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Abstract

A polarization propagator method, referred to as algebraic-diagrammatic construction (ADC), is extended to the treatment of static
and dynamic response properties of molecules. The recent intermediate state representation (ISR) concept of the ADC theory, giving
direct access to excited states wave functions and properties, allows us to derive simple closed-form expressions for linear and higher
response functions. The use of the band-Lanczos algorithm is proposed to evaluate efficiently the resolvent type ADC expressions.
The performance of the method is tested in computations of static and dynamic polarizabilities of several small molecules at the sec-
ond-order (ADC(2)) level of the theory. The ADC(2) results are compared with those of full configuration interaction (FCI), coupled
cluster (CC), and SOPPA (second-order polarization propagator approximation) treatments.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The linear and non-linear response of ground-state mol-
ecules to static and dynamic (time- or frequency-depen-
dent) perturbations, e.g. external electric fields, is of
paramount importance for a variety of fields. The fre-
quency-dependent polarizability [1], describing the linear
response to an electric field, determines optical properties
such as refractive indices, dielectric constants, Verdet con-
stants, and Raman intensities, as well as dispersion coeffi-
cients of long-range intermolecular interaction. Response
properties involving external magnetic fields and internal
nuclear magnetic moments are magnetizabilities, NMR
shielding constants, and nuclear spin–spin coupling con-
stants [2,3]. Beyond the linear regime, hyperpolarizabilities,
second hyperpolarizabilities, etc., form the basis for
describing a wealth of non-linear optical (NLO) phenom-
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ena, such as second harmonic generation (SHG), the elec-
tro-optic Pockels effect (EOPE), electric-field induced
second-harmonic generation (EFISH), and the electro-
optic Kerr effect (EOKE) [4].

In view of the importance of molecular response proper-
ties, great efforts have been directed towards establishing
adequate means of a theoretical description. As long as
only static properties are concerned one can recur to finite
field techniques and determine the response properties
through numerical or, preferably, analytical derivatives.
This means that one can essentially use the well-developed
arsenal of quantum chemical ground state methods such as
the self-consistent field (SCF), many-body perturbation
theory (MBPT), configuration interaction (CI), and cou-
pled cluster (CC) treatments. In this context the coupled
Hartree–Fock (CHF) method [5,6], associated with the
molecular response at the SCF level, has played (and still
plays) a key role.

When one proceeds to time- or frequency-dependent
response, one is confronted with the necessity to deal with
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the (electronic) excitations, where presently the quantum
chemical methods are less satisfactory than those used in
the treatment of ground-states. At the SCF level the
time-dependent (TD) generalization of the CHF leads to
the TDHF method, which is equivalent to the famous ran-
dom-phase approximation (RPA) [7–9]. Being the only
method initially available, the RPA method has been
widely used to calculate frequency-dependent response
properties (see for example Refs. [10,11]). But the overall
accuracy afforded by the RPA method is hardly satisfac-
tory, as the error in the excitation energies and transition
moments is of second-order in the electron repulsion [12].

A variety of more elaborate methods has been devel-
oped until now. A distinct step beyond the TDHF level
was achieved by time-dependent MBPT methods as
worked out by Rice and Handy [13] and by Hättig and
Hess [14]. Another important development is the response
theory for multiconfiguration self-consistent field
(MCSCF) wave functions formulated by Olsen and Jørgen-
sen [15]. Recently, also the time-dependent extension of
density functional theory (DFT) has been applied to calcu-
late polarizabilities and hyperpolarizabilities [16,17]. From
a formal point of view the TDDFT method is quite similar
to the RPA, which means that the numerical expense is
similarly modest. CI approaches have been suggested as
well [18,19], and seemingly very accurate polarizability
results for small atoms and molecules have been obtained
by Spelsberg and Meyer [18] using a large-size CI
treatment.

Certainly, the most important theoretical development
in the treatment of molecular response properties is based
on the coupled cluster (CC) approach to excited states.
Here, three similar formulations have been pursued,
namely the CC-LR (coupled cluster linear response) theory
[20], the EOM-CC (equation-of-motion coupled cluster)
method [21], and the SAC-CI (symmetry adapted cluster
CI) approach [22]. The CC-LR approach was formulated
from the outset as a response theory for CC ground states,
and was immediately applied in response property compu-
tations [23]. Computer implementations of linear response
functions have been reported for the hierarchy of CCS,
CC2, CCSD, and CC3 coupled cluster models [24,25] and
also higher CC response functions have been derived [26].
The development of an EOM-CC approach to frequency-
dependent molecular polarizabilities was reported by Stan-
ton and Bartlett [27] and Rozyczko et al. [28].

As is well known, there is a close relationship between
linear response functions and the polarization propagator
[29]. A propagator approach that has been used for a long
time to calculate polarizabilities and other linear response
functions, is the second-order polarization propagator
approximation (SOPPA) [30–32]. In particular, the SOPPA
method has been applied very successfully to the treatment
of nuclear spin–spin coupling constants (see, for example,
Refs. [33,34]). Recently, the SOPPA method could be
extended to quadratic and higher response functions by
Olsen et al. [35] using a more general derivation scheme
based on time-dependent perturbation theory for a multi-
configuration reference state.

Another polarization propagator approach, referred to
as algebraic-diagrammatic construction (ADC) method
[12], has proved useful in the treatment of electronic excita-
tion in molecules [36,37]. The ADC computational proce-
dure combines diagonalization of a Hermitian secular
matrix and Rayleigh-Schrödinger (RS) perturbation theory
(PT) for the secular matrix elements. At the presently
worked out second-order (ADC(2)) [12,36] and third-order
(ADC(3)) [38,39] levels the explicit configuration space
comprises (generalized) single (S) and double (D) excita-
tions and thus is of the size of the familiar CI-SD or CCSD
treatments. Triple excitations are accounted for implicitly
through the perturbation expansion of the secular matrix
elements.

The original derivation of the ADC approximation
schemes [12,38] was based on diagrammatic perturbation
theory of the polarization propagator. Owing to this deri-
vation, the ADC approach was previously confined to exci-
tation energies and spectral moments of ground-to-excited
state transitions. Recently, this restriction was overcome
thanks to a new formulation of the ADC approach in
terms of a specific intermediate state representation (ISR)
[40–42]. Using the ISR concept the ADC secular matrix
can be written as a representation of the Hamiltonian (or
shifted Hamiltonian) with respect to a basis set of explicitly
correlated states, referred to as (ADC) intermediate states.
Together with the ADC eigenvectors, the intermediate
states allow for an explicit representation of the excited
state wave functions and, thus, for a direct approach to
excited states properties. Moreover, transition moments
between different excited states can now be treated as well.

Apart from a first trial run [43], the ADC method has
not been used so far to compute response properties of
molecules. Attempting to fill this gap, the purpose of this
paper is to extend the ADC method to response properties
and assess its potential here in first computational tests. A
specific ADC form of the frequency-dependent response
functions can easily be obtained from the response theory
for exact states by replacing the (diagonal) sum-over-states
(SOS) expressions with the corresponding (non-diagonal)
ISR representation. For the numerical evaluation of the
resulting ADC expression, being essentially frequency-
dependent resolvent matrix elements, the so-called band
or block Lanczos (BL) algorithm [44,45] proves to be a
practical and efficient method.

In this paper, we report on computations of static and
time-dependent polarizabilities at the ADC(2) level for a
series of atoms and small molecules, comprising Ne, CO,
N2, HF, H2O, CH4, and C2H4. For these systems an exten-
sive set of CC results is available, obtained at various levels
of the CC hierarchy [46–51]. In the case of Ne and HF even
full configuration interaction (FCI) results have been
reported [47]. For a stringent comparison the present
ADC(2) computations were performed using the basis sets
and structural parameters taken from the CC computa-
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tions. As expected, the ADC(2) method will be seen to per-
form essentially as other second-order methods, that is,
CC2 and SOPPA. In some cases, however, the ADC(2)
errors stand out of the usual margin, indicating that for
certain ADC transition amplitudes one must go beyond
the second-order perturbation-theoretical expressions used
at the strict ADC(2) level.
2. Theory

2.1. ADC method and intermediate state representations:

general background

The ADC approach and its reformulation using the
intermediate state representation (ISR) concept has been
amply presented elsewhere [12,38,39,42]. A brief review of
the basic notions will be given in the following.

The ADC approach can be viewed as a specific reformu-
lation of the diagrammatic perturbation series for the
polarization propagator. Let us consider an N-electron sys-
tem with the Hamiltonian Ĥ , a (non-degenerate) ground-
state jW0i, and energy E0. The polarization propagator [29]

PðxÞ ¼ PþðxÞ þP�ðxÞ ð1Þ

is defined as a matrix of resolvent-type matrix elements

Pþrs;r0s0 ðxÞ ¼ hW0jcyscrðx� Ĥ þ E0 þ igÞ�1cyr0cs0 jW0i0 ð2aÞ
P�rs;r0s0 ðxÞ ¼ Pþs0r0 ;srð�xÞ ð2bÞ

Here, cypðcpÞ denote creation (annihilation) operators of sec-
ond quantization associated with the ground-state Har-
tree–Fock (HF) orbitals, up. The prime after the ket on
the r.h.s. of Eq. (2a) indicates the subtraction of the unde-
sired contribution

hW0jcyscrjW0ihW0jcyr0cs0 jW0iðxþ igÞ�1

in the resolvent matrix elements. The positive infinitesimal
g, guaranteeing the convergence of the Fourier transforms
between time and energy representations, will be dropped
whenever unessential. According to Eq. (2b), the two parts,
P+(x) and P�(x), contain the same physical information,
so that it suffices to confine oneself to the former part.

The polarization propagator part P+(x) can be written
in the general algebraic form (ADC form)

PþðxÞ ¼ fyðx�MÞ�1
f ð3Þ

by inserting twice the a complete basis set of the so-called
intermediate states, j eWJ i, on the r.h.s. of Eq. (2a). Here,
the ADC secular matrix M is defined as the representation

MIJ ¼ h eWI jĤ � E0j eWJ i ð4Þ
of the (shifted) Hamiltonian Ĥ � E0 with respect to the
intermediate states j eWIi, and f is the matrix of effective
transition amplitudes, defined correspondingly by
fJ ;rs ¼ h eWJ jcyrcsjW0i: ð5Þ
The intermediate states introduced here will be specified be-
low. The physical information of interest is obtained from
the (exact or approximate) ADC matrices M and f in an
obvious way. The (vertical) excitation energies,

Xn ¼ En � Eo ð6Þ

are given by the eigenvalues of M. In a compact matrix
notation the eigenvalue problem can be written as:

MX ¼ XX; XyX ¼ 1: ð7Þ

Here, X and X denote the diagonal eigenvalue matrix and
the matrix of eigenvectors, X(n), respectively. The excited
states can be expanded according to

jWni ¼
X

J
X Jnj eWJ i ð8Þ

in terms of the eigenvector components and the intermedi-
ate states, so that transition moments of the type

T n ¼ hWnjD̂jW0i ð9Þ
are given according to

T n ¼ X ynF ð10Þ
by the scalar product of the eigenvector X(n) and a vector F

of the so-called effective transition moments,

F J ¼ h eWJ jD̂jW0i ¼
X

rs

drsfJ ;rs ð11Þ

Here, D̂ ¼
P

drscyrcs is a (one-particle) transition operator,
e.g., a dipole moment operator, with one-particle matrix
elements drs ¼ hurjd̂jusi, and fJ,rs denotes the effective tran-
sition amplitudes defined by Eq. (5).

In the original ADC procedure [12,38] explicit expres-
sions for the matrix elements of M and f are obtained with-
out the need to specify the intermediate state
representation. The starting point is the observation that
these quantities are accessible in the form of perturbation
expansions:

M ¼Mð0Þ þMð1Þ þ � � � ; ð12aÞ
f ¼ fð0Þ þ fð1Þ þ � � � ð12bÞ

Note that in previous work the ADC (secular) matrix, M,
has been denoted by K + C, where K = M(0) is the diagonal
matrix of zeroth-order (Hartree–Fock) excitation energies.
Using these expansions in the ADC form (Eq. (3)) leads to
a formal perturbation expansion for the P+ part of the
polarization propagator, which, in turn, can be compared
with the original diagrammatic perturbation series. Per-
forming this comparison through a definite order n of per-
turbation theory, this procedure allows one to determine
successively higher-order contributions to M and f and,
thus, generate in a systematic way a hierarchy of consistent
nth-order approximation schemes referred to as ADC(n)
approximations.

Of particular interest is the ADC(2) level of theory
[12,36]. Here the explicit excitation manifold comprises
the p–h and 2p–2h excitations; the perturbation expansions
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of the secular matrix elements extend through second, first,
and zeroth-order in the p–h block (M11), the p–h/2p–2h

coupling block (M12), and the 2p–2h block (M22), respec-
tively. In a similar way, the p–h and 2p-2h parts of the IS
transition amplitudes, f1 and f2, require expansions through
second and first-order, respectively. An extension of the
ADC(2) scheme, referred to as ADC(2)-x, is obtained by
using the first-order expansion M

ð0Þ
22 þM

ð1Þ
22 for the 2p–2h

block. This improves the treatment of doubly excited states
and states with a strong admixture of double excitations.
At the third-order (ADC(3)) level [38] the expansion man-
ifold is the same as in second-order, while the perturbation
expansions of the matrix elements extend through the next
order of PT (that is, 3, 2, and 1, respectively). Explicit
expressions for the ADC(n) secular matrix elements,
n = 1, 2, 3, have been given in Refs. [12,38]; for the f ampli-
tudes of the ADC(2) scheme see Ref. [53].

The intermediate states underlying the ADC approach
can explicitly be constructed, affording a direct approach
to the ADC matrices M and f. The starting point for this
construction is the set of the so-called correlated excited
states,

jW0
J i ¼ ĈJ jW0i ð13Þ

where

fĈJg � fcyack; cyacybckcl; a < b; k < l; . . .g ð14Þ
denotes the set (physical) excitation operators correspond-
ing to p–h, 2p–2p, . . . excitations and jW0i is the exact
ground state. Here, and elsewhere we use the familiar nota-
tion, in which the subscripts a, b, c, . . . and i, j, k, . . . refer
to unoccupied (virtual) and occupied orbitals, respectively;
the subscripts p, q, r, . . . will be used for orbitals of either
type. The procedure used to generate the intermediate
states is essentially successive Gram–Schmidt orthonormal-
isation of the p–h, 2p–2h, . . . excitation classes. Including
here also the exact ground state as a zeroth excitation class
one obtains an orthonormal basis setfj eWJ ig, where

h eWI j eWJ i ¼ dIJ ; h eWI jW0i ¼ 0; I ; J 6¼ 0 ð15Þ
Obviously, the set fj eWJ i; J > 0g is complete in the space of
the (exact) excited states. The Gram-Schmidt procedure
leads to formal expansions for the successive classes of
intermediate states (becoming rather lengthy for higher
classes). Inserting these Gram-Schmidt expansions in the
respective sub-blocks of the ISR (or ADC) matrices M
and f (Eqs. (4) and (5)) one obtains closed-form expressions
depending on the exact ground state (and the ground-state
energy), which now can be evaluated using RS PT for jW0i
and E0. By truncating the IS manifolds and the resulting
perturbation expansions in a consistent way, this procedure
reproduces the hierarchy of ADC(n) approximations.

The ISR approach to the derivation of explicit ADC
expressions becomes quite cumbersome beyond second-
order, and here the original diagrammatic derivation is
more advantageous. On the other hand, the ISR proce-
dure allows one to determine representations of opera-
tors other than the Hamiltonian. Recently, the ADC/ISR
representation,

DIJ ¼ h eWI jD̂j eWJi ð16Þ

of an arbitrary one-particle operator

D̂ ¼
X

r;s
drscyrcs ð17Þ

was derived at the second-order (ADC(2)) level [42]. As a
consequence, one can now calculate properties of excited
states according to

Dn ¼ hWnjD̂jWni ¼ Y ynDY n ð18Þ
and, in a similar way, transition moments between excited
states,

T nm ¼ hWnjD̂jWmi ¼ Y ynDY m ð19Þ
The perturbation-theoretical consistency of the results de-
pends on the excitation class of the considered states. At
the ADC(2) level, the properties and transition moments
of single excitations are treated consistently through sec-
ond-order.

A summarizing characterization of the ADC method is
as follows: the basic computational procedure consists in
the diagonalization of a Hermitian secular matrix using
RS type PT to evaluate the secular matrix elements. The
explicit configuration spaces of the secular problem are
smaller than those of comparable CI expansions, a prop-
erty referred to as compactness. The ADC truncation error
resulting from restricting the configuration space to singles
and doubles is of fourth-order (for the excitation energies
of single excitations) as compared to a second-order trun-
cation error in the CI case. (In that respect the ADC
scheme is even superior to the CC methods, where the cor-
responding truncation error is of order 3.) The ADC equa-
tions are separable [54], that is, local and non-local
excitations are strictly decoupled, and the ADC results
both for the energies and for the transition moments (inten-
sities) are size-consistent (size-intensive).

2.2. ADC formulation of polarizabilities

The ADC formulation of polarizabilities can readily be
derived from the exact formulation of time-dependent (td)
linear response, as given, for example, by Fetter and Wale-
cka [29]. The td linear response of a property A, associated
with a (one-particle) operator Â, and a td perturbation of
the form B̂f ðtÞ, where B̂ is a time-independent (one-parti-
cle) operator and f(t) a td function with f(t) = 0 for t < t0,
can be written as:

DAðtÞ ¼
Z 1

�1
RABðt; t0Þf ðt0Þdt0 ð20Þ

where

R ðt; t0Þ ¼ hðt � t0ÞhW j½B̂ðt0Þ; ÂðtÞ�jW i ð21Þ
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is referred to as the associated response function. Here, it is
supposed that for t 6 t0 the system is in the exact (unper-
turbed) ground state jW0i and ÔðtÞ ¼ eiĤ tÔe�iĤ t denotes
the interaction picture form of the operator Ô. Fourier
transform according to

RABðxÞ ¼
Z 1

�1
eiðxþigÞtRABðt; 0Þdt ð22Þ

leads to the final energy-dependent form of the response
function,

RABðxÞ ¼ hW0jÂðx� Ĥ þ E0 þ igÞ�1B̂jW0i

� hW0jB̂ðxþ Ĥ � E0 þ igÞ�1ÂjW0i ð23Þ
Here, again, g is a positive infinitesimal introduced for the
definiteness of the Fourier transforms. The familiar sum-
over-states (SOS) form of the response function,

RABðxÞ ¼
X
n6¼0

hW0jÂjWnihWnjB̂jW0i
x� En þ E0 þ ig

�
X
n6¼0

hW0jB̂jWnihWnjÂjW0i
xþ En � E0 þ ig

ð24Þ

is obtained by inserting the resolution of the identity in
terms of the exact states jWni. Note that the contributions
associated with jW0ihW0j cancel. Using the intermediate
states j eWIi rather than the exact states in Eq. (23), one ar-
rives at the ADC form

RABðxÞ ¼ FyAðx�MÞ�1
FB � FyBðxþMÞ�1

FA ð25Þ
where M is the ADC secular matrix and FA denotes the
vector of IS transition moments for the operator Â accord-
ing to Eq. (11).

Depending on the choice of the operators Â, B̂ the gen-
eral expressions (24) and (25) allow one to treat various
response properties, such as dipole polarizabilities, nuclear
magnetic shielding tensors, diamagnetic magnetizabilities
and nuclear spin–spin coupling constants. Here, we are
interested in dipole polarizabilities,

almðxÞ ¼ RDlDmðxÞ ð26Þ

where D̂m, m = x,y,z, denotes the dipole operator compo-
nents, e.g., D̂z ¼ e

PN
i¼1zi. The special case of a static pertur-

bation is obtained by setting x = 0:

almð0Þ ¼ �e2ðFyDl
M�1FDm þ c:c:Þ ð27Þ

In a similar way, the exact expressions for quadratic and
higher response can be cast into ADC form. Let us briefly
inspect the case of hyperpolarizabilities (quadratic
response). Here, one may distinguish a property A and
two time-dependent perturbations B and C, being repre-
sented by the three (one-particle) operators Â, B̂, and Ĉ,
respectively. Upon Fourier transformation, a typical
hyperpolarizability contribution reads

bABCð�xr; x1;x2Þ ¼
X

n;m6¼0

hW0jÂjWmihWmjB̂jWnihWnjĈjW0i
ðxr � xmÞðx2 � xnÞ

ð28Þ
where x1 and x2 are the frequencies of the perturbing
(‘‘incoming’’) fields and xr = x1 + x2 is the frequency of
the resulting (‘‘outgoing’’) field. The SOS expression (28)
can again be transformed in a corresponding ADC form
reading

bABCð�xr; x1;x2Þ ¼ FyAðxr �MÞ�1
Bðx2 �MÞ�1

FB ð29Þ

In addition to the ingredients appearing also in the polar-
izability expression (25), here the matrix B comes into play,
denoting the intermediate state representation of the oper-
ator B̂.

2.3. Improved treatment of second-order transition

amplitudes

Certain perturbation-theoretical terms occurring in the
ADC schemes sometimes perform rather poorly, and one
has to go beyond their strict PT treatment in order to
achieve a generally satisfactory description [39,52,53].
Characteristically, these terms involve, in one form or
another, matrix elements of the one-particle density,

qrs ¼ hW0jcyscrjW0i ð30Þ
or, more precisely, some low-order terms, qðmÞrs , of their PT
expansions. While in the ADC secular matrix such contri-
butions do not arise before third-order (see Ref. [39]), the
effective (ISR) transition amplitudes are already affected
at the second-order level. According to Eqs. (A5-A18) in
Ref. [53], there are 13 distinct second-order terms
f ð2;mÞak;rs ; m ¼ 1; . . . ; 13. Of these the two terms (A9, A10)
contributing to fak,ij (second index pair: hh) and the two
terms (A11,A12) contributing to fak,bd (second index pair:
pp) can be combined, yielding

f ð2Þak;ij ¼ �dkjq
ð2Þ
ia ; f ð2Þak;bd ¼ dabq

ð2Þ
dk ð31Þ

The second-order term, qð2Þai , being the lowest non-vanish-
ing contribution to the p–h components of the density ma-
trix, is associated with the admixture p–h excitations in the
exact ground state, for which, in general, second-order
RSPT is not a stable and reliable approximation. In view
of this, it is advisable to replace the strict second-order
expressions qð2Þai in Eq. (31) by an improved representation
for the p–h density matrix elements, as provided, for exam-
ple, by the Dyson expansion method (DEM) [52]. The
DEM procedure has been used for a long time in the treat-
ment of the of so-called static self-energy contributions,
Rpq(1), arising in third-order approximations for the elec-
tron propagator [55]. For a more detailed discussion the
reader is referred to Ref. [53], where also the DEM is
reviewed.

It should be noted that in a similar spirit Sauer [56] has
introduced an improved SOPPA variant referred to as
SOPPA(CCSD) in which the second-order p–h density
matrix elements have been replaced by the corresponding
CCSD singles amplitudes.



Table 1
Convergence of Lanczos iterations for the lowest eigenvalues of the ADC
secular matrix (Hartree) and components of the static polarizability a
(a.u.) for CO (ADC(2)/d-aug-cc-pVTZ)a

Number of
Lanczos iterations

Lowest 1B1

eigenvalueb
Lowest 1A1

eigenvaluec
axx = ayy azz

30 0.365354 0.477467 11.87908 17.31481
50 0.323858 0.443533 11.88485 17.31763

100 0.320735 0.416355 11.88488 17.31764
300 0.320734 0.406282 11.88488 17.31764
500 0.320734 0.406282 11.88488 17.31764

a Using C2v spatial symmetry the ADC(2) secular matrices were of the
dimensions 125,488 and 138,782 for 1B1 and 1A1 symmetry, respectively.

b Converged eigenvalue obtained using Davidson diagonalization
0.320734 Hartree.

c Converged eigenvalue obtained using Davidson diagonalization
0.406283 Hartree.
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3. Computations

3.1. Block-Lanczos method for polarizabilities

The method of choice for the inversion of the x-depen-
dent matrices arising in the ADC formulation of the polar-
izabilities and hyperpolarizabilities (Eqs. (25) and (29)) is
the band or block extension of the ordinary Lanczos algo-
rithm (see, for example, Parlett [44] and Meyer and Pal
[45]). To explain the numerical procedures let us consider
a typical set of resolvent matrix elements

IabðxÞ ¼ Fyaðx�MÞ�1
Fb; a; b ¼ 1; . . . ; r ð32Þ

where M and Fa may represent the ADC secular matrix
and r transition moment vectors, respectively. The BL
algorithm starts by supplying r orthonormal vectors qi

formed, e.g., by a Gram-Schmidt procedure from the set
{Fa, a = 1, . . ., r}. Each BL step generates an additional
set of r Lanczos vectors. In the basis spanned by the Lanc-
zos vectors the projection of the original secular matrix M

becomes a band matrix T with a bandwidth of 2r + 1:

T ¼ QyMQ ð33Þ

Here, Q denotes the matrix (q1, . . ., qnr) of the Lanczos vec-
tors generated after n BL steps. Diagonalization of the
(small) band matrix T generates a set of nr approximate
eigenvalues ~xk, k = 1,. . ., nr of M. The corresponding
approximate eigenvectors are obtained according to

~Y k ¼ QZk ð34Þ
where Zk is the kth eigenvector of T. Using the approxi-
mate Lanczos eigenpairs (exk, ~Y k) in a spectral representa-
tion of an resolvent matrix element (Eq. (32)) yields

eI abðxÞ ¼
Xnr

k¼1

gðkÞa gðkÞb

x� ~xk
ð35Þ

where

gðkÞa ¼ eY ykFa ¼ ZykQyFa ð36Þ
is the scalar product of the Lanczos eigenvector ~Y k and the
transition moment vector Fa. Relatively, few Lanczos steps
suffice to yield a good approximation for the exact resol-
vent functions, Iab(x) for frequencies x not too close to
non-converged energy eigenvalues ~xk. It should be noted
that the BL method can be applied to the static limit
x = 0 as well.

An important point for the efficiency of the BL algo-
rithm is the observation that, by construction, the original
vectors Fa, a = 1, . . ., r are orthogonal to all Lanczos vec-
tors with i > r. Thus, it suffices to compute and store the
r2 scalar products qyi Fa (i, a = 1, . . ., r) in order to deter-
mine the residue amplitudes gðkÞa according to Eq. (36). As
in all iterative diagonalization routines the basic numerical
step in each BL cycle, determining also the scaling behav-
ior, is the matrix · vector product, Mv! v 0.
3.2. Computational details

The H2O and C2H4 molecules were placed in the yz-
plane, the molecular axis along the z-axis. The basis sets
comprised the cc-pVXZ sets [57], X = D,T,Q, using both
the aug- and d-aug-extensions [58]. However, the six-com-
ponent representation of the Cartesian d-functions had to
be used in the present calculations, which will slightly affect
the comparability of the CC and ADC results. In the present
study static polarizabilities have been computed for Ne, CO,
N2, HF, H2O, CH4, and C2H4. For Ne and HF also dynamic
polarizabilities in the 0.1–0.5 a.u. frequency range are
reported. For a stringent comparison with FCI [47] and
CC results [46–51], the molecular structures and basis sets
used here are as in the latter work. More specifically, the
molecular structure data were taken from Ref. [59]:
R(CO) = 1.12836 Å; R(NN) = 1.09773 Å; R(HF) =
0.916879 Å; R(OH) = 0.957902 Å, HOH = 104.4�; R(CH) =
1.08588 Å (CH4); R(CC) = 1.33074 Å, R(CH) = 1.08068
Å, HCH = 121.4� (C2H4). The ADC calculations were per-
formed using the original code [60] interfaced to the
GAMESS [61] program package. The strict (not improved)
second-order contributions to the f amplitudes were used in
the ADC(2) computations.

The Heidelberg block-Lanczos module [45,62,63] was
slightly modified and adapted to the ADC code. In the
polarizability computations, typically 500 block-Lanczos
iterations were performed to ensure fully converged results.
A typical Lanczos convergence pattern is displayed in
Table 1.
4. Results and discussion

In Tables 2 and 3 we compare dynamic polarizabilities
of Ne and HF at distinct frequencies obtained at the
ADC(1) and ADC(2) levels of theory with FCI reference
data, the results of various CC schemes [46–51], and recent
SOPPA results [64]. The common basis sets used in these



Table 2
Dynamic polarizabilities (a.u.) of Ne obtained using TDA, ADC, CC, and
SOPPA methods compared to FCI results(d-aug-cc-pVDZ basis set)a,b,c

x (a.u.) 0.0 0.1 0.2 0.3 0.4 0.5
FCI 2.67 2.70 2.79 2.97 3.31 4.09

Error

TDA/CIS �0.10 �0.11 �0.14 �0.18 �0.30 �0.66
ADC(1) �0.29 �0.30 �0.32 �0.38 �0.51 �0.88
ADC(2) 0.16 0.16 0.18 0.22 0.32 0.85

CCS �0.23 �0.24 �0.27 �0.32 �0.44 �0.82
CC2 0.15 0.15 0.17 0.20 0.28 0.66
CCSD 0.03 0.04 0.04 0.05 0.07 0.14
CC3 0.00 0.00 0.00 0.01 0.01 0.01

SOPPA 0.15 0.15 0.17 0.21 0.31 0.88

a FCI and CC results from Ref. [47].
b SOPPA results from S.P.A. Sauer, Private Communication, 2006.
c The TDA and ADC calculations were performed using the six-com-

ponent Cartesian representation of d-functions.
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computations are the aug-cc-pVDZ and d-aug-cc-pVDZ
sets, where the 6-component rather than the 5-component
d-function sets were used in the ADC computations. At
the first-order (ADC(1)) level the polarizabilities are smal-
ler than the FCI results, the error being in the order of 10%
for small frequencies and 20% for larger frequencies. A
modest, though rather systematic improvement can be seen
at the ADC(2) level. Here, the error ranges from 5% at
small frequencies to 10% at higher frequencies, the ADC
results lying now above the FCI values. As has been
pointed out in the case of excitation energies and spectral
intensities [39], the CCS and CC2 results are essentially
equivalent to those of the ADC(1) and ADC(2) methods,
respectively, and this observation also applies to polariz-
abilities. Both with respect to the magnitude and the sign
of the errors, the ADC(1) and ADC(2) results in Tables 2
and 3 are quite similar to those of the CCS and CC2
schemes, respectively. One may also note that there is little
difference between the ADC(2) and SOPPA results.
Table 3
Dynamic polarizabilities (a.u.) of HF obtained using TDA, ADC, CC, and SO

x (a.u.) 0.0 0.1

axx azz axx azz

FCI 4.29 6.21 4.39 6

Error

TDA/CIS �0.12 0.18 �0.16 0
ADC(1) �0.47 �0.66 �0.50 �0
ADC(2) 0.27 0.51 0.30 0

CCS �0.34 �0.32 �0.38 �0
CC2 0.29 0.43 0.32 0
CCSD 0.05 0.07 0.06 0
CC3 0.01 0.01 0.01 0

SOPPA 0.26 0.43 0.29 0

a FCI and CC results from Ref. [47].
b SOPPA results from S.P.A. Sauer, Private Communication, 2006.
c The TDA and ADC calculations were performed using the six-component
Significantly, more accurate results are obtained at the
CCSD and CC3 levels. In particular, the CC3 method
yields a highly satisfactory description of polarizabilities
and may serve as accuracy standard when FCI results are
not available. However, the CCSD and CC3 methods scale
as N6 and N7, respectively, with the number of basis func-
tions, that is, they are more expensive than the CC2 and
ADC(2) methods, both scaling as N5. One may note that
the simple CIS or Tamm–Dancoff approximation (TDA)
performs surprisingly well, yielding better results than
those of ADC(1) and CCS in the present examples of Ne
and HF. Presumably, this will be largely due to favorable
error compensation rather than representing generally
valid pattern.

ADC(2) results for the static polarizabilities of Ne, CO,
N2, HF, H2O, CH4, and C2H4 are given in Table 4 together
with experimental data. A relatively large basis set (d-aug-
cc-pVTZ) was used in the ADC(2) computations, making a
comparison between theory and experiment meaningful.
For the isotropic polarizabilities, �a, the error relative to
experiment is below 5%, except for CO and HF, where
the ADC(2) results exceed the experiment by 9% and
8%, respectively. While such deviations, uncorrected for
vibrational effects, may still be in an acceptable range, a
less satisfactory situation is found for the polarizability
anisotropies, Da. Particularly large deviations from experi-
ment are seen in CO and N2, amounting to almost 2 a.u. in
the case of CO. Obviously, the error in the ADC(2) results
for different a components is not uniform.

For a closer inspection of the anisotropy problem, we
compare in Table 5 various theoretical results for the static
polarizabilities of CO and H2O, where the CC3 results of
Christiansen et al. [48] can serve as accuracy benchmark.
In both the ADC, CC, and SOPPA [64] computations the
d-aug-cc-pVTZ basis set was used. The ADC anisotropy
error in CO can clearly be traced to the poor reproduction
of the longitudinal (zz) polarizability component. Whereas
the ADC(2) result for the orthogonal (xx, yy) components
PPA methods compared to FCI results (aug-cc-pVDZ basis set)a,b,c

0.2 0.3

axx azz axx azz

.33 4.76 6.74 6.00 7.63

.17 �0.30 0.10 �0.97 �0.08

.69 �0.65 �0.79 �1.33 �1.03

.53 0.43 0.62 1.48 0.81

.35 �0.53 �0.44 �1.21 �0.65

.44 0.44 0.51 1.24 0.66

.08 0.08 0.09 0.19 0.11

.01 0.01 0.01 0.03 0.02

.46 0.44 0.55 1.76 0.78

Cartesian representation of d-functions.



Table 5
Static polarizabilities a (a.u.), isotropic polarizabilities �a (a.u.) and
polarizability anisotropy Da (a.u.) of CO and H 2O calculated using
TDA, ADC, CC and SOPPA schemes in comparison with experimental
dataa

axx ayy azz �a Da

CO
TDA/CIS 13.62 17.17 14.80 3.55
ADC(1) 11.31 13.43 12.02 2.12
ADC(2) 11.89 17.32 13.70 5.43

CISb 13.57 17.19 14.77 3.62
CCSc 12.09 15.26 13.15 3.17
CC2c 12.15 16.10 13.47 3.95
CCSDc 11.87 15.71 13.15 3.84
CC3c 11.95 15.57 13.16 3.62

SOPPAf 11.91 16.49 13.44 4.58

Experimental 13.08d 3.59e

H2O
TDA/CIS 8.74 10.59 9.75 9.69 1.60
ADC(1) 7.97 9.24 8.48 8.56 1.11
ADC(2) 9.76 10.40 10.17 10.11 0.56

CCSc 8.26 9.71 8.97 8.98 1.26
CC2c 10.15 10.52 10.28 10.32 0.33
CCSDc 9.35 9.98 9.61 9.65 0.55
CC3c 9.38 9.96 9.61 9.65 0.51

SOPPAf 9.83 10.36 10.10 10.10 0.46

Experimental 9.83g 0.67h

a Theoretical results for the d-aug-cc-pVTZ basis set (the present TDA
and ADC calculations performed using Cartesian six-component repre-
sentation of d-functions).

b Ref. [51], basis set aug-cc-pVTZ.
c Ref. [48].
d Ref. [66], as cited in Ref. [51].
e Ref. [67] for k = 632.8 nm, as cited in Ref. [48].
f Ref. [64].
g Ref. [70], as cited in Ref. [48].
h Ref. [71], as cited in Ref. [48].

Table 4
Theoretical (ADC(2)/d-aug-cc-pVTZ) and experimental static polarizabil-
ities a (a.u.), isotropic polarizabilities �aa (a.u.) and polarizability anisot-
ropy Dab (a.u.) of Ne, CO, N2, HF, H2O, CH4, and C2H4

c

System ADC(2) Experiment

axx ayy azz �a Da �a Da

Ne 2.79 2.79 2.79 2.79 2.67d

CO 11.89 11.89 17.32 13.70 5.43 13.08e 3.59f

N2 10.07 10.07 15.15 11.76 5.08 11.74g 4.45g

HF 5.53 5.53 6.83 5.96 1.30 5.60h 1.33i

H2O 9.76 10.40 10.17 10.11 0.56 9.83j 0.67k

CH4 16.57 16.57 16.57 16.57 17.27l

C2H4 22.54 24.91 35.35 27.60 11.81 27.82m 11.31m

a �a ¼ 1
3 ðaxx þ ayy þ azzÞ:

b Da ¼ 1ffiffi
2
p ððaxx � ayyÞ2 þ ðayy � azzÞ2 þ ðazz � axxÞ2Þ1=2.

c The aug-cc-pVDZ basis set employed in case of CH4 and C2H4.
d Ref. [65], as cited in Ref. [51].
e Ref. [66], as cited in Ref. [51].
f Ref. [67] for k = 632.8 nm, as cited in Ref. [48].
g Ref. [67], as cited in Ref. [49].
h Ref. [68], as cited in Ref. [64].
i Ref. [69], as cited in Ref. [64].
j Ref. [70], as cited in Ref. [48].

k Ref. [71], as cited in Ref. [48].
l Ref. [72], as cited in Ref. [64].

m Derived from the data of Ref. [73], as cited in Ref. [46] (axx = 22.38,
axx = 26.02, axx = 35.06 a.u.).
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agrees with the CC3 reference to within 0.06 a.u., there is a
discrepancy of 1.8 a.u. for azz. One will note strikingly dif-
ferent convergence patterns in the xx- and zz-component
results with increasing ADC order number (n). While in
both cases the behavior is oscillatory, the amplitudes of
the results for the longitudinal component are much larger
than those of the orthogonal components: the azzvalue
drops by about 3.8 a.u. when going from the zeroth-
(TDA) to the first-order (ADC(1)) level, and rises again
by 3.9 a.u. at the second-order (ADC(2)) level. The corre-
sponding changes of the axxvalues, being �2.3 and
+0.6 a.u., respectively, are considerably smaller. It seems
that in view of the large oscillations in the case of azz, the
second-order contribution becomes unbalanced and over-
shoots the acceptable limit. The trend to overestimate the
longitudinal component is seen also in the SOPPA and
CC2 results, though much less pronounced than in the
ADC(2) data. Obviously, the large error in the longitudinal
polarizability of CO indicates a serious deficiency of the
present ADC(2) version, which is still based on the strict
(not improved) second-order expressions for the effective
transition amplitudes. We expect that the improved ampli-
tudes according to Section 2.3 will lead to a more satisfac-
tory description in line with the CC2 and SOPPA results.

In H2O, the second example of Table 5, the polarization
anisotropy is relatively small, and the ADC(2) result of
0.56 a.u. is in very good agreement with the CC3 value.
Here, the ADC(2) error with respect to the CC3 reference
is roughly uniform for all three polarizability components
(�0.4–0.5 a.u.), being even somewhat smaller than the
CC2 error. The SOPPA results are seen to be in excellent
agreement with the ADC(2) results.

In Table 6, the ADC(2) results are given for the static
polarizabilities of CO and H2O using different basis sets
of increasing size. In addition to the polarizabilities, also
results for the dipole or Thomas–Reiche–Kuhn (TRK)
sum rules are given here. A thorough basis set study of
CC and FCI results for BH polarizabilities and hyperpolar-
izabilities has been given by Larsen et al. [47], and their
essential findings apply to the present results as well. The
cc-pVDZ basis set is clearly insufficient, yielding much
too small polarizability values. A large improvement is
obtained at the triple- and quadruple-zeta levels of the
cc-pVXZ hierarchy. The inclusion of one set of diffuse
functions (aug-cc-pVXZ) has a significant effect, being larg-
est at the double-zeta level (X = D), whereas adding fur-
ther diffuse functions (d-aug scheme) appears to be of
minor importance beyond the X = T level. The aug-cc-
pVTZ basis set may be seen as a good compromise between
basis set size and accuracy.



Table 6
Comparison of ADC(2) results for polarizabilities a (a.u.), isotropic polarizabilities �a (a.u.), dipole sum rule, S ¼ 2=3ðSx

1 þ Sy
1 þ Sy

1Þ, for CO and H2O
obtained using different basis sets

axx ayy azz �a 2/3Sx
1 2/3Sy

1 2/3Sz
1 S S(1)

CO
cc-pVDZ 8.20 14.69 10.36 3.84 3.87 11.55 11.30
aug-cc-pVDZ 11.62 17.54 13.59 3.50 3.85 10.85 10.54
d-aug-cc-pVDZ 11.94 17.59 13.82 3.52 3.86 10.90 10.60
cc-pVTZ 10.12 16.22 12.15 4.11 4.31 12.53 12.26
aug-cc-pVTZ 11.84 17.30 13.66 4.13 4.45 12.71 12.41
d-aug-cc-pVTZ 11.89 17.32 13.70 4.22 4.49 12.93 12.65
cc-pVQZ 11.06 16.86 12.99 4.56 4.70 13.82 13.57
aug-cc-pVQZ 11.81 17.21 13.61 4.51 4.75 13.77 13.53

H2O
cc-pVDZ 3.24 7.17 5.42 5.28 3.16 3.02 3.07 9.25 9.13
aug-cc-pVDZ 9.14 10.36 9.64 9.71 2.76 2.81 2.81 8.38 8.21
d-aug-cc-pVDZ 10.09 10.56 10.31 10.32 2.75 2.80 2.79 8.34 8.20
cc-pVTZ 5.90 8.60 7.45 7.32 3.21 3.13 3.16 9.50 9.37
aug-cc-pVTZ 9.55 10.38 9.99 9.97 3.07 3.12 3.11 9.30 9.19
d-aug-cc-pVTZ 9.76 10.40 10.17 10.11 3.11 3.16 3.15 9.42 9.31
cc-pVQZ 7.43 9.33 8.57 8.44 3.38 3.34 3.35 10.07 9.94
aug-cc-pVQZ 9.57 10.28 9.99 9.95 3.23 3.31 3.31 9.85 9.76

The first-order dipole sum expression, S(1), is exact up to the basis set error (see Ref. [36]).
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The TRK results for the individual dipole sum compo-
nents, Sa

1, a = x,y,z, in Table 6 may serve as a check for
the absence of any directional basis set bias. The results
for the (weighted) first-order dipole sum expression, S(1)
in Table 6, differing from the electron number N only
due to basis set incompleteness (see Ref. [36]), clearly reflect
the increasing basis set quality with X = D, T,Q. One may
note that diffuse functions have only a marginal effect here
and their inclusion may even enhance the S(1) error.

5. Concluding remarks

The ADC approach to the polarization propagator has
been extended to the treatment of molecular response
properties. To demonstrate the performance of the
method, static and dynamic polarizabilities were computed
for a series of small molecules at the second-order
(ADC(2)) level of theory. The comparison with previous
FCI, CC, and SOPPA results showed that in most cases
the accuracy of the ADC(2) method matches that of the
CC2 and SOPPA treatments. However, in the case of the
longitudinal static polarizabilities of the CO and N2 mole-
cules, distinctly larger ADC(2) errors did occur. The reason
for this deficiency is seen in the fact that certain second-
order contributions to the effective transition amplitudes
are poorly described at the strict PT level used in the pres-
ent ADC(2) version. A systematic improvement should
result by correcting the deficient second-order terms as out-
lined in Section 2.3. The numerical confirmation of this
expectation has to be postponed, until the first results of
the improved ADC(2) version will be available.

An obvious option for higher accuracy is the third-order
ADC(3) approximation, which, however, scales already as
N6. As a first step, one may combine the ADC(3) secular
matrix with the (corrected) second-order transition ampli-
tudes. Using such a mixed ADC(3/2) version [36,38], very
satisfactory results were obtained for the ground-to-excited
state transition moments of small molecules [42]. The full
ADC(3) level may be more difficult to achieve, because
the number of third-order contributions to the effective
transition amplitudes is substantial [74].
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