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Abstract. In a previous paper we have studied the expansion of the irreducible self-energy 
of an electron gas and found it to give unreliable results for the satellites of the one-electron 
spectral function. This was due to the incorrect analytic properties of the corresponding 
Green function. Here we confirm and extend these results by studying a simple model 
(S-model) which allows us to demonstrate clearly the nature of different approximation 
schemes. 

We also develop a consistent iterative expansion method for the Green function, which, 
in addition to giving a one-electron Green function with correct analyticity and a spectral 
function fulfilling the sum rule, is computationally simple enough to be used for an electron 
gas and possibly for simple metals. The method gives quite reasonable results for the S-model 
when developed to second order in the screened interaction. From comparison with our 
and other electron gas calculations we conclude that the method should also give reasonable 
results for an electron gas. 

1. Introduction 

In this paper various approximations to obtain properties of a free electron gas are 
investigated. The investigation is intended as a guide to future uses and improvements 
of these approximations. The approximation schemes are presented in a fashion which 
suggests such improvements. We examine the relative merits of different diagrammatic 
expansions applied to models of an electron gas by testing the expansions on a particu- 
larly simple model, the S-model, arguing that some general features of diagrammatic 
expansions are common to the S-model and more realistic models of the electron gas. 
The point in using the S-model is that for this particular model we are able to obtain 
self-consistent Green functions to low order of approximation for the self-energy, as 
well as the exact solution. We make comparisons with results from the approximation 
schemes. In Q 2 models related to a homogeneous electron gas are outlined. Q 3 describes 
approximation schemes. In Q 4 a comparison between various approximations are made 
considering the lowest-order diagrams. In Q 5 the second-order diagrams are considered, 
while Q 6 contains conclusions. 

1535 



1536 Petter Minnhagen 

2. Model related to a homogeneous electron gas 

2.1. General 

The single-particle properties of the electron gas-that is, the properties when one elec- 
tron has been added or subtracted-are described by the one-electron Green function 
G(k) = G(k,w).  The one-electron Green function in the case of a non-interacting 
electron gas is Go(k) = (o - E(k)  - i(k, - Ikl)d)-', where E(k)  = k2/2m (we have 
put h = l , Q  (=volume) = 1). 

In the case of an interacting homogeneous electron gas, G(k) may formally be given as 
the solution to a coupled set of integral equations: 

(la) 

(W 

(IC) 

(14  

G(k) = Go(k) + Go(k)C(k)G(k) 

C(k) = i ( 2 7 ~ ) - ~  d4q exp ( -i6qo) G(k - q) F(k, q) W(q) s 
W q )  = u&(dI-' = U q P  - u,P(q)l-' 

P(q) = - i2(27~)-~  d4k exp(i6ko)G(k) T(k, q) G(k - q)  s 
where G and Go are the exact and the non-interacting Green function respectively, 
C the self-energy, W the screened interaction, P the polarization propagator, r the vertex 
function, and uq( = 4zez/q2) the Coulomb interaction. The quantity f ,  is a known func- 
tional of G and W of order n in W (see for instance Hedin and Lundqvist 1969). The first 
two functionals are fo = 1 and f l  = i (27~)-~Jd~k 'G(k  - k') G(k - k' - q )  W(k'). Thus 

N 

rN(k' 4) = fn('5 W) ,  N = 0,1 ,2 .  . . 
n = O  

defines a set of coupled integral equations with a corresponding set of Green functions 
G,(k), G,(k). . . as solution. Figure 1 shows the diagrams involved in a diagrammatic 
representation of the first two integral equations. 

Figure 1. Self-energy and polarization diagrams involved in the first (a) and the second (b) 
integral equations. Full line: Green function; broken line: screened interaction. 

In practice these equations are too complicated to solve even in lowest order in the 
screened interaction. In order to simplify the problem a model of the electron gas is 
introduced in which P(q) is given as an a priori parametrization. This reduces the coupled 
equations to ( la) ,  (lb) and (le). The implicit assumption is that the detailed structure of 
the dielectric function will not influence the basic features of the Green function. 
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2.2. Plasmon model of an electroil gas  

The ‘plasmon model’ of an electron gas is defined by equations ( la) ,  (lb) and (le) together 
with the plasmon-pole parametrization. 

[ ~ ( q ) ] - ’  = 1 + w$’(02 - U:), where wp (= ( 4 ~ n e ~ / m ) ” ~ )  is the plasmon frequency 
and oq remains to be chosen (Lundqvist 1967a, b). It is expected that the qualitative 
features will be insensitive to the precise choice of o4 and that the replacement of the 
plasmon-pole parametrization by RPA parametrization will not change the qualitative 
results (Lundqvist 1967a, b). 

1 wq = [q4/(o,0)’ + 4q2/(3(0:)’) + l]1i2wp 

2 wq = [q4/(w:)’ + 2q2/0: + 1]112wp = (1 + q2/w:)op 

where w i  = o,,,/E,, and q is given in units of k,. loq and 2wq may be regarded as inter- 
polations of the static RPA result between the limits q -+ 0 and q + 00. 

In the following, two simple oq expressions will be used: 

(Lundqvist 1967) 

(Hedin et a1 1971), 

2.3. Effective Hamiltonian related to plasmon model of an electron gas 

Considering a plasmon model for the electron gas, it is noticed (Lundqvist 1967a, b) that 
if the interaction is split into two parts 

the second part may be given as an effective electron-electron interaction, presuming a 
boson field coupling to the electrons v2 = giB(q), where 

B(q) = 2a4/(w2 - (Uq - id)2) 

is a boson propagator and g ,  = ( ~ ~ v , b / 2 w , , ) ~ ~ ~  is the coupling constant. 
This suggests that a model defined by the effective Hamiltonian 

where c:(b;) is the electron (boson) creation operator, would be adequate in connection 
with the electron gas (Lundqvist 1967% b, Overhauser 1971). The He,, model may be 
viewed as representing a subset of the total set of diagrams describing the plasmon model. 

In analogy with the core-electron case below it is noticed that if G is restricted to 
hole propagation then the plasmon model and the H e f f  model are equivalent provided 
ek is defined as the Hartree-Fock type energy 

ck = E ( k )  + i ( 2 7 ~ ) - ~  d4q exp ( -idq,) G(k  - q)vq. s 
2.4. Plasmon model of a core electron 

A model of a core electron coupled to an electron gas is obtained by regarding the core 
electron as a probe particle in the electron gas. The free core-electron Green function is 
given by 

G:o,e(w) = (U - E, - id)-’, 



1538 Petter Minnhagen 

where the constant E;  is the excitation energy of a core electron in absence of the elec- 
tron gas. Substituting G:ore(u) for Go&) in equations ( la) ,  ( Ib )  and ( l e )  will thus switch 
the description of an electron gas to a description of a core electron coupled to an elec- 
tron gas. 

2.5. Effective Hamiltonian related to the plasmon model of a core electron 

The effective Hamiltonian in case of a core electron is 

Heff = EC'C + CU4b:b4 + CgqC'C(bq + bT4). 
4 4 

For the core-electron case there exists a precise connection between the solution defined 
by a plasmon model and the solution defined by the corresponding effective Hamiltonian. 
Starting with ( lb)  and W(q) = v1  + o2 (equation 2) it is noticed that vl contributes only 
in the first self-energy diagram (figure la )  yielding a constant (which is infinite if, as here, 
the extension in space of the core-electron wavefunction is neglected) (Hedin et a1 1971). 
This constant may be taken into account by renormalizing the excitation energy for the 
free core-electron to E. This means that, as far as properties relative to the renormalized 
excitation energy E are concerned, the plasmon model and the He,  model are equivalent. 

2.6. S-model 

A particularly simple model of a core electron is obtained by further replacing u, with 
a step function ('0,)- ' = CO; '6(qC - q), where the cut-off parameter q, is determined by 

(compare figure 2). From this definition of q, it follows that the energy shift parameter 

(see 9 4.3) is the same as for the corresponding plasmon model. 

t 

9 4  

Figure 2. The function CO;' of the plasmon model and the corresponding step-function 
of the S-model. Broken line: the function ('oq/up)-' and the corresponding step 

function ('uq/uP)-', rs = 4. Dotted line: the function (2w,/op)-' and the corresponding 
step function (suq/up)-i, rs = 4. 
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3. Approximation methods 

3.1. General aspects 

In this section the function G(k) given by the coupled set of equations ( la) ,  ( l b )  and ( l e )  
is considered. The equations are schematically written as 

G(k)  = Go(k)  + Go(k)C(k)G(k) ( 3 4  

C(k)  = Z ( k ;  G). (3b) 

These equations yield a sequence of dressed Green functions G, = GI, G, . . . G, I I I 

where N refers to the vertex T,-l, The required G is then formally the limit of this 
sequence (Gw). 

An alternative approach is to expand in terms of bare diagrams. This may be 
described as an iteration of equations (3). An approximation of G is obtained by choosing 
a finite set of bare diagrams, usually all diagrams up to a certain order in the interaction. 

3.2. Partial renormalization of energy 

Let h(k) be an arbitrary function; then the equations 
G ( k )  = G o ( k , o  - h(k)) + G o ( k , m  - h(k)) {E(k)  - h(k)}CJ(k) 
C(k)  = Z ( k ;  G) 

have the solution 

Thus the formal solution G(k) is independent of h(k). 
The arbitrary function h(k) may be chosen in a way which makes G o ( k , o  - h(k)) 

approximate G(k) as well as possible (some G(k) features presumed). This means that 
Go(k,  o - h(k))(C(k) - h(k)}G(k) is as 'small' as possible. It is expected that the equations 
obtained this way will be optimized in the sense of their ability of yielding approximate 
solutions to G. An extreme case is of course h(k) = C(k). 

It is reasonable to assume that G(k) has a quasiparticle pole for all k at a complex 
energy E(k)  + A(k)  determined by the Dyson equation E(k)  + A(k)  = E(k)  + C ( k ,  E(k)  
+ A(k)). This a priori knowledge of G(k) may be used by setting h(k) = A(k). The function 
A(k)  is determined by the consistency requirement that any approximate G(k) obtained 
from the corresponding optimized equations should have a quasiparticle pole at E(k)  + 
A(k). As will be seen below, this consistency requirement presumes that an analytic 
continuation of the self-energy from the real axis to the complex energy of the quasi- 
particle can be macle. This may be avoided by further assuming that the quasiparticle 
pole is close to the real axis in the sense that G (U - E(k)  - A(k))- '  for o 'v E(k)  + 
ReA(k) and using this as a simplified consistency requirement. 

G(k) = {U - E ( k )  - Z ( k ) } - ' .  

3.3. Feasible approximation methods 

The starting point for further approximations is the pair of equations 

G(k) = Go(k,  CO - A(k))  + Go(k,  CO - A(k)) (C(k)  - A(k)}G(k)  

C(k) = C ( k ,  O; G) 

( 4 4  

(4b) 

together with the consistency requirement for A(k) .  
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3.3.1. Approximated Dgson equation (AD method). One commonly used method (Hedin 
1965) is based on the idea of dressed diagrams. By setting A(k) = A where A is a real 
constant, and making the approximation C(k; G) 'v C(k; Gi) where Gi(k, w) = Go(k, 
w - A), a sequence of approximately dressed Green functions (GiD} is obtained ex- 
plicitly given by 

(50 )  

(5b) 

GAD(k) = {CO - E ( k )  - C(k,  O; Gi)}-' 

A = C(k,, E(k,) + A ;  Gi)  = Co(k,, E(k,)). 

In the last equation the notation Co(k ,  0) E C(k, w; Go) is used. A has been determined 
by imposing the consistency requirement for k = k, (A is real since the imaginary 
part of the self-energy Co(k,, E(k,)) vanishes). In the following this will be referred to as 
the AD method. 

Alternatively, the consistency requirement could be imposed on each k separately. 
Two cases with a constant A may be distinguished. Provided that A is real, then equation 
(5b) will become A = Co(k,  E(k)). If a real constant A does not fulfil the consistency 
requirement, then a modification to a complex constant A is needed. 

A more general treatment requires a k-dependent A(k) in order to fulfil for all k- 
values simultaneously the consistency requirement: 

Gi(k ,  W) = Go(k, 0 - A(k)) 

A(k) = C(k, E(k) + A(k); Gi). 

( 6 4  

(6b) 
Equations 6 define a self-consistent A(k). Such a calculation seems feasible for a plasmon 
model of the electron gas at least in lowest order and using the simplified consistency 
requirement (see end of 9 3.2). 

3.3.2. Consistent iterative method (CIT). Another procedure, essentially equivalent to the 
one recently proposed by Bergersen et a1 (1973), consists in iteration of equation (4). 
An iteration to first and second order may be carried out as described below in some 
detail, while extensions to 'higher orders may be inferred by analogy. The order in the 
interaction is determined from the effective self-energy C - A, thus formally C - A = 

("E - A,,) where "C and An are of nth order in the interaction and the effective self- 
energy is a functional of Gl. 

The first order in the interaction gives 

G O -  ' k - Gil(k) + Gi,(k){'C(k; G i l l  - Al(k))Gil(k) 

Al(k) = 'C(k, E(k)  + Al(k); Gl , )  

Gil(k) = G0(k,w - A,(k)) 

( 7 4  

(7b) 

(74  

where '2 is the diagram in figure la and A,&) has to be determined self-consistently from 
equations (7b) and (7c). Making the further approximation A(k) = A, where A is a real 
constant, changes equation (7b) to A = Co(k, E(k)). Notice that for k = k, this is identical 
with the consistency requirement for GtD in the AD method. 

The second order in the interaction gives 
G2 = (Go + Go{CIG1] - A}G1)Zndorder 

= (Go + G0{'C[Go + Go('XIGo] - A,)Go] + 2C[Go] - Al - A2} 

{Go + GO(lCIGO1 - A1)Go})Zndorde r  = Go + Go<Go 
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[ = 'C[G0] - A1 - A2 + ('C[G0] - A,)'G0 + lCIGo('CIGo] - A,)Go] + 'C[G0] ( 8 4  

where Go stands for G'&+A2, 'C is the second diagram in figure lb  and A,(k) and A,(k) 
are determined self-consistently by the conditions 

5(k, E(k) + A , W  + A@); q1 + A )  = 0 

'i, +/).2(k> = O ( k , o  - Al(k) - A,(k)) (94  

Al(k) = 'C(k, E(k) + A,(k) + Az(k); Gi l+*)  

(94  

(94 

where equation (9c) comes from (7b) by replacing G:l by GiI  + A 2 ;  the effective self-energy 
C - A being regarded as a functional of Gt. In this way A1 will cancel the first-order and 
Az the second-order terms in <(k, E(k) + A(k); Go) as must be. Notice that the full self- 
consistent CIT method in nth order gives the quasiparticle properties correctly to nth 
order in the interaction. 

Simplifying to the case A(k) = A, where A is a real constant, changes (9) to explicit 
equations for A1 and A2, 

A, = 'Co(k ,  E(k) )  

A, = 'C(k, E ( k ) ;  Go('C( ; Go) - A1}Go) + 'C(k, E(k): Go) 

and 

Go = Go(k,o). 

This last second-order scheme is feasible for a plasmon model of an electron gas. 
Since any self-energy diagram C(k, o; G), regarded as a functional of G, is holo- 

morphic on the proper parts of the complex o plane provided the Green function G 
and the interaction W have proper spectral resolutions, it follows that an approximate 
Green function obtained from an iteration of equations (4) will be holomorphic on the 
proper parts of the complex o plane. The sum rule 

1 s_: 
will be fulfilled since 

CC 00 f" G,(o)do = [ G i ( o  - A)dw + [ Gi(o  - A){C, - A } G i ( o  - A)do = in, 
J-CC J-CC J-CC 

which is realized by closing the contour in the lower half-plane; only the first term on 
the right-hand side contributes on the semicircle at infinity. The advanced function 
G, is defined as GA(o) = G(o)O(p - o) + G*(o*)O(p - o) where p is the Fermi energy 
(p = W,) + Re W J ) .  

4. First-order calculations (I- = r,) 
4.1. Comparison'between plasmon model of an electron gas and S-model 

Figure 3 shows results from AD calculations with = To and oq = loq for the electron 
gas (k = 0) and for the S-model. Figure 3(a) compares the spectral weight of the quasi- 
particle excitation, figure 3(b) the spectral weight of 'plasmaron' excitation (for definition 
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of plasmaron, see Lundqvist 1967a, b), and figure 3(c) the energy distance between the 
quasiparticle and the plasmaron excitation. The spectral function for the S-model cor- 
responding to this first-order calculation is completely specified by figure 3. The similari- 
ties between the results of the two models support the use of the S-model as a test for 
diagrammatic expansions. Also notice that figure 3 to some extent illustrates the similarity 
between a conduction electron at the bottom of the band (k 2: 0)-being rather hole-like 
in character because of its position in the band-and a core electron coupled to the 
electron gas. 

... r, 
L P ”  

1 
0.61 ___--  

~ 

4 , .- 6 
2 r ,  

Figure 3. Spectral weight of (a) the quasiparticle obtained in the AD approximation with 
and (b) the ‘plasmaron’ excitation. Full curve: 

conduction electron for k = 0 (values taken from Lundqvist 1967b); broken curve: core 
electron in S-model. (c) Distance (in Ryd) between the quasiparticle excitation and the 
‘plasmaron’ excitation for the same two cases as in (a) and (b). 

= To and the plasmon dispersion wq = 

4.2. Plasmon model of electron gas; comparison between dgerent approximations 

Figure 4 shows the spectral weight of the quasiparticle 2, resulting from an AD cal- 
culation for an electron gas (Lundqvist 1967a, b) and from a CIT calculation for an 
electron gas (Bergersen et a1 1973). The differences in Z, values may almost completely 
be ascribed to the relation Z p  = (2 - ZtT)-’, a relation obtained from equations ( 5 )  
and (7) for constant A and k = k,. 

Figure 5 shows the difference between AD and CIT calculations for 2, (for k = k,) 
as a function of rs with oq = Iwq and constant A. Also shown in figure 5 are the values 
taken from Overhauser (1971) which describe a second-order perturbation calculation 
based on an Heff model of the electron gas (see $2) .  It is interesting to notice that these 
values fall just between the AD and CIT  values. In figures 4 and 5 exp( - {(2 tD) - I - -  l}) 
is given as well, constructed in loose analogy with the exact solution of the S-model. 
(See equations 10 and 11 and make the connection 2cD c, (1 + D)-’ and exp( -D) * 
exp( - ((2;”)- - I}).) 
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Figure 4. Spectral weight Z ,  as a function of k of a 
conduction electron corresponding to aluminium 
( r s  = 2.07) from calculations with = To. Dotted 
curve: AD results (Zp) from Lundqvist (1967b); 
chain curve: cm-type results ( Z t y  from Bergersen 
et al (1973); broken curve: ( 2 - 7 ) - ' ;  full curve: 
exp{ -[(ztD)-' - 111. 

0.21 ' 
2 4 6 

r, 

Figure 5. Spectral weight Z ,  of a conduction electron 
for k = k ,  as a function of rs. Dotted curve: AD 
calculation, r = To, wq = laq (from Lundqvist 
1967a); chain curve: CIT calculation, r = To, CO,, = 
loq (based on the values of Lundqvist 1967b); broken 
curve: values based on a He,, model (from Overhauser 
1971); full curve: Z, = exp{[(ZGD)-! - I}, where 
Zy stands for the Z ,  values of Lundqvist (1967b). 

4.3. S-model calculations 

Energy is expressed in units of op in this section. The exact solution to the S-model is 

Dfl 1 
n!  o - D + n - id 

'1) 

G(w) = e-D- 
f l = O  

(Langreth 1970), where the energy is measured from the 'non-interacting' energy E or, 
equivalently in this case, from the mean energy, since 

o A ( o ) d o  = (7c)-' oIm(G(o))do = 0 s::* s:, 
for the above G(w). The constant D is defined as 

D gf /W,  = $E V,CO;/CO,', 
4 4 

which for oq = loq gives 

For r = To three approximate solutions are considered, which are straightfor- 
wardly obtained. 
(a)  The exact first-order Green function (that is, solution to equations ( la) ,  (lb) and ( l e )  
with = r,) is given by the recursion relation 

G,(o)  = (0 - DG,(w + 1 ) ) - l  

and the condition of correct asymptotic behaviour. 
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(b) The AD approximation 

1 1 D 1 
G?”(w) = - +- l + D  o - D - i 6  l + D  o + l - i d  

(c) The CIT approximation 

1 - D  D 
0 - D - id + w - D + I - id  G‘;‘IT(o) = 

----____ 

\ 

q 0.8 9 
0.2- 

1 
2 4 6 . q  2 ‘\ 6 

\ 
\ 0 0.4 0 8  I j2 -D 

r, 

Figure 6. Results in the S-model for D,/D as a function Figure 7. Spectral weight of the core-electron as a 
of D, where D, is the core-electron energy as obtained function of rs in the S-model. Full curve: exact 
from the first-order solution (r = ro), and D is the solution; broken curve: first-order solution G,; 
exact value of the core-electron energy. The AD and dotted curve: AD approximation; chain curve: 
the CIT approximations both give the exact core- CIT approximation. 
electron energy for r = To. 

Figure 6 compares the position of the quasiparticle pole obtained from various cases, 
figure 7 the spectral weight of the quasiparticle pole, and figure 8 the spectral functions. 
An interesting result of the comparisons is that the function G,(o )  turns out to be the 
worst approximation in certain respects. Both GtD(u) and G?IT(o) give, for example, 
the position of the quasiparticle correctly while G,(o) does not (figure 6). Also for the 
spectral weight of the quasiparticle, G,(w) is worse than GtD(w) and worse than GYtT(o) 
for not too big values of r, (figure 7). This is surprising since GtD(o)  is an approximation 
of G,(w). On the other hand it should be realized that G Y  and G‘;‘’*, by construction of the 
approximation method, give the quasiparticle properties correctly to first order (cf Q 3.3.2). 
It is harder to make general statements on the side-band. It is noticed that G?IT(o) has 
the first ‘satellite’ in the correct position while GtD(o)  for small rs has the first ‘satellite’ 
close to the first G,(o)  ‘satellite’. All three approximations give the correct mean energy 
( f 3 0 m A ( o ) ~ d o  = 0). Apart from this the distribution of spectral weight is rather dif- 
ferent in detail. Also notice that Gym gives negative quasi-particle spectral weight for 
D > 1 or equivalently rs > 4.5 (cf equation 12 and figure 7). 
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0.61 < = 5  
(0) 

4 

Figure 8. Spectral functions for the core electron in the S-model for (a) rs = 5 and (b)  rs = 2- 
full line: exact solution; broken line: first-order solution (r = r,)-and (c) rs = 2, full line: 
CIT approximation for r = r,; broken line: AD approximation for r = r,. 

5. Second-order calculations (r = r,) 
5.1. S-model calculations 

(a)  The exact second-order solution G,(w) is given by 

G,(w) = (U - DG,(o + 1){1 + DG,(cu + ~)G,(cu + 2 ) } ) - '  (13) 
(which, together with the condition of correct asymptotic behaviour, defines a unique 
solution) ifit is a priori assumed that G,(w) has the correct analytic properties (that is, is 
holomorphic in the lower half-plane). In order to check the analytic properties the 
following theorem is used. Let flz) be a function that is holomorphic below a certain 
horizontal line, L, in the lower half-plane and such that limlzl,cu Re(zf(z)) -1, then 
(l/n)J, Im(f(z))dz = 1. Since the condition l im,zl+m Re(zG,(z)) 4 1 always is fulfilled, 
it follows that J,A(o)do = 1, if G,(w) is analytical below the line L (Minnhagen 1974). 
Using this criterion it was found that the second-order G2(z) has incorrect analytic 
properties. 
(b) The AD approximation is given by: 

X 1 )-l .  
w + 2 - D - D2/2  - id 

GtD has complex roots for all values of rs except rs = 0 (cf figure 9). Thus G;D has incorrect 
analytic properties (for all rs # 0). It seems plausible that the incorrect analytic proper- 
ties of GtD reflects the incorrect analytic properties of G,. 
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Figure 9. The trajectories traversed by the four poles of the function G$D in the complex o 
plane with increasing rs (O + x) .  

(c) The CIT approximation to second order in the interaction is 

cIT 1 - D + D2/2 D - D2 D2/2 
o - D - i6 + w  + 1 - D - i6 + o  + 2 - D - i6' 9 2  (0) = 

It is obvious that this function is holomorphic in the lower half-plane and that 
j T m  A(w) d o  = 1. This is in accord with the general observation that an iterative pro- 
cedure (as described in § 3) will preserve the analytic properties at every step. Figure 10 
shows a comparison between the exact solution G and the approximate solutions 
G t D  and GZK for rs = 2. It is concluded that G:m is q better approximation than Gym 
and that the CIT method is useful if the coupling constant is not too big. Notice that 

the exact solution. 
@IT , in contrast to G:D, fulfils the relation oA(w)  d o  = 0 which is also fulfilled by 

P 0.41 
3 

O? 0 -3 ,d. -2 -I 0 

olo, 

0.61 

01 U 
o l o p  

-3 -2 -I 0 I 

Figure 10. Spectral functions for core electrons in the S-model for rr = 2. (a) exact solution; 
(b)  CIT approximation to second order; (c) AD approximation to second order. 
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5.2. Comparison between S-model, plasmon model of core electron and plasmon model of 
electron gas 

Figure 11 shows A ( o )  along a horizontal line in the lower half-plane obtained with the 
AD approximation for oq = 'wq and rs = 5 for (a) plasmon model of electron gas for 
k = 0 and k = 0*6(k,); and (b) S-model and plasmon model of core electron. The four 
curves show a strong resemblance. It has been shown (Minnhagen 1974) that the negative 
parts of the curves in figure 11 are connected with incorrect analytic properties. By 
analogy with the S-model, it is plausible that the incorrect analytic properties of G;D for 
the plasmon model of the electron gas and for the core electron also reflects incorrect 
analytic properties of the corresponding second-order G,. Thus it is suggested here 
that the incorrect analytic properties of the second-order G, are a general feature for 
models related to a homogeneous electron gas. 

Figure 11. Spectral functions along the line L: I m z =  - 0 . 0 9 ~ ~  for AD approximation: 
wq = 'U,,, r = r,, and r ,  = 2. (a) full curve: conduction electron with z = 0 , 6 k ,  (Minnhagen 
1974); broken curve: conduction electron with k = 0. (b) full curve: plasmon model of core 
electron: broken curve: S-model of core electron. 

6 .  Conclusions 

We have explored the relationships among different models related to an electron gas 
in order to make plausible the generality of some results obtained explicitly for the 
S-model. One result found is the incorrect analytic properties of the exact second-order 
solution G,. This suggests that expansion in dressed Green functions (in the sense of, 
for instance, Hedin and Lundqvist 1969) is of limited utility when looking for approxi- 
mations to the exact spectral weight function. The AD approximation which is based 
on expansion in dressed Green functions has the same drawback. We have pointed out 
that an iterative procedure guarantees correct analytic properties and have explicitly 
described such a method, the CIT method. We have shown that this method gives good 
results in second order when applied to the S-model and expect that the method is 
appropriate and of practical use for calculations of electron gas properties. 
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