
(28) then reduce to integrals of the same kind, which can be
summed to yield
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euquøq1

s2d =
− 3

32p5S kF
2

4m2D2E
uquøq1

dqE
uk+qu.1

dk

3 E
up+qu.1

dp
us1 − kdus1 − pd
q2 + q · sk + pd

,

i.e., they give a term which vanishes assmrsd−4. In the second
part,qP fq1,`d, having chosenq1@1, we can write

uq + k + pu2 < q2,

E
uk+qu.1

dkE
up+qu.1

dp
us1 − kdus1 − pd
q2 + q · sk + pd

< S4p

3
D2 1

q2 .

Equations(27) and(28) again reduce to integrals of the same
kind, which can be summed to yield

euquùq1

s2d = −
2

3p2E
q1

`

dqS1 − e−q2kF
2/4m2

q2 D2

. s29d

The right-hand side of Eq.(29) can be evaluated analytically
and then expanded formrs→`. Its leading term is(correctly)
independent ofq1 and equals −fsÎ2−1d /4Îpgsmrsd−3. We
thus have

uecsrs,mdumrs@1 = −
A

smrsd3 +
B

smrsd4 + ¯ , s30d

with A<sÎ2−1d /4Îp<0.0584 Hartree.
Since the perturbation series expansion whose second-

order term corresponds to Eq.(26) is done with respect to the
whole potentialVSR and not with respect to the parameterm,
higher-order terms could also contribute to the value ofA.
For this reason, in our parametrization ofecsrs,md A is left as
a free parameter, to be optimized with a fit on the DMC data.
We expect to find a value ofA of the same order of the one
estimated with Eq.(26), since the potentialVSR vanishes
very rapidly asm→`, so that the higher-order-term contri-
bution toA should be small.

IV. ANALYTIC REPRESENTATION
OF THE CORRELATION ENERGY

An accurate and simple analytic representation of the cor-
relation energyecsrs,md can be obtained by a Padé form
which interpolates between the limiting behaviors given by
our Eqs.(23) and(30), and contains some free parameters to
fit our DMC data. We write

ecsrs,md =
ec

Coulsrsdf1 + b1srsdmg
1 + b1srsdm + b2srsdm2 + b3srsdm3 + b4srsdm4 ,

s31d

where

b1 = Sb3 −
rs

3/2

Î3p

1

ec
CoulD 1

b2
, s32d

b2 = −
3

2p

ars

ec
Coul, s33d

b4 = − b1ec
Coulrs

3

A
, s34d

and ec
Coulsrsd is one of the standard parametrizations18–20 of

the correlation energy of the unpolarized jellium. Here we
used the parametrization of Perdew and Wang.20 The two
parametersb3srsd and A are fixed by a two-dimensional
srs,md best fit to our DMC data. We find

b3srsd = 1.27rs
7/2, s35d

A = 0.035 79. s36d

This fit yields a reducedx2 of 2.7. In Fig. 3 we show our
DMC data together with the fitting function for different val-
ues of rs. Notice that our analyticecsrs,md does not break
down at highsrs→0d or low srs→`d densities, being con-
strained by exact behaviors.

V. CONCLUSIONS AND PERSPECTIVES

We have presented a comprehensive numerical and ana-
lytic study of the ground-state energy of a(spin unpolarized)
uniform electron gas with modified, short-range-only
electron-electron interaction erfcsmrd / r, as a function of the
cut-off parameterm and of the electronic density. Our chief
goal has been the publication, in a convenient form for ap-
plication, of a reliable local density functional for the corre-
lation energy of this model system, which(i) fits the results
of our quantum Monte Carlo simulations and(ii ) automati-
cally incorporates exact limits. Such a functional is a crucial
ingredient for some recently proposed “mixed schemes,”
which exploit the DFT only for the short-range part of the
electron-electron interaction. In this context the natural ex-
tension of this study will be the generalization of our func-
tional to the spin-polarized case.

What we obtained in this paper is not the only possible
short-range local-density functional of interest to “mixed
schemes.” In some of them9 the DFT treatment of the short-

range part is handled through another functionalĒxc
SRfng, de-

fined as the difference between the standard exchange-

FIG. 3. Correlation energy of the short-range interacting gas as
a function ofmrs, for different densities. Our fitting function(lines)
is compared with our DMC data(dots). The error bars are compa-
rable with the symbol sizes.
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correlation energy functional(corresponding to the Coulomb
interaction) and a long-range-only functional

Ēxc
SRfng = Excfng − Exc

LRfng. s37d

Another direction of future work will thus be the study of the
uniform electron gas with a long-range-only interaction of
the form of Eq.(2), and, possibly, other modified interactions
proposed in the same spirit.31

ACKNOWLEDGMENTS

We thank A. Savin for suggesting this work, S. Baroni and
J. Toulouse for useful discussions, and we gratefully ac-
knowledge financial support from the Italian Ministry of
Education, University and Research(MIUR) through COFIN

2003–2004 and the allocation of computer resources from
INFM Iniziativa Calcolo Parallelo.

APPENDIX: EXCHANGE ENERGY

The exchange energy corresponding to the Hamiltonian
(4) has been calculated by Savin in Ref. 8, and is equal to

exsrs,md = −
2

p
kFH3

8
− aFÎp erfS 1

2a
D − 3a + 4a3

+ s2a − 4a3de−1/4a2GJ , sA1d

with a=m / s2kFd. The exchange energy thus satisfies

exsrs,md = rs
−1fsmrsd.
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