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Electronic structure of Na, K, Si, and LiF from self-consistent solution of Hedin’s equations
including vertex corrections
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A few self-consistent schemes to solve the Hedin equations are presented. They include vertex corrections
of different complexity. Commonly used quasiparticle approximation for the Green’s function and static
approximation for the screened interaction are avoided altogether. Using alkali metals Na and K as well as
semiconductor Si and wide-gap insulator LiF as examples, it is shown that both the vertex corrections in the
polarizability P and in the self-energy � are important. Particularly, vertex corrections in � with proper treatment
of frequency dependence of the screened interaction always reduce calculated bandwidths/band gaps, improving
the agreement with experiment. The complexity of the vertex included in P and in � can be different. Whereas
in the case of polarizability one generally has to solve the Bethe-Salpeter equation for the corresponding vertex
function, it is enough (for the materials in this study) to include the vertex of the first order in the self-energy.
The calculations with appropriate vertices show remarkable improvement in the calculated bandwidths and band
gaps as compared to the self-consistent GW approximation as well as to the self-consistent quasiparticle GW

approximation.
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I. INTRODUCTION

Since its first implementation by Hybertsen and Louie [1]
and by Godby et al. [2], the so called G0W0 method [with G0

being the Green’s function in the local density approximation
(LDA) for the density functional theory, and W0 being the
screened interaction in the random phase approximation
(RPA)] has become a method of choice for relatively
inexpensive and accurate calculations of the electronic
structure of weakly correlated materials [3–22]. As a
disadvantage of the approach one can point out its dependence
on the starting point. Electronic spectra obtained in LDA
should already be sufficiently accurate in order to ensure that
G0W0 provides results close to the experiment. Obviously, it is
not always the case. One of the remedies is to switch from the
LDA to another starting point which suits better for the specific
material. For example, Jiang et al. [23] used the LDA + U

method [24] to study the electronic structure of lanthanide
oxides. By adjusting the U parameter one can construct the
LDA + U spectra in decent agreement with experiment and
correspondingly the G0W0 approach performed on top of
LDA + U may work pretty well. One can use other starting
points together with the G0W0 approach: exact exchange
approximation (EXX) [25,26] or hybrid functional [27,28].
Generally, one can say that the success of the G0W0 approach
is based on the cancellation of error stemming for the lack of
self-consistency on the one hand and the absence of the vertex
corrections on the other hand. Whereas different starting points
followed by G0W0 iteration may reproduce the experimental
spectra with good accuracy for a variety of materials, the
approach can hardly be considered as a satisfactory one.

A logical way to eliminate the dependence on the start-
ing point is to perform GW calculations self-consistently
(sc). However, a fully self-consistent GW approach without
vertex corrections has certain theoretical problems [29] and
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corresponding calculations overestimate band gaps in semi-
conductors and insulators, and bandwidths in metals [30]. It
seems to be better justified for applications in the physics
of atoms and molecules, as one can judge from the noticeable
progress in the field [31–43]. In the physics of solids, however,
considerable requirements of the fully scGW method to the
computer resources as well as intrinsic problems of the method
itself [29] have made it quite common to use partially scGW
schemes. Among such partially scGW approaches, one can
mention the GW 0 scheme [16,44–47] where W is fixed at
the RPA level (usually calculated with LDA Green’s function)
and only G is iterated until convergence. Another popular
approach is the so-called energy-only self-consistent GW

[1,48–53] where one-electron wave functions are fixed (again,
usually at LDA level) and only one-electron energies are
renewed until consistency. The success of these partially
sc schemes is based on the same cancellation of errors as
in the case of G0W0. Partial sc usually makes the spectral
features (bandwidths/band gaps) a little wider and, thus,
often improves the agreement with experiment. Authors of
Refs. [54,55] propose to apply diagonal (in LDA band states
basis) approximation for the self-energy and Green’s function
which makes the calculations much faster. In this case, the
success is based on the cancellation of error stemming from
the neglect of nondiagonal terms in G and � on the one hand
and the neglect of vertex corrections on the other hand.

Considerable progress has been made by Kotani et al. [56]
in their QSGW approach which essentially is equivalent to
the fully scGW method but with special [quasiparticle (QP)]
construction for the Green’s function, which replaces the
need to solve the Dyson equation. The success of QSGW
method relies on the fact that QP approximation cancels
out in considerable degree the error associated with the
absence of higher-order diagrams in the self-energy � and
the polarizability P , as it has been explained in Ref. [56]
in terms of Z-factor cancellation. The QSGW approach
is computationally more expensive than G0W0 but it does
not depend on a starting point. It usually gives the results
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similar to the LDA-based G0W0 results for simple metals
and semiconductors, but often shows improvements for the
materials where LDA does not provide a good starting point
for the G0W0 iteration (NiO is a good example, as it has been
shown by Faleev et al. [57]).

Presently, the QSGW approach is a very popular ab initio
method which provides reasonable one-electron spectra for
a wide class of materials [45,57–67]. However, even for
relatively weakly correlated materials, there is still enough
room for improvements. Looking at the results obtained with
the QSGW method [44,45,56] one can conclude that calculated
band gaps are overestimated by about 5%–15% for sp semi-
conductors and insulators. For the materials with d and f elec-
trons (SrTiO3, TiO2, CeO2) the error grows up to about 25%
[60]. Similar error has been found in the calculated exchange
splitting in gadolinium [60], whereas the calculated exchange
splitting in nickel is almost twice too large as compared to
the experimental one [60]. Besides, with QP construction for
the Green’s function the method is not diagrammatic anymore,
which renders its improvement more complicated.

An alternative way to improve the accuracy of the scGW
method is to include skeleton diagrams of higher order
(vertex corrections) in the self-energy and the polarizability.
However, direct diagrammatic extensions of this kind represent
an extremely difficult problem in practice and, as a result,
were not explored actively for solids. Ummels et al. [68]
have applied first-order vertex corrections to P and � com-
bined with second-order self-consistence diagrams for silicon
and diamond. Calculations have been performed with LDA
Green’s function and within plasmon pole approximation [69].
It has been shown that vertex corrections and self-consistence
diagrams cancel out to a high degree (especially the correction
to P ) which can be considered as a justification for the one-shot
G0W0 approach. Bechstedt et al. [70] iterated the Dyson equa-
tion for G and the Bethe-Salpeter equation for the irreducible
polarizability simultaneously. Certain approximations (such
as keeping only diagonal terms in Bloch integrals and neglect
of the local field effect) have been made in the study. The
principal conclusion of the work is that vertex correction in
polarizability widely compensates the GW quasiparticle peaks
renormalization, which can be considered as a support in favor
of the QSGW approximation.

Considerable progress has been achieved, however, in
studying the effect of vertex corrections following the ideas
borrowed from the time-dependent density functional theory
(TDDFT) [71–73], where the central role is played by the so-
called exchange-correlation kernel fxc. The research along this
line began in Refs. [74–77] where LDA-based two-point vertex
function was proposed. Model exchange-correlation kernels
have also been introduced [44,78–81] with improved (as com-
pared to LDA-derived kernel) properties. A very successful
approach has been developed which recasts diagrammatically
obtained polarizability (usually of low order) into an effective
exchange-correlation kernel fxc [82–87]. The kernel fxc is a
two-point object (as opposed to the many-body kernel which
is a four-point object). So, the above recasting brings in a great
efficiency. Shishkin et al. [45] have applied this approach to
calculate the band gaps for a wide class of materials. The
results obtained in Ref. [45] look promising. However, there
were many simplifications involved in the calculations. First

of all, the vertex correction has been included only in the
polarizability, but not in the self-energy. Second, it was static,
i.e., W in the diagrams has been approximated by its value
at zero frequency. What may be most important of all is
the fact that authors applied the vertex correction combined
with quasiparticle self-consistence. The problem with this
kind of approach is that the quasiparticle approximation itself
can be considered as an effective vertex correction (due to
Z-factor cancellation). If one applies the same arguments, as
the authors of Ref. [56] did, to the approach which combines
the QSGW and the vertex corrections one will realize that there
is a double counting. The problems of combining the QSGW
approach with vertex corrections have been studied for the
two-site Hubbard model recently [88]. Based on the above
consideration, one can speculate that the static approximation
for W was actually needed to cancel out the error stemming
from that double counting because zero-frequency interaction
is well enough screened and, correspondingly, its effect is
much weaker than it would be had the authors of [45] applied
full frequency-dependent interaction. As for the absence of
the vertex correction in the self-energy, authors say that their
inclusion “turned out to be numerically rather unstable and
tended to bring the band gaps back to those obtained without
vertex corrections,” which can also be considered as a sign
of inherent problems with the approach. A similar approach
(combination of QSGW with static fxc) has been used recently
by Gruneis et al. [89] to study the ionization potentials and
band gaps of solids. In addition, authors of Ref. [89] have
considered the correction to the self-energy of the second order,
but again, evaluated with static interaction. Their observation
was that vertex correction in the self-energy actually increases
the band gaps, making them worse than the ones with the
vertex correction only in the polarizability.

In this work, the above simplifications in dealing with the
vertex corrections are avoided. The approach is based on the
Hedin exact theory [90] and approximations are introduced
purely diagrammatically, without connection with TDDFT.
Also, there is no quasiparticle approximation involved. In-
stead, the Green’s function is renewed on every iteration
from Dyson’s equation. All diagrams take into account full
frequency dependence of the screened interaction, which also
is updated on every iteration. Third, the vertex corrections are
studied for both the polarizability and the self-energy.

The principal goal of this study is to elucidate the effect
of vertex corrections in fully self-consistent calculations. To
make this research as clean as possible, one has to avoid the
schemes which are based on the cancellation of errors. This
makes the direct comparison of the methods being developed
in this work with previous studies (based on G0W0, GW 0,
QSGW, QSGW + vertex evaluated with static W ) not very
useful for answering the main question of this research.
Comparison with earlier studies is very useful, however, to
check the accuracy of numerical implementation of the code.

The paper begins with a formal presentation of Hedin’s
equations (Sec. II A). The self-consistent schemes of solv-
ing them together with numerical approximations comprise
Secs. II B, II C, and III. Section IV provides the results obtained
and a discussion. The conclusions are given afterwards. Fi-
nally, the details of the practical solution of Hedin’s equations
for solids are presented in the Appendix.
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II. METHOD

A. Hedin’s equations

The approach which is used in this work is based on the
Hedin equations [90]. For convenience, we remind the reader
about how Hedin’s equations could be solved self-consistently
in practice. Matsubara’s formalism is used throughout the
work. Suppose one has a certain initial approach for the
Green’s function G and the screened interaction W . Then,
one calculates the following quantities:

(i) three-point vertex function from the Bethe-Salpeter
equation

�α(123) = δ(12)δ(13)

+
∑

β

δ�α(12)

δGβ(45)
Gβ(46)�β(673)Gβ (75), (1)

where α and β are spin indexes, and the digits in the brackets
represent space-Matsubara’s time arguments;

(ii) polarizability

P (12) =
∑

α

Gα(13)�α(342)Gα(41); (2)

(iii) screened interaction

W (12) = V (12) + V (13)P (34)W (42); (3)

(iv) and the self-energy

�α(12) = −Gα(14)�α(425)W (51). (4)

In Eq. (3), V stands for the bare Coulomb interaction. The
new approximation for the Green’s function is obtained from
Dyson’s equation

Gα(12) = Gα
0 (12) + Gα

0 (13)�α(34)Gα(42), (5)

where G0 is the Green’s function in Hartree approximation.
Equations (1)–(5) comprise one iteration. If convergence is
not yet reached, one can go back to Eq. (1) to start the next
iteration with renewed G and W .

The system of Hedin’s equations formally is exact, but
one has to introduce certain approximations when solving (1)
for the vertex function �α(123) in order to make the system
manageable in practice.

B. Approximations for the vertex function

A convenient way to generate approximations for the
vertex � is to calculate the kernel � = δ�

δG
in Eq. (1) using

a diagrammatic representation of the self-energy up to a
specific order in the screened interaction W . The simplest
nontrivial approach in this case is to use the famous GW

approximation (� = GW ) where W is obtained from the
polarizability (W = V + V PW ) which in turn is represented
by the one-loop approximation (P = GG). Adapting this
approach one gets for the kernel:

δ�α(12)

δGβ(34)
= −δαβδ(13)δ(24)W (21)

−Gα(12)Gβ(43)[W (23)W (41) + W (24)W (31)],

(6)

which is shown diagrammatically in Fig. 1.

Θ = + +

FIG. 1. The GW approximation for the irreducible four-point
kernel �. Direct lines represent Green’s function and wavy lines
represent screened interaction W .

Approximation (6) results in the following equation for the
vertex function:

�α(123) = δ(12)δ(13) − W (21)Gα(14)�α(453)Gα(52)

−Gα(12)
∑

β

Gβ(54)[W (24)W (51)

+W (25)W (41)]Gβ (46)�β(673)Gβ(75). (7)

It is convenient to split the vertex into a trivial part and a
correction (� = 1 + ��). In this case, one obtains an equation
for the correction which might be solved iteratively:

��α(123) = −W (2,1)Gα(13)Gα(32)

−W (2,1)Gα(14)��α(453)Gα(52)

−Gα(12)
∑

β

Gβ(54)[W (24)W (51)

+W (25)W (41)][Gβ (43)Gβ(35)

+Gβ (46)��β(673)Gβ(75)]. (8)

In this work, the following nontrivial approximations for the
vertex are used: (i) first-order approximation (�1) is obtained
when one keeps only the first term on the right-hand side of (8)
(schematically ��1 = −WGG), (ii) the vertex in the “GW”
approximation (�GW ) when all terms on the right-hand side of
(8) are kept intact, and (iii) the vertex �0

GW , which is similar
to the approximation �GW , but corresponds to an additional
approximation where one neglects the diagrams with possible
spin flips [i.e., the terms with

∑
β in (8) are not included].

Diagrammatic representations of the approximations (i)–(iii)
are shown in Figs. 2–4 correspondingly. The abbreviation
�GW is particularly meaningful when the corresponding vertex
is calculated with G and W from scGW calculation. The
polarizability evaluated with this vertex [and with G in (2)
also taken from scGW] is “physical” in a sense that it is an
exact functional derivative of the electronic density (calculated
in scGW approximation) with respect to the total electric field
(external plus induced) and, as a result, respects the charge
preservation. In this work, another variant of �GW is used, with
G and W being fully self-consistent (with vertex corrections
included). In this case, the corresponding polarizability is no
more physical because the self-energy and the polarizability
include more diagrams than the approximation (� = GW ,

Γ1 = +

FIG. 2. First-order approximation for the three-point vertex
function.
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ΓGW = + Θ + +...Θ Θ

FIG. 3. Ladder sequence for the three-point vertex function with
� as the rung of the ladder.

P = GG) assumed here in the Bethe-Salpeter equation. Thus,
in fully self-consistent calculations one has to trade between
the improvements in spectra resulting from higher-order
diagrams on the one hand and the degree of charge preservation
on the other hand.

In this study, the vertex �GW is calculated from Eq. (8)
iteratively, i.e., the calculation of the vertex function is
achieved through a “small” loop of iterations as compared
to the “big” loop of iterations of the self-consistent scheme
depicted in Eqs. (1)–(5). Corresponding steps of the small
loop of iterations are sketched below. Full details are given in
the Appendix.

To simplify the formulas, the following notations are
introduced:

K0α(123) = −Gα(13)Gα(32), (9)

�Kα(123) = −Gα(14)��α(453)Gα(52), (10)

Kα(123) = K0α(123) + �Kα(123), (11)

so that Eq. (8) for the correction to the vertex takes the
following form:

��α(123) =W (21)Kα(123) + Gα(12)

×
∑

β

W (24)
[
Gβ(54)Kβ(453)

+ Gβ(45)Kβ(543)
]
W (51). (12)

Introducing yet more notations

Q(123) =
∑

β

[
Gβ(21)Kβ(123) + Gβ(12)Kβ(213)

]
(13)

and

T (213) = W (24)Q(453)W (51), (14)

one reduces the equation for the vertex correction to a formally
very simple form

��α(123) = W (21)Kα(123) + Gα(12)T (213). (15)

The iterations for the �GW are performed as the following.
One takes K = K0 [Eq. (9)] as an initial approach, then
calculates Q [Eq. (13)], T [Eq. (14)], and �� [Eq. (15)]. Then,
a correction to K0 [Eq. (10)] is evaluated and the process is

Γ0
GW = + + +...

FIG. 4. Ladder sequence for the three-point vertex function with
W as the rung of the ladder.

repeated with a new K = K0 + �K . The iterations for the
�0

GW are simpler. They follow the same scheme but without
Q and T evaluation. Finally, the approximation �1 is obtained
with just one step: ��1 = WK0.

Some of the above equations are easier to handle in
the reciprocal space (band representation) and frequency,
whereas others are simpler in the real-space and imaginary-
time representations. So, one switches from one to another
representation and back on every iteration. The details about
how it is done can be found in the Appendixes.

C. Definitions of self-consistent schemes

Having defined the approximations for the vertex function,
one can proceed with the construction of iterative schemes
of solving the Hedin equations (1)–(5). The schemes differ
by which approximation for the vertex function is used in
the expression for the polarizability (2) and in the expression
for the self-energy (4). In this work, seven sc schemes are
studied. They have been collected in Table I which explains
their diagrammatic representations.

Scheme A is the scGW approach. It is conserving in Baym-
Kadanoff definition [91], but generally its accuracy is poor
when one considers spectral properties of solids [30,92,93].
Another conserving sc scheme is the scheme B. It uses the
same first-order vertex in both P and �. Scheme C is based on
“physical” polarizability as it was explained in Sec. II B. We
perform the scGW calculation first. Underlined G and W in
Table I mean that the corresponding quantities are taken from
the scGW run. Then, the vertex �GW [G; W ] is evaluated and
it is used to calculate the polarizability and the corresponding
screened interaction W . We use a bar above the W to indicate
that this quantity is evaluated using G and W from the scGW
calculation, but it is not equal to W because it includes vertex
corrections through the polarizability. This W is fixed (in the
scheme C) during the following iterations where only the self-
energy � = GW and G are renewed. So, the scheme C does
not include vertex in � explicitly but only through W . The
scheme D is similar to the scheme C. It also is based on the
physical polarizability, but it uses the first-order vertex in the
self-energy explicitly (skeleton diagram). In the scheme D,
the screened interaction W is fixed at the same level as in
the scheme C, but the final iterations involve the renewal of
not only G and �, but also �1. The schemes E and F are

TABLE I. Diagrammatic representations of the polarizability
and the self-energy in sc schemes of solving the Hedin equations.
Arguments in square brackets specify G and W which are used to
evaluate the vertex function. Other details are explained in the main
text.

Scheme P �

A GG GW

B G�1[G; W ]G G�1[G; W ]W
C G�GW [G; W ]G GW

D G�GW [G; W ]G G�1[G; W ]W
E G�GW [G; W ]G G�1[G; W ]W
F G�GW [G; W ]G G�GW [G; W ]W
G G�0

GW [G; W ]G G�1[G; W ]W
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TABLE II. Properties of the sc schemes studied in this work.

Property A B C D E F G

Conserving yes yes no no no no no
P is physical no no yes yes no no no
Same vertex in P and � yes yes no no no yes no
Self-consistency full full partial partial full full full

fully self-consistent (both G and W are renewed on every
iteration until the end). They differ only in the diagrammatic
representation of the self-energy. As it was pointed out in
the previous section, the schemes E and F do not preserve
the charge exactly with the scheme F being potentially more
problematic because the imbalance between the kernel of the
Bethe-Salpeter equation and the diagrammatic representation
of � in the scheme F is larger. Scheme G is similar to the
scheme E, but with simplified Bethe-Salpeter equation for the
corresponding vertex �0

GW (the diagrams with spin flips are
neglected in the kernel of the Bethe-Salpeter equation). Table II
collects the features of the above schemes for convenience.

III. NUMERICAL APPROXIMATIONS

Vertex corrected calculations generally are very computa-
tionally expensive as compared to scGW calculations. If one
implements higher-order diagrams using the same basis set,
and the same number of k points as for the evaluation of GW

diagram, the evaluation of them (higher-order diagrams) will
be prohibitively expensive. However, what makes this kind of
calculation feasible is the fact that vertex part is effective on the
lower-energy scale (i.e., only near Fermi level) as compared
to the GW part. This fact allows us to use smaller basis
sets in the vertex part, which in its own turn allows to use
coarser time/frequency meshes to represent vertex-dependent
functions. Also, the diagrams beyond GW are generally more
localized in real space (see discussions in Refs. [94,95]), which
allows one to use coarser k mesh for their evaluation.

In this work, only one of the above three possible optimiza-
tions has been explored. Namely, the number of bands which
were used to represent Green’s function and self-energy in
the GW part and in the vertex part were different. Thus, the
tests of convergence with respect to the basis-set size have
been performed separately for the GW part and for the vertex
part. These tests and all other convergence tests have been
conducted for one metal (Na) and for one material with a gap
(Si). Figures 5 and 6 show the convergence of the bandwidth
(Na) and the band gap (Si) in scGW (scheme A). In this work,
the number of band states used as a basis set for the GW part
was equal to the size of full-potential linearized augmented
plane-wave + local orbital (FLAPW+LO) basis set. So, Figs. 5
and 6 show essentially the convergence of scGW results with
respect to the number of linearized augmented plane waves
and local orbitals. The k meshes 12 × 12 × 12 and 8 × 8 × 8
have been used for Na and Si correspondingly in getting the
data for plots.

As one can see the convergence is very fast for Na, but slow
enough for Si. However, it posed no problem for the present
research as the really time-consuming part was the vertex part.
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FIG. 5. Convergence of the bandwidth (Na) with respect to the
size of LAPW basis set. Different lines correspond to the addition
of more and more local orbitals (LO) to the pure LAPW basis as
indicated in legends.

Thus, in all presented below results the FLAPW+LO basis
set in GW part was well converged for all four materials.
The size of product basis set (PB) for the GW part was not
independent and was adjusted for every change in the size of
FLAPW+LO basis set. The criterion for this adjustment was
the requirement that the convolution of G and � (they are
represented in band states basis) and the convolution of P and
W (they are represented in PB) were the same within given
tolerance (10−4 Ry in this work).

The convergence of the bandwidth for Na and the band gap
for Si with respect to the number of bands included in the
vertex-related part of calculations is shown in Fig. 7. Here too
one can see a striking difference between the convergence rate
for the alkali metal on the one hand and the semiconductor
on the other. Whereas just three to four states closest to the
chemical potential were enough to get the right bandwidth
in sodium, the convergence in Si happens only when one
includes at least 30 band states (which still is almost 10 times
smaller than the number of bands needed for the GW part). It
is important to mention, however, that not all properties of Na
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FIG. 6. Convergence of the band gap (Si) with respect to the size
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and more local orbitals (LO) to the pure LAPW basis as indicated in
legends.
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FIG. 7. Convergence of the bandwidth (Na) and �-X band gap
(Si) with respect to the number of band states included in the
vertex correction part of the calculation (scheme D). Horizontal lines
represent scGW results for comparison (do not depend on the basis-set
size for vertex). The k meshes 4 × 4 × 4 have been used in both cases.

show the same rate of convergence as the bandwidth does. For
example, the uniform polarizability, which was used to test
how close the calculated polarizability is to the physical one,
was well converged only after inclusion of 15–20 bands in the
case of Na.

As it can become clear from the formulas presented in
the Appendixes, the considerable (actually the most compu-
tationally expensive) part of the calculations is performed in
the real space. So, it is important not only to take a certain
number of bands into account for the vertex part, but also
to represent them accurately with the smallest number of
orbitals (as compared to the full FLAPW+LO representation)
inside muffin-tin spheres and with the smallest number of the
real-space mesh points in the interstitial region.

In the case of Na and K, the spd basis was used in the
MT (muffin-tin) spheres for the vertex-related part of the
calculations, i.e., 18 functions (both the solutions of radial
equations ϕ and their energy derivatives ϕ̇ were always
included in the basis set). In case of Si, the sp basis was
used for both Si atoms and empty spheres (i.e., 32 functions in
MT spheres altogether), which was good because Si structure
is poorly packed and MT spheres are small. In the case of
LiF, the spd basis was used for F, and the sp basis for Li (26
functions totally). In all cases, the uniform real-space mesh
4 × 4 × 4 in the unit cell was used to represent functions in
the interstitial region. It was checked that the above parameters
of the real-space representation are good enough if one retains
up to 25–30 bands in the vertex-related part of the calculation
(with an estimated uncertainty 0.03–0.05 eV in the calculated
spectra). If one wants to increase the number of bands included
in the vertex part, it would be necessary also to increase the
accuracy of their real-space representation. For comparison,
the real-space representation of the band states in the GW part
of the calculations included orbitals up to Lmax = 6 inside MT
spheres and the regular meshes 10 × 10 × 10 (12 × 12 × 12
for Si) to represent the functions in the interstitial region.

The convergence with respect to the number of imaginary
time/frequency points is presented in Figs. 8 and 9. The details
about the meshes can be found in Ref. [30]. The number of

 3.48

 3.5

 3.52

 3.54

 3.56

 3.58

 3.6

 3.62

 30  40  50  60  70  80  90  100 110

B
an

d 
w

id
th

 (e
V

)

Number of Im time/freq-cy points

FIG. 8. Convergence of the bandwidth (Na) with respect to the
number of points on imaginary-time/frequency mesh in the scGW
calculation. The temperature is 1000 K. The k mesh is 12 × 12 × 12.

imaginary-time points and the number of frequency points was
the same in the calculations, so only one variable is used in
the figures. As it was already stated above, this number could
be different in the GW part and in the vertex part. But, this
opportunity for optimization has not been implemented yet. As
one can see, very good convergence is obtained beginning with
approximately 60 points, which was used in all calculations
presented in this work.

Dependence of the results with respect to the electronic
temperature is shown in Figs. 10 and 11. As one can see,
it is sufficiently weak for both materials. Corresponding
uncertainty can be estimated to be not more than 0.002 eV.
In all presented below results the temperature was fixed at
1000 K.

One more opportunity to optimize the vertex part which has
not been explored in this work is to use different meshes of
points in the Brillouin zone for the GW part and for the vertex
part [99]. All results presented in this work (if not specified)
have been obtained using k mesh 4 × 4 × 4 in the Brillouin
zone. Whereas this kind of mesh is not always good enough for
the GW part, it should be sufficient for the vertex part [99]. The
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convergence of the GW part has been checked by performing
scGW calculations with larger number of k points (Figs. 12
and 13). One point related to the band gap of Si should be
clarified here. Fundamental gap in Si is measured between the
highest occupied band at � point in the Brillouin zone and the
lowest unoccupied band at a certain point along the �-X line.
However, when one uses coarse k meshes (such as 4 × 4 × 4
or 6 × 6 × 6), it so happens that the lowest unoccupied band is
exactly at the X point. It is easy to perform scGW calculations
with sufficiently fine k meshes and, thus, distinguish the
fundamental gap and a gap between � and X points (from
now on it will be called the �-X band gap). However, it is
hard to take k mesh finer than 4 × 4 × 4 in vertex-corrected
calculations (at least presently). The values of both gaps are
known from the experiment [100,101]. So, it is natural to
compare the results from vertex-corrected calculations with
experimental �-X band gap, as it is done below in Table VI.
In Fig. 13, however, both gaps are shown, and their difference
converges to 0.09 eV which is very close to the experimental
difference 0.08 eV. Having this said, one can now look at
Figs. 12 and 13 and estimate that by using 4 × 4 × 4 k mesh,
one brings an uncertainty about 0.04 eV in the bandwidth of
Na, and an uncertainty about 0.01 eV in the calculated �-X
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The data are shown for scGW calculation.

band gap of Si. Corresponding uncertainties for K and LiF were
estimated to be 0.03 and 0.05 eV correspondingly. They are
much smaller than the difference between the bandwidths/band
gaps obtained in the scGW and in vertex-corrected calculations
and can be safely neglected in this study.

The analytic continuation of the correlation part of the
self-energy needed for the spectral function evaluation has
been performed following the scheme described before in
Appendix D of Ref. [30]. The values of the small positive
shift from the real frequency axis were 2–5 × 10−3 eV for the
materials studied.

In vertex-corrected cases, the scGW calculation (12–20
iterations until convergence) was performed before the vertex-
related part of the calculation. In the vertex part, six iterations
in the small loop [Eqs. (9)–(15)] were sufficient to converge
within 1% in �� in the cases of Si and LiF, which resulted
in very good convergence of the band gaps. Slightly slower
convergence was noticed in Na (8 iterations to reach similar
convergence) and in K (12 iterations). The number of iterations
in the big loop [Eqs. (1)–(5)] of the vertex part of the
calculation was 5–8 depending on the material, which provided
good convergence of the bandwidths/band gaps.
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TABLE III. Calculated one-electron energies at points of high symmetry for Si (in eV), together with available theoretical and experimental
results. All theoretical results have been obtained in the G0W0 approximation.

�1v �′
25c �15c �′

2c X1v X4v X1c L′
2v L1v L′

3v L1c L3c

Ref. [96] −11.57 0.0 3.24 3.94 −7.67 −2.80 1.34 −9.39 −6.86 −1.17 2.14 4.05
Ref. [97] −11.57 0.0 3.23 3.96 −7.57 −2.83 1.35 −9.35 −6.78 −1.20 2.18 4.06
Ref. [98] −11.85 0.0 3.09 4.05 −7.74 −2.90 1.01 −9.57 −6.97 −1.16 2.05 3.83
Ref. [56] −11.89 0.0 3.13 4.02 −2.96 1.11 −1.25 2.05 3.89
Ref. [11] −11.64 0.0 3.25 3.92 −7.75 −2.88 1.36 −9.38 −6.93 −1.23 2.21 4.00
Ref. [14] −11.82 0.0 3.21 −2.86 1.22 −1.21 2.06
Ref. [18] 0.0 3.24 −2.86 1.25 −1.22 2.09
This work −11.88 0.0 3.08 3.96 −7.73 −2.93 1.08 −9.51 −6.94 −1.24 2.01 3.86
Expt. [96] −12.5 ± 0.6 0.0 3.40 4.23 −2.90 1.25 −9.3 ± 0.4 −6.7 ± 0.2 −1.2 ± 0.2 2.1 4.15 ± 0.1

3.05 4.1 −3.3 ± 0.2 2.4 ± 0.1

As a further test to check the performance of the code, the
G0W0 (based on LDA) calculation of the electronic structure
of Si has been performed. Results are shown in Table III where
they are compared with earlier calculations and experiment.
One shot (G0W0) includes all ingredients of scGW calculation
and, thus, is useful to check the implementation of the
GW part. The difference between one-electron energies from
this work and earlier calculations is, generally, very small,
testifying the adequacy of numerical approximations made in
this study.

It is interesting how the computer time increases when one
includes vertex corrections of different complexity. Table IV
provides the time per one iteration. The k mesh 4 × 4 × 4 has
been used, so GW shows a good performance. As one can
see, inclusion of higher-order diagrams makes calculations a
lot more time consuming. However, the vertex part of the code
has not yet been totally optimized. With the optimizations
mentioned earlier and other improvements in the code, the
times should be reduced by the factor of 10 or more.

IV. RESULTS

In this section, the results from self-consistent calculations
are presented. They are compared with earlier self-consistent
calculations and with experimental data. In order to make
comparison with earlier calculations more meaningful, present
fully self-consistent calculations have been supplemented with
QSGW and QSGW0 calculations using the same computer
code. Partially self-consistent GW have also been included
(GWLDA in Table V below). In case of Na and K, G0W0

calculations have also been performed for comparison with
previous works. Whenever G0 was needed, it was evaluated
within LDA with parametrization from Ref. [102]. The details
of the implementation of quasiparticle self-consistence on
imaginary axis have been described before [30].

TABLE IV. Average time per one iteration. 96 MPI processes
were used.

Scheme Na/K Si LiF

A 16 s 530 s 33 s
B 12 h 3.5 h 13 h
E 20 h 18 h 50 h

In metallic cases (Na and K), the calculations based
on the scheme F appeared to be unstable (because of the
above-mentioned inconsistency between the kernel of the
Bethe-Salpeter equation and diagrammatic representation of
the self-energy). So, the corresponding results are missing
below. For the insulating materials scheme F seems to be
acceptable, which, however, might be just because the higher-
order diagrams in the self-energy are less essential for Si and
LiF.

A. Na and K

Before presenting results of fully sc calculations (without
and with vertex corrections), let us look at the results for
Na and K obtained with simplified GW schemes. The results
from G0W0 and QSGW calculations are included in Table V
where they are compared to the similar calculations performed
with the code being presented in this work. The bandwidths
obtained in different G0W0 calculations are pretty close to
each other and are in reasonable agreement with experiment.

TABLE V. Bandwidths of Na and K (eV).

Method Ref. Na K

G0W0 [103] 2.887
[104] 3.00

This work 3.02 1.90

QSGW [60] 3.0
This work 3.17 1.95

QSGW0 This work 2.87 1.72

GW LDA [50] 2.5
[105] 1.58 ± 0.1
[104] 2.83
[103] 2.673

GW�LDA [103] 2.958

A This work 3.47 2.38
B This work 3.03 2.04
C This work 3.24 2.16
D This work 2.73 1.69
E This work 2.71 1.71
G This work 2.82 1.84

Expt. [106,107] 2.65 1.60 ± 0.05
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FIG. 14. Spectral function of Na at � point in the Brillouin zone.
Chemical potential corresponds to zero frequency.

The QSGW study by Schilfgaarde et al. [60] for Na shows
15% too wide bandwidth, and similar calculation of this
work gives even slightly larger deviation from experiment.
Two results are slightly different from each other, which
most likely is because of the linearization of self-energy in
the QSGW approach of this work. The best results among
simplified GW schemes without vertex corrections provide
the QSGW0 method. However, similar to the G0W0 approach,
it depends on the starting point which makes its predictive
power questionable.

Bandwidths obtained with simplified two-point LDA vertex
[50,103–105] are also included in Table V, where GWLDA

means that LDA vertex included only in W and GW�LDA

includes LDA vertex also in self-energy. Good agreement with
experimental bandwidth is obtained in the GWLDA approach,
whereas the inclusion of vertex correction in self-energy
deteriorates the results.

Opposite to the studies based on the quasiparticle sc, where
bandwidth can easily be found by looking at the corresponding
quasiparticle energies, in fully sc approaches one has to
analyze corresponding spectral functions. The bandwidth of
alkali metals is defined by the position of the valence band
bottom at the � point in the Brillouin zone relative to the
chemical potential. So, in this work it was found from the
position of the peak of the spectral function corresponding to
the � point. As an example, the spectral function of sodium
is shown in Fig. 14. Let us now look at the results of fully
sc calculations also presented in Table V. As one can see,
for both metals the vertex corrected schemes (D, E, and G)
provide 5–10 times better accuracy than the scGW approach.
The schemes B (vertex �1 in both P and �) and C (vertex
from Bethe-Salpeter equation in P , but no vertex correction
in �) show worse performance and correct only 30%–50%
of the scGW error. The small remaining error in D, E, and
G schemes most likely could be reduced further if the basis
set was better in the vertex-related part of the calculations
(i.e., if the representation of the bands in the real space could
be better). For example, the bandwidth of Na obtained with
only the sp basis inside MT spheres (vertex-related part of the
calculation) was 2.85 eV in the scheme D, i.e., the extension to
the spd basis resulted in 0.12 eV improvement. Higher-order
diagrams not included in this study can also be a reason for the
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FIG. 15. Uniform polarizability (P q=0
G=G′=0(ν)) of Na as a function

of Matsubara’s frequency.

remaining errors. As it can be seen from Table V, schemes D,
E, and G are superior in accuracy if one compares them with
the QSGW approximation.

Potassium is the next (after sodium) alkali metal in the
periodic table and, naturally, the calculations show similar
tendencies in its properties. However, K is slightly more
correlated than Na, as one can understand drawing the parallel
between these two metals and the electron gas with two
corresponding densities. Valence electron density in potassium
is lower than in sodium, and the electron gas with lower density
is more correlated. It is also seen from row A in Table V: in
the case of Na, the error of the scGW approach is ∼30%
whereas it is ∼48% in the case of K. Stronger correlations in
K can also be seen from the comparison of the rows E and
G in the same table: the neglect of spin-flip diagrams has a
larger effect in K than in Na. Also, the iterative solution of
the Bethe-Salpeter equation converges slower in the case of
K. Nevertheless, vertex corrected schemes D and E allow to
reach good accuracy in the calculated bandwidth of potassium
as well as of sodium.

Thus, one can conclude that in both alkali metals it is im-
perative to include vertex corrections both in the polarizability
(Bethe-Salpeter equation has to be solved) and in the self-
energy (with the first-order vertex). However, an additional
care should be taken if one wants to include higher-order vertex
corrections in the self-energy: the kernel in the Bethe-Salpeter
equation should also be modified in this case.

A few technical details are presented below, which can be
useful for future development of the method. They are quite
similar for all four materials, so Na is used as an example.
Figure 15 shows the homogeneous [P q=0

G=G′=0(ν)] component
of the polarizability of Na as a function of positive Matsubara
frequencies ν. If the polarizability is exact or if it is not exact
but “physical,” this function should be zero for all ν �= 0 (for
metals). There are two approaches (C and D) in this study
where the polarizability is physical (it is actually the same in
C and D by construction). Thus, Fig. 15 provides an indication
that numerical approximations are good enough making the
lines C and D almost identically zero. First-order conserving
scheme B shows steady improvement as compared to the
scGW for all frequencies but the first two, where it is even
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FIG. 16. Polarizability [P q
G=G′=0(ν = 2π

β
)] of Na for the smallest

positive Matsubara’s frequency as a function of q = |q| along the
�-N line in the Brillouin zone. β stands for the inverse temperature.

slightly worse than the scGW result. Similar behavior shows
the scheme E, which is only slightly better than scheme B at
intermediate frequencies. But, considerable improvement in
the spectral function obtained with the scheme E compared
to the spectral function in the scheme B tells us that the
long wave limit of the polarizability is not very important
for the one-electron spectral properties. More important is the
behavior of the polarizability in the whole Brillouin zone, as
it follows from the next paragraph.

In Fig. 16 the polarizability P
q
G=G′=0(ν = 2π/β) for the

smallest positive Matsubara’s frequency is presented as a
function of |q| along the �-N line in the Brillouin zone.
As one can see, there is a certain correlation between the
average amplitude of the polarizability in the Brillouin zone
and the bandwidth. Namely, among the schemes with similar
diagrammatic representation of the self-energy (B, D, E, and
G) the tendency in the average amplitude of the polarizability
(PB < PG < PE < PD) follows the opposite tendency in
the calculated bandwidth error ε (εB > εG > εE ≈ εD). If,
however, one compares the bandwidths in the schemes C and
D (which have identical polarizabilities but scheme C does not
include vertex correction to the self-energy), one will realize
the importance of the vertex correction in the self-energy.

The imaginary part of the self-energy at the � point in the
Brillouin zone (diagonal matrix element corresponding to the
bottom of the valence band) is presented in Fig. 17. Self-energy
includes the vertex corrections indirectly (through W ) and
directly through the skeleton diagrams in the self-energy itself.
As a result, it correlates with the final bandwidth stronger than
the polarizability. As one can see from the figure and from
Table V, the larger amplitude of the self-energy corresponds
to the smaller bandwidth and vice versa.

Figure 18 presents different components of the imag-
inary part of � obtained in the scheme D. The corre-
sponding skeleton diagram can be written schematically as
�� = WWGGG. As it is explained in more details in
Appendix C, the separation of W into bare Coulomb (V )
and screening W̃ interactions (W = V + W̃ ) results in three
components of ��: static (��static = V V GGG), semidy-
namic (��semidynamic = [W̃V + V W̃ ]GGG), and dynamic
(��dynamic = W̃W̃GGG). The line marked as “skeleton
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FIG. 17. Imaginary part of self-energy of Na at k = (0; 0; 0) as a
function of Matsubara’s frequency.

�� + sc” in Fig. 18 represents the sum of these three
contributions. The addition “+ sc” means that the skeleton
�� diagram has been evaluated with fully sc G and W . �A

line (GW diagram in the scheme A) is given for comparison.
First of all, one has to stress the importance of full

dynamical treatment of W (frequency dependence). As it is
seen, the individual components of the skeleton �� diagram
are of the same magnitude as �A. However, their sum is
much smaller (about four times smaller than �A) and is
very localized in frequency space (it is almost negligible for
ω > 20 eV whereas �A is pretty large up to a few hundred
of eV’s). A few calculations have been performed with only
the static �� included, which was evaluated using the static
interaction equal to (i) the bare Coulomb V , (ii) W (ν = 0), and
(iii) a few W ’s at intermediate ν’s. Im�� in the calculations
with reduced static interaction (as compared to the V ) was
qualitatively similar as ��static presented in the figure, but
with reduced amplitude. All curves were positive, whereas the
right one (shown as “skeleton �� + sc” in the figure) obtained
with proper dynamic W is negative. The corresponding effect
on the bandwidth was also positive: all calculations with
static W ’s resulted in increased bandwidth, whereas the proper
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FIG. 18. Components of the self-energy (scheme D, bottom of
the valence band) for Na. “Skeleton �� + sc” is obtained as a
sum ��static + ��semidynamic + ��dynamic (see text for the details).
�A stands for the self-energy in the scheme A.
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FIG. 19. Spectral function of Si at � (lines below zero) and X

(lines above zero) points in the Brillouin zone. For convenience, all
lines have been shifted to place the highest occupied state energy at
−0.5 eV for all approaches.

treatment of frequency dependence in W results in the reduced
bandwidth. Similar findings were discovered in other materials
studied in this work. This essentially explains why the authors
of Ref. [89] were obtaining the increase in band gaps when
they applied vertex correction to the self-energy evaluated with
static W .

B. Si and LiF

Spectral functions of Si and LiF are presented in Figs. 19
and 20 correspondingly. As it was explained before, for
the k mesh 4 × 4 × 4 the band gap in silicon is measured
between the highest occupied state at the � point in the
Brillouin zone and the lowest unoccupied state at the X

point. Correspondingly, the spectral functions at these two
k points have been combined in Fig. 19. The band gap in
LiF corresponds to the direct transition between the highest
occupied and the lowest unoccupied bands at the � point in
the Brillouin zone. Tables VI and VII present numerical data
for the band gaps in Si and LiF compared with the experiment
and with earlier calculations. First of all, one can check that for
the QSGW and QSGW0 methods, the band gaps of Si obtained
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FIG. 20. Spectral function of LiF at the � point in the Brillouin
zone.

TABLE VI. �-X band gap and fundamental gap (Eg) of Si (eV).
Screened interaction W was fixed at RPA level (calculated with G

from LDA or PBE) in the QSGW0 approach. PBE stands for Perdew-
Burke-Ernzerhof functional [108]. Vertex corrections were included
in W (through effective kernel fxc) in QSGWe-h. Calculations with
the scheme A have been performed for the k mesh 8 × 8 × 8 to show
the difference between �-X band gap and fundamental gap in the
scGW method.

Method Ref. �-X gap Eg

QSGW [56] 1.37 1.23
[45] 1.41
[44] 1.47

This work 1.50 1.41

QSGW0, (PBE) [45] 1.28
(LDA) [14] 1.22
(PBE) [14] 1.28
(PBE) [44] 1.28
(PBE) [16] 1.19
(LDA) This work 1.24 1.15

QSGWe-h [45] 1.24
[44] 1.30

A This work 1.63
A, 8 × 8 × 8 This work 1.64 1.55
B This work 1.38
C This work 1.41
D This work 1.27
E This work 1.24
F This work 1.27
G This work 1.25

Expt. [100,101] 1.25 1.17

in this study are within the range of results obtained in earlier
studies. This confirms that numerical accuracy of the GW part
of the code is sufficiently good. Slight increase in the band gap
of LiF relative to the earlier results most likely is attributed to
the fact that the quasiparticle approach in this work involves

TABLE VII. Band gap of LiF (eV). Screened interaction W was
fixed at RPA level (calculated with G from LDA or PBE [108]) in the
QSGW0 approach.

Method Ref. Band gap

QSGW [53] 15.10
[109] 16.17

This work 16.57

QSGW0, (PBE) [53] 13.96
(PBE) [109] 14.29

[110] 13.62
(LDA) This work 14.76

A This work 15.85
B This work 15.06
C This work 14.25
D This work 14.21
E This work 14.12
F This work 14.56
G This work 14.32

Expt. [111] 14.2 ± 0.2
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linearization of self-energy [30]. This linearization is not a part
of the fully sc methods (A–G) studied in this work. Comparison
with experimental data shows that, similar to alkali metals,
QSGW0 is superior in accuracy among quasiparticle-based sc
schemes.

Considering fully sc approximations, one can conclude
from Tables VI and VII that fully scGW is not very successful
approach (the deviation from experiment in this case is more
than 30% for Si and more than 10% for LiF). However, this
error can be reduced practically to zero (within uncertainty
of experiment) in both cases if one applies appropriate vertex
corrections (schemes D, E, and G). It is interesting that in
case of LiF (wide-gap insulator) the vertex corrections to
the self-energy are not very important (scheme C results in
essentially the same band gap as the schemes D, E, and
G). At the same time, the first-order vertex correction in
polarizability (scheme B) is not sufficient: it is essential to
solve the Bethe-Salpeter equation for the polarizability. As
for the scheme F which includes higher-order diagrams in the
self-energy, the calculation was stable (as compared to alkali
metals) but the band gap obtained shows worse accuracy for
LiF than the results from D, E, and G schemes.

V. CONCLUSIONS

In conclusion, a few self-consistent schemes of solving
the Hedin equations have been introduced. The combination
of features which distinguishes these schemes from the
previously published works on the subject is the following:
they are diagrammatic and self-consistent, they do not apply
the quasiparticle approximation for the Green’s function, they
treat full frequency dependence of the interaction W .

For the materials studied in this work (Na, K, Si, and
LiF), one can conclude that the vertex corrections both in the
polarizability and in the self-energy are important. However,
the vertex function which should be used in P has to be found
from the Bethe-Salpeter equation, whereas it is enough for the
vertex function to be of the first order (in W ) to make proper
corrections in �. Inclusion of higher-order diagrams in the
self-energy has to be supplemented with the corresponding
increase in the complexity of kernel of the Bethe-Salpeter
equation. Otherwise, their inclusion can make the whole
scheme unstable which was the case for Na and K in this
study.

The importance of proper treatment of the frequency
dependence of W in the vertex correction diagrams for the
self-energy has been revealed. It explained the increase in the
calculated band gaps obtained in earlier works where static W

was used to evaluate the second-order diagrams for the self-
energy. The best schemes in this work allow to considerably
improve the accuracy of the calculated bandwidths and band
gaps: the error becomes 10 times (or more) smaller than
in the self-consistent GW approximation. Moreover, they
show superior accuracy as compared to the commonly used
nowadays QSGW approximation.

From the computational point of view, a few possible
technical optimizations have been pointed out (different
k/time/frequency meshes for GW and vertex parts). In ad-
dition, one can take an advantage of the fact that the scheme
D is one of the best in this study, and, as compared to another

successful scheme (E), is far more efficient, because Bethe-
Salpeter’s equation should be solved only once in the scheme
D, whereas in the scheme E it should be solved on every
iteration. Another simplification, which worked sufficiently
well in this study for Si and LiF, is to neglect spin-flip diagrams
in the kernel of the Bethe-Salpeter equation. It also saves
computation time considerably.
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APPENDIX A: DETAILS OF THE VERTEX
CORRECTIONS EVALUATION

In this Appendix, the details of the formulas are given in
a form close to the implementation in the code. One notion
should be mentioned here before proceeding. The functions
(K0,�K,��,Q,T ) which are evaluated in the course of
iterations (9)–(15) are three-point functions. One of the three
points can be considered as independent. In the representation
accepted in this work, the independent point corresponds to
the indexes s,q,ν, which are the reduced product basis index,
the point in the Brillouin zone, and Matsubara’s frequency
(see below for the specifications). The calculations for every
triplet of these indexes are totally independent, which is used
to perform the calculations in parallel. Besides, one needs
to do the calculations only for the irreducible set of q points.
Having the iterations (9)–(15) converged, one can proceed with
the corrections to the polarizability and to the self-energy. For
the evaluation of the latter, however, one needs to combine the
information from the above triplets of indexes.

1. Notations

In order to make the reading of the following sections easier,
the notations have been collected here:

(i) α: spin index.
(ii) λ,λ′,λ′′,λ′′′: band indexes. Bands obtained in the

effective Hartree-Fock problem [30] are used in the vertex
part. See Sec. I in Ref. [30] for the details.

(iii) k,q: points in the Brillouin zone.
(iv) s,s ′,s ′′,s1,s2: reduced product basis (RPB) index.

When it is used together with vector q in the Brillouin zone
(corresponding RPB function is �

q
s ), it runs over all RPB

(muffin tins plus interstitial). When it is used together with
atomic index t (corresponding RPB function in this case is
�t

s), it runs over the part of full RPB belonging to the given
atom.

(v) ω,ω′: fermionic Matsubara’s frequency.
(vi) ν: bosonic Matsubara’s frequency.
(vii) τ,τ ′: Matsubara’s time.
(viii) μ: chemical potential.
(ix) εαk

λ : band energies.

155101-12



ELECTRONIC STRUCTURE OF Na, K, Si, AND LiF . . . PHYSICAL REVIEW B 94, 155101 (2016)

(x) �αk
λ : band wave functions.

(xi) β: inverse temperature.
(xii) R: vectors of translations in real space.
(xiii) t,t′: coordinates (or indexes) of atoms in unit cell.
(xiv) L,L′,L′′,L′′′: indexes combining orbital moment l,

its projection m, and other quantum numbers distinguishing
the orbitals φα

tL for given spin α and atom t (L indexes also
distinguish between φ and φ̇).

(xv) Nk: full number of k points in the Brillouin zone.
(xvi) ωq: geometrical weight of the q point in the Brillouin

zone, i.e., the ratio of the number of vectors in the star of q
and the full number of points in the Brillouin zone.

(xvii) r,r′: the points on the regular real-space mesh in the
unit cell.

(xviii) G: reciprocal lattice vectors.
(xix) Gs : reciprocal lattice vector associated with reduced

product basis index s.

2. K 0 calculation

Expanding G in (9) in the band states, one gets the formulas

K0αk
λλ′ (sq; ω; ν)

= −
∑
λ′′λ′′′

Gαk
λλ′′(ω)

〈
�αk

λ′′
∣∣�αk−q

λ′′′ �q
s

〉
G

α,k−q
λ′′′λ′ (ω − ν) (A1)

and

K0αk
λλ′ (sq; −ω + ν; ν)

= −
∑
λ′′λ′′′

G
∗αk
λ′′λ(ω − ν)

〈
�αk

λ′′
∣∣�αk−q

λ′′′ �q
s

〉
G

∗α,k−q
λ′λ′′′ (ω), (A2)

with �
q
s representing the product basis functions defined on

the reduced set of band states. As it will be clear from the
equations below, one needs to evaluate (A1) and (A2) for ω �
ν/2, ν > 0 only. Two functions are needed to handle strong
oscillations in τ dependence of K(τ,ν) [see Eq. (A6)].

Equation (15) is convenient to evaluate in real-space and
(τ ; ν) representations. Before transforming K to the (τ ; ν)
representation, the Hartree-Fock contributions are subtracted:

K
0,HF,αk
λλ′ (sq; ω; ν)

= −
〈
�αk

λ

∣∣�αk−q
λ′ �

q
s

〉(
iω + μ − εαk

λ

)[
i(ω − ν) + μ − ε

αk−q
λ′

] (A3)

and

K
0,HF,αk
λλ′ (sq; −ω + ν; ν)

= −
〈
�αk

λ

∣∣�αk−q
λ′ �

q
s

〉[−i(ω − ν) + μ − εαk
λ

](−iω + μ − ε
αk−q
λ′

) . (A4)

After subtraction, one uses (D5):

K0αk
λλ′ (sq; τ ; ν) = 1

β

∑
ω�ν/2

e−iωτ K0αk
λλ′ (sq; ω; ν)︸ ︷︷ ︸
large at ω=0

+ 1

β

∑
ω�ν/2

e−iωτ K0αk
λλ′ (sq; ω; ν)︸ ︷︷ ︸
large at ω=ν

. (A5)

In the first term, strong oscillations in K as a function of
τ originating from ω ∼ 0 are damped by exponential factor
which has weak τ dependence near ω = 0. In the second
term, the oscillations come from ω ∼ ν, so one has to ensure
the damping by rearranging the exponential factors as the
following:

K0αk
λλ′ (sq; τ ; ν) = 1

β

∑
ω�ν/2

e−iωτK0αk
λλ′ (sq; ω; ν)︸ ︷︷ ︸

smooth function of τ

+ e−iντ 1

β

∑
ω�ν/2

e−i(ω−ν)τK0αk
λλ′ (sq; ω; ν)︸ ︷︷ ︸

smooth function of τ

.

(A6)

At this point, it is convenient to introduce two functions

K10αk
λλ′ (sq; τ ; ν)

=
⎧⎨⎩ 1

β

∑
ω�ν/2

e−i(ω−ν)τK
∗0αk
λλ′ (sq; −ω + ν; ν)

⎫⎬⎭
∗

(A7)

and

K20αk
λλ′ (sq; τ ; ν) = 1

β

∑
ω�ν/2

e−i(ω−ν)τK0αk
λλ′ (sq; ω; ν). (A8)

Now, the following Hartree-Fock contribution in the (τ,ν)
representation which was subtracted earlier in the (ω,ν)
representation is added [what is to be added to K1 (K2) is
clear from the structure of the formula (A9)]:

K
0,HF,αk
λλ′ (sq; τ ; ν) =

〈
�αk

λ

∣∣�αk−q
λ′ �

q
s

〉
iν + ε

αk−q
λ′ − εαk

λ

× {
G

HF,α,k
λ (τ ) − e−iντG

HF,α,k−q
λ′ (τ )

}
.

(A9)

In case ν = 0 and ε
αk−q
λ′ = εαk

λ the expression is different:

K
0,HF,αk
λλ′ (sq; τ ; ν) = 〈

�αk
λ

∣∣�αk−q
λ′ �q

s

〉
G

HF,α,k
λ (τ )

× {
τ + βG

HF,α,k
λ (β)

}
. (A10)

3. K function in real space

The specific formula to be used to transform the K function
to the real space depends on where its two space arguments
belong (MT sphere or the interstitial region). Correspondingly,
there are four different cases shown below:

MT-MT:

KαR
tL;t′L′(sq; τ ; ν)

= 1

Nk

∑
k

eikR
∑
λλ′

Zαk
tL;λK

αk
λλ′(sq; τ ; ν)Z

∗αk−q
t′L′;λ′ ; (A11)

Int-MT:

KαR
r;t′L′(sq; τ ; ν) = 1

Nk

∑
k

eikR
∑
λλ′

Aαk
r;λK

αk
λλ′(sq; τ ; ν)Z

∗αk−q
t′L′;λ′ ;

(A12)
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MT-Int:

KαR
tL;r′ (sq; τ ; ν)

= 1

Nk

∑
k

eikR
∑
λλ′

Zαk
tL;λK

αk
λλ′(sq; τ ; ν)A

∗αk−q
r′;λ′ ; (A13)

Int-Int:

KαR
r;r′ (sq; τ ; ν)

= 1

Nk

∑
k

eikR
∑
λλ′

Aαk
r;λK

αk
λλ′(sq; τ ; ν)A

∗αk−q
r′;λ′ , (A14)

with

Aαk
r;λ = 1√

�0

∑
G

ei(k+G)rAαk
G;λ. (A15)

The coefficients Aαk
G;λ represent the expansion of band

states in plane waves in the interstitial region �αk
λ (r) =

1
�0

∑
G Aαk

G;λe
i(k+G)r, and the coefficients Zαk

tL;λ represent the
expansion of the band states in the orbital basis inside MT
spheres �αk

λ (r)|t = ∑
L Zαk

tL;λφ
αt
L (r).

4. Evaluation of W (21)K (123)

The first term on the right-hand side of the formula (15)
can be rewritten with explicit τ and frequency dependencies
as the following:

��α(123; τ ; ν) = W (12; τ )Kα(123; τ ; ν). (A16)

For both K1 and K2 components, one obtains the following
formulas in the real space (distinguishing again MT and the
interstitial region):

MT-MT:

��αR
tL;t′L′(sq; τ ; ν)

=
∑
s ′L′′

∑
s ′′

∑
L′′′

KαR
tL′′;t′L′′′(sq; τ ; ν)

〈
φαt′

L′
∣∣φαt′

L′′′�
t′
s ′′

〉∗
× WR

ts ′;t′s ′′ (τ )
〈
φαt

L

∣∣φαt
L′′�

t
s ′
〉
; (A17)

Int-MT:

��αR
r;t′L′(sq; τ ; ν) =

∑
L′′′

∑
s ′′

〈
φαt′

L′
∣∣φαt′

L′′′�
t′
s ′′

〉∗
×WR

r;t′s ′′ (τ )KαR
r;t′L′′′(sq; τ ; ν); (A18)

MT-Int:

��αR
tL;r′(sq; τ ; ν) =

∑
L′′

∑
s ′

〈
φαt

L |φαt
L′′�

t
s ′
〉
WR

ts ′;r′ (τ )

× KαR
tL′′;r′ (sq; τ ; ν); (A19)

Int-Int:

��αR
r;r′(sq; τ ; ν) = WR

r;r′ (τ )KαR
r;r′ (sq; τ ; ν). (A20)

In practical calculations, one has to separate static and dy-
namic parts of the interaction W = V + W̃ . Correspondingly,
static and dynamic parts of the vertex correction are considered
separately. Particularly, there is no τ dependence in the static
part. Formulas (A17)–(A20) are the same for dynamic parts
��1 (K1 is used instead of K) and ��2 (K2 is used instead
of K). For the static part ��stat(ν), one replaces W (τ ) with
V and, correspondingly, K1(τ = 0,ν) + K2(τ = 0,ν) is used
instead of K(τ,ν). Equation (10) can be used most efficiently
with quantities in band/frequency representation. Thus, ��1,
��2, and ��stat are transformed into the band representation
first:

��αk
λλ′(sq; τ ; ν) =

∑
tL

∑
t′L′

Z
∗αkλ
tL

∑
R

e−ikR��αR
tL;t′L′(sq; τ ; ν)Zαk−qλ′

t′L′ +
∑

r

∑
t′L′

X
∗αk
rλ

∑
R

e−ikR��αR
r;t′L′(sq; τ ; ν)Zαk−qλ′

t′L′

+
∑
tL

∑
r′

Z
∗αkλ
tL

∑
R

e−ikR��αR
tL;r′(sq; τ ; ν)Xαk−q

r′λ′ +
∑

r

∑
r′

X
∗αk
rλ

∑
R

e−ikR��αR
r;r′(sq; τ ; ν)Xαk−q

r′λ′ ,

(A21)

with

Xαk
rλ = 1

Nr

∑
G

ei(k+G)r
{∫

�Int

dr �
∗αk
λ (r)ei(k+G)r

}∗
. (A22)

Formula (A21) is used for ��1, ��2, and ��stat with τ = 0 for the latter. Then, one transforms dynamic functions
��1αk

λλ′(sq; τ ; ν) and ��2αk
λλ′(sq; τ ; ν) into ��αk

λλ′(sq; ω; ν) and ��αk
λλ′(sq; −ω + ν; ν) using the formula (D4):

��αk
λλ′(sq; ω; ν)

=
∫ β/2

0
dτ

{
cos(ωτ )

[��1αk
λλ′(sq; τ ; ν) − ��1αk

λλ′(sq; β − τ ; ν)
] + i sin(ωτ )

[��1αk
λλ′ (sq; τ ; ν) + ��1αk

λλ′(sq; β − τ ; ν)
]

+ cos[(ω − ν)τ ]
[��2αk

λλ′(sq; τ ; ν) − ��2αk
λλ′ (sq; β − τ ; ν)

] + i sin[(ω − ν)τ ]
[��2αk

λλ′ (sq; τ ; ν) + ��20αk
λλ′ (sq; β − τ ; ν)

]}
(A23)
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and

��αk
λλ′(sq; −ω + ν; ν)

=
∫ β/2

0
dτ

{
cos(ωτ )

[��2αk
λλ′(sq; τ ; ν) − ��2αk

λλ′(sq; β − τ ; ν)
] − i sin(ωτ )

[��2αk
λλ′(sq; τ ; ν) + ��2αk

λλ′(sq; β − τ ; ν)
]

+ cos[(ω − ν)τ ]
[��1αk

λλ′(sq; τ ; ν) − ��1αk
λλ′(sq; β − τ ; ν)

] − i sin[(ω − ν)τ ]
[��1αk

λλ′(sq; τ ; ν) + ��10αk
λλ′ (sq; β − τ ; ν)

]}
.

(A24)

5. �K calculation

Equation (10) can be rewritten with explicit τ dependence as the following:

�Kα(123; τ ; τ ′) = −
∫∫

d(45)dτ ′′dτ ′′′Gα(14; τ − τ ′′)��α(453; τ ′′; τ ′′′)Gα(52; τ ′′′ − τ ′), (A25)

or, in frequency representation,

�Kα(123; ω; ν) = −
∫∫

d(45)Gα(14; ω)��α(453; ω; ν)Gα(52; ω − ν). (A26)

It is also convenient to evaluate it in the band representation

�K0αk
λλ′ (sq; ω; ν) = −

∑
λ′′λ′′′

Gαk
λλ′′(ω)��αk

λ′′λ′′′ (sq; ω; ν)Gα,k−q
λ′′′λ′ (ω − ν) (A27)

and

�K0αk
λλ′ (sq; −ω + ν; ν) = −

∑
λ′′λ′′′

G
∗αk
λ′′λ(ω − ν)��αk

λ′′λ′′′ (sq; −ω + ν; ν)G
∗α,k−q
λ′λ′′′ (ω). (A28)

The vertex in Eqs. (A27) and (A28) represents the sum of dynamic ��(ω,ν) and static ��stat(ν) parts.

6. Q calculation

It is convenient to evaluate Eq. (13) in real space and (τ,ν) representation. Considering again four cases according to the MT
geometry, one obtains the following:

MT-MT:

Q1R
ts ′;t′s ′′ (sq; τ ; ν) =

∑
α

∑
LL′

∑
L′′L′′′

{〈
φαt

L′′ |φαt
L �t

s ′
〉∗

G
α,−R
t′L′;tL(−τ )

〈
φαt′

L′′′ |φαt′
L′ �t′

s ′′
〉
K1αR

tL′′;t′L′′′ (sq; τ ; ν)

+ eiqR〈
φαt

L′′ |φαt
L �t

s ′
〉∗

GαR
tL;t′L′(τ )

〈
φαt′

L′′′ |φαt′
L′ �t′

s ′′
〉
K2α,−R

t′L′′′;tL′′ (sq; −τ ; ν)
}
; (A29)

MT-Int:

Q1R
ts ′;r′(sq; τ ; ν) =

∑
α

∑
LL′′

{〈
φαt

L′′ |φαt
L �t

s ′
〉∗

G
α,−R
r′;tL (−τ )K1αR

tL′′;r′ (sq; τ ; ν) + eiqR〈
φαt

L |φαt
L′′�

t
s ′
〉∗

GαR
tL;r′(τ )K2α,−R

r′;tL′′(sq; −τ ; ν)
}
;

(A30)

Int-MT:

Q1R
r;t′s ′′ (sq; τ ; ν) =

∑
α

∑
L′L′′′

{〈
φαt′

L′′′ |φαt′
L′ �t′

s ′′
〉
G

α,−R
t′L′;r (−τ )K1αR

r;t′L′′′ (sq; τ ; ν) + eiqR〈
φαt′

L′ |φαt′
L′′′�

t′
s ′′

〉
GαR

r;t′L′(τ )K2α,−R
t′L′′′;r(sq; −τ ; ν)

}
:

(A31)

Int-Int:

Q1R
r;r′ (sq; τ ; ν) =

∑
α

{
G

α,−R
r′;r (−τ )K1αR

r;r′(sq; τ ; ν) + eiqRGαR
r;r′(τ )K2α,−R

r′;r (sq; −τ ; ν)
}
. (A32)

To evaluate Q2, the same expression is used with replacement K1 ↔ K2. Then follows the transformation to the q space:
MT-MT:

Q
q′
ts ′;t′s ′′ (sq; τ ; ν) =

∑
R

e−iq′RQR
ts ′;t′s ′′ (sq; τ ; ν); (A33)
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Int-MT:

Q
q′
s ′;t′s ′′ (sq; τ ; ν) =

∑
r

Y
∗q′
r;s ′

∑
R

e−iq′RQR
r;t′s ′′ (sq; τ ; ν); (A34)

MT-Int:

Q
q′
ts ′;s ′′ (sq; τ ; ν) =

∑
r′

Y
q′
r′;s ′′

∑
R

e−iq′RQR
ts ′;r′ (sq; τ ; ν); (A35)

Int-Int:

Q
q′
s ′;s ′′ (sq; τ ; ν) =

∑
rr′

Y
∗q′
r;s ′Y

q′
r′;s ′′

∑
R

e−iq′RQR
r;r′(sq; τ ; ν), (A36)

with

Y q
r;s = 1

Nr

∑
G

ei(q+G)r
∫

�Int

dr ei(G−Gs )r. (A37)

Finally, the Q function is transformed to (ν ′,ν) representation in order to be used in T evaluation (next subsection):

Q
q′
ns ′s ′′ (sq; ν ′; ν)

=
∫ β/2

0
dτ

{
cos(ν ′τ )

[
Q1q′

s ′s ′′ (sq; τ ; ν) + Q1q′
s ′s ′′ (sq; −τ ; ν)

] + i sin(ν ′τ )
[
Q1q′

s ′s ′′ (sq; τ ; ν) − Q1q′
s ′s ′′ (sq; −τ ; ν)

]
+ cos(ν ′ − ν)τ

[
Q2q′

s ′s ′′ (sq; τ ; ν) + Q2q′
s ′s ′′ (sq; −τ ; ν)

] + i sin(ν ′ − ν)τ
[
Q2q′

s ′s ′′ (sq; τ ; ν) − Q2q′
s ′s ′′ (sq; −τ ; ν)

]}
(A38)

and

Q
q′
ns ′s ′′ (sq; −ν ′ + ν; ν)

=
∫ β/2

0
dτ

{
cos(ν ′τ )

[
Q2q′

s ′s ′′ (sq; τ ; ν) + Q2q′
s ′s ′′ (sq; −τ ; ν)

] − i sin(ν ′τ )
[
Q2q′

s ′s ′′ (sq; τ ; ν) − Q2q′
s ′s ′′ (sq; −τ ; ν)

]
+ cos(ν ′ − ν)τ

[
Q1q′

s ′s ′′ (sq; τ ; ν) + Q1q′
s ′s ′′ (sq; −τ ; ν)

] − i sin(ν ′ − ν)τ
[
Q1q′

s ′s ′′ (sq; τ ; ν) − Q1q′
s ′s ′′ (sq; −τ ; ν)

]}
. (A39)

7. T calculation

From Eq. (14) one obtains the T function in the RPB representation

T
q′
s ′s ′′ (sq; ν ′; ν) =

∑
s1s2

W
q′
s ′s1

(ν ′)Qq′
s1s2

(sq; ν ′; ν)W q′−q
s2s ′′ (ν ′ − ν) (A40)

and

T
q′
s ′s ′′ (sq; −ν ′ + ν; ν) =

∑
s1s2

W
q′
s ′s1

(ν ′ − ν)Qq′
s1s2

(sq; −ν ′ + ν; ν)W q′−q
s2s ′′ (ν ′). (A41)

In order to perform the transform ν ′ → τ , the static contribution is subtracted first:

T
q′
s ′s ′′ (sq; ν ′; ν) = T

q′
s ′s ′′ (sq; ν ′; ν) −

∑
s1s2

V
q′
s ′s1

Qq′
s1s2

(sq; ν ′; ν)V q′−q
s2s ′′ (A42)

and

T
q′
s ′s ′′ (sq; −ν ′ + ν; ν) = T

q′
s ′s ′′ (sq; −ν ′ + ν; ν) −

∑
s1s2

V
q′
s ′s1

Qq′
s1s2

(sq; −ν ′ + ν; ν)V q′−q
s2s ′′ . (A43)

After that, the transformation is accomplished straightforwardly:

T
q′
s ′s ′′ (sq; τ ; ν) = 1

β

∑
ν ′�ν/2

e−iν ′τ T
q′
s ′s ′′ (sq; ν ′; ν) + 1

β

∑
ν ′�ν/2

e−iν ′τ T
q′
s ′s ′′ (sq; ν ′; ν) = T 1q′

s ′s ′′ (sq; τ ; ν) + e−iντ T 2q′
s ′s ′′ (sq; τ ; ν),

(A44)
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where the following notations have been defined:

T 1q′
s ′s ′′ (sq; τ ; ν) = 1

β

∑
ν ′�ν/2

e−iν ′τ T
q′
s ′s ′′ (sq; ν ′; ν) = 1

β

∑
ν ′�ν/2

ei(ν ′−ν)τ T
q′
s ′s ′′ (sq; −ν ′ + ν; ν)

=
⎧⎨⎩ 1

β

∑
ν ′�ν/2

e−i(ν ′−ν)τ T
∗q′
s ′s ′′ (sq; −ν ′ + ν; ν)

⎫⎬⎭
∗

(A45)

and

T 2q′
s ′s ′′ (sq; τ ; ν) = 1

β

∑
ν ′�ν/2

e−i(ν ′−ν)τ T
q′
s ′s ′′ (sq; ν ′; ν). (A46)

Now, one adds the static contribution which was subtracted before:

T 2q′
s ′s ′′ (sq; τ ; ν) = T 2q′

s ′s ′′ (sq; τ ; ν) +
∑
s1s2

V
q′
s ′s1

Q2q′
s1s2

(sq; τ ; ν)V q′−q
s2s ′′ (A47)

and

T 1q′
s ′s ′′ (sq; τ ; ν) = T 1q′

s ′s ′′ (sq; τ ; ν) +
∑
s1s2

V
q′
s ′s1

Q1q′
s1s2

(sq; τ ; ν)V q′−q
s2s ′′ . (A48)

Finally, the T function is transformed in the real-space representation to be used in (15):
MT-MT:

T R
ts ′;t′s ′′ (sq; τ ; ν) = 1

Nk

∑
q′

eiq′RT
q′

ts ′;t′s ′′ (sq; τ ; ν); (A49)

Int-MT:

T R
r;t′s ′′ (sq; τ ; ν) = 1

Nk

∑
q′

eiq′R
∑
s ′

B
q′
r;s ′T

q′
s ′;t′s ′′ (sq; τ ; ν); (A50)

MT-Int:

T R
ts ′;r′ (sq; τ ; ν) = 1

Nk

∑
q′

eiq′R
∑
s ′′

B
∗q′
r′;s ′′T

q′
ts ′;s ′′ (sq; τ ; ν); (A51)

Int-Int:

T R
r;r′(sq; τ ; ν) = 1

Nk

∑
q′

eiq′R
∑
s ′s ′′

B
q′
r;s ′B

∗q′
r′;s ′′T

q′
s ′s ′′ (sq; τ ; ν), (A52)

with

B
q
r;s ′ = ei(q+Gs′ )r. (A53)

8. G(12)T (213) calculation

The second term on the right-hand side of (15) is evaluated in the real-space and (τ,ν) representations. Again, there are four
different cases according to the MT geometry:

MT-MT:

��1αR
tL;t′L′(sq; τ ; ν) = eiqR

∑
L′′L′′′

GαR
tL′′;t′L′′′ (τ )

∑
s ′s ′′

〈
φαt

L′′ |φαt
L �t

s ′
〉∗

T 2−R
t′s ′′;ts ′ (sq; −τ ; ν)

〈
φαt′

L′′′ |φαt′
L′ �t′

s ′′
〉
; (A54)

MT-Int:

��1αR
r;t′L′(sq; τ ; ν) = eiqR

∑
L′′′

GαR
r;t′L′′′ (τ )

∑
s ′′

T 2−R
t′s ′′;r(sq; −τ ; ν)

〈
φαt′

L′′′ |φαt′ ′L�t′
s ′′

〉
; (A55)

Int-MT:

��1αR
tL;r′(sq; τ ; ν) = eiqR

∑
L′′

GαR
tL′′;r′(τ )

∑
s ′

〈
φαt

L′′ |φαt
L �t

s ′
〉∗

T 2−R
r′;ts ′ (sq; −τ ; ν); (A56)

Int-Int:

��1αR
r;r′ (sq; τ ; ν) = eiqRGαR

r;r′ (τ )T 2−R
r′;r (sq; −τ ; ν). (A57)

��2 is evaluated similarly with the replacement T 2 → T 1 in the formulas above.
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APPENDIX B: CORRECTION TO THE POLARIZABILITY

According to Eqs. (2) and (10), the correction to the
polarizability can be written as the following:

�P (12) =
∑

α

Gα(13)��α(342)Gα(41)

= −
∑

α

�Kα(112). (B1)

It is represented in the RPB

�P (12; ν) = 1

Nk

∑
q

∑
ss ′

�̃q
s (1)�P

q
ss ′ (ν)�̃

∗q
s ′ (2), (B2)

where the coefficients are found from the band representation
of �K:

�P
q
ss ′ (ν) = − 1

Nk

∑
αk

∑
λλ′

〈
�αk

λ |�αk−q
λ′ �q

s

〉∗
×�Kαk

λλ′(s ′q; τ = 0; ν). (B3)

After that, the correction expressed in the full product basis
(Mi(j )) can be found:

�P
q
ij (ν) =

∑
ss ′

〈Mi |�s〉�P
q
ss ′ (ν)〈�s ′ |Mj 〉. (B4)

APPENDIX C: CORRECTION TO THE SELF-ENERGY

In order to find the correction to the self-energy, one can
use the general expression

��α(12) = −Gα(13)��α(324)W (41), (C1)

and, according to the separation of the vertex into dynamic
��dyn = ��(ω,ν) and static ��stat(ν) parts, and the separa-
tion of the screened interaction into Coulomb V and dynamic
W̃ parts, one can divide the correction to the self-energy into

dynamic, semidynamic, and static. They are considered below
in this section.

In all cases, the nonsymmetrized self-energy ��̃ is eval-
uated first. It is obtained when the summation runs only over
irreducible q points with weights wq. In the end, the correction
to the self-energy is obtained according to the symmetrization
procedure

��αk(r,r′; τ ) = 1

NA

∑
A

��̃αA−1k(A−1r,A−1r′; τ ), (C2)

where A represents the symmetry operation, and NA is the
number of symmetry operations.

1. Correction to the dynamic self-energy

The formulas of this section are applied when Eq. (C1) is
used with dynamic vertex and dynamic parts of the interaction
W̃ . In this case, the expression (C1) reads as the following:

��dyn,α(12; τ )

= − 1

β

∑
ν

eiντ 1

β

∑
ω

e−iωτ

×
∫

d(34)Gα(13; ω)��α(324; ω; ν)W̃ (41; ν), (C3)

where digits are used as space coordinates.
Introducing ��̃αk

12 (τ ; ν) through the relation

��̃
dyn,αk
12 (τ ) = − 1

β

∑
ν

eiντ��̃αk
12 (τ ; ν), (C4)

one obtains

��̃αk
12 (τ ; ν) = 1

β

∑
ω

e−iωτ
∑

q

wq

∑
sλ

G
αk+q
1;λ (ω)

×��
αk+q
λ;2 (sq; ω; ν)W̃ q

s;1(ν). (C5)

For the different locations of arguments 1 and 2, one gets the
following:

MT-MT:

��̃αk
tL;t′L′(τ ; ν) =

∑
q

wq

∑
s

∑
L′′

{
1

β

∑
ω

e−iωτ
∑

λ

G
αk+q
tL′′;λ (ω)��

αk+q
λ;t′L′ (sq; ω; ν)

} ∑
s ′

W̃
q
s;ts ′ (ν)〈φαt

L′′ |φαt
L �t

s ′ 〉∗

=
∑

q

wq

∑
s

∑
L′′

{
A1αk

tL′′;t′L′(sq; τ ; ν) + e−iντA2αk
tL′′;t′L′(sq; τ ; ν)

}
W̃

αq
s;tL′′L(ν)

=
∑

q

wq

∑
s

{
B1αk

tL;t′L′(sq; τ ; ν) + e−iντB2αk
tL;t′L′(sq; τ ; ν)

} = C1αk
tL;t′L′(τ ; ν) + e−iντC2αk

tL;t′L′(τ ; ν), (C6)

with obvious notations
Int-MT:

��̃αk
r;t′L′(τ ; ν) =

∑
q

wq

∑
s

{
1

β

∑
ω

e−iωτ
∑

λ

G
αk+q
r;λ (ω)��

αk+q
λ;t′L′ (sq; ω; ν)

}
W̃ q

s;r(ν)

=
∑

q

wq

∑
s

{
A1αk

r;t′L′(sq; τ ; ν) + e−iντA2αk
r;t′L′(sq; τ ; ν)

}
W̃αq

s;r (ν)

=
∑

q

wq

∑
s

{
B1αk

r;t′L′(sq; τ ; ν) + e−iντB2αk
r;t′L′(sq; τ ; ν)

}
= C1αk

r;t′L′(τ ; ν) + e−iντC2αk
r;t′L′(τ ; ν); (C7)
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MT-Int:

��̃αk
tL;r′(τ ; ν) =

∑
q

wq

∑
s

∑
L′′

{
1

β

∑
ω

e−iωτ
∑

λ

G
αk+q
tL′′;λ (ω)��

αk+q
λ;r′ (sq; ω; ν)

} ∑
s ′

W̃
q
s;ts ′ (ν)

〈
φαt

L′′
∣∣φαt

L �t
s ′
〉∗

=
∑

q

wq

∑
s

∑
L′′

{
A1αk

tL′′;r′(sq; τ ; ν) + e−iντA2αk
tL′′;r′(sq; τ ; ν)

}
W̃

αq
s;tL′′L(ν)

=
∑

q

wq

∑
s

{
B1αk

tL;r′ (sq; τ ; ν) + e−iντB2αk
tL;r′ (sq; τ ; ν)

}
= C1αk

tL;r′ (τ ; ν) + e−iντC2αk
tL;r′ (τ ; ν); (C8)

Int-Int:

��̃αk
r;r′(τ ; ν) =

∑
q

wq

∑
s

{
1

β

∑
ω

e−iωτ
∑

λ

G
αk+q
r;λ (ω)��

αk+q
λ;r′ (sq; ω; ν)

}
W̃ q

s;r(ν)

=
∑

q

wq

∑
s

{
A1αk

r;r′ (sq; τ ; ν) + e−iντA2αk
r;r′ (sq; τ ; ν)

}
W̃αq

s;r (ν)

=
∑

q

wq

∑
s

{
B1αk

r;r′ (sq; τ ; ν) + e−iντB2αk
r;r′ (sq; τ ; ν)

}
= C1αk

r;r′ (τ ; ν) + e−iντC2αk
r;r′ (τ ; ν). (C9)

After that, one has generally

��̃
dyn,αk
12 (τ ) = − 1

β

∑
ν

{
eiντC1αk

12 (τ ; ν) + C2αk
12 (τ ; ν)

}
= − 1

β

∑
ν�0

{
cos(ντ )

{
C1αk

12 (τ ; ν) + C1
∗α,−k
12 (τ ; ν)

} + i sin(ντ )
{
C1αk

12 (τ ; ν) − C1
∗α,−k
12 (τ ; ν)

}
+C2αk

12 (τ ; ν) + C2
∗α,−k
12 (τ ; ν)

}
. (C10)

2. Correction to the semidynamic self-energy

The semidynamic part of the self-energy is divided as the following:

��̃semi = G{��dynV + ��statW̃ } = G
{��

dyn
1 V + ��stat

1 W̃ + ��
dyn
�2 V + ��stat

�2 W̃
}
, (C11)

where the vertex function was divided into the first order and the higher orders.
In the above expression, the term G��

dyn
1 V is just the transpose of the term G��stat

1 W̃ , so one needs to calculate only the
term ��̂ = G��stat

1 W̃ :

��̂αk
12 (τ ) = −

∑
q

wq

∑
λ

G
αk+q
1;λ (τ )

1

β

∑
ν

eiντ
∑

s

��
αk+q
λ;2 (sq; ν)W̃ q

s;1(ν). (C12)

For the different locations of arguments 1 and 2, one gets the following:
MT-MT:

��̂αk
tL;t′L′(τ ) = −

∑
q

wq

∑
L′′

∑
λ

G
αk+q
tL′′;λ (τ )

1

β

∑
ν

eiντ
∑

s

��
statαk+q
λ;t′L′ (sq; ν)

∑
s ′

W̃
q
s;ts ′ (ν)

〈
φαt

L′′ |φαt
L �t

s ′
〉∗

= −
∑

q

wq

∑
L′′

∑
λ

G
αk+q
tL′′;λ (τ )

1

β

∑
ν

eiντ
∑

s

��
statαk+q
λ;t′L′ (sq; ν)W̃αq

s;tL′′L(ν); (C13)

Int-MT:

��̂αk
r;t′L′(τ ) = −

∑
q

wq

∑
λ

G
αk+q
r;λ (τ )

1

β

∑
ν

eiντ
∑

s

��
statαk+q
λ;t′L′ (sq; ν)W̃ q

s;r(ν); (C14)
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MT-Int:

��̂αk
tL;r′(τ ) = −

∑
q

wq

∑
L′′

∑
λ

G
αk+q
tL′′;λ (τ )

1

β

∑
ν

eiντ
∑

s

��
statαk+q
λ;r′ (sq; ν)W̃αq

s;tL′′L(ν); (C15)

Int-Int:

��̂αk
r;r′(τ ) = −

∑
q

wq

∑
λ

G
αk+q
r;λ (τ )

1

β

∑
ν

eiντ
∑

s

��
statαk+q
λ;r′ (sq; ν)W̃ q

s;r(ν). (C16)

The term G��
dyn
�2 V in (C11) is calculated using (C6)–(C9) similarly to the totally dynamical part but with V instead of W̃ . The

term G��stat
�2 W̃ in (C11) is calculated using (C13)–(C16) similarly to the semidynamical part of the first order.

3. Correction to the static self-energy

The totally static part of the self-energy is evaluated as the following:

��̃
stat,αk
12 (τ ) = −

∑
q

wq

∑
λ

G
αk+q
1;λ (τ )

∑
s

��
statαk+q
λ;2 (sq; −τ )V q

s;1. (C17)

Again, for the different locations of arguments 1 and 2, one gets the following: MT-MT:

��̃
stat,αk
tL;t′L′ (τ ) = −

∑
q

wq

∑
L′′

∑
λ

G
αk+q
tL′′;λ (τ )

∑
s

��
statαk+q
λ;t′L′ (sq; −τ )

∑
s ′

V
q
s;ts ′ 〈φαt

L′′ |φαt
L �t

s ′ 〉∗

= −
∑

q

wq

∑
L′′

∑
λ

G
αk+q
tL′′;λ (τ )

∑
s

��
statαk+q
λ;t′L′ (sq; −τ )V αq

s;tL′′L; (C18)

Int-MT:

��̃
stat,αk
r;t′L′ (τ ) = −

∑
q

wq

∑
λ

G
αk+q
r;λ (τ )

∑
s

��
statαk+q
λ;t′L′ (sq; −τ )V q

s;r; (C19)

MT-Int:

��̃
stat,αk
tL;r′ (τ ) = −

∑
q

wq

∑
L′′

∑
λ

G
αk+q
tL′′;λ (τ )

∑
s

��
statαk+q
λ;r′ (sq; −τ )V αq

s;tL′′L; (C20)

Int-Int:

��̃
stat,αk
r;r′ (τ ) = −

∑
q

wq

∑
λ

G
αk+q
r;λ (τ )

∑
s

��
statαk+q
λ;r′ (sq; −τ )V q

s;r. (C21)

4. Static vertex of the first order

The vertex of the first order as a function of τ [��stat
1 (τ )] should be calculated independently because, as a function of ν,

it is a slow decreasing function, and direct transform ��stat
1 (τ ) = 1

β

∑
ν e−iντ��stat

1 (ν) is not easy. Corresponding formulas are
obtained straightforwardly:

MT-MT:

��
statαk
1,tL;t′L′(sq; τ ) =

∑
R

e−ikR
∑
L′′L′′′

V ααR
tLL′′;t′L′L′′′

1

Nk

∑
k′

eik′RK0αk′
tL′′;t′L′′′ (sq; τ ); (C22)

Int-MT:

��
statαk
1,r;t′L′(sq; τ ) =

∑
R

e−ikR
∑
L′′′

V αR
r;t′L′L′′′

1

Nk

∑
k′

eik′RK0αk′
r;t′L′′′(sq; τ ); (C23)

MT-Int:

��
statαk
1,tL;r′ (sq; τ ) =

∑
R

e−ikR
∑
L′′

V αR
tLL′′;r′

1

Nk

∑
k′

eik′RK0αk′
tL′′;r′ (sq; τ ); (C24)

Int-Int:

��
statαk
1,r;r′ (sq; τ ) =

∑
R

e−ikRV R
r;r′

1

Nk

∑
k′

eik′RK0αk′
r;r′ (sq; τ ), (C25)
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with

K0αk
λλ′ (sq; τ ) =

∑
λ′′λ′′′

Gαk
λλ′′ (τ )

〈
�αk

λ′′
∣∣�αk−q

λ′′′ �q
s

〉
G

α,k−q
λ′′′λ′ (β − τ ). (C26)

APPENDIX D: DEFINITIONS OF THE MATSUBARA TIME-FREQUENCY TRANSFORMS

For convenience, the definitions of the time-frequency transforms for the functions of two imaginary-time arguments, accepted
in this work, are collected below. One starts with general transformations

K(ω; ω′) =
∫∫

dτ dτ ′eiωτ e−iω′τ ′
K(τ ; τ ′) =

∫∫
dτ dτ ′eiωτ ei(ω−ω′)τ ′

K(τ + τ ′; τ ′). (D1)

Introducing ν = ω − ω′, one has

K(ω; ω − ν) = K(ω; ν) =
∫∫

dτ dτ ′eiωτ eiντ ′
K(τ + τ ′; τ ′). (D2)

From (D2), other relations follow:

K(τ ; ν) =
∫

dτ ′eiντ ′
K(τ + τ ′; τ ′), (D3)

K(ω; ν) =
∫

dτ eiωτ ′
K(τ ; ν), (D4)

K(τ ; ν) = 1

β

∑
ω

e−iωτK(ω; ν). (D5)
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[89] A. Grüneis, G. Kresse, Y. Hinuma, and F. Oba, Phys. Rev. Lett.

112, 096401 (2014).
[90] L. Hedin, Phys. Rev. 139, A796 (1965).
[91] G. Baym and L. P. Kadanoff, Phys. Rev. 124, 287 (1961).
[92] A. Kutepov, S. Y. Savrasov, and G. Kotliar, Phys. Rev. B 80,

041103 (2009).
[93] N. E. Zein and V. P. Antropov, Phys. Rev. Lett. 89, 126402

(2002).
[94] V. A. Khodel and E. E. Saperstein, Phys. Lett. B 29, 632

(1969).
[95] N. E. Zein, S. Y. Savrasov, and G. Kotliar, Phys. Rev. Lett. 96,

226403 (2006).

155101-22

http://dx.doi.org/10.1021/ct5003658
http://dx.doi.org/10.1021/ct5003658
http://dx.doi.org/10.1021/ct5003658
http://dx.doi.org/10.1021/ct5003658
http://dx.doi.org/10.1209/epl/i2006-10266-6
http://dx.doi.org/10.1209/epl/i2006-10266-6
http://dx.doi.org/10.1209/epl/i2006-10266-6
http://dx.doi.org/10.1209/epl/i2006-10266-6
http://dx.doi.org/10.1103/PhysRevB.75.205129
http://dx.doi.org/10.1103/PhysRevB.75.205129
http://dx.doi.org/10.1103/PhysRevB.75.205129
http://dx.doi.org/10.1103/PhysRevB.75.205129
http://dx.doi.org/10.1103/PhysRevB.81.085103
http://dx.doi.org/10.1103/PhysRevB.81.085103
http://dx.doi.org/10.1103/PhysRevB.81.085103
http://dx.doi.org/10.1103/PhysRevB.81.085103
http://dx.doi.org/10.1103/PhysRevB.86.081102
http://dx.doi.org/10.1103/PhysRevB.86.081102
http://dx.doi.org/10.1103/PhysRevB.86.081102
http://dx.doi.org/10.1103/PhysRevB.86.081102
http://dx.doi.org/10.1103/PhysRevB.88.075105
http://dx.doi.org/10.1103/PhysRevB.88.075105
http://dx.doi.org/10.1103/PhysRevB.88.075105
http://dx.doi.org/10.1103/PhysRevB.88.075105
http://dx.doi.org/10.1103/PhysRevB.89.155417
http://dx.doi.org/10.1103/PhysRevB.89.155417
http://dx.doi.org/10.1103/PhysRevB.89.155417
http://dx.doi.org/10.1103/PhysRevB.89.155417
http://dx.doi.org/10.1103/PhysRevB.91.125135
http://dx.doi.org/10.1103/PhysRevB.91.125135
http://dx.doi.org/10.1103/PhysRevB.91.125135
http://dx.doi.org/10.1103/PhysRevB.91.125135
http://dx.doi.org/10.1103/PhysRevB.91.205111
http://dx.doi.org/10.1103/PhysRevB.91.205111
http://dx.doi.org/10.1103/PhysRevB.91.205111
http://dx.doi.org/10.1103/PhysRevB.91.205111
http://dx.doi.org/10.1103/PhysRevB.93.121115
http://dx.doi.org/10.1103/PhysRevB.93.121115
http://dx.doi.org/10.1103/PhysRevB.93.121115
http://dx.doi.org/10.1103/PhysRevB.93.121115
http://dx.doi.org/10.1103/PhysRevLett.110.146403
http://dx.doi.org/10.1103/PhysRevLett.110.146403
http://dx.doi.org/10.1103/PhysRevLett.110.146403
http://dx.doi.org/10.1103/PhysRevLett.110.146403
http://dx.doi.org/10.1103/PhysRevB.92.041115
http://dx.doi.org/10.1103/PhysRevB.92.041115
http://dx.doi.org/10.1103/PhysRevB.92.041115
http://dx.doi.org/10.1103/PhysRevB.92.041115
http://dx.doi.org/10.1103/PhysRevLett.99.246403
http://dx.doi.org/10.1103/PhysRevLett.99.246403
http://dx.doi.org/10.1103/PhysRevLett.99.246403
http://dx.doi.org/10.1103/PhysRevLett.99.246403
http://dx.doi.org/10.1103/PhysRevB.93.075205
http://dx.doi.org/10.1103/PhysRevB.93.075205
http://dx.doi.org/10.1103/PhysRevB.93.075205
http://dx.doi.org/10.1103/PhysRevB.93.075205
http://dx.doi.org/10.1103/PhysRevApplied.6.014009
http://dx.doi.org/10.1103/PhysRevApplied.6.014009
http://dx.doi.org/10.1103/PhysRevApplied.6.014009
http://dx.doi.org/10.1103/PhysRevApplied.6.014009
http://dx.doi.org/10.1103/PhysRevB.83.115103
http://dx.doi.org/10.1103/PhysRevB.83.115103
http://dx.doi.org/10.1103/PhysRevB.83.115103
http://dx.doi.org/10.1103/PhysRevB.83.115103
http://dx.doi.org/10.1103/PhysRevB.83.115123
http://dx.doi.org/10.1103/PhysRevB.83.115123
http://dx.doi.org/10.1103/PhysRevB.83.115123
http://dx.doi.org/10.1103/PhysRevB.83.115123
http://dx.doi.org/10.1103/PhysRevLett.59.819
http://dx.doi.org/10.1103/PhysRevLett.59.819
http://dx.doi.org/10.1103/PhysRevLett.59.819
http://dx.doi.org/10.1103/PhysRevLett.59.819
http://dx.doi.org/10.1103/PhysRevB.66.195215
http://dx.doi.org/10.1103/PhysRevB.66.195215
http://dx.doi.org/10.1103/PhysRevB.66.195215
http://dx.doi.org/10.1103/PhysRevB.66.195215
http://dx.doi.org/10.1103/PhysRevB.71.045207
http://dx.doi.org/10.1103/PhysRevB.71.045207
http://dx.doi.org/10.1103/PhysRevB.71.045207
http://dx.doi.org/10.1103/PhysRevB.71.045207
http://dx.doi.org/10.1103/PhysRevB.75.235102
http://dx.doi.org/10.1103/PhysRevB.75.235102
http://dx.doi.org/10.1103/PhysRevB.75.235102
http://dx.doi.org/10.1103/PhysRevB.75.235102
http://dx.doi.org/10.1103/PhysRevLett.89.126401
http://dx.doi.org/10.1103/PhysRevLett.89.126401
http://dx.doi.org/10.1103/PhysRevLett.89.126401
http://dx.doi.org/10.1103/PhysRevLett.89.126401
http://dx.doi.org/10.1103/PhysRevB.93.125210
http://dx.doi.org/10.1103/PhysRevB.93.125210
http://dx.doi.org/10.1103/PhysRevB.93.125210
http://dx.doi.org/10.1103/PhysRevB.93.125210
http://dx.doi.org/10.1103/PhysRevB.76.165106
http://dx.doi.org/10.1103/PhysRevB.76.165106
http://dx.doi.org/10.1103/PhysRevB.76.165106
http://dx.doi.org/10.1103/PhysRevB.76.165106
http://dx.doi.org/10.1103/PhysRevLett.93.126406
http://dx.doi.org/10.1103/PhysRevLett.93.126406
http://dx.doi.org/10.1103/PhysRevLett.93.126406
http://dx.doi.org/10.1103/PhysRevLett.93.126406
http://dx.doi.org/10.1103/PhysRevB.76.165126
http://dx.doi.org/10.1103/PhysRevB.76.165126
http://dx.doi.org/10.1103/PhysRevB.76.165126
http://dx.doi.org/10.1103/PhysRevB.76.165126
http://dx.doi.org/10.1103/PhysRevLett.97.267601
http://dx.doi.org/10.1103/PhysRevLett.97.267601
http://dx.doi.org/10.1103/PhysRevLett.97.267601
http://dx.doi.org/10.1103/PhysRevLett.97.267601
http://dx.doi.org/10.1103/PhysRevLett.96.226402
http://dx.doi.org/10.1103/PhysRevLett.96.226402
http://dx.doi.org/10.1103/PhysRevLett.96.226402
http://dx.doi.org/10.1103/PhysRevLett.96.226402
http://dx.doi.org/10.1103/PhysRevB.81.045203
http://dx.doi.org/10.1103/PhysRevB.81.045203
http://dx.doi.org/10.1103/PhysRevB.81.045203
http://dx.doi.org/10.1103/PhysRevB.81.045203
http://dx.doi.org/10.1103/PhysRevB.81.125201
http://dx.doi.org/10.1103/PhysRevB.81.125201
http://dx.doi.org/10.1103/PhysRevB.81.125201
http://dx.doi.org/10.1103/PhysRevB.81.125201
http://dx.doi.org/10.1088/0953-8984/20/29/295214
http://dx.doi.org/10.1088/0953-8984/20/29/295214
http://dx.doi.org/10.1088/0953-8984/20/29/295214
http://dx.doi.org/10.1088/0953-8984/20/29/295214
http://dx.doi.org/10.1103/PhysRevB.81.245120
http://dx.doi.org/10.1103/PhysRevB.81.245120
http://dx.doi.org/10.1103/PhysRevB.81.245120
http://dx.doi.org/10.1103/PhysRevB.81.245120
http://dx.doi.org/10.1103/PhysRevB.84.205205
http://dx.doi.org/10.1103/PhysRevB.84.205205
http://dx.doi.org/10.1103/PhysRevB.84.205205
http://dx.doi.org/10.1103/PhysRevB.84.205205
http://dx.doi.org/10.1103/PhysRevB.84.165204
http://dx.doi.org/10.1103/PhysRevB.84.165204
http://dx.doi.org/10.1103/PhysRevB.84.165204
http://dx.doi.org/10.1103/PhysRevB.84.165204
http://dx.doi.org/10.1103/PhysRevB.87.155147
http://dx.doi.org/10.1103/PhysRevB.87.155147
http://dx.doi.org/10.1103/PhysRevB.87.155147
http://dx.doi.org/10.1103/PhysRevB.87.155147
http://dx.doi.org/10.1103/PhysRevB.57.11962
http://dx.doi.org/10.1103/PhysRevB.57.11962
http://dx.doi.org/10.1103/PhysRevB.57.11962
http://dx.doi.org/10.1103/PhysRevB.57.11962
http://dx.doi.org/10.1103/PhysRevB.47.15931
http://dx.doi.org/10.1103/PhysRevB.47.15931
http://dx.doi.org/10.1103/PhysRevB.47.15931
http://dx.doi.org/10.1103/PhysRevB.47.15931
http://dx.doi.org/10.1103/PhysRevLett.78.1528
http://dx.doi.org/10.1103/PhysRevLett.78.1528
http://dx.doi.org/10.1103/PhysRevLett.78.1528
http://dx.doi.org/10.1103/PhysRevLett.78.1528
http://dx.doi.org/10.1103/PhysRevLett.45.204
http://dx.doi.org/10.1103/PhysRevLett.45.204
http://dx.doi.org/10.1103/PhysRevLett.45.204
http://dx.doi.org/10.1103/PhysRevLett.45.204
http://dx.doi.org/10.1103/PhysRevLett.52.997
http://dx.doi.org/10.1103/PhysRevLett.52.997
http://dx.doi.org/10.1103/PhysRevLett.52.997
http://dx.doi.org/10.1103/PhysRevLett.52.997
http://dx.doi.org/10.1103/PhysRevLett.55.2850
http://dx.doi.org/10.1103/PhysRevLett.55.2850
http://dx.doi.org/10.1103/PhysRevLett.55.2850
http://dx.doi.org/10.1103/PhysRevLett.55.2850
http://dx.doi.org/10.1103/PhysRevB.49.8024
http://dx.doi.org/10.1103/PhysRevB.49.8024
http://dx.doi.org/10.1103/PhysRevB.49.8024
http://dx.doi.org/10.1103/PhysRevB.49.8024
http://dx.doi.org/10.1103/PhysRevLett.62.2718
http://dx.doi.org/10.1103/PhysRevLett.62.2718
http://dx.doi.org/10.1103/PhysRevLett.62.2718
http://dx.doi.org/10.1103/PhysRevLett.62.2718
http://dx.doi.org/10.1103/PhysRevB.56.12832
http://dx.doi.org/10.1103/PhysRevB.56.12832
http://dx.doi.org/10.1103/PhysRevB.56.12832
http://dx.doi.org/10.1103/PhysRevB.56.12832
http://dx.doi.org/10.1103/PhysRevB.76.155106
http://dx.doi.org/10.1103/PhysRevB.76.155106
http://dx.doi.org/10.1103/PhysRevB.76.155106
http://dx.doi.org/10.1103/PhysRevB.76.155106
http://dx.doi.org/10.1103/PhysRevLett.107.186401
http://dx.doi.org/10.1103/PhysRevLett.107.186401
http://dx.doi.org/10.1103/PhysRevLett.107.186401
http://dx.doi.org/10.1103/PhysRevLett.107.186401
http://dx.doi.org/10.1103/PhysRevB.87.205143
http://dx.doi.org/10.1103/PhysRevB.87.205143
http://dx.doi.org/10.1103/PhysRevB.87.205143
http://dx.doi.org/10.1103/PhysRevB.87.205143
http://dx.doi.org/10.1103/PhysRevB.69.155112
http://dx.doi.org/10.1103/PhysRevB.69.155112
http://dx.doi.org/10.1103/PhysRevB.69.155112
http://dx.doi.org/10.1103/PhysRevB.69.155112
http://dx.doi.org/10.1103/PhysRevB.72.125203
http://dx.doi.org/10.1103/PhysRevB.72.125203
http://dx.doi.org/10.1103/PhysRevB.72.125203
http://dx.doi.org/10.1103/PhysRevB.72.125203
http://dx.doi.org/10.1103/PhysRevLett.88.066404
http://dx.doi.org/10.1103/PhysRevLett.88.066404
http://dx.doi.org/10.1103/PhysRevLett.88.066404
http://dx.doi.org/10.1103/PhysRevLett.88.066404
http://dx.doi.org/10.1103/PhysRevB.68.165108
http://dx.doi.org/10.1103/PhysRevB.68.165108
http://dx.doi.org/10.1103/PhysRevB.68.165108
http://dx.doi.org/10.1103/PhysRevB.68.165108
http://dx.doi.org/10.1103/PhysRevLett.91.056402
http://dx.doi.org/10.1103/PhysRevLett.91.056402
http://dx.doi.org/10.1103/PhysRevLett.91.056402
http://dx.doi.org/10.1103/PhysRevLett.91.056402
http://dx.doi.org/10.1103/PhysRevB.70.081103
http://dx.doi.org/10.1103/PhysRevB.70.081103
http://dx.doi.org/10.1103/PhysRevB.70.081103
http://dx.doi.org/10.1103/PhysRevB.70.081103
http://dx.doi.org/10.1103/PhysRevLett.94.186402
http://dx.doi.org/10.1103/PhysRevLett.94.186402
http://dx.doi.org/10.1103/PhysRevLett.94.186402
http://dx.doi.org/10.1103/PhysRevLett.94.186402
http://dx.doi.org/10.1088/0034-4885/70/3/R02
http://dx.doi.org/10.1088/0034-4885/70/3/R02
http://dx.doi.org/10.1088/0034-4885/70/3/R02
http://dx.doi.org/10.1088/0034-4885/70/3/R02
http://dx.doi.org/10.1088/0953-8984/27/31/315603
http://dx.doi.org/10.1088/0953-8984/27/31/315603
http://dx.doi.org/10.1088/0953-8984/27/31/315603
http://dx.doi.org/10.1088/0953-8984/27/31/315603
http://dx.doi.org/10.1103/PhysRevLett.112.096401
http://dx.doi.org/10.1103/PhysRevLett.112.096401
http://dx.doi.org/10.1103/PhysRevLett.112.096401
http://dx.doi.org/10.1103/PhysRevLett.112.096401
http://dx.doi.org/10.1103/PhysRev.139.A796
http://dx.doi.org/10.1103/PhysRev.139.A796
http://dx.doi.org/10.1103/PhysRev.139.A796
http://dx.doi.org/10.1103/PhysRev.139.A796
http://dx.doi.org/10.1103/PhysRev.124.287
http://dx.doi.org/10.1103/PhysRev.124.287
http://dx.doi.org/10.1103/PhysRev.124.287
http://dx.doi.org/10.1103/PhysRev.124.287
http://dx.doi.org/10.1103/PhysRevB.80.041103
http://dx.doi.org/10.1103/PhysRevB.80.041103
http://dx.doi.org/10.1103/PhysRevB.80.041103
http://dx.doi.org/10.1103/PhysRevB.80.041103
http://dx.doi.org/10.1103/PhysRevLett.89.126402
http://dx.doi.org/10.1103/PhysRevLett.89.126402
http://dx.doi.org/10.1103/PhysRevLett.89.126402
http://dx.doi.org/10.1103/PhysRevLett.89.126402
http://dx.doi.org/10.1016/0370-2693(69)90093-8
http://dx.doi.org/10.1016/0370-2693(69)90093-8
http://dx.doi.org/10.1016/0370-2693(69)90093-8
http://dx.doi.org/10.1016/0370-2693(69)90093-8
http://dx.doi.org/10.1103/PhysRevLett.96.226403
http://dx.doi.org/10.1103/PhysRevLett.96.226403
http://dx.doi.org/10.1103/PhysRevLett.96.226403
http://dx.doi.org/10.1103/PhysRevLett.96.226403


ELECTRONIC STRUCTURE OF Na, K, Si, AND LiF . . . PHYSICAL REVIEW B 94, 155101 (2016)

[96] M. M. Rieger, L. Steinbeck, I. D. White, H. N. Rojas, and
R. W. Godby, Comput. Phys. Commun. 117, 211 (1999).

[97] A. Fleszar and W. Hanke, Phys. Rev. B 56, 10228 (1997).
[98] S. Lebegue, B. Arnaud, M. Alouani, and P. E. Bloechl, Phys.

Rev. B 67, 155208 (2003).
[99] This opportunity is under development now. Preliminary tests

show that k meshes 2 × 2 × 2 or 3 × 3 × 3 are already good
enough for the vertex part in many cases.

[100] J. E. Ortega and F. J. Himpsel, Phys. Rev. B 47, 2130 (1993).
[101] W. Bludau, A. Onton, and W. Heinke, J. Appl. Phys. 45, 1846

(1974).
[102] J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
[103] M. Cazzaniga, Phys. Rev. B 86, 035120 (2012).
[104] J. Lischner, T. Bazhirov, A. H. MacDonald, M. L. Cohen, and

S. G. Louie, Phys. Rev. B 89, 081108 (2014).

[105] M. P. Surh, J. E. Northrup, and S. G. Louie, Phys. Rev. B 38,
5976 (1988).

[106] I.-W. Lyo and E. W. Plummer, Phys. Rev. Lett. 60, 1558
(1988).

[107] B. S. Itchkawitz, I.-W. Lyo, and E. W. Plummer, Phys. Rev. B
41, 8075 (1990).

[108] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,
3865 (1996).

[109] W. Chen and A. Pasquarello, Phys. Rev. B 90, 165133
(2014).

[110] F. Karsai, P. Tiwald, R. Laskowski, F. Tran, D. Koller, S. Gräfe,
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