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We report an implementation of self-consistent Green’s function many-body theory within a second-
order approximation (GF2) for application with molecular systems. This is done by iterative solu-
tion of the Dyson equation expressed in matrix form in an atomic orbital basis, where the Green’s
function and self-energy are built on the imaginary frequency and imaginary time domain, respec-
tively, and fast Fourier transform is used to efficiently transform these quantities as needed. We
apply this method to several archetypical examples of strong correlation, such as a H32 finite lat-
tice that displays a highly multireference electronic ground state even at equilibrium lattice spacing.
In all cases, GF2 gives a physically meaningful description of the metal to insulator transition in
these systems, without resorting to spin-symmetry breaking. Our results show that self-consistent
Green’s function many-body theory offers a viable route to describing strong correlations while re-
maining within a computationally tractable single-particle formalism. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4884951]

I. INTRODUCTION

The description of strong correlations arising from,
for example, open shell d orbitals in transition metal
complexes,1, 2 or degenerate π orbitals in polyaromatic
organic compounds,3 remains a significant challenge in quan-
tum chemistry for several reasons. For example, while single-
reference methods such as Kohn-Sham (KS) density func-
tional theory4 (DFT) can be cost-effective enough to apply to
realistic systems, they flounder when confronted with mul-
tireference configurations that require a rigorous treatment
of static correlation.5, 6 On the other hand, multireference
methods that can handle these strong correlations, such as the
complete (Refs. 7, 8) and restricted (Refs. 9, 10) active space
self-consistent field methods, or the more recently developed
multiconfigurational hybrid DFT schemes,11–13 all share the
same fundamental requirement of defining an active-space
within which the number of determinants grows exponen-
tially with the number of correlated orbitals. These challenges
have motivated the exploration of alternate approaches for
strongly correlated systems, such as the density matrix renor-
malization group (DMRG),2, 14–16 the two-electron reduced
density matrix method,3, 17, 18 constrained-pairing mean-field
theory (CPMFT),19–21 and projected Hartree-Fock theory
(PHF).22–27 Despite these developments, an inexpensive and
generally applicable ab initio method that can simultaneously
handle dynamic and strong static correlation remains elusive.

Green’s function many-body theory28 offers an inter-
esting formalism to attack this problem. In various real-
izations such as GW,29 the random phase approximation
(RPA),30, 31 the nth-order algebraic diagrammatic construc-
tion (ADC(n)),32 and second-order Green’s function theory

a)Author to whom correspondence should be addressed. Electronic mail:
philljj@umich.edu

(GF2),33 many-body theory has a long history of use for cal-
culating properties such as ionization potentials and electron
affinities, excited states, spectra, and ground-state properties
as well.34–39 While typically these methods have been applied
to weakly correlated systems, it has long been known that
they can work with varying degrees of success for simple
multireference systems. For example, GW,40–43 RPA,5, 44–50

and GF233, 51 can give a qualitatively correct description of
stretched H2 without breaking spin-symmetry. Similarly, the
ADC(n) method has been shown to accurately describe the
spectra and excited states of multireference polyenes52 and
carbon clusters,53 and recently in the Nuclear Physics com-
munity second-order Gorkov-Green’s function theory54, 55 has
found use for open shell nuclei featuring degeneracies.56

In this Communication, it is our purpose to show that
GF2 can, without breaking spin-symmetry, give a qualita-
tively correct description of even nontrivial strongly corre-
lated systems such as stretched H12 and H32 lattices, which
are multireference even at their respective equilibrium lat-
tice spacings. We will show that in terms of calculated en-
ergies, GF2 is similar to MP2 (Møller–Plesset second order)
when the system is single-reference, yet more closely resem-
bles truncated CI in the strongly correlated dissociation limit.
Furthermore, at self-consistency GF2 yields fractional natural
occupation numbers that can describe the metal-to-insulator
transition in these lattices. This makes GF2 a viable formal-
ism for systems too large for active-space methods, yet too
strongly correlated for single-reference approaches, and of-
fers a way to simply and efficiently extend MP2’s treatment
of dynamic correlation to strongly correlated systems while
remaining within a tractable single-reference formalism.

First, we give an overview of the theory and our imple-
mentation of GF2. We stress that previous implementations
of GF2-type methods by Holleboom and Snijders33 as well
as Dahlen and van Leeuwen51 existed, however to the best of
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our knowledge none of them investigated in detail the poten-
tial of GF2 to describe highly multireference systems, or an
efficient implementation that can be useful by a more general
community of computational chemists.

II. IMPLEMENTATION

In the following, we work in a non-orthogonal atomic
orbital (AO) basis with corresponding overlap matrix S,
Fock matrix F, and density matrix P. Starting from a re-
stricted Hartree-Fock (HF) reference solution, in the AO ba-
sis the frequency dependent HF Green’s function is built as
GHF(ω) = [(μ + ω)S − F]−1, where μ is the chemical po-
tential, ω is an imaginary frequency, and F is given by Fij

= hij + ∑
kl

Pkl(vij lk − 1
2 viklj ), where hij are matrix elements

of one electron operators and vijkl are two-electron integrals
in the AO basis.

Provided with GHF, the exact single-particle many-body
Green’s function, G(ω), can be found by solving the Dyson
equation G(ω) = GHF(ω) + GHF(ω)�(ω)G(ω), where �(ω)
is the exact frequency-dependent self-energy which accounts
for the correlation missing in the simple HF picture. In
this work, we employ a second-order approximation to the
self-energy, which is shown using Feynman diagrams57 in
Figure 1. Starting from the left the first two are the first-order
Hartree and exchange diagrams. This is the frequency inde-
pendent part of the self-energy, and is already covered by the
Fock matrix F. The next two diagrams are second-order, and
are given algebraically in the time domain as

�ij (τ ) = −
∑

klmnpq

Gkl(τ )Gmn(τ )Gpq(−τ )

× vimqk(2vlpnj − vnplj ), (1)

where G(τ ) is the Green’s function Fourier transformed to the
imaginary time domain. With the self-energy constructed, we
can fast Fourier transform (FFT) �(τ ) to the ω domain and
build the Green’s function as

G(ω) = [(μ + ω)S − F − �(ω)]−1. (2)

Provided with an updated Green’s function, we can build
the correlated single-particle density matrix P (see Eq. (5) in
the supplementary material58) and then build the correlated
Fock matrix F. Equations (1) and (2) therefore establish a
self-consistent scheme for calculating the Green’s function
in a second-order approximation. The detailed description of
the implementation steps can be found in Sec. I of the sup-
plementary material.58 To evaluate the GF2 electronic energy,

we employ the Galitskii–Migdal formula59 (see Sec. II of the
supplementary material58).

Let us now discuss several advantages of the GF2 the-
ory that may make it accessible and interesting for a general
quantum chemistry community. GF2 is an iterative procedure
where the central quantity of interest is the single-particle
many body Green’s function G(ω), rather than the single-
particle density ρ(r) or the many-body wavefunction �. In
the GF2 scheme, there is no explicit reference to �, thus the
requirement of choosing an active-space or truncating � at a
certain excitation level is circumvented entirely. This offers an
enormous reduction in computational effort for systems that
require large active-spaces, and gives GF2 generous flexibil-
ity in handling systems that would require different levels of
excitations in a CI expansion (e.g., singles, doubles, triples,
etc.). Additionally, unlike KS-DFT, which depends explicitly
on a ρ(r) built from a non-interacting reference of Kohn-
Sham orbitals obeying Aufbau filling, GF2 has no problem
confronting strongly correlated systems and can yield frac-
tional natural occupation numbers at self-consistency. Fur-
thermore, because of its iterative self-consistent nature GF2 is
independent of the reference Green’s function, and thus both
HF and DFT starting Green’s functions can be used. In the
final solution, series of diagrams are included due to the inex-
plicit resummation in the iterative procedure. This is the rea-
son why GF2 is able to recover some static correlation even
when starting from a restricted-HF solution, and can avoid the
typical MP2 divergence for cases with decreasing band gaps.
Moreover, due to the inclusion of series of mosaic diagrams
this method is applicable to metallic systems60, 61 when the
regular MP2 method would remain pathologically divergent.

The building of �(τ ) according to Eq. (1) formally scales
as O(Nτ n5), where Nτ and n are the number of imaginary
time grid points and atomic orbitals, respectively. While Nτ

presents a significant prefactor, at any given grid point τ n the
construction of the self-energy �τn

is independent, and there-
fore as a whole the self-energy formation is embarrassingly
parallel. Given the development in technology in the last few
decades, it is not unreasonable to have access to a computing
facility offering several hundred to tens of thousands of pro-
cessors for parallel computing. Therefore, practically speak-
ing, the formal scaling of O(Nτ n5) will never be realized in
typical calculations, and the reality will be much closer to
O(n5).

Since the self-energy in Eq. (1) can be expressed in the
imaginary time domain as a product of the Green’s functions
with the two-electron integrals, the whole GF2 calculation
can be performed in the AO basis. Thus, the costly orbital

FIG. 1. Diagrams included in second-order self-energy within GF2. The first two diagrams are frequency-independent, and are included in the Fock matrix.
The next two diagrams are frequency-dependent, and represent the second-order correlation effects covered by �(ω).
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transformations from AO to molecular orbital (MO) basis are
not necessary, and one can take advantage of integral screen-
ing which should reduce the computation cost even further.
This is due to a similar structure of the second order self-
energy in the time domain to the Laplace transformed MP2
expressions. An alternative route leading to a significant cost
reduction is using density fitted AO integrals in Eq. (1), which
would result in O(n3m) scaling where the m is the number of
auxiliary functions necessary for density fitting. Thus, as ex-
pected the overall scaling of the GF2 algorithm is identical
up to a prefactor with the Laplace transformed density fitted
MP2 scheme.

To build �(τ ), we employ a non-equidistant τ grid with
a sufficient number of points for the Fourier transforms to be
converged to a very high precision.62 We use FFT that scale as
O(N log(N )), where N is the number of grid-points. High ac-
curacy in the FFT integrals is maintained since we use an an-
alytical high frequency tail of the Green’s function,63, 64 given
by G(ω) ≈ G1

ω
+ G2

ω2 + G3
ω3 . To build G(ω), we use a grid of

Matsubara frequencies, ωn = (2n + 1)iπ /β. Imaginary fre-
quencies are used in our implementation because G(ω) is a
smoother function on the imaginary axis as compared to the
real axis, which simplifies its numerical evaluation signifi-
cantly. We find it useful to choose the inverse temperature β

and number of frequency points such that the initial Hartree-
Fock Green’s function reproduces the Hartree-Fock energy
and electron number to 10−5 precision. This brings us to the
next advantage of the GF2 method, which is the inverse tem-
perature β makes the GF2 calculation explicitly temperature
dependent.65 All other computationally demanding steps of
the GF2 algorithm such as constructing the Green’s function
and evaluation of the chemical potential scale as O(n3) and
are cheaper than the construction of �(τ ).

We emphasize that this GF2 procedure is all-electron,
with no selection of an active space of correlated orbitals.
Other than the choice of an appropriate frequency/time grid
(which usually is straightforward), the GF2 procedure re-
quires no more user input than that of a typical HF or DFT
calculation. As such it can be made blackbox.

III. RESULTS AND DISCUSSION

Now we report the application of our GF2 implementa-
tion for several representative cases of strong correlation. We
want to stress that all GF2 calculations are spin-restricted, and
are compared to other spin-restricted calculations using stan-
dard ab initio methods (e.g., RHF, MP2, configuration inter-
action singles doubles (CISD), coupled cluster singles dou-
bles (CCSD), etc.). The DALTON 2011 suite of programs66

was used to carry out all calculations, as well as to gener-
ate the restricted Hartree-Fock input required for our in-house
GF2 implementation.

Before we discuss the dissociation curves, it is worth
making a very brief remark on the relevance of self-
interaction error (SIE), which can manifest in many-body
theory67–69 and DFT.70 Because SIE can “mimic” static
correlation,69, 71 its presence (absence) can actually apprecia-
bly improve (worsen) the performance of a method in the
dissociation limit.47, 48 Because GF2 includes all direct and
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FIG. 2. Dissociation of Li2 with 6-31G basis.

exchange diagrams up to second order it is therefore explic-
itly SIE-free, in contrast to other many-body methods such as
GW or RPA.68, 69 Therefore, the static correlation GF2 recov-
ered in our calculations is the result of a genuine treatment of
correlation rather than a fortuitous exploitation of SIE errors.

First, we consider the Li2 dissociation with the 6-31G ba-
sis, shown in Figure 2. For this system, we compare RHF,
MP2, and full configuration interaction (FCI) to GF2. The
natural occupation numbers obtained with GF2 for this sys-
tem (as well as the other systems studied in this work) can
be found in Sec. III of the supplementary material.58 Inter-
estingly, MP2 and GF2 are practically identical within the
equilibrium distance and up to about 7 a.u. Beyond 7 a.u. the
MP2 and GF2 curves separate, and the GF2 solution transi-
tions from weakly to strongly correlated. MP2, unable to cope
with the multireference character of the strongly correlated
solution, characteristically begins to diverge to −∞ correla-
tion energy with infinite separation while GF2 converges to a
finite value parallel to FCI.

Next, we consider the H6 ring stretch using a TZ basis,
which is shown in Figure 3. Due to the high multireference
character in the dissociation limit both CCSD and coupled
cluster singles doubles with perturbative triples (CCSD(T))
fail spectacularly. MP2 and GF2 are in very close agreement
around the equilibrium distance where the system is still es-
sentially single-reference. Beyond a = 3.5 a.u. the system
rapidly takes on multi-reference character and the GF2 curve

FIG. 3. Dissociation of H6 with TZ basis.
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FIG. 4. Dissociation of H12 with STO-3G basis.

breaks away from MP2, which coincides with the divergence
of CCSD and CCSD(T) away from the FCI curve. In the dis-
sociation limit, GF2 settles out between the CISD and CISDT
curves.

Now we apply GF2 to two finite hydrogen lattices, a
4×3 hydrogen plaquette (H12) and a 4×4×2 hydrogen lat-
tice (H32). The structures of both systems are determined by
the lattice parameter a. Hydrogen chains and lattices are an
interesting test case because they can display highly multiref-
erence electronic ground states at stretched lattice parame-
ters, and accounting for the metal-to-insulator transition with
changing lattice parameter is a challenging test for an ab initio
method.15, 18, 72

First, we consider the 4×3 hydrogen plaquette with a
minimal STO-3G basis (Fig. 4). This system is interesting as
it displays strong correlations even at the equilibrium lattice
spacing. Because of this MP2 and GF2 begin to separate from
each other near the bottom of the well around 2.3 a.u., while
CCSD and CCSD(T) cannot even qualitatively describe the
equilibrium energy curve. In this case in the dissociation limit,
GF2 gives an energy very similar to CISDTQ. Excepting of
course FCI, of all the methods considered only GF2 was able
to capture the physically correct limit with all 12 natural oc-
cupation numbers approaching unity in the dissociation limit.

Finally, we consider the H32 finite cubic lattice, which
is even more strongly correlated within the equilibrium lat-
tice spacing than H12. In Figure 5, we plot the natural occu-
pation numbers of the correlated density-matrix as obtained
by GF2 with respect to the lattice parameter a. Addition-
ally, in the lower-right inset we show the lattice structure,
and in the upper-right inset we show dissociation curves for
RHF, MP2, CISD, and GF2. We attempted coupled clus-
ter calculations on this system but could not converge for
a ≥ 2.0 a.u., similar to Hachmann, Cardoen, and Chan’s15

experience with the H50 chain. Examining first the natural
occupation numbers, for a < 2.0 a.u. the system is approxi-
mately single-reference, but it is visible the GF2 natural oc-
cupations are smoothly shifting towards stronger correlations.
By a ≈ 2.0 a.u. a weakly to strongly correlated transition has
occurred, and for a ≥ 2.0 a.u. the system smoothly becomes
more strongly correlated, with all 32 natural occupation
numbers approaching unity in the limit of large lattice param-
eter a. This shows that GF2 can capture the metal-to-insulator
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FIG. 5. Natural occupation numbers of H32 double plaquette with respect
to lattice parameter a. Inset lower-right: structure of H32 (image generated
by VESTA73). Inset upper-right: lattice stretching curves for RHF (dotted-
dashed red), MP2 (dotted blue), CISD (thick red), and GF2 (dashed green).

transition in a strongly correlated system while being essen-
tially a single-reference-type blackbox method.

Inspecting the lattice-stretching curve in the upper-right
inset now, we see that already by a = 2.0 a.u. the MP2 and
GF2 curves have separated, because of the strong correlations
present near the equilibrium lattice spacing. Interestingly, the
CISD curve is slightly worse than MP2, which indicates the
truncated CI expansion of � would need to include much
higher excitations than merely doubles, which is consistent
with the natural occupation numbers from GF2.

In conclusion, GF2 is an all-electron, size-extensive,
ab initio blackbox method that due to iterative diagrammatic
resummation can recover both dynamic and static correlation.
This allows it to avoid the typical collapse inherent to the MP2
method when strong correlations are present, and furthermore
enables GF2 to describe phenomena such as the metal-to-
insulator transition in strongly correlated electronic systems.
Additionally, GF2 gives immediate access to temperature de-
pendent properties, and is a good formalism for calculating
frequency dependent quantities as well. Moreover, GF2 can
be trivially implemented in a massively parallel fashion, and
it can scale as O(n3m) with density fitted integrals, thus mak-
ing it affordable. Further work is necessary to provide addi-
tional validation of GF2’s performance for more realistic sys-
tems, but even in its current form this method can be used
to help determine the active space orbital choice or provide a
starting point for procedures such as dynamical mean field
theory (DMFT).74, 75 Due to its low computational scaling,
blackbox nature, ability to recover multireference character
and AO-based implementation, GF2 also makes an ideal can-



241101-5 J. J. Phillips and D. Zgid J. Chem. Phys. 140, 241101 (2014)

didate for extension to periodic systems. One can also dare
to conjecture, based on some earlier results with selective CC
resummation for the electron gas,61 that a periodic GF2 imple-
mentation would be applicable to both metals and insulators.
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