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Local density functional for the short-range part of the electron-electron interaction
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Motivated by recent suggestions—to split the electron-electron interaction into a short-range part, to be
treated within the density functional theory, and a long-range part, to be handled by other techniques—we
compute, with a diffusion Monte Carlo method, the ground-state energy of a uniform electron gas with a
modified, short-range-only electron-electron interaction(gnfi/r, for different values of the cutoff parameter
w and of the electron density. After deriving some exact limits, we propose an analytic representation of the
correlation energy which accurately fits our Monte Carlo data and also includes, by construction, these exact
limits, thus providing a reliable “short-range local-density functional.”
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I. INTRODUCTION AND SUMMARY OF RESULTS erfo(ur)
vsr(N =—"—, (1)

Density functional theorfy® (DFT) is nowadays the most '
widely used method for electronic structure calculations, in
both condensed matter physics and quantum chemistry, or(r) = erf(ur) 2
thanks to the combination of low computational cost and LR ro’
remarkable accuracy for a wide variety of chemical bonds
and solid-state systems. There are, however, notable excefave been already used for this purpgse (see Fig. 1, and
tions to such an accuracy. For examp|6, even the best avaive stick to this ChOice, which y|8|ds analytic matrix elements
able approximations of the exchange-correlation functionalfor both Gaussians and plane waves, i.e., the most common
the key ingredient of the DFT, fail to recover long-range vanbasis functions in quantum chemistry and solid-state physics,
der Waals interactiorts;® are not completely safe for the respectively. This form still leaves room for some arbitrari-
description of the hydrogen bohdnd have intrinsic prob- Nness: The choice of the most convenient cut-off parameter
lems with situations of near degenerdgyhen two sets of which may be different for different “mixed schemes.”
orbitals happen to have Very close enerp?&More gener- The Combination Of a Short-l’ange DFT Ca|Cu|ati0n and a
ally, the “chemical accuracy(the accuracy needed to predict different treatment of the long-range part of the electron-
the rates of chemical reactiortsas not yet been reached. For €lectron interaction can be founded on a rigorous basis
all these reasons the search for new approximate functionalirough the adiabatic connection formali8m?*> Depend-
or even new ways of exploiting the basic ideas and advaning on the specific problem addresgedn der Waals forces,
tages of the DFT, is very activie"9 near-degeneracy, etcand thus on the particular approach to

In this context several authdrd! have suggested to split the long-range part of the electron-electron interaction, dif-
the electron-electron interaction into a short-range part, to béerent “mixed schemes” have been propo%e@But in all of
treated within the DFT, and a long-range part, to be handle¢hem, as in standard DFT, a crucial role is played by the
by other techniques. The motivation behind these “mixedexchange-correlation functional, which now must be built for
schemes” is that the DFT, even in the simplest local-density
approximation(LDA), provides an accurate description of
the short-range electron-electron repulsiérnyhile other
techniques which give a poor description of short-range
properties, like the configuration interactié@l) method or
the random-phase approximati@RPA),***4can, instead, ac-
curately capture long-range correlation effects. For instance,
preliminary tests of a “mixed scheme” designed to describe
near-degeneracy effects gave very interesting results for
small atoms and moleculés.

Of course there is no unique way to split the Coulomb
potential 1f into a short-rang€SR) and a long-rangéLR)
part. The error function and its complement

o = NN W & 01O

1 FIG. 1. Splitting of the Coulomb electron-electron repulsion
Vedl) = = = vs(1) + v R(1), veezll_r into a short-rangQSR)_ part_and a long-rangd.R) part,
r according to Egs(l) and(2), with u=1.
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a modified electron-electron interaction. The scheme of RefEgy is variational, and it vanishes as the nodal structure
10 needs a pure short-range functio@f[n], whose LDA  of W approaches théunknowr) nodal structure of the

version is given by exact ground state. The simplest choice for the trial function
of a homogeneous fluld is the Jastrow-Slater form,
ESR.LDAr =fnr n(r dr 3 V1(R)=J(RID(R), where the symmetric Jastrow factor
o n] (D) ex{n(r),w) & J(R)=exfd—=;;u(r;j)] describes pair correlations, amlis

wheree,(n, i) is the exchange-correlation energy per elec—the product of one Slater determinant of plane waea)

tron of a uniform gas of density interacting with a short- for Qach spin compone(R denotes th'e coordinates of all the

range potential like Eq(1). The value ofu in Eq. (3) can be particleg. A better nodal structure is provided by the so-

either a constant, or, possibly, a convenient function of the called backflow(BF) wave functiorz*

d 16 f The method used in Ref. 17 is in principle exact: It starts
ensity, u=u(n(r)).t® The local functionale(n,u) is the

titv which de in thi We start f from the FN solution and then it performs a “nodal relax-
guantity which we provide n this paper. Ve start Irom a 44, » whereby the energy converges to the exact ground-
jellium-like Hamiltonian (in Hartree atomic units used

. state result. However, this second process is accompanied by
throughout this work an increasing statistical noise, which may hinder full conver-
1 gence of the results. In practice, the results of Ref. 17 are
H=->> V2 +VSR+VSR+ ViR (4)  between the FN energies recently calculated with PW and BF

2is nodes?? and actually somewhat closer to the former. Since,
on the one hand, BF calculations are considerably more de-
manding, and, on the other hand, the most widely used local-
density functionals are constructed to fit the quantum Monte
, (5) Carlo results of Ref. 17, we choose to stick to the simple trial
2i%j=1 Iri= r-| function with Slater determinants of plane waves. In this way

VSRis, accordingly, the interaction between the electrons an@U" “Short-range local-density functional” will continuously
a rigid, positive, uniform background of density merge into the Ceperley-AldErbased local-density func-
:(4“2/3)_1’ tionals asu— 0. _ _ _
All the other errors in the simulation can be controlled
erfc(,u|ri -x|) and eliminated. It is easy to ensure that the biases due to a
ViR= - nE X— ), (6) finite time step and a finite population of walk€rare much
smaller than the statistical uncertainty of the CA results,
and Vb is the corresponding background-background InterWhlch we set as our target precision. The number extrapola-
action tion is more delicate. We simulaié¢ particles in a cubic box
with periodic boundary conditions, interacting via the poten-
,erfc(,u|x x']) tial of Eq. (1). Since for small values oft we rely on the
Vip = _J fd x-x'| () analytic asymptotic behavior described in Sec. lll, the only
simulations we need to do will deal with really short-range
First we calculate the ground-state energy per electron of thigotentials, which we may safely treat using the minimum
model Hamiltonian, as a function of the density paramefer image conventioR® The dependence of the energy on the
and of the parameter, with a diffusion Monte Carlo method number of particles is determined with the variational Monte
(Sec. 1. Then we derive the asymptotic behaviors of theCarlo(VMC) method, which calculates the expectation value
correlation energy(rs, ) (Sec. lll). On these grounds we of the Hamiltonian operator on the trial wave function and is
finally (Sec. IV) present a convenient analytic parametriza-cheaper than DMC. For several valueshbfnamely 38, 54,
tion of the correlation energy, thus following in the footsteps66, 114, 162, we use VMC to calculaté¢i) the variational
from quantum simulations of the regular jellium model to theenergyE, (after optimization of the Jastrow facjpand(ii)
best available LDA functionals’~2° the Hartree-FockHF) energyE,g, Which corresponds td
=1. For each value af; and u, the resulting estimate of the
correlation energy per electrog,=(Ey,—Egyg)/N, is fitted to
the following form:

whereVsl is the modified electron-electron interaction

N
se_l s erfolulri =)

ee —

Iri = x|

II. DMC CALCULATION OF THE GROUND-STATE

ENERGY
A local density functional for the short-range potential of €c(Tsii4iN) = &(rs, ;%) +a(rg, w)[T() = T(N)] + b(rs, w)/N
Egs. (5)—«7) should recover the Ceperley-AldéiCA) cor- (8)

relation energy forw— 0. In this section we outline the im-
plications of this condition on the technical aspects of outHereT(N) is the kinetic energy ol noninteracting electrons
calculation, which is in all respects a standard application ofit rs=1, anda(rs, ), b(rs, #) and the correlation energy in
the diffusion Monte Carlo method in the fixed node approxi-the thermodynamic limitey(rs, u;) are fitting parameters.
mation (FN-DMC).2* The size dependence of the VMC result for the correlation
The FN-DMC method gives the energy, of the lowest-  energy is shown in Fig. 2 for the case where it is largest
lying Fermionic eigenstate of the Hamiltonian which has(small rg and smallw). We point out that the simple func-
the same nodes as the chosen trial functlon The error in  tional guess of Eq8) (solid line) accurately models the size
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indicates quantities of the standard uniform electron(ggs
lium), with Coulomb interaction I/ Thus, for smallu we
are perturbing the jellium model,

-0.026 |

-0.030

re=1
pu=0.5

¢, (Hartree)

E(p) = Bgou+ uEW + pw?E@ + -, (13)

00 o1 o0z 008 V() = Veou+ p¥Y + u20@ + oo (14

"N Since HY is a constant, we immediately fing®=H®

FIG. 2. Correlation energy per particle of the short-range inter-= N/\7 and =0, which, combined withH?=0, also
acting gas ap=0.5r.=1, for different numbers of particlé$. The  gives¥@=0 andE@=0. ThenE® is simply

fitting function of Eq.(8) (line) favorably compares with the VMC @ @
data(dot9. EY = <\I,CouI|H |\I’C0ul>1 (15)

and can be easily evaluated, since it is related to the plasma
dependence of the VMC data which, although on a SmaleC|IIat|on25

energy scale, are still far from a smooth dependguicts

with error bar$. Our final result for the correlation energy is " N r3/2

obtained by adding the infinite-size extrapolation obtained E®=- = =-N B (16)
from Eg. (8) to the result of a single DMC simulation with NTWp vom

N=54.

Equations(13)—(15) hold because the expectation values of
Il ASYMPTOTIC BEHAVIORS HD and H® on W, exist, as it will be more explicitly
shown in Egs(18)«21).

In this section we derive some limiting behaviors of the  Taking the energy per particke=E/N, and dividing it into
correlation energy(rs, u), which will be used for its param-  the noninteracting kinetic paty=15k? and the exchange-
etrization in Sec. IV. The detailed study carried out here carcorrelation contributior,., we then have the small-expan-
be also of interest for the choice of a density-dependent sion
parameter in the mixed schemes of Refs. 9 and 10, and for
the alternative splitting of exchange and correlation proposed Cou, r§’2 3 4
by Armiento and Mattssoff: Eclls i — 0) = 6" (r9) + r e +0O(uY). (17)

We consider two different regimes: When our system ap-
proaches the standard jellium modgle., full interaction The same result can be obtained by differentiatiorEG#)
1/r), and when it approaches the noninteracting Fermi gaswith respect tqu and by using the Helmann-Feynmann theo-

In the first casgSecs. Il A and Ill B we find that the cor-  rem, which leads to the exact express(see also Ref. 26
relation energy is a function of the scaled variahler,,
while in the second cag&ec. Il O the relevant scaled vari- ey 3

i T 2| ds e S g (srop) -1], (18
able isurs. Pty B [OulsTsmw) = 1], (18)

A. Finite ry, and u—0 where s=r/r,, and g,.s,rs,u) is the pair-distribution

Since for smallu functior?’2° corresponding to the Hamiltonian of E).
The evaluation of Eq(18) at x=0, immediately gives the
erf 1 2u 2 =
M £, X —u 3+ 0(ud), (9 first-order result, 1y=. Higher-order derivatives og,. at
X X T N7 =0 can be obtained by further differentiating E48), pro-
if we fix the density and let the parameterapproach zero vided that the conditions for differentiation under the integral
we can write " sign are fulfilled. Since ¥W=¥v@=0 implies
® 3,03) s ﬁgXC(S,rS,/L)/(?M|#=0:0 and &ngc(s,rs,ﬂ)/&uz|#=020, the
H=Hcou+ uH™ + u*H™ + O(w?), (100 possibility of extracting the second and third derivatives of
where € at =0 from Eq.(18) depends on whether the integrals
N o]
HO = —, (12) J ds $[g5%(s,rg) - 1], (19
N
with n=4 andn=6 exist. This is the case, singg?"(s,r)
H® = ( “2r-r2-nX fdx|x—ri|2 -1 is a well-behaved function whose oscillation-averaged
3\m 2i] i parf® goes to zero @28 1/s® whens— . We thus obtain
n2 from Eg. (18),
+—fdxfdx’|x—x’|2>. (12)
2 Pe
XC
_ _ _ — | =0, (20
In Eg. (10), and in the rest of this paper, the suffix “Coul” I | =0
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6 ,(” Coul In Eq. (23) the relevant scaled variable jis\r.. This can
= ?rsf ds g[g (.19 — 1] be understood in the following way. The Coulomb gas pre-
w=0 NTJ0 sents screening effects at lengttis 1/qrpoc \r: whereqre
6 , 1 6 5 is the Thomas-Ferm(iTF) wave vector. Since the erfc func-
S\t ) T (21)  tion amounts to some sort of artificial screening at lengths
N rswp N3 21 . . .
r=u -+, the Thomas-Fermi screening appears, exactly as in
in agreement with Eq(17). We see that sincegi®(s the Coulomb gas, whenrs<u ™.
—o,r)—1x1/s® no further information can be extracted
from EQq. (18), or, equivalently, by going further with the C. ur>1
expansion of Eq(10). i )
One can divides, into its exchange and correlation parts, ~ Whenx—c, the potential terms of Eq$5)~(7) rapidly
e =€+e. The exchange energy, has been calculated by vanish(VSR~e™*). In this regime we can treat the whole

Savin® and is reported in the Appendix. Its smallexpan- ~ potential as a perturbation to the noninteracting Fermi gas.
sion is The first-order(in the potential correction to the nonin-

3 teracting energyt; gives ¢, of the Appendix. The second-
— _Coul M oals 5 4 order term can be computed by standard Rayleigh-
&lon—0)= 6719 + m 2n O, (22 Schrédinger perturbation theory

e
0,(/,3

where a=(4/9m)Y3. The u—0 behavior ofe,=€,—€,, iS P 5 (0|VSRInXn|VSR0) 26)
e/ =-— .
then Nnzo En-Eo
3ar r3f2 . - @ )
o —0)= () + 282 =S 34 (4. As in the case of jelliume'? is the sum of a direct term and
elfop—0)= e om V"377'u W) of a second-order exchange teftwhich in Fourier space
(23) read
_ 22 2

Notice that if we divide the pair-distribution functiagy, into @___3 1 - e ke’ d
its exchange and correlation partg,.(s,rs, ) =0 (S Edir = 7 155 P tgl>1
+0q(S,rs, 1), We have

e 3 [ x f A et (27)

+q|>1
Eo 2| dsger g9 -1, (24 T d - k+p)
e Vo
@__3 1- e’

P 3 (~ € = f dqg J dk

Teo 2| dsSe g (srop). (25) > 32n q? kg1

du Nmlo )

1-elar ke’ g1 —j)p(1 - p)

(This follows directly from the Hellmann-Feynmann theo- Xfp+q|>1dp k4ol i ke
rem and from the fact tha, corresponds to the noninteract- la Pl g +q-(k+p)
ing gas and thus does not dependgainIf we take the limit (298

u— 0 of Egs.(24) and(25) we recover the first-order result

. )
in Egs. (22) and (23). However, higher-order derivatives at Here all the momenta are expressed in unitsof (a9 ™,
n=0 of ¢, and g; cannot be obtained by differentiating Eqgs. and #(x) is the Heaviside step function. Now, consider the

(24) and (25). This is due to the long-range tail gf(s)—1  CaSeurs—= and divide the integral ovey in Eqgs.(27) and
andg®(s,r): whens—  they both approach zero%s?®  (28) into two parts,
1/s*. Thus, integrals of the kindgs{g,—1] and [5s'gS®"

diverge. The long-range tails @f(s)—1 andgS®(s,ry) ex- J dq=f dq+f dg, with 1<q; < ur..
actly cancé2%in g5°%(s,rg—1. This is why, at smalj, 0 0 a
both €, and e, have termsxu? which cancel out ing,. In the first part, wherg € [0,q,], we can write
21,2
B. Finite g, and r¢—0 1 — g Eau? o q_kz':
. 4u?’
If we use the relevant scaled ungsr/rg and we letrg K
approach zero, the potential has the expansion 52
3 1- ‘|q+k+P|2k|2:/4/-¢2~ |q+k+p| I(F
1 erfo(ur ) 1(1 2u 2u%, € = 2
_—_ = — ——/—_rs+—?rs+"' s 4Iu’
rs S re-0 s\S v N

[sinceq; < urg, and the integrals of Eq$27) and (28) are
which has the Coulomb interaction as leading term. We areestricted to the domaifk|<1, |p|<1]. Equationg27) and
thus approaching again the jellium model, so that®8) is  (28) then reduce to integrals of the same kind, which can be
also valid for finitex andrs— 0. summed to yield
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-3 ([ K\ ol ' ' ' .
2 2| 2F — s
E‘q‘gql_ 327T5<4 2) J de dk o) ‘.‘__,....
“ [al=<ay [k+a|>1 g -0.01 g 1
6(1 -k)6(1 - 8 002 F ./ .
X f dp (2 )1 ~p) ' = 0.0 / /
pra>1 9 *+d-(k+p) = -0.03 [ ¢ ; 1
fe=1 ——
i.e., they give a term which vanishes(as ™. In the second @ -0.04 r: =2 e :
part,qe[q;,%), having chosem,; > 1, we can write ‘wf: -0.05 | fg=5 e l
=10 —n
g +k+pf*=0?, -0.06 : § - -
0 1 2 3 4
1-k6(1- 4m\?1 r
f dkf dpe(2 ) 6 p)%(_w) L I
kig>1  Jlprg>1 9 +d-(K+p) 3/ 19

FIG. 3. Correlation energy of the short-range interacting gas as
Equationg27) and(28) again reduce to integrals of the same a function ofurs, for different densities. Our fitting functioflines)

kind, which can be summed to yield is compared with our DMC dat@oty. The error bars are compa-
rable with the symbol sizes.
2 (* [1-eem?)?
2 _—__Z - -
€—y =— d . (29)
lal=a, = T 32 e r3
i b4 =- b16§0U|_S, (34)

The right-hand side of Eq29) can be evaluated analytically A

and then expanded faurs— . Its leading term igcorrectly)
independent ofg; and equals K\2-1)/4\7](urd ™3 We
thus have

and £°(ro) is one of the standard parametrizatihd® of
the correlation energy of the unpolarized jellium. Here we
used the parametrization of Perdew and W&hghe two
A B parametersbs(r) and A are fixed by a two-dimensional
r, s =T+t —+ ", 30 , fi DM . We fi
€lrs M)|,Lrs>1 Garo? + (ar g (30)  (rs,p) best fit to our DMC data. We find

_ — - 712

with A~ (v2-1)/4\7~0.0584 Hartree. bs(ry) = 1.27 ", (39
Since the perturbation series expansion whose second- _

order term corresponds to E@6) is done with respect to the A=0.03579. (36)

whole potentia\SR and not with respect to the parameter  This fit yields a reduceg? of 2.7. In Fig. 3 we show our

higher-order terms could also contribute to the valueAof  p\c data together with the fitting function for different val-
For this reason, in our parametrizationeafrs, 1) Ais leftas s ofr.. Notice that our analytie(r, «) does not break
a free parameter, to be optimized with a fit on the DMC datagown at high(r,— 0) or low (rs— ) densities, being con-
We expect to find a value ok of the same order of the one girzined by exact behaviors.

estimated with Eq(26), since the potentialV/SR vanishes

very rapidly asu— o, so that the higher-order-term contri-

IV. ANALYTIC REPRESENTATION We have presented a comprehensive numerical and ana-
OF THE CORRELATION ENERGY lytic study of the ground-state energy ofspin unpolarizefl

uniform electron gas with modified, short-range-only
An accurate and simple analytic representation of the corelectron-electron interaction etfer)/r, as a function of the
relation energye.(rs,u) can be obtained by a Padé form cyt-off parameteg and of the electronic density. Our chief
which interpolates between the limiting behaviors given bygoal has been the publication, in a convenient form for ap-
our Egs.(23) and(30), and contains some free parameters toplication, of a reliable local density functional for the corre-

fit our DMC data. We write lation energy of this model system, whi¢h fits the results
e§°“'(rs)[1 +by(r ] of our quantum Monte Qar!o simulations a(ib) au_tomati- _
erop) = 5 3 T cally incorporates exact limits. Such a functional is a crucial
1+by(rgp+by(re s+ ba(re ™ +by(rg) ingredient for some recently proposed “mixed schemes,”

(31)  which exploit the DFT only for the short-range part of the
electron-electron interaction. In this context the natural ex-

where tension of this study will be the generalization of our func-
¥ 1 \1 tional to the spin-polarized case.
b= bs ;_éc—oul o (32 What we obtained in this paper is not the only possible
/ c 2

short-range local-density functional of interest to “mixed
schemes.” In some of théhthe DFT treatment of the short-

(33 range part is handled through another functidgﬁf[n], de-
fined as the difference between the standard exchange-
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correlation energy functiongtorresponding to the Coulomb 2003-2004 and the allocation of computer resources from
interaction) and a long-range-only functional INFM Iniziativa Calcolo Parallelo.

ESRn]=EJn] - EXn]. (37) APPENDIX: EXCHANGE ENERGY

Another direction of future work will thus be the study of the  The exchange energy corresponding to the Hamiltonian
uniform electron gas with a long-range-only interaction of(4) has been calculated by Savin in Ref. 8, and is equal to

the form of Eq.(2), and, possibly, other modified interactions
proposed in the same spifit. e(ropm) = - ng 3_ a{ N erf(i) — 3a+4a°
s T |8 2a
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