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Abstract. A straightforward attempt to estimate the influence of the first vertex correction 
for a homogeneous electron gas is made. The approximation scheme is also tested on a 
solvable model of a core electron coupled to an electron gas. 

1. Introduction 

In order to calculate properties of an electron gas Hedin (1965, see also Hedin and Lund- 
qvist 1969) applied a method based on the expansion of the self-energy in a screened 
interaction. The same approach was used by Hedin et al(1967) and Lundqvist (1967a, b) 
to investigate the single-particle spectrum of an interacting homogeneous electron gas. A 
characteristic structure in the single-particle spectral weight function was reported, 
originating in the singular Coulomb potential and the plasmon pole of the effective inter- 
action. These calculations were based essentially on the first-order self-energy diagram. 
Some aspects of the self-energy method were discussed by Blomberg and Bergersen (1972) 
and Bergersen et al(1973). 

The present paper describes an attempt to make a straightforward extension of the 
self-energy expansion to second order in the screened interaction. This is referred to as 
including the first vertex correction. A test of the expansion is also included by applying 
it to a solvable model, namely that of a core electron coupled to an electron gas. 

2. Computational procedure 

The investigation concerns the extraction of information from a complicated set of 
coupled integral equations (see eg Hedin and Lundqvist 1969) : 

G ( k )  = Go(k) + Go(k)Z(k)G(k) 

C ( k )  = it1(2n)-~ d4q exp (-i6q,) G(k - q) T(k,  q) W(q) 

( 1 4  

(1b) 

(14 

(14  

s 
W(q) = @(q)  = uy[l - VqP(q)]-' 

P(q) = - i h 2 ( 2 ~ ) - ~  d4 kexp (idk,,) G(k)  T(k, q) G(k  - q) s 
3013 
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Here G and Go are the exact and the free fermion Green functions respectively. C the 
self-energy, W the screened interaction, P the polarization propagator, r the vertex 
function, and zlq( = 4ne2/q2) the Coulomb interaction. The quantity f ,  is a known func- 
tional of G and W of order n in W .  The first two functionals are f, = 1 and 

(2) 

One systematic approximation scheme for solving the equations (1) consists in taking 

f, = ih(27~)-~ d4k' H(k - k') G(k - k' - q) W(k).  s 
N 

r = rN(k,q) = c UG, w) 
n = O  

for N = 0, 1 ,2  etc. The equations are conveniently represented by diagrams (Kadanoff 
and Baym 1962, Hedin 1965, Hedin and Lundqvist 1969). Figure 1 illustrates polariza- 
tion propagator and self-energy diagrams for the two lowest-order approximations 

(U) ( b )  
E: /----, E: ,.----.. ~ , ,--- ,.==;--. 

Figure 1. Polarization and self-energy dia- 
grams involved in the first (a) and second (b )  
integral equations. Full line. Green function 
broken line: screened interaction. 

Figure 2. lntegra- 
tion contour. 

( N  = 0 and 1 respectively). The present paper deals with the second approximation 
( N  = 1). In order to facilitate the treatment additional approximations are introduced, 
similar to those used by Lundqvist (1967 a: b). 

(i) The function W(q) is replaced by an explicitly given function defined by introducing 
a plasmon-pole approximation for the dielectric function ~ ( q )  (Lundqvist 1967a, b. 
Overhauser 1971) : 

W(q) = uy/4q) ( 3 4  

(3b) 
~ - ' ( q )  = 1 + [((U - +(k) + id)-' - (U + $(k) - i6)-'] 0$[2$(k)]-' 

&k) = up + E(k)  E ( k )  = h2k2(2m)-' (3c) 

where wp is the plasmon energy. 
(ii) A fully self-consistent solution of the remaining equations : 

G(k)  = Go(/<) + Go(k) C ( k ) G ( k )  ( 4 4  

C(k)  = i t ~ ( 2 n ) - ~  d4qexp(-i6q0) G ( k  - q) r l (k ,y )W(q)  (4h) 

seems outside present-day computational possibilities. lnstead an 'ansatz' is introduced 
into equation (4h) (Hedin 1965, Lundqvist 1967a, b): 

(5) 

s 
Ga(k, w )  = Go(k,  w - A) = lo - E(k)  - A + ibsign(Ik1 - kF)]- ' 
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which by means of equation ( 4 4  gives the solution (the superscript c stands for calculated): 

G'(k, w, A) = [U - E(k )  - Co(k, w - A)]- I .  

The superscript 0 on a quantity indicates that it has been calculated using the free 
fermion Green function. The constant A is determined so as to ensure that G" and G" have 
the 'quasi-particle-pole' at the same energy, E(k, )  + A, for k = k,. Consequently, 
A = Co(kF,  E(/+)). 

The application of this approximation scheme to the present problem means a con- 
siderable simplification ; the remaining difficulty consists in computing the self-energy 
using the 'ansatz' G". The first self-energy diagram (figure la) can then readily be evaluated 
while the second self-energy diagram (figure lb) can be reduced to a five-dimensional 
integral after performing the frequency integrations and a trivial angular integration. 
The evaluation of the five-dimensional integral is complicated by (a) singularities in the 
integrand, (b) step functions in the integrand and (c) a high dimensionality of the integral. 

After the frequency integrations have been performed it is convenient to work with 
advanced rather than causal functions. The first difficulty was then essentially circum- 
vented by subtracting a small finite imaginary part iE from the frequency, that is, cal- 
culating C i ( k , o  - k) (the subscript A denotes the advanced function). The use of a 
finite iE corresponds to a Lorentzian weighting over the frequency, since for any function 
that is analytic and bounded in the lower half-plane one has 

J 

Equation (6) follows directly by expanding the denominator in partial fractions and 
applying Cauchy's integral theorem. Subsequently the self-energy C i ( k ,  w - iE) was 
computed with a Monte Carlo integration method. The spectral function was obtained 
by the relation A(k, w )  = n- ' Im GX(k, w). It should be noticed that the use of a finite 
iE also gives rise to a Lorentzian weighting of the spectral function derived. 

3. Analyticity 

The analyticity of the calculated advanced Green function GX was investigated using the 
following theorem. Let f(z) be a function that is analytic below a certain horizontal 
line, L, in the lower half-plane and such that limI., Re (zf(z)) + 1, then ( l/n)JL Imf(z) dz 
= 1 (figure 2). Since the condition l imlz l+m Re (zGi(z)) --f 1 always is fulfilled, then 
l , A ( k .  P ) )  dw = 1, if G i  is analytic below the line L. 

The spectral function A(k.  z)  along various lines parallel to the real axis in the lower 
half-plane is given in figure 3 (for rs = 5, k = 0.6k,). From the sum-rule values S = 
S,A(k. w)  dw it is seen that GL has a pole between Im z = - 0 . 3 5 ~ ~  and Im z = - 0 . 5 1 ~ ~ .  
Thus, for this k value, the calculated Green function has not the correct analyticity. This 
result seems to be representative for k values outside a narrow range around k = kF. A 
comparison between the spectral functions derived for selected k values ( k  = 0.6, 1.0 
and 14k,; E = 0.09wp) and those obtained from a similar calculation based on the 
first integral equation ( N  = 0) is shown in figure 4. The negative parts of the spectral 
functions are due to the incorrect analytic properties of the approximate Green functions. 
They also cause the large differences between the results obtained from the first and the 
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second integral equation. Thus, for example, the full-drawn curve in figure 4(u) resembles 
the curve in figure 3(c) (for which the sum rule is fulfilled) more than the curves in figures 
3(a) and 3(b). 

The results are representative for r, values corresponding to metallic densities ( r ,  
values as low as r ,  = 0.5 have been checked). 

The position of the quasi-particle peak obtained from the calculations based on the 

-0.1 

Figure 3. Spectral functions obtained along different lines L for rs = 5 and k = 0.6 k, .  
S IS the estimated area below the respective curve. (a) L :  Im z = - 0,09w,, S = 0.67. (b )  L : 
Im z = -0,350,, S = 0.68. (c) L: Im z = -0.510,, S = 1.00. 

two first integral equations coincide. This is, as far as the calculations give a relevant 
estimate of the property in question, in agreement with the assumption that the influence 
of the first vertex correction is small (Hedin and Lundqvist 1969, pp 81-2). 

4. The core-electron case 

In order to investigate further the origin of the anomalous features the same ‘ansatz’ 
approach was applied to a model (Lundqvist 1969) consisting of a core electron coupled 
to an electron gas. The model has the advantage of being exactly solvable and, further, 
after applying the ’ansatz’, the equations corresponding to (44 and (4b) may be treated 
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Figure 4. Comparison between spectral functions obtained from the first (full curve) and the 
second (broken curve) integral equation for r, = 5 and E = O.O9w,. (a) k = 0.6k,- (b)  k = k, 
(c)  I: = 14/:, 

analytically. They differ technically from the electron-gas calculations in that the free 
fermion Green function for the core electron is Go(w) = (w - E - ie)- the constant 
E representing the core-electron energy. The following expression for the self-energy 
was found. substituting Go(o) for G(w) in equation (4b) : 

c"(w)/o, = ~ , ( 2  .- ")-'[I - (1 - x)-'l2] + C2[in2(x + 2)-3(x + I)- '  

+ in2(x + 2)-' + n(x + 2)-,(x + I)-'!' - n(x + 2)-'(x + 
+ 4i(x + 2)-,(x + I ) - '  + {4(x + 2)-3[ -(x + I ) ] - ~ ' ~ '  

+ (x + 2)-'(x + I)- ' [-(x + 1)]-"~}111{(2i[-(x + 1)I1l2 - x - 2)/ 

(2i[ - (x  + 1)]'f2 + x + 2))J ( 7 )  
C = W,(E,-/U,)' ' 
CO,/& = (16x~J3n)"~  

C, = iCf/Zn 

U = ( 4 / 9 ~ ) " ~  = 0.521 x = ( - U  + E - 2wp + ie)/wp. 
The square root is taken with the branch cut along the positive real axis. 
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Figure 5. Comparison between core-electron spectral functions obtained from the first (full 
curve) and the second (broken curve) integral equations for r,  = 4 and E = 0 . 0 5 ~ ~ .  

In figure 5 the results obtained from the first and second integral equation are com- 
pared. The resemblance between the anomalous features obtained by applying the 
approximated second integral equation to the electron gas for k = 0,6k,  (figure 4) and 
to the core electron is noticeable. 

The core-electron case in the N ‘ =  1 approximation was also evaluated using an 
‘ansatz’ ‘G. Here ‘G is a Green function obtained from the first integral equation ( N  = 0), 
that is from equations (4a) and (4b) substituting To for Ti and applying the original 
‘ansatz’ approach. It is seen in figure 6 that this calculation does not lead to anomalous 
features, but the results are still far from the exact solution. At present it seems hardly 
feasible to apply some corresponding ‘ansatz’ to the case of the electron gas. 

Figure 6. Comparison between core-electron spectral functions obtained from the first 
integral equatisn (full curve), the second integral equation using ‘ansatz’ ‘G (broken curve), 
and the exact solution (dotted curve) for r ,  = 4 and E = 0 . 1 ~ ~  For  the exact solution the 
quasi-particle peak is a &function. (The curve for the exact solution is taken from Hedin 
et al 197 1 .) 
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5. Conclusions 

It is found that a straightforward extension of the self-energy method as described in the 
present paper to second order in the screened interaction gives little direct information 
on the structure of the satellite regions. Presumably the approach is to some extent an 
over-simplification which, for N 2 1, leads to anomalous negative parts in the spectral 
weight function (or, equivalently, incorrect analytic properties of the Green functions 
obtained). This indicates that the detailed structure of the satellite regions (eg the 
existence of the ‘plasmaron’ satellite) as derived previously from first-order calculations 
( N  = 0) (Lundqvist 1967a, b) is not genuine. The satellite structure might rather resemble 
that found in the core-electron case. Another aspect that should be considered is that 
the coupled integral equations (1) with r = r, do not necessarily have a solution with 
correct analyticity. 
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