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ABSTRACT: The GW approximation is based on the neglect of vertex
corrections, which appear in the exact self-energy and the exact polarizability.
Here, we investigate the importance of vertex corrections in the polarizability
only. We calculate the polarizability with equation-of-motion coupled-cluster
theory with single and double excitations (EOM-CCSD), which rigorously
includes a large class of diagrammatically defined vertex corrections beyond
the random phase approximation (RPA). As is well-known, the frequency-
dependent polarizability predicted by EOM-CCSD is quite different and
generally more accurate than that predicted by the RPA. We evaluate the effect of these vertex corrections on a test set of 20
atoms and molecules. When using a Hartree−Fock reference, ionization potentials predicted by the GW approximation with the
RPA polarizability are typically overestimated with a mean absolute error of 0.3 eV. However, those predicted with a vertex-
corrected polarizability are typically underestimated with an increased mean absolute error of 0.5 eV. This result suggests that
vertex corrections in the self-energy cannot be neglected, at least for molecules. We also assess the behavior of eigenvalue self-
consistency in vertex-corrected GW calculations, finding a further worsening of the predicted ionization potentials.

1. INTRODUCTION

The GW approximation1 has been widely and successfully used
to calculate the charged excitation energies associated with
electron addition and removal. It has been applied to a variety
of solids, including simple metals, semiconductors, and
transition metal oxides,1−10 and more recently to atoms and
molecules.9,11−19 Since its introduction, a number of attempts
have been made to improve upon the GW approximation
through the inclusion of diagrammatically defined vertex
corrections beyond the random phase approximation (RPA).
In some cases, vertex corrections are found to improve the
accuracy of predicted excitation energies.20−23 However, in
other cases, the lowest-order vertex corrections produce results
that are only marginally different, in both the condensed
phase24−29 and isolated molecules.17,18,30

Here, we implement a large class of infinite-order vertex
corrections to the polarizability using equation-of-motion
coupled-cluster theory with single and double excitations
(EOM-CCSD). In addition to the particle−hole ring diagrams
resummed by the RPA, EOM-CCSD includes particle−hole
ladder diagrams, particle−particle ladder diagrams, exchange
diagrams, and mixtures of all of the above. Furthermore, similar
to the conventional GW-based implementation of the Bethe−
Salpeter equation,31,32 the propagator lines are dressed and
particle−hole interactions are screened. We use this improved
polarizability to construct a more accurate screened Coulomb
interaction W, for use in the GW approximation; because this
style of vertex corrections aims to calculate W in terms of the
response of a test charge due to a test charge, it is sometimes
referred to as G0W

tc−tc. We assess this vertex-corrected GW

approximation by calculating the ionization potentials of the 20
smallest atoms and molecules of the GW100 test set, which has
recently been introduced for the purpose of benchmarking
different implementations of the GW approximation.15,16,18,19

By comparing our results to those obtained using conventional
RPA screening, we conclude that vertex corrections to the
polarizability worsen the accuracy of the GW approximation
for ionization potentials of molecules. We also implement
eigenvalue self-consistency in our vertex-corrected GW
calculations and again find no improvement. We conclude
that high-order vertex corrections to the structure of the self-
energy are required to improve on existing methods.

2. THEORY

Charged excitation energies, associated with electron addition
and removal, can be calculated by finding the poles of the one-
particle Green’s function

ψ ψ= − ⟨Ψ | [ |Ψ ⟩†G i T(1, 2) (1) (2)0 0 (1)

Here ψ† and ψ are field operators, the labels 1 and 2 indicate a
set of position and time variables, i.e., 1 = (r1, t1), T is the time-
ordering operator, and |Ψ0⟩ is the ground state of the many-
electron system. In practice, G is usually calculated via the self-
energy Σ, defined by the Dyson equation
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∫= + ΣG G G G(1, 2) (1, 2) (4, 2) (3, 4) (1, 3) d(3) d(4)0 0

(2)

where G0 is a noninteracting or mean-field Green’s function. If
G0 is chosen to be the Hartree−Green’s function, then the
exact self-energy may be written as1

∫Σ = Γi G W(1, 2) (1, 4) (1, 3) (4, 2, 3) d(3) d(4)
(3)

where W is the screened Coulomb interaction and Γ is a three-
point vertex function. The screened Coulomb interaction is
given by

∫
∫

= + Π

= + Π

★W v v W

v v v

(1, 2) (1, 2) (4, 2) (3, 4) (1, 3) d(3) d(4)

(1, 2) (4, 2) (3, 4) (1, 3) d(3) d(4)

(4)

where v(1, 2) = |r1 − r2|
−1δ(t1 − t2) is the usual Coulomb

interaction. In the screened Coulomb interaction, Π★ and Π
are the irreducible and reducible polarizabilities

∫Π = − Γ★ i G G(1, 2) (2, 3) (4, 2) (3, 4, 1) d(3) d(4)

(5)

ρ ρΠ = − ⟨Ψ | [ ̃ ̃ |Ψ ⟩i T(1, 2) (1) (2)0 0 (6)

where ρ̃ = ρ − ⟨Ψ0|ρ|Ψ0⟩ and ρ = ψ†ψ. The three-point vertex
function Γ appearing in eqs 3 and 5 is defined by

∫δ δ δ
δ

Γ = + Σ

× Γ

G
G G(1, 2, 3) (1, 2) (1, 3)

(1, 2)
(4, 5)

(4, 6) (7, 5)

(6, 7, 3) d(4) d(5) d(6) d(7) (7)

The conventional GW approximation follows by setting Γ(1, 2,
3) = δ(1, 2)δ(1, 3), i.e., neglecting vertex corrections, leading
to

Σ ≈ iG W(1, 2) (1, 2) (1, 2) (8)

Π ≈ −★ iG G(1, 2) (2, 1) (1, 2) (9)

In practice, the GW approximation is commonly implemented
without self-consistency, where G and W are evaluated in a
one-shot manner on the basis of the mean-field starting point,
leading to the so-called G0W0 approximation.
The exact reducible polarizability given in eq 6 has a

Lehmann representation

∑θ ρ ρΠ = − − *

+ ↔
>

− Ω −i t t r r(1, 2) ( ) e ( ) ( )

(1 2)

n

i t t
n n1 2

0

( )
1 2

n 1 2

(10)

where ρn(r) = ⟨Ψ0|ρ(r)|Ψn⟩ and Ωn = En − E0. We note that
the reducible polarizability is closely related to a certain time-
ordering of the two-particle Green’s function.33 Separating the
GW self-energy into its exchange and correlation components
gives

Σ = iG v(1, 2) (1, 2) (1, 2)x (11a)

∫Σ = ΠiG v v(1, 2) (1, 2) (4, 2) (3, 4) (1, 3) d(3) d(4)c

(11b)

In a finite single-particle basis, the frequency dependence can
be treated analytically such that the correlation component of
the self-energy is given by
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(12)

where

∫ ∫ρ ϕ ϕ ρ| = * | − |−pq r r r r r r r( ) d d ( ) ( ) ( )n p q n1 2 1 1 1 2
1

2 (13)

Here and throughout, we use indices i, j to denote orbitals that
are occupied and a, b to denote orbitals that are unoccupied in
the mean-field reference determinant. Equation 12 provides
the formalism by which any theory of the polarizability can be
employed in the GW approximation. For example, conven-
tional RPA screening (no vertex corrections), as defined by eq
9, is recovered if the excitation energies Ωn are obtained from
the familiar eigenvalue problem34

i
k
jjjj

y
{
zzzz
i
k
jjj

y
{
zzz

i
k
jjj

y
{
zzzΩ

− * − *
=

A B

B A
X
Y

X
Y (14)

where

ε ε δ δ= − + ⟨ | ⟩A ib aj( )ia jb a i ab ij, (15a)

= ⟨ | ⟩B ij abia jb, (15b)

two-electron integrals are defined by

∫ ∫ ϕ ϕ ϕ ϕ⟨ | ⟩ = * * | − |−pq rs r r r r r r r rd d ( ) ( ) ( ) ( )p q r s1 2 1 2 1 2
1

1 2

(16)

and the transition moments ρn(r) are given by

∑ρ ϕ ϕ ϕ ϕ= [ * + * ]X Yr r r r r( ) ( ) ( ) ( ) ( )n
ai

ia
n

a i ia
n

i a
( ) ( )

(17)

with the orthonormalization condition

∑ δ{[ ]* − [ ]* } =X X Y Y
ai

ai
m

ai
n

ai
m

ai
n

nm
( ) ( ) ( ) ( )

(18)

This flavor of RPA is sometimes referred to as “direct RPA”
because it neglects the exchange integrals that would arise from
antisymmetrization in eq 15. If the antisymmetrized integrals
⟨pq||rs⟩ ≡ ⟨pq|rs⟩ − ⟨pq|sr⟩ are maintained, then the screening
is equivalent to time-dependent Hartree−Fock (TDHF). This
level of theory was used to implement vertex corrections in the
recent work of Maggio and Kresse,18 which will also be tested
here.
Here, we implement vertex corrections in the polarizability

by using EOM-CCSD transition densities and excitation
energies in eq 12. The formalism rigorously subsumes RPA
screening (no vertex corrections) and TDHF screening.
Briefly, EOM-CCSD excitation energies are defined as
eigenvalues of the similarity-transformed H̅ = e−THeT −
ECCSD in the subspace of determinants that are singly and
doubly excited with respect to a reference determinant |Φ⟩.
The operator T creates single and double excitations,

= ∑ + ∑† † †T t a a t a a a aai i
a

a i abij ij
ab

a b j i
1
4

, and the amplitudes are

determined by the nonlinear system of equations ⟨Φi
a|
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e−THeT|Φ⟩ = 0 and ⟨Φij
ab|e−THeT|Φ⟩ = 0. The right-hand

eigenstates of H are then given by

|Ψ ⟩ = |Φ⟩eT
0 (19a)
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∑ ∑|Ψ ⟩ = + + |Φ⟩† † †r r a a r a a a a e

1
4n
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i
a

a i
abij

ij
ab

a b j i
T

0
(19b)

and the left-hand eigenstates (n ≥ 0) by
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ
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ÑÑÑÑÑÑÑÑÑÑÑÑ
∑ ∑⟨Ψ̃ | = ⟨Φ| + +† † † −l l a a l a a a a e

1
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i

i a
abij

ab
ij

i j b a
T

0
(20)

The transition densities follow naturally

∑ρ ϕ ϕ= * ⟨Ψ̃ | |Ψ ⟩†a ar r r( ) ( ) ( )n
pq

p q p q n0
(21a)

∑ρ ϕ ϕ* = * ⟨Ψ̃ | |Ψ ⟩†a ar r r( ) ( ) ( )n
pq

p q n p q 0
(21b)

for which analytic expressions can be simply obtained.35

EOM-CCSD is universally viewed as superior to the HF-
based RPA for electronic excitation energies of molecules. For
excited states that are well-described as single excitations,
EOM-CCSD is accurate to about 0.1−0.3 eV,36 whereas the
HF-based RPA displays errors of 1 eV or more.37 Improved
results can be obtained with alternative choices of the mean-
field reference, inclusion or exclusion of exchange, or in
combination with time-dependent density functional
theory.30,37−39 In a more rigorous sense, the RPA can be
derived as an approximation to EOM-CCSD, as recently
discussed by one of us.40 Diagrammatically, the EOM-CCSD
polarizability resums all particle−hole ring diagrams (as in the
RPA), as well as particle−particle, hole−hole, and particle−
hole ladder diagrams, exchange diagrams, and mixtures of all of
the above. These extra diagrams define the class of vertex
corrections included in the polarizability beyond the RPA.
When the RPA or EOM-CCSD polarizability is used in the
non-self-consistent GW approximation, we will term the
method the G0W0 or G0WCC approximation, respectively. In
Figure 1, we show some example self-energy diagrams included
with an EOM-CCSD polarizability and identify some that are
included in various lower levels of theory.

3. RESULTS
In the results to follow, we study atoms and molecules from
the GW100 test set.15 Due to the relatively high computational
cost of obtaining many highly excited states via EOM-CCSD,
we only consider the smallest 20 atoms and molecules, using
the polarized double-ζ def2SVP basis set.41,42 Although we
have not optimized the performance, the calculation of
ionization potentials with EOM-CCSD vertex corrections in
the polarizability can be performed in a manner that scales as
N7. By comparing results within a given basis set, our
conclusions are largely free of basis set incompleteness error
but numerical values should not be compared to experiment or
to predictions in other basis sets. To give a rough sense of basis
set completeness, previous G0W0 calculations have shown that
IPs calculated in this basis set underestimate the complete
basis set limit by about 0.3−0.5 eV.13 We have performed the
following calculations for the five smallest atoms and molecules
in the larger def2-TZVPP basis set and find that our results and

conclusions are unchanged. Where appropriate, we will also
compare to previously published results in larger basis sets,
which demonstrate that our general conclusions are robust. All
calculations were performed with the PySCF software
package.43

First, to illustrate the differences between the RPA and
EOM-CCSD polarizabilities, we consider the two-particle
spectral function

∑ ∑ω δ ω= |⟨Ψ | |Ψ ⟩| − Ω
>

†C a a( ) ( )
n pq

n p q n
0

0
2

(22)

which is closely related to the imaginary part of the
polarizability. This two-particle spectral function contains the
same neutral-excitation quantities that enter into the GW self-
energy, i.e., the transition density matrix elements and the
excitation energies. In Figure 2, we show C(ω) for three
example molecules, H2 (for which EOM-CCSD is exact), H2O,
and HCl, over a very wide spectral range. RPA and EOM-
CCSD calculations are done with a Hartree−Fock (HF)
reference; see below for further discussion of this choice. Due
to the very slow decay of (ω − E)−1, the self-energy at a given
frequency is affected by a very large number of neutral
excitation energies, as can be inferred from eq 12. Indeed,
truncating the number of neutral excitation energies retained in
the polarizability can affect the ionization potentials (IPs) by
anywhere from 0.1 to 1 eV.44 For all molecules, the RPA
spectra are shifted to higher energies by 10 eV or more. This
behavior is because the RPA polarizability does not include the
electron−hole ladder diagrams that are included in the EOM-
CCSD polarizability. These ladder diagrams reduce the
excitation energy of molecules and lead to bound exciton
states in semiconductors.31,32,45 The overestimation of
excitation energies can be partially, but not systematically,
alleviated by choosing a mean-field reference with a smaller
gap. Compared to HF, essentially all flavors of density
functional theory (DFT) satisfy this property, which explains
the popularity of the DFT+RPA approach. Roughly speaking, a
larger spectral gap in the polarizability will reduce the
screening, such that the GW correction to HF is less effective
and the IPs are too large, which is indeed observed in our
G0W0@HF calculations. Because the EOM-CCSD polar-
izability has a smaller (more accurate) spectral gap, the

Figure 1. Example self-energy diagrams included when the polar-
izability is calculated with EOM-CCSD. The diagrams in part a are
those included in the usual GW approximation with RPA screening.
Diagram b is included with a TDHF polarizability, diagrams c and d
would be included with a GW-based BSE polarizability, and diagram
eshowing an example hole−hole ladder interactionis only
included with the EOM-CCSD polarizability.
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screening is stronger, the GW correction is larger, and the IPs
are significantly reduced in magnitude.
In Table 1, we present the first IP of the 20 smallest atoms

and molecules of the GW100 test set, obtained via G0W0 and

G0WCC. As a reference, we calculate the first IP using
ΔCCSD(T), i.e., as a difference in ground-state energies
between the neutral and charged systems using CCSD with
perturbative triple excitations. In all GW calculations, we use
Hartree−Fock (HF) theory as the mean-field reference, which
has been established as a good choice for molecules.14,16,46

Importantly, the HF starting point has no self-interaction error
through first order. However, the missing correlation and
orbital relaxation leads to HF IPs that are too large in
magnitude (orbital energies are too negative). Consistent with

previous results,16 the G0W0@HF approximation predicts
reasonably accurate IPs, with a mean error (ME) of +0.19
eV and a mean absolute error (MAE) of 0.31 eV (these can be
compared to identical calculations in the larger def2-TZVPP
basis,16 which have a ME of +0.26 eV and a MAE of 0.35 eV).
The vertex-corrected G0WCC@HF approximation gives worse
results and underestimates IPs, with a ME of −0.31 eV and a
MAE of 0.52 eV. In particular, the vertex-corrected calculations
give a less accurate IP for 11 of the 20 molecules. We also note
that, for the two-electron molecules H2 and He, the EOM-
CCSD polarizability, and thus W, is exact; however, the results
for both molecules are worse when the exact W is used in the
GW approximation.
This reduction in the IP can be understood from Figure 3,

which shows the frequency dependence of the real part of the
self-energy for the highest occupied molecular orbital
(HOMO), corresponding to the first IP. The poles of the
self-energy with vertex corrections are clearly shifted to higher
energies (less negative) by about 10 eV, consistent with the
differences in the polarizabilities shown in Figure 2. The pole
strengths are relatively unchanged, and therefore, the IPs are
reduced in magnitude, compared to those predicted by the GW
approximation without vertex corrections.
Although we do not show the detailed results here, we have

also implemented vertex corrections at the TDHF level,18

which can be viewed as intermediate between the RPA (no
vertex corrections) and EOM-CCSD. TDHF vertex correc-
tions to the polarizability add particle−hole ladder diagrams
shown in Figure 1bthat are responsible for excitonic effects
and expected to be important in molecules. For the molecules
considered here, the TDHF excitation energies are quite close
to those of EOM-CCSD, such that the IPs predicted via the
vertex-corrected GW approximation are similar. Specifically,
the IPs predicted with TDHF vertex corrections exhibit a mean
error of −0.28 eV and a mean absolute error of 0.50 eV. These
can be compared to the analogous TDHF vertex-corrected
results of ref 18 (there called G0W0

tc−tc), which have a ME of
−0.06 eV and a MAE of 0.15 eV. Although these latter results
appear more accurate than our own, the errors are obtained by
comparing GW results extrapolated to the complete basis set
limit to CCSD(T) results in a finite cc-pVQZ basis set; as
discussed by those authors,18 the CCSD(T) IPs are likely
underestimated by 0.10−0.15 eV, such that a consistent
comparison in the basis set limit would worsen the
performance of those vertex-corrected GW calculations and

Figure 2. Spectral function of the polarizability C(ω) for H2, H2O, and HCl calculated using EOM-CCSD and the RPA. All calculations are done in
the def2SVP basis using a Hartree−Fock reference and using a numerical broadening of 1 eV.

Table 1. First Ionization Potential in eV Calculated Using
G0W0@HF, G0WCC@HF, and GevWCC@HF, Where EOM-
CCSD Is Used to Calculate the Screened Interaction WCC

a

molecule ΔCCSD(T) G0W0@HF G0WCC@HF GevWCC@HF

He 24.31 24.32 23.82 23.78
Ne 21.08 20.98 20.32 20.19
H2 16.26 16.24 15.97 15.99
Li2 5.07 5.03 4.90 4.95
LiH 7.69 7.81 6.95 6.54
FH 15.60 15.64 14.99 14.82
Ar 15.20 15.31 15.06 15.00
H2O 12.07 12.27 11.66 11.53
LiF 10.76 10.51 9.22 8.52
HCl 12.15 12.31 12.05 12.05
BeO 9.98 9.63 8.65 8.11
CO 13.70 14.73 14.11 13.97
N2 15.27 16.98 16.69 16.68
CH4 14.25 14.51 14.10 14.03
BH3 13.17 13.42 13.03 12.98
NH3 10.32 10.61 10.10 10.00
BF 10.82 10.98 10.69 10.70
BN 11.89 11.36 11.04 11.00
SH2 9.89 10.07 9.81 9.82
F2 15.56 16.03 15.30 15.02

ME +0.19 −0.31 −0.44
MAE 0.31 0.52 0.64

aErrors are calculated with respect to ΔCCSD(T). All calculations are
done in the def2SVP basis using a Hartree−Fock reference.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00995
J. Chem. Theory Comput. 2019, 15, 2925−2932

2928

http://dx.doi.org/10.1021/acs.jctc.8b00995


bring them into better agreement with our own (for which
errors are consistently calculated in the same basis set).
The GW self-energies calculated using the RPA, TDHF, and

EOM-CCSD polarizabilities for the HCl molecule are shown
in Figure 4. The similarity between the TDHF and EOM-

CCSD polarizabilities can be understood on the basis of the
weakly correlated nature of the molecules studied, as well as
the dominant one-particle + one-hole nature of the low-energy
excitations. For molecules or solid-state materials with a small
or vanishing gap, the TDHF and EOM-CCSD polarizabilities
are expected to differ more qualitatively and may yield larger
differences in ionization potentials when used with the vertex-
corrected GW approximation.
These collective results demonstrate that high-quality vertex

corrections to the polarizability do not improve the ionization
potentials of small molecules within the GW approximation;
when used with a HF reference, these vertex corrections make
the results worse by predicting IPs that are significantly too
small in magnitude. However, we find that TDHF vertex
corrections to the polarizability, as recently implemented by
Maggio and Kresse18 for both the polarizability and the self-
energy, are a good approximation to those produced by the
more expensive EOM-CCSD approach presented here and
represent a promising and affordable approach for weakly
correlated, gapped materials.

These findings can be compared to previous solid-state
calculations, where it was found that adding low-order vertex
corrections to the polarizability alone unphysically reduced the
bandwidth26 and increased the work function47 of simple
models of metals, and increased the quasiparticle energy of
insulators and semiconductors.27 It has also been shown that
small improvements to the polarizability make little difference
to the ionization potentials of atoms.47 The present work
extends these previous results by employing a far more
accurate and diagrammatically defined polarizability, demon-
strating the behavior across a range of molecular systems.
Having addressed the low-level RPA treatment of screening,

we now mention the two remaining sources of error in the GW
approximation: vertex corrections to the self-energy and self-
consistency. The former are more challenging to implement
than vertex corrections to the polarizability; however, future
work will address this issue. While self-consistency is also
challenging, one relatively inexpensive option is to enforce
eigenvalue self-consistency.5,48−53 In this approach, the
quasiparticle eigenvalues associated with each orbital are
replaced with the newly calculated quasiparticle energies after
each iteration of the GW calculation until self-consistency is
established. Despite not being fully self-consistent, these
methods have been found to significantly reduce the starting
point dependence of GW calculations.50,52,53 Here, we
implement and test eigenvalue self-consistency for EOM-
CCSD vertex-corrected GW calculations.
A major advantage of using EOM-CCSD for vertex

corrections is that the coupled-cluster framework is extremely
insensitive to the choice of mean-field reference.54 This can be
understood by the Thouless theorem, which shows that the
single excitation part of the coupled-cluster wave operator, e1

T,
is able to transform a Slater determinant into any other.55 This
insensitivity is responsible for the common choice of a HF
reference, for which the working equations are simpler. In
numerical tests, we find that eigenvalue self-consistency makes
almost no change to the EOM-CCSD polarizability, and thus,
we enforce eigenvalue self-consistency in G only (but the
results should be understood as essentially those of complete
eigenvalue self-consistency). We refer to this approach as
GevWCC; the IPs predicted by this method are listed in Table 1.
We find that enforcing eigenvalue self-consistency further
deterioriates the accuracy, yielding a mean error of −0.44 eV
and a mean absolute error of 0.64 eV. We conclude that
combining eigenvalue self-consistency with a large class of

Figure 3. Real part of the HOMO self-energy for H2, H2O, and HCl calculated using the vertex-corrected G0WCC and non-vertex-corrected G0W0
approximations. Each inset magnifies a (0.7 eV) × (1 eV) region around the quasiparticle energies, where ΣHOMO(ω) = ω − ε + Vxc. The self-
energy is calculated with a small imaginary part of η = 0.03 eV.

Figure 4. Same as in Figure 3c but also including the result with
TDHF vertex corrections, corresponding to electron−hole inter-
actions in the polarizability.
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vertex corrections to the polarizability further worsens the GW
approximation, leading to IPs that are severely underestimated
in magnitude.

4. CONCLUSION
In this work, we have investigated the effect of high-quality
vertex corrections to the polarizability for use in the GW
approximation. Vertex corrections were implemented using
EOM-CCSD, which corresponds to an infinite order
resummation of particle−hole, particle−particle, and hole−
hole ladder diagrams, in addition to the usual ring diagrams,
and mixtures of all of the above.40 The resulting polarizability
is undeniably more accurate than that predicted by the RPA.
However, the vertex-corrected GW approximation produces
worse results than calculations without vertex corrections, when
applied to a test set of 20 small atoms and molecules.
Specifically, the improved treatment of screening correctly
decreases the IPs; however, it overcompensates and predicts
IPs that are significantly too small. Enforcing eigenvalue self-
consistency also showed no improvement.
We have focused on the use of the GW approximation to

predict the first IP, even though the Green’s function contains
much more information. It is possible that the vertex
corrections implemented in the polarizability would yield an
improvement in quantitites other than the principle IP. For
example, it can be clearly seen in Figure 4 that different
treatments of screening lead to very different structure in the
self-energies at higher (more negative) energies, which will
lead to significantly different predictions of the locations of
satellite peaks in the one-particle spectral function. For
example, in HCl, although the TDHF and EOM-CCSD vertex
corrections predict very similar quasiparticle and first satellite
peaks, they predict a second satellite peak that differs by about
5 eV. However, in all of the molecules we checked, the weight
of these satellite peaks is so small so as to be physically
inconsequential. It will be interesting to investigate the role of
vertex corrections on the satellite structure of molecules or
materials with stronger electron correlation.
As mentioned above, the only remaining approximation is

the neglect of vertex corrections in the self-energy. Without
these, the GW approximation neglects the transient inter-
actions between the screened particle and the particle−hole
pairs responsible for screening. Additionally, the neglected
exchange diagrams in the self-energy are responsible for a self-
screening error.56,57 However, when the lowest-order vertex
corrections to the self-energy were included in the calculation
of the band gaps of silicon58 and a semiconducting wire,28 only
small improvements were observed. Furthermore, these
corrections are found to cancel with the lowest order
corrections to the polarizability, as mentioned previously.24−29

In order to systematically improve upon the G0W0
approximation, it appears necessary to include high-order
vertex corrections to both the self-energy and the polarizability.
We note that a number of other Green’s function based

approaches include infinite-order vertex corrections in both the
self-energy and the polarizability, including the two-particle−
hole Tamm−Dancoff approximation,59 the third-order alge-
braic diagrammatic construction (ADC(3)),60 and the EOM-
CC Green’s function.61,62 However, most of these methods do
not provide the forward and backward time-orderings needed
to entirely subsume the conventional RPA; two notable
exceptions are the EOM-CC Green’s function with single,
double, and triple excitations, as discussed recently in relation

to the GW approximation,63 and the Faddeev random-phase
approximation.64,65
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