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In principle, the Luttinger-Ward Green’s-function formalism allows one to compute simultaneously the total
energy and the quasiparticle band structure of a many-body electronic system from first principles. We present
approximate and exact expressions for the correlation energy within the GW-random-phase approximation that
are more amenable to computation and allow for developing efficient approximations to the self-energy op-
erator and correlation energy. The exact form is a sum over differences between plasmon and interband
energies. The approximate forms are based on summing over screened interband transitions. We also demon-
strate that blind extremization of such functionals leads to unphysical results: imposing physical constraints on
the allowed solutions �Green’s functions� is necessary. Finally, we present some relevant numerical results for
atomic systems.
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I. INTRODUCTION

Density-Functional Theory �DFT� �Refs. 1 and 2� with the
local-density �LDA� or generalized gradient approximation
�GGA� �Refs. 2–4� is the most widely used framework for
first-principles calculations of materials. In practice, it is of-
ten found to provide a good description of ground-state total
energies, atomic geometries, vibrational modes, etc., of a va-
riety of materials. A major shortcoming is its inability to
predict accurate electronic band-structure energies.5 For band
insulators with weak correlation, the failure is mainly
quantitative.6 However, for the classic case of transition-
metal oxides, the failures can be qualitative and serious such
as predicting a metallic instead of an insulating ground
state.7 Ideally, a computationally efficient ab initio method
with accurate total energies and band structures would yield
a major advance in predictive power.

A number of approaches aim to improve electronic band
structures. For systems with transition metals, one funda-
mental problem is that the LDA or GGA does not capture the
proper electronic correlations for the spatially localized d-
and f-state derived bands. Two current solutions to this de-
ficiency are LDA+U �Ref. 7� and dynamical mean-field
theory �DMFT�.8,9 The LDA+U approach is popular and
easy-to-use: one “manually” adds static and localized corre-
lation effects within a Hubbard-type model to the DFT en-
ergy functional. More sophisticated is DMFT where local-
ized but dynamic and high-level correlations are included
using exact solutions of interacting quantum impurity mod-
els. Both approaches are physically motivated in that they
create frameworks that include the physics deemed important
for the problem at hand. A shared drawback is their require-
ment of an unspecified localized basis set in order to define
key quantities such as the Hubbard parameters or the impu-
rity site. This raises questions of transferability, i.e., the de-
pendence of their predictions on the chosen orbitals or pa-
rameter values.

A different approach is to use many-body perturbation
theory of Green’s functions. The most successful is Hedin’s
GW approximation to the electron self-energy.10 This ap-

proximation delivers high-quality band structures of many
band insulators and simple metals.6,11 The GW approxima-
tion includes a great deal of physics including exact ex-
change, localized Coulomb repulsion, dynamic screening,
and dispersion forces, e.g., the LDA+U is a static approxi-
mation to GW.7 However, most GW calculations are pertur-
bative in that they compute corrections to a mean-field DFT
input, and the quality of the final result depends on the DFT
description. In certain transition-metal oxides where the
LDA provides a decent starting point, GW corrections on this
DFT starting point can yield a good description of the elec-
tronic bands.12–17 However, in other situations, the inad-
equacy of the DFT description can lead to quantitative
errors.12,18–20

Clearly, it is advantageous to apply GW beyond the
perturbation-off-DFT prescription. Such an approach would
not assume a localized basis or any set of parameters. Recent
methods such as the quasiparticle self-consistent GW
�QSGW� �Ref. 18� or the self-consistent Coulomb-hole-
screened-exchange �scCOHSEX� �Ref. 20� have successfully
moved away from using DFT as the starting point. These two
methods find the noninteracting initial guess for the band
structure approximately but self-consistently within GW.
Such approaches allow for inclusion of both static and dy-
namic screening effects in addition to localized �Hubbard U�
Coulombic physics in a single, general, and parameter-free
framework. QSGW and scCOHSEX are self-consistent band-
structure methods but it would be highly desirable to turn
them into total-energy methods via the Luttinger-Ward21 ap-
proach that should, in principle, allow one to obtain accurate
total energies and band structures.

Separate from self-consistent band-structure methods,
there has been ongoing work on using GW-random-phase
approximation �RPA�-type correlation functionals for com-
puting total energies. Much of the activity was sparked by
initial work on the uniform electron gas showing that
Luttinger-Ward functionals with the GW-RPA correlation en-
ergy provided very accurate ground-state total energies.22–25

Other model calculations cast doubt on whether such high
accuracy was generic.26 However, actual calculations on at-
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oms, small molecules, and simple solids find ground-state
energies that improve over the standard DFT functionals, es-
pecially when short-ranged corrections are added.27–36 The
vast majority of such calculations are post-DFT calculations.
Namely, they use Green’s functions based on LDA or GGA
wave functions and eigenvalues to evaluate the correlation
energy instead of using a self-consistent one-particle descrip-
tion coming from a more elaborate, and presumably more
accurate, theory such as QSGW or scCOHSEX. In addition,
the correlation energies are evaluated using the standard for-
mula relying on frequency integration of the trace of a matrix
logarithm �see Sec. V�.

In this work, we report on three main points of progress in
this general area for the GW-RPA correlation energy func-
tional. The first is an exact rewriting of the correlation energy
in terms of plasma and interband energies, a result that was
found recently using very different methods.37 This exact
form is amenable to computations of identical complexity to
present-day linear-response time-dependent DFT �TDDFT�
or Bethe-Salpeter equation �BSE� calculations.11,38–42 In ad-
dition, this new form has much better convergence properties
when compared to the standard frequency integration method
as evinced by our atomic calculations. Second, we prove that
the GW-RPA correlation energy functional is not bounded
from below, has a minimum with negative infinite value, and
when evaluated using noninteracting Green’s functions, it
has no extrema. This means blind optimization of total-
energy functionals that are based on the GW-RPA correlation
energy is highly problematic, and physical constraints are
required. Third, we rewrite the GW-RPA correlation energy
approximately as a sum over screened interband transition
contributions. This allows us to create a ladder of approxi-
mations of which the COHSEX �Ref. 10� is the lowest rung.
In addition, this allows us to put schemes such as sc-
COHSEX on a firm footing by showing how they can origi-
nate from a variational principle. The ladder provides a series
of more accurate functionals and associated self-energy op-
erators that may deliver improved band structure and Green’s
functions. We hope that these findings pave the way toward
efficient and accurate computation of total energies within
GW-RPA as well as the creation of efficient self-consistent
schemes for computing total energies and band structures
that improve over DFT.

This paper is organized as follows. In Sec. II, we describe
our notation and provide basic definitions. Section III pro-
vides a brief description and the necessary ingredients of the
Luttinger-Ward approach. Section IV describes how the
Klein total-energy functional we focus on in this work actu-
ally has no dependence on the choice of noninteracting aux-
iliary Green’s function that enters the theory. This greatly
simplifies the form of the functional if we restrict ourselves
to evaluating the total energy on noninteracting Green’s
functions. We also make a connection to the Sham-Schlüter
�SS� equation43,44 appropriate for the variational problem as-
sociated with the functional. In Sec. V, we rewrite the
GW-RPA correlation energy in terms of integrals of the stan-
dard, time-ordered RPA polarizability. Section VI provides
expressions for the derivatives of the total-energy functional
versus the wave functions and eigenenergies or equivalently
the static and Hermitian nonlocal potential determining the

noninteracting Green’s function. In Sec. VII, we perform an
exact rewriting of the GW-RPA correlation energy functional
in terms of plasma and interband transition contributions.
Section VIII provides a proof of the unboundedness and lack
of extremum of the Klein total-energy functional when
evaluated on noninteracting Green’s functions. We discuss
what this result means in more physical terms, how it relates
to other results in the literature, and the requirement of con-
strained optimization that stems from this finding. In Sec. IX,
we switch gears and derive approximate forms of the
GW-RPA correlation energy written in terms of contributions
from self-interaction-free screened interband transitions. Sec-
tion X derives a ladder of approximations that allows us to
connect to the COHSEX approximation for the self-energy
and its associated correlation energy expression. We provide
a number of approximate correlation energies from which
appropriate self-energies can be derived. In Sec. XI, we re-
port numerical results for atoms demonstrating the lack of a
lower bound to the correlation energy, the superior conver-
gence properties of the exact plasmon form, and a tabulation
of the quality of the various approximate forms derived in
Secs. IX and X. We summarize and provide an outlook in
Sec. XII.

II. DEFINITIONS AND NOTATION

In this work, we restrict ourselves to systems with time-
independent, nonrelativistic, many-body Hamiltonians so
that all response or Green’s functions are functions only of
time differences. Furthermore, we will consider systems with
time-reversal symmetry so that quantities such as Hamilto-
nians, density matrices, or one-particle states are real valued.
We set �=1 so energies and frequencies are interchangeable.

Wherever possible, we use matrix notation. For example,
the one-particle electron Green’s function for a time-
independent system in the frequency domain, G�x ,x� ,��, is
a function of three arguments. The x and x� arguments in-
clude both spatial coordinates and spin: x= �r� ,��, where r� is
a three vector and �=�1 labels the two-spin projections. In
matrix notation, we write the matrix G��� whose matrix el-
ements are �x�G����x��=G�x ,x� ,��.

The time-ordered, noninteracting, one-particle Green’s
function G0��� is given by

G0��� = ��I − H0�−1 = �
n

�n��n�
� − �n

. �1�

The eigenenergies �n have imaginary parts Im �n=sgn��
−�n�0+, where 0+ is a positive infinitesimal and � is the
Fermi energy. Thus the poles of G0 are above the real � axis
for occupied or valence states, labeled by v so �v��, and
below the real axis for unoccupied or conduction states, la-
beled by c so �c��. The noninteracting one-particle Hamil-
tonian H0 generates the orthonormal eigenstates �n� and real
eigenvalues �n,

H0�n� = �n�n� .

The wave functions in coordinate space are denoted as
	n�x�= �x �n�. In the time domain, we have the time-ordered
formula,
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G0�t� = �
−



 d�

2�
e−i�tG0���

= − i��t��
c

�c��c�e−i�ct + i��− t��
v

�v��v�e−i�vt. �2�

The noninteracting density matrix is the standard sum over
the occupied states,

0 = �
n

�n���� − �n��n�

= �
v

�v��v� = − iG0�− 0+� = �
−



 d�

2�i
ei�0+

G0��� .

We separate a potential U0 from H0 via

H0 = T + Uion + U0,

where T is the kinetic operator and Uion the electron-ion
interaction potential. The static and Hermitian U0 represents
approximately the effects of the Coulomb interaction �Har-
tree, exchange, and correlation�. For example, in DFT U0 is a
local potential that is the sum of the Hartree and exchange-
correlation potentials. However, in general, we allow for a
nonlocal U0, i.e., U0�x ,x���0 for r��r��. For a fixed nuclear
configuration and thus Uion, G0 is determined by U0 and vice
versa,

G0���−1 = �I − H0 = �I − T − Uion − U0. �3�

The exact, interacting, one-particle Green’s function
obeys the Dyson equation,

G���−1 = �I − T − Uion − �H − �xc��� ,

where �H is the Hartree potential determined by the electron
density n�x�,

�H�x� =� dx�V�x,x��n�x��

and the bare Coulomb operator is

V�x,x�� =
��,��

�r� − r���
.

The self-energy �xc��� is frequency-dependent �dynamic�
and non-Hermitian and encodes the complex exchange and
correlation effects of the many-body system. We can write
the Dyson equation equally as

G−1��� = G0
−1��� − �� + �xc��� − U0	 . �4�

This shows that to obtain the true interacting Green’s func-
tion, we replace the static, Hermitian U0 by the dynamic,
non-Hermitian �H+�xc���. The interacting electron density
n�x� and density matrix �x ,x�� can be computed from the
Green’s function via

n�x� = �x,x� ,

�x,x�� = �
−



 d�

2�i
ei�0+

G�x,x�,�� = − iG�x,x�,t = − 0+� ,

�5�

where the last form is the Green’s function in the time do-
main evaluated for infinitesimal negative times. Note that the
relations of Eq. �5� among n, , G, and G also hold for the
noninteracting n0, 0, G0, and G0.

The frequency-dependent dielectric matrix ���� is related
to the irreducible polarizability matrix P��� via

���� = I − VP��� .

Within the RPA, P��� is a sum over transitions between
valence and conduction states,

P��� = �
c,v

2��c − �v��cv��cv�
�2 − ��c − �v − i0+�2 .

The pair states �cv� are defined in coordinate space via the
single-particle wave functions 	n�x� through

�x�cv� 
 �x�c��x�v�� = 	c�x�	v�x��.

For a more compact notation, we label each interband tran-
sition �c ,v� by t with energy �t
�c−�v− i0+ and can write

P��� = �
t

2�t�t��t�
�2 − �t

2 = �
t

�t��� , �6�

where �t��� is the polarizability contribution of transition t.
We can write P��� in a more general form to handle possible
degeneracies in the transition energies �t. Namely, we break
the sum over all transitions t into a first sum over the distinct
energies � and then a sum over all degenerate transitions �
with energy �,

P��� = �
�

�����, ����� =
2�

�2 − �2 �
����=�

������ . �7�

Finally, the time domain RPA polarizability is

P�x,x�,t� = − iG0�x,x�,t�G0�x�,x,− t�

= �
−



 d�

2�
e−i�tP�x,x�,�� . �8�

III. LUTTINGER-WARD APPROACH

One of the central points of the overall approach of Lut-
tinger and Ward21 is that one can obtain both the ground-state
total energy and interacting G��� from the extremum of an
energy functional of G. In this work, we concentrate on the
specific case of the Klein functional,45 a functional of both G
and an auxiliary noninteracting G0 that is meant to be an
initial guess for G. It is given by

F�G,G0	 = �
−



 d�

2�i
ei�0+

tr�H0G0��� + I − G0���−1G���

+ ln�G0���−1G���	 − U0G���� + EH�n	 +�xc�G	 .
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The � integral can be turned into a closed contour integral
over the upper complex � plane due to the factor ei�0+

. EH is
the Hartree energy stemming from the electron density n�x�
associated with G���,

EH�n	 =
1

2
� dx� dx�n�x�V�x,x��n�x�� =

1

2
� dxn�x��H�x� .

The functional �xc�G	 is the exchange-correlation energy
functional for this approach and is a complicated functional
of G. Formally, it is a sum over all diagrams to all orders in
the Coulomb interaction obtained by closing all skeleton
self-energy diagrams with Green’s functions �with appropri-
ate weight�.21 Much like in DFT, choosing an approximate
form for �xc corresponds to including a certain level of treat-
ment of exchange-correlation effects. However, since �xc is
a functional of the more information-rich, nonlocal, and dy-
namic G�x ,x� ,�� as opposed to the simpler density n�x� in
DFT, relatively simple forms for �xc will be equivalent to
rather complex functionals of the density in DFT. On the
other hand, compared to DFT, the price for more information
is the increased complexity of the energy functional F and
the entire theoretical and computational approach.

Within Luttinger-Ward theory, one focuses on the extre-
mum of the functional F. At the extremum, the value of F is
the true ground-state total energy, and the extremizing G is
the true one-particle Green’s function.10,21 Therefore, this
framework provides, in principle, both exact total energies
and one-particle properties such as quasiparticle wave func-
tions, electron densities, and band structures. To find the
variation of F versus G, we use a matrix differentiation rule
based on the properties of the determinant,

tr�ln�A�� = ln�det�A�� → � tr�ln�A�� = tr�A−1�A� , �9�

where �A is the variation in the matrix A. The variation of F
for fixed G0 is

�F�G0
= �

−



 d�

2�i
ei�0+

tr�− G0���−1�G��� + G���−1�G���

− U0�G���� + �EH + ��xc

=�
−



 d�

2�i
ei�0+

tr�G���−1 − G0���−1 + �H

+ 2�i
��xc

�G���
− U0��G���� . �10�

Setting this to zero for arbitrary �G yields the Dyson Eq. �4�
with the self-energy given by the functional derivative,

�xc��� = 2�i
��xc

�G���
.

Again, the situation is analogous to DFT where the
exchange-correlation potential is the functional derivative
versus the density of the exchange-correlation energy func-
tional.

Within Luttinger-Ward theory, there are two separate chal-
lenges. The first and most obvious is choosing some approxi-
mate form for �xc. Second, there is the additional challenge

that, unlike DFT where N-presentability conditions for the
electron density n�x� have been known for a long time,46,47

similar conditions for the Green’s function G�x ,x� ,�� are
not known to the best of our knowledge. In other words, it is
not generally known which subset of functions G�x ,x� ,��
correspond to physically realizable Green’s functions for in-
teracting electrons with the standard many-body Hamil-
tonian. Therefore, one must also decide on some scheme for
restricting oneself to physically correct forms of G. From a
more pragmatic viewpoint, working with an arbitrary func-
tion G�x ,x� ,�� of three variables is computationally very
demanding so that any simplifying assumptions on the form
of G are enormously helpful in practice. In what follows, we
will restrict G��� to be of noninteracting form and the next
section explains why this is a sensible choice.

IV. LACK OF DEPENDENCE OF F ON G0

Clearly some approximations are required to make
progress. We will first replace the true interacting G��� by
something simpler in order to reduce the search space for the
extremum. Restricting to noninteracting Green’s functions
that are generated by Hermitian Hamiltonians is sensible
from a physical viewpoint: we will try to search for the
“best” noninteracting picture of the electronic system. As an
added benefit, we can employ known algorithms for Hermit-
ian and orthonormal eigensystems.

In fact, this restriction greatly simplifies the structure of
F. This is because F does not in fact depend on the choice of
U0 or equivalently G0. Namely, �F /�U0=0 for fixed G.
Physically, this is sensible since the final result for G should
not depend on the arbitrary initial guess G0. For example, in
the Dyson Eq. �4�, we remove U0 and replace it by the self-
energy. To demonstrate this lack of dependence, we use Eq.
�9� to find the variation of F versus G0 at fixed G,

�F�G = �
−



 d�

2�i
ei�0+

tr���H0	G0��� + H0��G0���	

− ��G0���−1	G��� + G���−1G0�����G0���−1	G���

− ��U0	G��� .�

Using G0���= ��I−H0�−1 and the variation in an inverse
��A−1	=−A−1��A	A−1, we have

�H0 = �U0, �G0���−1 = − �U0,

�G0��� = G0�����U0	G0��� . �11�

Plugging these in gives

�F�G = �
−



 d�

2�i
ei�0+

tr���U0	G0��� + H0G0�����U0	G0���

+ ��U0	G��� − G���−1G0�����U0	G���

− ��U0	G���� .

Using the cyclicity of the trace, this simplifies to

SOHRAB ISMAIL-BEIGI PHYSICAL REVIEW B 81, 195126 �2010�

195126-4



�F�G = �
−



 d�

2�i
ei�0+

tr�G0���H0G0����U0�

= �
−



 d�

2�i
ei�0+�

n

�n�n��U0�n�
�� − �n�2 ,

where we have traced over the orthonormal basis of eigen-
states �n� and used the diagonal nature of H0 and G0 in this
basis. The ei�0+

factor has us close the integral over the upper
� complex half plane,

�F�G =� d�

2�i
�

n

�n�n��U0�n�
�� − �n�2 .

The numerators have no � dependence. The standard contour
integral for analytic f�z�,

� dz

2�i

f�z�
�z − a�k =� 1

�k − 1�!
dk−1f�z�

dzk−1 �
z=a

�12�

applied to this case with k=2 gives a zero derivative and null
result. So we have our desired result,

��F�G,G0	
�U0

�
G

= 0. �13�

Hence, for a fixed G, we can evaluate F at any valid G0
without changing its value. Physically, F does not depend on
the initial choice of noninteracting Hamiltonian. Since we
are restricting G to be noninteracting, we may as well set
G=G0. Then F simplifies to

F�G0,G0	 = �
−



 d�

2�i
ei�0+

tr��T + Uion	G0���� + EH�n0	

+�xc�G0	

=tr��T + Uion	0� + EH�n0	 +�xc�G0	 . �14�

We have the noninteracting kinetic, electron-ion, Hartree,
and exchange-correlation energies. Operationally, the first
three terms are identical to their counterparts in DFT. Due to
the extremal nature of F about the extremizing G, F�G0 ,G0	
provides a variational estimate of the ground-state energy
with the error being smallest for the “best” G0. Except for
�xc, the other energy terms depend only on the density ma-
trix 0. Only �xc depends on the energy eigenvalues �n.

Before we end this section, we make brief comments on
the functional derivative of F�G0 ,G0	 versus G0 or equiva-
lently versus the potential U0. Starting from Eq. �10� with
G=G0 or Eq. �14� and using the relation of �G0 to �U0 in
Eq. �11�, we have at least three equivalent ways of writing
the variation of F�G0 ,G0	,

�F�G0,G0	 = �
−



 d�

2�i
ei�0+

tr���H + �xc��� − U0	�G0����

�15�

=�
−



 d�

2�i
ei�0+

tr��T + Uion + �H

+ �xc���	�G0���� �16�

=�
−



 d�

2�i
ei�0+

tr�G0�����H + �xc���

− U0	G0����U0� . �17�

Equation �15�, written in terms of the variation �G0, is used
below when computing derivatives of F versus the 	n�x� and
�n that characterize G0. Equation �17� is written in terms of
the variation in the potential U0 that generates G0. Setting
�F=0 in Eq. �17� for arbitrary �U0 yields the matrix equa-
tion,

�
−



 d�

2�i
ei�0+

G0�����H + �xc���	G0���

= �
−



 d�

2�i
ei�0+

G0���U0G0��� �18�

which is the linearized Sham-Schlüter �LSS� equation for the
exchange-correlation potential operator Vxc=U0−�H.43,44

This is the condition determining the static and Hermitian
Vxc that most closely resembles the dynamic and non-
Hermitian �xc���. As Casida has noted, this is equivalent to
saying that Vxc is optimal in a variational sense.48 The LSS
equation is most often discussed in the context of DFT where
Vxc�x� is a local function whereas what we have here is the
more general case of a nonlocal Hermitian Vxc�x ,x��. Solving
the LSS is nontrivial because �a� the frequency integral must
be evaluated numerically and �b� G0 and �xc depend on U0 in
a nonlinear manner making for a self-consistent problem. We
will return to the question of local versus nonlocal Vxc in
Sec. VIII where we will see that solving this equation as
written generates unphysical results, and we will discuss
what is known in the literature for local Vxc functionals.

V. �xc
GW IN TERMS OF THE STANDARD RPA

POLARIZABILITY

Beyond using an approximate or constrained form for G,
we also require approximations for �xc. In this work, we
study �xc within the GW-RPA, normally defined via

�xc
GW�G0	 =

1

2
�

−



 d�

2�i
tr�ln �̄���� . �19�

The dielectric matrix �̄��� is modified10 and related to a

modified polarizability P̄��� via

�̄��� = I − VP̄��� .

The modified P̄ is most easily defined in the time domain,

P�t� = �
−



 d�

2�
e−i�tP̄���

as
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P�x,x�,t� = − iG0�x,x�,t − 0+�G0�x�,x,− t − 0+� . �20�

Specifically, since 0�x ,x��=−iG0�x ,x� , t=−0+� for zero time
argument, we have

P�x,x�,0� = i0�x,x��0�x�,x� . �21�

This P�t� is modified from the standard P�t� by the infini-
tesimal shifts in the arguments of G0:10 P�t� and P�t� of Eq.
�8� are identical for any finite nonzero t and only differ in an
infinitesimal neighborhood about t=0. This ensures that the
Fock exchange energy in �xc

GW is properly recovered.10 Hedin
has provided formulae for �xc including corrections beyond
GW-RPA so that from a formal point of view, it should be
possible to proceed beyond the GW-RPA.10

Computing �xc
GW from Eq. �19� is cumbersome: we must

converge a continuous integral, and for each � we need a
matrix logarithm. Furthermore, the physical meaning of the
formula is hard to appreciate, making it difficult to create
systematic approximations. One of the main aims in this pa-
per is to rewrite �xc

GW in more tractable forms that permit us
to understand its physical content.

However, to proceed, we need to first rewrite Eq. �19� in
terms of the usual time-ordered dielectric matrix ����= I
−VP���, where P��� is the standard RPA polarizability of
Sec. II. We expand the logarithm in Eq. �19� to all orders
using

ln�1 − x� = − �
j=1



xj

j

to arrive at

�xc
GW = −

1

2�
j=1


 �
−



 d�

2�i

1

j
tr��VP̄���	 j� .

The j=1 term in the series is

j = 1 term: −
1

2
�

−



 d�

2�i
tr�VP̄���� =

i

2
trV�

−



 d�

2�
P̄����

=
i

2
tr�VP�t = 0�� .

Writing the trace explicitly in the x basis and using Eq. �21�
shows that the j=1 term is just the Fock exchange energy EX,

j = 1 term: −
1

2
� dx� dx�0�x,x��0�x�,x�V�x,x��

= EX�0	 . �22�

Thus, we have

�xc
GW = EX�0	 −

1

2�
j=2



1

j
�

−



 d�

2�i
tr��VP̄���	 j� .

This naturally separates EX from the correlation energy �c,

�c =�xc − EX.

The remaining frequency integrals with j�2 correspond to
jth-order autocorrelations of P�t� evaluated at t=0 so the

infinitesimal time shifts actually do not matter. Specifically,
the jth term has an � integral,

�
−



 d�

2�
tr��VP̄���	 j�

= �
−



 d�

2�
�

−





dt1 . . . �
−





dtje
i��t1+¯+tj�tr�VP�t1� . . .VP�tj��

=�
−





dt1 . . . �
−





dtj��t1 + ¯ + tj�tr�VP�t1� . . . VP�tj�� .

We integrate over the times so that the infinitesimal region
about t=0 where P�t��P�t� is of zero measure. Hence, we
can safely replace P by P for the j�2 terms to get

�xc
GW = EX�0	 −

1

2�
j=2



1

j
�

−



 d�

2�i
tr��VP���	 j�

=EX�0	 +
1

2
�

−



 d�

2�i
tr�VP���� +

1

2
�

−



 d�

2�i
tr�ln �����

=EX�0	 −
i

2
tr�VP�t = 0�� +

1

2
�

−



 d�

2�i
tr�ln ����� .

In the second line, we added and subtracted the correspond-
ing j=1 term to the first line and summed up the series for
the logarithm. In the third line, evaluating P�t=0� requires
some care as plugging in t=0 directly in Eq. �8� yields an
indeterminate result. Rather, we take the limit t→0 of P�t�
in Eq. �8� to find

P�x,x�,t → 0� = − i�
c

	c�x�	c�x����
v
	v�x��	v�x��

or in matrix form

P�t → 0� = − i�
c,v

�cv��cv� = − i�
t

�t��t� .

The direction of approach of the limit, t→0+ versus t→
−0+, is immaterial as both yield the same answer for real-
valued Green’s functions G0��� due to time-reversal symme-
try. We then have our desired result: �xc

GW written in terms of
the time-ordered ����,

�xc
GW�G0	 = EX�0	 −

1

2�
t

�t�V�t� +
1

2
�

−



 d�

2�i
tr�ln ����� .

�23�

This expression is our main workhorse. In Secs. VII and IX,
we evaluate this integral exactly and approximately to gen-
erate alternative forms for �xc

GW.

VI. DERIVATIVES OF F AND �xc
GW

In this section, we provide expressions for the derivatives
of the exchange-correlation functional �xc

GW�G0	 and the
total-energy functional F�G0 ,G0	 versus the wave functions
	n and eigenenergies �n or equivalently the potential U0 that
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determine G0. The �n derivatives are used in Sec. VIII to
prove the unboundedness of the energy functional. Sepa-
rately, these derivative expressions can prove useful to inves-
tigators contemplating variational approaches that extremize
F�G0 ,G0	 which require analytical derivatives.

We begin with variations in the eigenenergies �n. The de-
rivative of G0 is

�G0���
��n

=
�n��n�

�� − �n�2 .

As per Sec. IV, the only nonzero contribution to the variation
of F�G0 ,G0	 when changing �n comes from the exchange-
correlation functional �xc

GW so

�F�G0,G0	
��n

=
��xc

GW�G0	
��n

= �
−



 d�

2�i
ei�0+

tr�xc���
�G0���

��n
� .

We turn this into a contour integral over the upper complex
� half plane. Using Eq. �12�, we get contributions from the
poles of �xc��� that are above the real axis and a possible
contribution from the pole of �G0 /��n if n is occupied �i.e.,
�n���.

To organize the process, we write �xc��� in the general
form of a sum over poles,

�xc��� = �x + �
�

��
+

� − ��
+ + �

�

��
−

� − ��
− . �24�

Here, �x is the Fock �bare� exchange operator,

�x�x,x�� = − �
v
	v�x�	v�x���V�x,x�� .

The ��
+ are the poles of �xc��� that are above the real axis,

Im ��
+�0, and ��

+ are their residues while ��
− and ��

− are the
residues and poles below the real axis, Im ��

−�0. This allows
us to write the derivative as

�F�G0,G0	
��n

= �
�

�n���
+�n�

���
+ − �n�2 +���� − �n��n�

d�xc���
d�

�n��
�=�n

.

A quick manipulation yields

�F�G0,G0	
��n

= ���n − ���
�

�n���
+�n�

���
+ − �n�2

− ��� − �n��
�

�n���
−�n�

���
− − �n�2 . �25�

If the residue matrices �� are positive definite, then the de-
rivatives for empty states are always positive while those of
filled states are always negative. For the GW-RPA, we can
demonstrate this explicitly: as we will discuss in more detail
in Sec. VII, the RPA screened Coulomb interaction W���
=�−1���V has the outer product form

WRPA��� = V + V�
p

2�p�p��p�
�2 − �p

2 V .

A standard exercise in time-dependent perturbation theory
shows that the exact many-body W also has the same outer
product form

Wexact��� = V + V�
s

2�Es − E0��ns0��ns0�
�2 − �Es − E0�2 V ,

where E0 is the exact ground-state energy, Es are the exact
excited-state energies, �x �ns0�= �0�n̂�x��s�, where n̂�x� is the
fermion density operator and �0� and �s� are the many-body
eigenstates. Thus the exact and RPA W are related via the
replacements p ,�p , �p�→s ,Es−E0 , �ns0�.

Whether we have the exact or RPA W, the GW self-energy
is

�xc�x,x�,�� = i�
−



 d��

2�
e−i��0+

G�x,x�,� − ���W�x,x�,��� .

For G=G0 and the RPA W, the integral yields

�xc�x,x�,�� = �x�x,x�� + �
p

�x�V�p��p�V�x��

���
v

	v�x�	v�x���

� + �p − �v
+ �

c

	c�x�	c�x���

� − �p − �c
� .

Thus, the poles and residues of the GW �xc are indexed by
an eigenvalue �n and a plasmon �p: the labels � or � in Eq.
�24� correspond a pair index �n , p�. The precise correspon-
dence for the GW-RPA is

�v,p
+ �x,x�� = �x�V�p��p�V�x��	v�x�	v�x���, �v,p

+ = �v − �p

�26�

and

�c,p
− �x,x�� = �x�V�p��p�V�x��	c�x�	c�x���, �c,p

− = �c + �p.

�27�

We arrive at the desired derivative,

�FGW�G0,G0	
��n

= ���n − ���
v,p

��nv�V�p��2

��n − �v + �p�2

− ��� − �n��
c,p

��nc�V�p��2

��c − �n + �p�2 . �28�

It is clear that for unoccupied states, the derivative is always
positive and for filled states, it is always negative. Repeating
the derivation with the exact W produces the same conclu-
sion which is thus inherent to the GW form of the self-energy
when G is noninteracting. We discuss the implications of this
result in Sec. VIII.

For completeness, we provide the derivatives of F versus
the wave functions 	n�x� and versus the potential U0. For the
wave-function derivatives, we have
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�F�G0,G0	
�	n�x��

= �
−



 d�

2�i
ei�0+

tr�T + Uion + �H + �xc���	
�G0���
�	n�x��� .

The functional derivative of G0 is

�G0�x�,x�,��
�	n�x��

=
	n�x����x� − x�

� − �n − i0+ sgn�� − �n�
.

We insert this into the integral and perform the contour inte-
gral. For the general case,

�F�G0,G0	
�	n�x��

= ��� − �n��x�T + Uion + �H + �xc��n��n�

+ �
�

�x���
+�n�

��
+ − �n

�29�

=��� − �n��x�T + Uion + �H + �x�n�

+ ���n − ���
�

�x���
+�n�

��
+ − �n

− ��� − �n��
�

�x���
−�n�

��
− − �n

,

�30�

and expressions for the GW-RPA are found by performing
the substitutions of Eqs. �26� and �27�. For the derivative
versus U0, it is convenient to express the potential in the
one-particle eigenbasis so U0j,k

= �j�U0�k�. The variation �U0

is then

�U0 = �
j,k

�j��U0j,k
�k� .

Inserting this into Eq. �17� and performing the contour inte-
gral and some algebraic manipulations yields

�F�G0,G0	
�U0v,v�

= − �
�

�v����
−�v�

���
− − �v�����

− − �v�
, �31�

�F�G0,G0	
�U0c,v

=
�v��H + �xc��v� − U0�c�

�v − �c

+ �
�

�v���
+�c�

���
+ − �v����

+ − �c�
, �32�

�F�G0,G0	
�U0v,c

=
�c��H + �xc��v� − U0�v�

�v − �c

+ �
�

�c���
+�v�

���
+ − �c����

+ − �v�
, �33�

�F�G0,G0	
�U0c,c�

= �
�

�c����
+�c�

���
+ − �c�����

+ − �c�
, �34�

where v ,v� label valence states and c ,c� label conduction
states. As a check, the diagonal cases v=v� or c=c� yield the
same result as the �n derivative as necessary by first-order

perturbation theory. Setting all the derivatives to zero is
equivalent to solving the LSS Eq. �17� with no constraints on
U0. This turns out to yield unphysical results as explained in
Sec. VIII.

VII. �xc
GW REWRITTEN EXACTLY WITH PLASMON AND

INTERBAND ENERGIES

In this section, we rewrite �xc
GW exactly in terms of a sum

over plasmon and interband transition energies. This exact
expression has been reported by other workers using differ-
ent methods.37 �We found this result contemporaneously and
independently.� Our derivation is based on contour methods
which we present for completeness before moving on to the
implications of this exact expression.

We start with the result of Eq. �23�. The time-ordered
RPA ���� is given by

���� = I − VP��� = I − V�
t

2�t�t��t�
�2 − �t

2

which has poles at the interband energies �=�t. The poles of
the inverse dielectric function ����−1 occur at the plasma
frequencies which are the natural modes of collective charge
oscillation. The matrix ����−1 is given by

����−1 = I + V���� = I + V�
p

2�p�p��p�
�2 − �p

2 . �35�

�The �p have infinitesimal negative imaginary parts.� The
plasma frequencies �p and mode functions �p� obey the RPA/
Casida Hermitian eigenvalue equations,49

�t
2Ct,p + �

t�

2��t�t��t�V�t��Ct�,p = �p
2Ct,p. �36�

The column vectors Ct,p are orthonormal and the �p� are
given by

�p� = �
t

�t���t

�p
Ctp.

We see that the �p are the eigenvalues of the square root of
the �2 matrix defined as

�t,t�
2 = �t

2�t,t� + 2��t�t��t�V�t�� . �37�

Before going forward, we make a clarification concerning
our use of the terms “plasmon” or “plasma” modes or fre-
quencies. In this work, these terms refer to solutions of the
Casida/RPA Eq. �36� so that the �p are real frequencies. Of
course, a plasmon excitation in an actual material has finite
lifetime due to damping processes. Thus, we are dealing with
the real part of the plasma frequencies, and this approxima-
tion is analogous to our assumption of a noninteracting
Green’s function where the quasiparticles have real eigenen-
ergies and infinite lifetimes.

Since the poles of ����−1 are at �p, its inverse ���� has a
zero at the �p, i.e., ���p� has a zero eigenvalue and is not
invertible. Therefore, for �=�t one of the eigenvalues of
���� diverges while for �=�p, one of its eigenvalues is zero.
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The number of transitions t and plasmons p are equal be-
cause Eq. �36� is a square matrix Hermitian eigenproblem.

Letting the eigenvalues of ���� be �m���, Eq. �23� be-
comes

�xc
GW�G0	 = EX�0	 −

1

2�
t

�t�V�t� +
1

2
�

−



 d�

2�i�m ln �m��� .

We close the integral on the complex � lower half plane to
yield a closed contour integral. The function ln z is analytic
everywhere except on the branch cut starting at z=0 and
extending to z=−
 along the negative real axis. This means
that the integrand is analytic everywhere except between the
zeros and poles of �m���, i.e., between some interband en-
ergy �t, where

�m��→ �t� =
constant

� − �t
+ O��� − �t�0	

and some plasma frequency �p, where

�m��→ �p� = constant� �� − �p� + O��� − �p�2	 .

Due to the positive-definite nature of the Coulomb interac-
tion matrix �t�V�t�� in Eq. �36�, the smallest �t is smaller than
the smallest �p while the largest �p is larger than the largest
�t. Hence, we have a set of overlapping branch cuts begin-
ning at the �t and terminating at the �p. The contour integral
collapses to an integral around the finite segments of length
�p−�t. We perform the contour integral by remembering
that ln z changes its imaginary part by 2�i when going from
above to below the branch cut. Each integral about a segment
yields precisely �p−�t. This leads to our first central result
which is an exact rewriting of �xc

GW in terms of plasma and
interband energies,

�xc
GW�G0	 = EX�0	 +

1

2�
p

�p −
1

2�
t

��t + �t�V�t�� . �38�

Since we sum over all t and p, the precise pairings of �t and
�p for each branch cut are irrelevant for the final result.

This exact form is much in the spirit of early work on the
electron gas showing that the RPA correlation energy repre-
sents replacing interband oscillators by plasma modes.50,51

We refer the interested reader to Ref. 37 for a more detailed
discussion of this and related points. From a pragmatic view-
point, this expression is amenable to direct computation
since the RPA/Casida or related equations are solved regu-
larly when performing TDDFT or BSE calculations.11,42 Di-
rect diagonalization of the RPA/Casida Eq. �36� makes for
O�N6� scaling for a system of N atoms. However, since only
the trace over all modes is needed, there are possibilities for
improved scaling. For example, the sum over plasma fre-
quencies is also the trace of the square root of the �2 matrix,

�
p

�p = tr���2�1/2� �39�

so efficient matrix square roots algorithms that avoid diago-
nalization are computationally advantageous.37

In terms of convergence, Eq. �38� is superior to the stan-
dard integral form of Eq. �19� or �23�. There is only a single

convergence parameter which is the size of the basis set of
transitions ��t�� in the calculation. For the integral forms, one
must converge additionally the continuous � integral by
dealing with issues of frequency grid spacings, truncation at
large �, etc. In Sec. XI, we will highlight the superior con-
vergence properties of Eq. �38� numerically for atoms.

VIII. UNBOUNDEDNESS OF �xc
GW AND LACK OF

EXTREMUM OF F

In this section, we prove that �xc
GW�G0	 is in fact un-

bounded from below: its minimum value is negative infinity.
Furthermore, the total-energy functional F cannot have an
extremum when optimized freely over noninteracting
Green’s functions G0 that are generated by nonlocal poten-
tials U0. We then discuss the meaning and consequences of
these facts.

Beginning with the total-energy functional of Eq. �14�, we
see that the only term depending on the �n is the exchange-
correlation part �xc�G0	. For the GW-RPA, we have the ex-
act expression of Eq. �38� for �xc

GW. This functional is un-
bounded from below if varied freely over �n. Consider
sending all the eigenvalues toward the Fermi energy, �n
→�. This makes all transition energies tend to zero from
above, �t→0+. The RPA/Casida Eq. �36� immediately shows
that the plasmon energies must also tend to zero �p→0+ as
well. Thus �xc

GW will turn into

�xc
GW�G0	 → EX�0	 −

1

2�
t

�t�V�t�

= EX�0	 −
1

2�
v

�
c

�cv�V�cv� .

Writing this out explicitly in coordinate space,

�xc
GW�G0	 → EX�0	 −

1

2�
v

�
c
� dx� dx�	c�x��	v�x�

�V�x,x��	c�x��	v�x���.

Using completeness,

�
c

	c�x�	c�x��� = ��x − x�� − �
v�

	v��x�	v��x���,

where v� labels occupied states, we find

�xc
GW�G0	 → EX�0	 −

1

2�
v
� dx	v�x�V�x,x�	v�x�

+
1

2 �
v,v�

�vv��V�vv�� .

Since V�x ,x��=��,�� / �r−r�� diverges to positive infinity for
x=x�, we conclude that �xc

GW diverges to negative infinity
when all eigenvalues approach the Fermi energy. This par-
ticular choice of variation in the �n is perfectly permissible if
one allows for arbitrary variations in the nonlocal potential
U0. We give numerical evidence of this behavior for atoms in
Sec. XI. �A subtle point in the above proof is that, prima
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facie, it seems to only depend on the divergence of V for x
=x� and this divergence already seems present in Eq. �38�
before the limit �t→0+ is taken. Appendix B addresses this
question.�

Therefore, global minimization of F�G0 ,G0	 over all al-
lowed G0—more precisely over all nonlocal potentials U0
that generate the G0—is guaranteed to give unphysical re-
sults. However, one may still hope to find a local minimum
or an extremum: after all, the Luttinger-Ward approach only
guarantees that the true G is an extremum of the energy
functional. However, this is also not possible because
�F�G0 ,G0	 /��n is never zero. Referring back to Eq. �28� in
Sec. VI, we see that the derivative versus �n is always posi-
tive for unoccupied states and always negative for occupied
states. Hence, a search for an extremum also drives us to the
unphysical global minimum. No other extremum exists be-
cause the derivatives are never zero. This proof confirms the
suggestion52 that direct minimization of the GW-RPA total
energy will give meaningless results.

We now discuss the meaning and relation of this result to
what is known in the literature. A number of studies have
used local �in coordinate x� exchange-correlation potentials
Vxc=U0−�H when generating G0 for atoms and molecules.
The choices have included LDA, GGA, or optimized effec-
tive potentials.31,32,53 In addition, a more recent work34 has
solved the LSS equation for spherical atoms to find the op-
timal local Vxc. No sign of any instability has been found in
any of these works and the numerical evidence shows that
the LSS-optimal local Vxc locates an energy minimum.34 In
addition, there are strong theoretical arguments for why the
total-energy functional will have a minimum when varied
over local potentials.32

Unfortunately, the optimal local potential is not necessar-
ily the best potential in terms of physical predictions. In
practice, using a nonlocal potential to generate G0 can
greatly improve results, e.g., for atoms and diatomic mol-
ecules, the Hartree-Fock �HF� nonlocal potential yields total
energies that are essentially indistinguishable from those
given by using the exact, self-consistent Green’s function
G.32 Therefore, including some nonlocality in the potential
U0 is important physically: for atoms and small molecules,
the Hartree-Fock description is significantly closer to the true
Green’s function than any description based on a local
potential.32 This result is sensible since the true Green’s
function G obeying Dyson’s Eq. �4� is generated by a non-
local self-energy operator �xc���, and we would expect a
nonlocal U0 to be a better approximation than a local opera-
tor.

Alas, our proof above shows that choosing the proper
form of nonlocality is not straightforward. The naive idea of
extremizing the total-energy functional over all nonlocal U0
to find the best G0 leads to unphysical results. For example,
the simple and appealing idea of holding the wave functions
	n�x� fixed and varying the eigenenergies �n to find an im-
proved band structure via optimizing the total energy leads to
the unphysical minimum. Of course, we know that there is
an exact G that extremizes the total-energy functional and
solves the Dyson equation self-consistently: there are ex-
amples of such calculations in the literature for model sys-
tems such as atoms, small molecules, or the electron

gas.22–25,32 The problem is that the energy functional has no
extremum in the subspace of Green’s functions that corre-
spond to noninteracting Green’s functions. To put this in pic-
tures, the simplest likely scenario is illustrated schematically
in Fig. 1 where one assumes that the total-energy functional
has a single extremum corresponding to the true Green’s
function. Obviously, that extremum must occur for a dy-
namic and nonlocal self-energy �xc�x ,x� ,��.

The situation here is quite different from DFT where one
can represent the electron density in terms of occupied non-
interacting wave functions and where an unconstrained mini-
mization over allowed densities, or equivalently over any set
of occupied orthonormal noninteracting wave functions,
leads to a single minimum with the correct ground-state
energy.1,2 For the Klein functional, the analogous approach
fails completely because an unconstrained optimization over
noninteracting Green’s functions drives the system to an un-
physical minimum with negative infinite energy. The analo-
gous situation in DFT would be the �fictitious� situation
where the correct ground-state density locates a minimum
but the total-energy functional has no minimum or lower
bound when evaluated on a subset of allowed densities.

In our mind, there are two basic ways to overcome this
hurdle. One could decide to solve the Dyson equation for the
true self-consistent G and avoid the instabilities. However,
this requires storing the entire Green’s function
G�x ,x� ,��—a full matrix as a function of continuous fre-
quency �—which is highly prohibitive in terms of storage
and computation and unlikely to lead to a method that will
deal with realistic systems with many atoms in the near fu-
ture. The other approach is to stick with the simple and ap-
pealing picture of a noninteracting G0 generated by a static
and nonlocal U0 but to constrain the extremization so as to

FIG. 1. Schematic figure showing the simplest likely scenario
for the Klein total-energy functional. What is shown are level
curves of the total-energy functional F�G	 as a function of the self-
energy �xc��� that determines the Green’s function G via the Dyson
Eq. �4� �not necessarily self-consistently�. The horizontal axis rep-
resents self-energies that are static and Hermitian operators U0 that
will generate noninteracting Green’s functions G0 via Eq. �3�. The
vertical axis represents the deviation of the self-energy from a static
and Hermitian operator. The black circle represents the extremum
of the total-energy functional corresponding to the true self-
consistent self-energy which must occur for a dynamic and non-
Hermitian �xc��� since F has no extremum along the horizontal
axis.
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avoid unphysical behavior. In other words, one constrains the
allowed forms of U0 in some way. In this light, the use of
strictly local Vxc, the QSGW, and the scCOHSEX approaches
can be viewed as schemes where one manually imposes
physical constraints on the potential U0 in order to avoid
pathologies. As noted above, when constraining U0 to be a
local potential, the available evidence strongly argues that
the Klein functional will have a minimum.31,32,34 However,
the open question is how to improve beyond these choices
and to find better constraints that still avoid pathologies. This
will involve coming up with some type of presently un-
known metric to rank the various types of constraints.

IX. APPROXIMATE �xc
GW BASED ON THE SCREENED

INTERACTION

Although the rewriting represented by Eq. �38� is exact,
there are a number of reasons to look for other expressions.
Ideally, it would be nice to rewrite �xc

GW in terms of the
central quantity in GW which is the screened Coulomb inter-
action W. One reason is to remove the dependence on the
plasmon description and instead to deal only with interband
transitions and screening. Another reason is that dielectric
functions and screening are relatively well understood and
studied objects for which a variety of approximations and
computational approaches exist. As we show in Sec. X when
deriving the COHSEX and related energy expressions, work-
ing with the screened interaction allows one to naturally
build in different types of physical insights.

The actual derivation is long and is detailed in Appendix
A. In brief, we start with Eq. �23� and reexpands the loga-
rithm in powers of VP���, write each P explicitly in terms of
interband transitions, identify all the physically relevant
poles of the integrand, use contour methods to evaluate their
residues, and then resum the infinite series of residues into
closed form. There is one approximation in this entire pro-
cedure: we assume that the important plasma �screening� fre-
quencies are much higher than the dominant interband tran-
sition frequencies. Mathematically, this means that the
screened interaction W��� is assumed to be smooth in � for
the frequency range of key interband transitions. This ap-
proximation is the basis for COHSEX and is generally rea-
sonable for solids and extended systems where plasmons are
strongly collective modes with high frequencies due to the
long range of the Coulomb interaction. We will return to this
issue at the end of Sec. X where we discuss what type of
physics is and is not included in this approximation. Sepa-
rately, we provide evidence of the relatively good quality of
this approximation for atomic systems in Sec. XI.

The main result for the approximate rewriting of the cor-
relation energy is

�c
GW �

1

2�
�

tr��I�2 + 2�W����	1/2� −
1

2�
t

��t + �t�V�t�� .

�40�

In the above expression, the trace is of the matrix square root
evaluated within the degenerate subspace of all transitions
��1 , . . . ,�k� of energy � �k is the dimension of the degenerate

subspace�. W���� contains the matrix elements of a modified
screened interaction W���� among the degenerate transi-
tions,

W����p,q 
 ��p�W������q�, 1� p,q� k .

W���� comes from a modified polarizability P���� via

W���� 
 �I − VP����	−1V ,

where P���� is the RPA polarization but with transitions of
energy � removed,

P���� = P��� −����� = �
t��t��

2�t�t��t�
�2 − �t

2 .

Equation �40� represents a resummation of the entire series
for the GW-RPA correlation energy approximately that
writes it as the sum of expectations of a screened interaction
over interband transitions. W� is built from a polarizability
P� which includes polarization contributions from of all in-
terband �electron-hole� fluctuations except for those at en-
ergy �. This means the expression is self-interaction cor-
rected in that excited electron-hole pairs at energy � do not
screen themselves but are only screened by the other transi-
tions.

Another perspective on this self-interaction correction is
provided by identifying contributions to Eq. �40� that are
exact and do not depend on the high-frequency screening
approximation. �Consultation of Appendix A shows that we
are discussing Ij

j terms because these terms have no VP�
factors since q0= ¯ =qk=0 is forced, only the bare Coulomb
interaction is relevant for such contributions and they repre-
sent a weak screening limit.� If we include only these terms,
the high-frequency approximation is unnecessary as all
W���� are replaced by V, and Eq. �40� becomes

�c
GW →

1

2�
�

tr��I�2 + 2�V̄	1/2� −
1

2�
t

��t + �t�V�t�� .

The matrices under the square roots are precisely the block
diagonals of the RPA/Casida �2 matrix of Eq. �37� with
degenerate transition energies. Namely, this formula is the
expression we would obtain if we had taken the exact ex-
pression of Eq. �38� and computed �p by only solving the
block-diagonal parts of the RPA/Casida Eq. �36�. This pro-
vides a different viewpoint on why the screened interaction
W� appearing in Eq. �40� must be based on a polarizability
that does not include any transitions at energy �: interactions
of transitions with energy � among themselves are already
included exactly by Eq. �40� with no screening �i.e., when
W�=V�. So the screened interaction in Eq. �40� must be re-
sponsible for capturing the couplings among transitions of
differing energies which is why transitions at � do not con-
tribute to W�.

At this point, a great deal of simplification is achieved if
the only degeneracies present are normal ones �i.e., those due
to a symmetry such as spin degeneracy for an spin-
unpolarized system or molecular or crystalline symmetry in
real space�. Generically, we expect this to be the case as any
weak perturbation will remove an accidental degeneracy. For
the case of normal degeneracy, the degenerate subspace

CORRELATION ENERGY FUNCTIONAL WITHIN THE… PHYSICAL REVIEW B 81, 195126 �2010�

195126-11



spanned by the transitions ��p� with energy � transforms as
an irreducible representation of the symmetry group. On the
other hand, the screening matrix W���� must transform as
the identical representation �i.e., as a scalar�. Thus, the only
nonzero entries in the matrix W���� will be the diagonal
entries, and the diagonals will all be equal by symmetry. The
matrix square root is trivial in this diagonal basis and Eq.
�40� becomes

�c
GW �

1

2�
t

��t
2 + 2�t�t�W�t

��t��t� − �t − �t�V�t� . �41�

This relation can be viewed as a scalar version of the general
matrix Eq. �40�. In the unusual case of accidental degenera-
cies, the matrix W���� will have off-diagonal entries and it is
necessary to evaluate the matrix square root of Eq. �40�.
Since these degeneracies are rare, the matrices in question
will be small and using any method �such as diagonalization�
will not impact the computational load.

We note that these approximate forms of the GW-RPA
correlation energy also suffer from the unboundedness prob-
lem discussed in Sec. VIII that plagues the exact GW-RPA
correlation energy of Eq. �38�. For example, consider scaling
all interband transitions by a factor �, �t→��t, and then
sending � to zero. As long as matrix elements of W� remain
finite, the correlation energies of Eqs. �40� and �41� both
diverge to negative infinity for the same reason that Eq. �38�
diverges. �In fact, when all interband transition energies are
scaled to zero, the system will show very effective metallic
screening and the matrix elements of W� will actually go to
zero.� We present numerical evidence of this divergence in
Sec. XI.

We end this section with some comments about the actual
usage of Eqs. �40� and �41�. Computationally, using these
expressions requires recomputation of the screening for each
transition energy. In a naive implementation, the full matrix
is recomputed, and since each computation of P scales as
O�N4�, the overall computational load for evaluating Eq. �40�
is O�N6� and thus no better than the exact diagonalization
approach of Eqs. �36� and �38�. Furthermore, the sums in
Eqs. �40� and �41� are very difficult to converge numerically
because transition energies in the continuum are very closely
spaced and thus W���� will have contributions from many
poles near �=�. Converging such a sum requires a very
dense representation of the continuum together with some
regularization procedure to control the very large contribu-
tions from nearby poles. In Sec. XI, we discuss this problem
for atomic systems. Thus, the utility of Eqs. �40� and �41� is
not for numerical computation per se but rather for deriving
new approximations, as shown in the next section.

X. COHSEX-TYPE CORRELATION FUNCTIONALS

In addition to being closed-form expressions for the cor-
relation energy, Eqs. �40� and �41� are based on the screened
interaction. As explained above, literal implementation of
these formulas is computationally expensive and numerically
difficult to converge. Their utility, rather, is in analytical
work where one can contemplate a variety of approximations

to the screening that incorporate different physical effects. As
an example, we present the simplest approximation that leads
to COHSEX and its associated �c. During the process, we
will derive a ladder of related approximations. Looking
ahead, the relative quality of a number of the approximations
and simplifications are tested numerically on atoms in Sec.
XI.

We base our derivation on the scalar expression of Eq.
�41� for simplicity of presentation. The full matrix expres-
sion of Eq. �40� can also be used but produces more
complex-looking results with the same physical content. In
what follows, we use Wt��� as a shorthand for W�t

���.
The first approximation is to work within the basic idea of

COHSEX: replace the dynamic screening matrix by a static
one at �=0. This leads to a first approximate form,

�c
stat =

1

2�
t

��t
2 + 2�t�t�Wt�0��t� − �t − �t�V�t� . �42�

There is a simple relation between matrix elements of the
usual screened interaction W���=�−1���V and the Wt��� ap-
pearing here that we exploit to compute the static screening.
The following matrix identity:

u†�A − xuu†�−1u = u†A−1u/�1 − u†A−1ux�

for vector u, matrix A, and scalar x, allows us to make the
connection. With A=V−1− P�t

, u= �t�, and x=2�t / ��2−�t
2�,

we find

�t�Wt����t� =
�t�W����t�

1 + �t�W����t� · 2�t��2 − �t
2�−1 . �43�

For static screening, we have

�t�Wt�0��t� =
�t�W�0��t�

1 − 2�t�W�0��t�/�t
. �44�

Therefore, in terms of computational complexity, evaluation
of Eq. �42� requires one calculation of the matrix W�0�, com-
putation of its diagonal elements in the �t� basis, and use of
Eq. �44�. For a system of N atoms, this entire project scales
as O�N4�. For comparison, the original expression of Eq.
�40� requires evaluation of Wt��t� at each interband energy
�t and scales as O�N6� in a naive implementation.

The next approximation expands the square root in Eq.
�42� in powers of �t�Wt�0��t� /�t and keeps the lowest-order
term,

�c
stat =

1

2�
t

�t�Wt�0� − V�t� + O��W�2/�� . �45�

This approximation requires that ��t�Wt�0��t�� /�t�1. Section
XI provides numerical results for atoms where we show that
this expansion of the square root is actually quite accurate.
Since screening is rather weak in the localized atomic limit,
we expect this approximation to work even better in ex-
tended solids which provide much more effective screening
of the Coulomb interaction.
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The third approximation is to replace the matrix element
�t�Wt�0��t� by �t�W�0��t�. This also creates an error of
O��W�2 /�� and should be applicable in the same cases as the
previous approximation. The result is

�c
stat =

1

2�
t

�t�W�0� − V�t� + O��W�2/�� . �46�

Completeness �c�	c��	c�= I−�v�	v��	v� permits us to rewrite
�c

stat using only valence states. Putting EX back and dropping
terms of order O��W�2 /��,

�xc
stat =

1

2
� dx0�x,x�Wpol�x,x,0�

−
1

2
� dx� dx��0�x,x���2W�x,x�,0� , �47�

where Wpol=W−V is the induced �polarization� part of W.
The first term is the Coulomb-hole energy �COH� and the
second term the screened exchange energy �SEX�. Differen-
tiating versus the noninteracting density matrix 0 yields the
static self-energy �xc

stat=��xc
stat /�0,

�xc
stat�x,x�� =

1

2
Wpol�x,x,0���x − x�� − 0�x,x��W�x,x�,0�

+ O��W/�0� . �48�

This is the COHSEX self-energy if we drop the derivative
term �W /�0. Ignoring the derivatives underlies the success-
ful BSE approach for optical excitations41 and excited state
forces:54 the successes of the BSE approach suggests that
these terms are not significant in practice. In brief, the
COHSEX self-energy of Eq. �48� is approximately associ-
ated with and derived from the exchange-correlation energy
of Eq. �47�. The key approximations underlying COHSEX
are the static screening limit and the assumption that the
matrix element �t�W�0��t� for a transition t is much smaller
than its energy �t. Given W, Eqs. �47� and �48� depend only
on the valence states through 0. Having the energy func-
tional available in Eq. �47�, we also know what missing
terms we must add to the COHSEX self-energy of Eq. �48�
in order to make it a variational scheme.

To improve COHSEX, we step backward through the ap-
proximations. The first step is to use Eq. �42�: this is still a
static approximation but does not assume that �W� /� is
small. To go beyond Eq. �42�, we need dynamic screening. In
order to avoid the O�N6� scaling of the direct implementation
of Eq. �40�, we can contemplate the following scheme: we
relate Wt��t� by to W��t� via Eq. �43� and then approximate
W by using sum rules as per plasmon-pole models to ap-
proximate the frequency dependence of W���.6,55–57 Alterna-
tively, we can use model dielectric screening functions58–60

to construct approximate W��� and then use Eq. �43� to find
Wt. Regardless of the specifics, having a total-energy expres-
sion allows us to find the associated self-energy through dif-
ferentiation.

We conclude this section with some observations on what
is and what is not included when using the approximate ex-
pressions derived in this and the previous section. We expect

these approximations to certainly include static and localized
Coulombic effects automatically. This includes screening ef-
fects of the medium as well as localized Coulombic physics:
even the simplest COHSEX self-energy of Eq. �48� and
COHSEX correlation energy of Eq. �47� contain the
nonlocal-density matrix 0 that projects the action of the
screened Coulomb interaction W onto the occupied states. If
the occupied states are derived from localized states such as
3d or 4f orbitals of transition metals, then the projection is
automatically onto this manifold. Namely, already at the
COHSEX level, we expect to recover the benefits of an
LDA+U-type treatment. This is no surprise since a static and
localized approximation to the GW self-energy yields the
kernel of the LDA+U approach.7 As an added benefit, a
COHSEX-type approach should automatically include a
properly screened U parameter, as opposed to U being an
externally chosen parameter in the usual LDA+U method.
The dynamic formulas of Eqs. �40� and �41� extend these
results to include the frequency dependence of the screening.
What is missing from these approximate results are the con-
tributions to the RPA correlation energy which are physically
distinct from those stemming from screened interband tran-
sitions: these are the neglected residue contributions in Eq.
�A3� from the poles from the screening modes themselves.
Unfortunately, at present we are unable to provide simple
physical examples of situations where these neglected con-
tributions play the dominant role and our key approximation
must fail for basic physical reasons. This question is a sub-
ject of present investigation.

XI. NUMERICAL TESTS: ATOMS

In this section, we describe numerical results on atomic
systems. The aim of this section is not to present an exhaus-
tive and comprehensive treatment. That is the subject of a
future investigation. Rather, the main aim is to demonstrate
the numerical efficacy of the plasmon formula Eq. �36� for
the GW-RPA correlation energy and to test the main approxi-
mation of high-frequency screening used in the approximate
results of Eqs. �40� and �41�.

Our atomic code uses a standard nonrelativistic approach.
The atomic eigenfunctions are assumed to take a spherical
form: for an eigenstate with spin index �=�1, the spatial
part is Rnl��r�Ylm�� ,��. The radial part Rnl�r� is represented
numerically on a radial grid of exponentially spaced
points.61,62 The spherical harmonics Ylm are included up to a
some maximum angular momentum lmax, typically lmax=3
below. When building up the one-particle density matrix �
for spin �,

��r,�,�,r�,��,���

= �
n,l,m

fnlm�Rnl��r�Rnl��r��Ylm��,��Ylm���,����,

we allow for m-dependent state fillings fnlm�� �0,1�. The
local spin-density approximation �LSDA� �Ref. 63� or unre-
stricted HF �Ref. 64� equations are solved by minimizing the
appropriate total energy over arbitrary occupied orthonormal
radial functions. We have tested our code with available
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high-quality LSDA �Ref. 62� and HF �Ref. 65� data to ensure
agreement to at least one part in 108 in total energies. When
computing various correlation energies below, we make a
spherical approximation which is consistent with assuming
spherical eigenfunctions. This means that when we compute
the polarizability �P or Pt� and the screened interaction �W or
Wt�, we assume the fillings have no m dependence �i.e., shell
occupancies fnl� instead of orbital occupancies fnlm��: differ-
ent m channels will not interact so that taking both l and m as
good quantum numbers is a self-consistent assumption.
However, when using matrix elements of W or Wt to com-
pute a contribution to the energy such as in Eq. �40�, we do
include the full m dependence of the occupancies fnlm�.

We begin by showing direct numerical evidence for the
unboundedness of the GW-RPA correlation energy �c

GW that
was proven in Sec. VIII. We consider the case of the boron
atom with configuration 1s22s22p1. The occupied single-
particle states and energies are found self-consistently within
LSDA for a radial grid extending to rmax=10 bohr radii. Af-
ter finding the self-consistent potential for the LSDA ground
state, we generate the lowest 300 states for each angular
momentum and spin channel. We then compute and tabulate
the Coulomb matrix elements in the RPA/Casida Eq. �36�
within this basis of transitions and find the correlation energy
of Eq. �38� through direct diagonalization. Starting with this
information, we then scale all transition energies �t uni-
formly by a factor �, where 0���1 so that �t→��t. We
use the scaled transition energies in the RPA/Casida Eq. �36�
to find the corresponding plasma frequencies and then use
Eq. �38� to compute �c

GW as a function of �. Figure 2 shows
the correlation energy as a function of �. As is evident, the

correlation energy becomes very negative and unphysically
large in magnitude. Furthermore, the curve is monotonic in
�: starting with the reasonable �=1 energy, one can drive the
correlation energy to arbitrarily negative values along a con-
tinuous path with no extremum along this coordinate. As
discussed in Sec. IX, the approximate forms also have this
unphysical behavior and the figure shows the example of the
static approximation of Eq. �42�.

We now move onto more pragmatic questions, the first
being the convergence properties of the plasmon form of Eq.
�38�. As discussed above, the plasmon form for the GW-RPA
correlation energy is more physically transparent than the
standard integral expression of Eq. �23�. In addition, it tuns
out that it converges much more rapidly. This is demon-
strated for the cases of the helium atom �1s2 configuration�
and boron atom �1s22s22p1 configuration� in Table I. To gen-
erate the data in this table, an atomic LSDA calculation is
run to self-consistency for each atom for a radial grid of
rmax=7 bohr radii for He and rmax=10 for B, and the lowest
300 eigenstates and eigenenergies of the Kohn-Sham Hamil-
tonian are computed and tabulated. The Nmax lowest-energy
eigenstates are then used to evaluate the correlation energies,
and convergence is monitored by increasing Nmax.

For the plasmon form, the RPA/Casida Eq. �36� is solved
within the basis of transitions generated by the Nmax single-
particle states via direct diagonalization. For the integral
form, the computations are more involved. First, for numeri-
cal stability, the integral along the real axis is changed to
along the imaginary � axis �renamed �� via a Wick rotation.
Using the identity tr ln A=ln det A for a matrix A, the inte-
gral is then

�c
GW = −

1

2�
t

�t�V�t� +
1

2
�

−



 d�

2�
ln det ��i�� . �49�

The matrix determinant is computed within the subspace
spanned by the Nmax single-particle states. Second, the upper

TABLE I. Comparison of convergence of GW-RPA correlation
energies for the He and B atoms. The RPA correlation energy is
computed using the standard integral of Eq. �49� �third column� or
the plasmon form of Eq. �38� �fourth column�. All energies are in
hartree. Nmax is the number of single-particle states included in the
calculations for each angular momentum and spin channel. The
single particle energies and wave functions are from the LSDA.

Atom Nmax Integral Plasmon

He 25 −0.1038 −0.0804

He 50 −0.0916 −0.0805

He 100 −0.0849 −0.0806

He 150 −0.0830 −0.0806

He 200 −0.0819 −0.0806

B 50 −0.4126 −0.2129

B 100 −0.3600 −0.2171

B 200 −0.2844 −0.2175

B 300 −0.2584 −0.2175

FIG. 2. �Color online� Correlation energy �c as a function of the
scaling � of the transition energies for the boron atom. Single-
particle energies are from a ground-state LSDA calculation. The
blue squares with solid line are the exact RPA correlation energies
from Eq. �38� when using scaled transition energies in the RPA/
Casida Eq. �36�. The green circles with dashed line are correlation
energies from the static approximation of Eq. �42� using the scaled
transition energies for computing the screening. The dashed or solid
lines are guides for the eye. Clearly, the energy decreases mono-
tonically with decreasing � to large and unphysical negative values
with no extrema along this path.
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limit is reduced to a finite value �max and the integral is
discretized with spacing ��. Since we desire the integral in
the limits ��→0 and �max→
, two extrapolations are per-
formed. For fixed �max, the integral is evaluated for a series
of ��, and Richardson extrapolation is performed to ��=0.
Next, these extrapolated values are themselves Richardson
extrapolated to �max=
 by noting that for large �, ��i��= I
+A�−2+O��−4� so that the neglected integral from �max to 

is proportional to �max

−1 to leading order. These extrapolation
procedures are straightforward and unproblematic because
the integrand is smooth as a function of �. The doubly ex-
trapolated values are listed in Table I.

Clearly, the plasmon form has superior convergence prop-
erties when compared to the integral form, and, additionally,
does not require any particular extrapolation or discretization
procedures. Helium presents a rather simple case: more com-
plex atoms �or molecules� will require progressively larger
basis sets to converge the integrals and the plasmon form
should prove even more useful in practice. A hint of this is
provided by comparing He to B in Table I. For B, the integral
form of the correlation energy converges more slowly, and
the calculations at Nmax=300 were already quite demanding
in terms of time �and patience�. The plasmon form, again,
shows rapid convergence versus Nmax. As an independent
check, our LSDA-based GW-RPA correlation energy of
−0.0806 hartree for helium is in very good agreement with
available values in the literature �−0.0803 hartree in Ref.
66�.

We now examine the accuracy of the approximate forms
derived in Secs. IX and X above. In Tables II and III, we
present these correlation energies for the helium and boron
atoms using LSDA or HF wave functions and eigenenergies.

These are to be compared to the exact RPA energy of Eq.
�38� in the second to last row in each table. For complete-
ness, we also include the other energy terms to show their
relative importance and their variation with single-particle
theory, discussed further below. The Hartree energy reported
in the table is the one based on the actual, nonspherical elec-
tron density �i.e., based on m-dependent occupancies fnlm� as
opposed to the spherical density in most DFT atomic calcu-
lations�.

We begin by considering our main approximate form of
Eq. �41�. As we can see from comparing to the exact RPA
energy, and especially when comparing to the static versions,
the basic approximation underlying Eqs. �40� and �41� is a
relatively good one: the absolute correlation energy of Eq.
�41� differs by at most 0.1 hartree from the exact RPA one.
This shows that the fundamental approximation of assuming
high-frequency screening is reasonable even in atoms. For
solids and extended systems where the Coulomb interaction
shows true long-ranged behavior �as opposed to atoms�,
plasma modes are of higher energies than interband energies
and the situation should be further improved.

As explained above, the approximate form of Eq. �41� is
as computationally expensive to calculate as the exact RPA
plasmon form but is additionally very difficult to converge.
To obtain the values in the tables, we had to perform the
following steps simultaneously: �i� increase the size of the
radial axis to make for a denser continuum, �ii� increase the
number of one-particle states entering the calculation to en-
sure a fixed level of convergence with increasing radial axis,
and �iii� exclude contributions to Wt��t� from transitions t�
that were within a small energy window � of �t �i.e.,
��t�−�t���� while sending �→0.

TABLE II. Various components of the total energy of the helium
atom. Results are reported for single-particle wave functions and
eigenenergies coming from self-consistent LSDA or Hartree-Fock
�HF� calculations. Energies are in hartree. Except for the � �� values,
all calculations use a radial grid of size rmax=18 bohrs radii and
Nmax=257 single-particle states for each angular momentum chan-
nel. The starred � �� values are difficult to converge, and the values
in the table are uncertain to within �0.001: see text for details. For
reference, the exact �CI� nonrelativistic correlation energy is also
shown as the last entry.

Energy
component Equation LSDA HF

Difference
�%�

Kinetic 2.768 2.862 1.0

Electron-ion −6.626 −6.749 1.0

Hartree 1.996 2.052 1.0

Fock exchange �22� −0.998 −1.026 1.0

�c: W�0� instead of
Wt�0� �46� −0.318 −0.255 25

�c: square root approx. �45� −0.311 −0.248 25

�c: static approx. �42� −0.313 −0.250 25

�c: main approx. �41� −0.060� −0.048� 25

�c: RPA �38� −0.081 −0.064 27

�c: CI �exact� Ref. 67 −0.0420

TABLE III. Various components of the total energy of the boron
atom. Results are reported for single-particle eigenfunctions and
eigenenergies coming from self-consistent LSDA or HF calcula-
tions. All energies are in hartree. Except for the � �� values, all
calculations use a radial grid of size rmax=40 bohrs radii and
Nmax=400 single-particle states for each angular momentum chan-
nel. The starred � �� values are difficult to converge, and the values
in the table are actually uncertain to within �0.01: see text for
details. For reference, the exact �CI� nonrelativistic correlation en-
ergy is also shown as the last entry.

Energy
component Equation LSDA HF

Difference
�%�

Kinetic 24.173 24.530 1.5

Electron-ion −56.520 −56.900 0.67

Hartree 11.534 11.590 0.49

Fock exchange �22� −3.712 −3.749 1.0

�c: W�0� instead of
Wt�0� �46� −0.869 −0.717 21

�c: square root approx. �45� −0.820 −0.680 21

�c: static approx. �42� −0.835 −0.692 20

�c: main approx. �41� −0.30� −0.11� 270

�c: RPA �38� −0.217 −0.171 27

�c: CI �exact� Ref. 68 −0.125
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Moving on to the approximations that assume static
screening, we see that they overestimate the importance of
correlations and give too negative values uniformly. We dis-
cuss the reason for this in the next paragraph but in the mean
time we see that once the static approximation is made, the
various forms for the correlation energy are quite similar. For
example, the difference between the square-root form of Eq.
�42� and its series expansion in Eq. �45� is small. The small-
ness of the differences simply means that the ratio �W�0�� /�
is small, e.g., for boron we find the largest value of the ratio
�W�0�� /� is 0.2 and is achieved for the 2s-2p transition.
Given how far all these static correlation energies are from
the dynamic answer of Eq. �41� or the exact RPA answer of
Eq. �38�, one can take all these static approximations to be
basically of equal accuracy.

The reason that the static approximations overestimate the
magnitude of the correlation energy is easy to understand.
Figure 3 shows how three representative correlation energies
converge for the case of atomic boron: the static formula of
Eq. �42�, the dynamic formula of Eq. �41�, and the exact RPA
formula of Eq. �38�. What is shown is the correlation energy
contributions summed up to a given transition energy �or
plasmon energy for the exact case�. In all cases, we see that
the contributions to the correlations are small, then become
large at a certain energy, and then become smaller again. In
atomic boron at LSDA level, there are two physically impor-
tant transitions: the dominant 2s-2p at 0.21 hartree and then
the weaker 1s-2p at 6.4 hartree. As the transition energy

sweeps through each atomic transition, we see large contri-
butions to the correlation energies at first but then the tran-
sition is “exhausted” and the contributions become small
again.

The obvious difference between the three curves is that
for the static case, all the contributions are always negative,
tend to be large in magnitude, and keep adding up to yield a
large negative value. On the other hand, for the dynamic
approximation and the exact result, the initial low-energy
contributions are large and negative, may then become
slightly positive, but rapidly become small in magnitude. To
understand this difference, we write the modified screened
interaction as Wt���=�t���−1V in terms of a modified dielec-
tric function �t���. Solving the RPA/Casida Eq. �36� with
transition t missing gives us a set modified plasma modes
with energies �̃p and mode functions �p̃�. Based on Eq. �35�,
we have the dynamic and static matrix elements,

�t�Wt��t��t� = �t�V�t� + �
p

2�̃p��t�V�p̃��2

�t
2 − �̃p

2 ,

�t�Wt�0��t� = �t�V�t� − �
p

2�̃p��t�V�p̃��2

�̃p
2 .

Clearly, the static formula always gives negative correlation
contributions that become small only when the matrix ele-
ments �t�V�p̃� become small. On the other hand, the dynamic
case has a denominator that changes sign from positive to
negative as �t sweeps through the plasma energies, and the
denominator itself gets large when �t gets large. The dy-
namic screening behavior of the plasmons is missing in the
static formula which assumes that no matter what the transi-
tion energy, the plasmons can screen it adiabatically. This is
obviously erroneous for transitions where �t �̃p. Therefore,
the static formula can be improved by adding some dynamic
behavior in the screening even if done approximately. This is
an example of what was meant in Sec. X regarding the use of
plasmon-pole models or model dielectric functions to im-
prove the static COHSEX.

We end this section with some observations on the results
in Tables II and III and their dependence on the single-
particle theory. The parts of the total energy that depend only
on the single-particle orbitals, i.e., the kinetic, electron-ion,
Hartree, and Fock exchange energies, depend weakly on the
choice of LSDA versus HF single-particle orbitals, changing
at most �1%. This is not surprising a posteriori as visual
comparison of the radial functions show small differences.
However, the correlation energies depend more strongly on
the choice of single-particle theory, and this is due to the
relatively large differences between the single-particle ener-
gies. The HF-based correlation energies are smaller than the
LSDA simply because HF transition energies are larger than
LSDA, e.g., for atomic boron, the important 2s-2p transition
is at 0.210 hartree in LSDA but at 0.232 hartree in HF; larger
transition energies mean weaker screening and thus weaker
correlation. As per Sec. VIII, it matters greatly whether the
Green’s function G0 is generated by a local or nonlocal po-
tential.

FIG. 3. �Color online� Convergence of correlation energies for
the boron atom. Both plots show the cumulative sum of the contri-
butions to the correlation energies �vertical� for transitions and/or
plasma modes up to some given energy �t �horizontal�. LSDA wave
functions and eigenenergies are used with a radial grid of size
rmax=40 bohr radii and Nmax=400 eigenstates. The lowest solid
black curve is for the static approximation of Eq. �42�, the middle
red dashed curve is for the dynamic approximation of Eq. �41�, and
the uppermost green dotted curve is for the exact RPA formula of
Eq. �38�. The plots show the same data with the only difference
being a linear �top plot� or a logarithmic scale �bottom plot� of the
horizontal axis. The dominant transitions in LSDA boron are the
2s-2p at 0.21 hartree and 1s-2p at 6.4 hartree, both visible in the
lower plot as energies where the correlation contributions have a
sudden jump.
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The true many-body Green’s function G obeys Dyson’s
Eq. �4� and is thus generated by a nonlocal �and dynamic�
self-energy �xc�x ,x� ,��. A priori, we would expect that a
static but nonlocal potential U0�x ,x�� should generate a de-
cent noninteracting G0 which should be close to the true G,
certainly closer than one generated by a static local potential.
However, as discussed in Sec. VIII, choosing the best U0 via
an optimization of the total-energy functional is problematic
unless constraints are imposed on U0. The outstanding theo-
retical problem is what constraints to impose and which ones
are the best ones. This obviously involves creating and jus-
tifying metrics that tells us how good each choice of con-
straints will be in practice.

XII. SUMMARY AND OUTLOOK

Our work has focused on the correlation energy functional
with Luttinger-Ward theory �specifically the Klein func-
tional� within the GW-RPA. The Green’s functions used in
the energy functional are of noninteracting form. The main
findings in this work are threefold. First, we present the exact
rewriting of the GW-RPA correlation energy functional in
Eq. �38� in terms of differences between plasma and inter-
band energies. This form is directly amenable to computa-
tion, shows good convergence properties in the atomic tests,
and has prospects for having its computational scaling im-
proved by use of matrix square-root algorithms. Second, we
describe the approximate rewriting of the GW-RPA correla-
tion energy functional in Eqs. �40� and �41� where the cor-
relation energy is written as a sum of screened interband
transition contributions; the main approximation is to assume
that the dominant screening dynamics are much faster than
the key interband dynamics; atomic tests show that the ap-
proximation is good numerically. These approximate forms
then lead to a ladder of approximations where the COHSEX
is the simplest one possible. Third, we show, analytically and
with numerical examples for atoms, that if one restricts the
Green’s function to be of noninteracting form generated by
Hermitian nonlocal potentials, the GW-RPA correlation en-
ergy has neither lower bound over this set of Green’s func-
tions nor does it have an extremum.

Going forward, the exact rewriting and its good conver-
gence properties—coupled with algorithmic development—
should pave the wave for wider application of the GW-RPA
correlation functional to materials systems. The multitude of
approximate forms we present here will hopefully broaden
and improve the types of approximate self-energies used in
self-consistent band-structure methods that go beyond the
usual LDA or GGA treatments. Simultaneously, having ex-
plicit energy functionals on hand means one can construct
the self-energies in a variational manner: the solution of the
self-consistent equation for a particular self-energy will op-
timize the total-energy functional from which it was derived.
However, the result on the unboundedness of the GW-RPA
correlation energy over the space of all noninteracting
Green’s functions means that applying these Green’s-
function approaches is not yet a rote exercise in using stan-
dard unconstrained optimization algorithms. Rather, the
choice of nonlocal potential that generates the noninteracting

Green’s function must be constrained in some manner so as
to avoid the pathological negative infinite correlation energy
and to produce extrema. The theoretical question is then to
understand which constraints succeed and also to devise met-
rics to compare their quality and accuracy.
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APPENDIX A: DERIVATION OF APPROXIMATE FORM
EQ. (40)

In this appendix, we provide the detailed derivation of the
approximate form of Eq. �40�. We begin with Eq. �23� for the
exchange-correlation functional and reexpand the logarithm,

�xc
GW�G0	 = EX�0	 −

1

2�
j=2



1

j
�

−



 d�

2�i
tr��VP���	 j� .

We concentrate on the correlation part �c=�xc−EX and
write each P��� as a sum over transition energies as per
Eq. �7�,

�c
GW = −

1

2�
j=2



1

j
�

−



 d�

2�i
tr��
�1

V��1
����

�2

V��2
��� . . .

��
�j

V��j
���� .

We define Ij as the jth term in this series,

Ij 
 −
1

2j
�

−



 d�

2�i
tr��
�1

V��1
���

��
�2

V��2
��� . . . �

�j

V��j
���� . �A1�

We close the contour integral over the lower complex � half
plane �the final result is unchanged if we choose the upper
half plane�. Since each factor ����� is given by

����� =
2�

�� − ���� + ���� ������ ,

the integrand for Ij is analytic everywhere in the lower half
plane except when �=� for some transition energy �. Since
����� diverges as ��−��−1 close to such a point, the inte-
grand for Ij has divergences of type ��−��−k, where 1�k
� j and k labels how many of the ��1 , . . . ,� j� happen to be
coincident. This leads us to write Ij as a sum over sets of
contributions Ij

k labeled by the divergence index k,

Ij = �
k=1

j

Ij
k,

where
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Ij
k = −

1

2j
� d�

2�i
�
�

�
q0,. . .,qk

�tr��VP����	q0V�����

��VP����	q1
¯ V������VP����	qk� . �A2�

The contour integral is along the real axis and closed over
the lower complex � half plane, P���� is the polarization
with transition energy � missing,

P���� = P��� −����� = �
����

������ ,

and �q0 , . . . ,qk� are any nonnegative integers restricted to
sum to j−k,

�
l=0

k

ql = j − k .

The prime over the second sum denotes this restriction on
�q0 , . . . ,qk�. Equation �A2� is to be understood as follows: to
get a contribution to Ij

k, we must have k of the j transition
energies in Eq. �A1� have the same value which we call �
while all the remaining j-k transition energies must be dif-
ferent from �; most generally, the first q0 factors in Eq. �A1�
have transitions differing from �, then there is a transition at
�, then q1 follow which differ, followed by another at �,
etc.; summing over all � and all possible �ql� includes all the
possibilities.

Using the cyclicity of the trace, we combine the first q0
and last qk terms,

Ij
k = −

1

2j
� d�

2�i
�
�

�
q0,. . .,qk

�tr�V�����

��VP����	q1V����� . . . V������VP����	q0+qk�

and then replace the �� by explicit sums over transitions to
get

Ij
k = −

1

2j
� d�

2�i
�
�

�2��k

��2 − �2�k �
q0,. . .,qk

� �
�1,. . .,�k

tr�V��1���1�

��VP����	q1V��2���2� . . . V��k���k��VP����	q0+qk�

= −
1

2j
� d�

2�i
�
�

�2��k

��2 − �2�k �
q0,. . .,qk

� �
�1,. . .,�k

���1��VP����	q1V��2� . . . ��k��VP����	q0+qkV��1� ,

where the transition ��1 , . . . ,�k� sum only over those with
energy �.

In the above expression for Ij
k, there is no separate depen-

dence on q0 or qk but only on their sum r=q0+qk. There are
r+1 possibilities for q0 and qk at fixed r. Summing over them
generates a multiplicative factor of r+1. We rename r back
to qk and have

Ij
k = −

1

2j
� d�

2�i
�
�

�2��k

��2 − �2�k �
q1,. . .,qk

� �
�1,. . .,�k

���1��VP����	q1V��2���2��VP����	q1V��3� . . .

�qk + 1���k��VP����	qkV��1� .

We sum over one fewer �ql�, namely, from q1 to qk, where
the prime indicates that q1+ . . .+qk= j−k as before.

The ql are not treated symmetrically in the above expres-
sion: qk is singled out by the extra factor qk+1 because we
chose to eliminate q0. However, the final result for Ij

k has the
same value if instead we single out another ql to have the
ql+1 factor because we can rearrange the k multiplied fac-
tors and permute the ql via relabeling. Therefore, we symme-
trize by summing over all k choices of ql �being singled out�
and dividing by k. This amounts to averaging the ql+1 fac-
tor,

1

k
�
l=1

k

�ql + 1� =
1

k
�j − k + k� =

j

k

which happily cancels the 1 / j factor. So we now have the
symmetric expression

Ij
k = −

1

2
� d�

2�i
�
�

�2��k

k��2 − �2�k �
q1,. . .,qk

� �
�1,. . .,�k

���1��VP����	q1V��2� . . . ��k��VP����	qkV��1� .

We are now ready to sum over j to eliminate the restriction
over the �ql�, i.e., remove the prime. To do this, we reorder
the j and k sums in the correlation energy,

�c
GW = �

j=2




�
k=1

j

Ij
k = �

k=1




�
j=k




Ij
k − I1

1,

where we added and subtracted I1
1= 1

2�t�t�V�t�. The inner sum
over j removes the constraint over the ql so

�
j=k




Ij
k = −

1

2
� d�

2�i
�
�

�2��k

k��2 − �2�k �
q1,. . .,qk

�
�1,. . .,�k

���1��VP�	q1V��2� . . . ��k��VP�	qkV��1� .

Each factor of �VP�	qlV can be summed separately to yield
an identical result, and in each case we are summing the
geometric series for �1−x�−1,

W���� 
 �
ql=0




�VP����	qlV = �I − VP����	−1V .

We have defined the modified screened interaction W���� for
which the interband transition energy � is missing from the
screening action. Thus the sum over j has yielded

�
j=k




Ij
k = −

1

2
� d�

2�i
�
�

�2��k

k��2 − �2�k �
�1,. . .,�k

���1�W������2� . . . ��k�W������1� .

We define a square matrix W���� that contains the matrix
elements of W���� among all the degenerate transitions
��1 , . . . ,�k� of energy �,

W����p,q 
 ��p�W������q� ,

which allows us to compactify the above expression as
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�
j=k




Ij
k = −

1

2
� d�

2�i
�
�

�2��k

k��2 − �2�k tr��W����	k� . �A3�

The result of Eq. �A3� is exact and summing it over k will
recover the same answer as the exact result in Eq. �38� albeit
expressed in a completely different manner. We can, in prin-
ciple, perform the contour integral. On the lower complex �
half plane, the integrand has a kth-order pole at �=� as well
as a large number of other poles coming from W���� which
physically correspond to the screening modes or plasma fre-
quencies. We would have to sum over all residues to obtain
the integral exactly. However, the resulting expression is un-
wieldy and cannot be simplified in any meaningful manner
known to us.

Therefore, we make a physical approximation to make the
integral tractable. The basic approximation is in the spirit of
the COHSEX approximation: we assume that the physically
important plasma frequencies are at much higher energies
than the dominant interband transition energies. Mathemati-
cally, this approximation means that we ignore the contribu-
tions of the residues coming from W���� itself and instead
include only the residue of the low-energy pole at �. If �̃ is
the energy of a typical pole of W����, then the neglected
terms are proportional to powers of the dimensionless ratio
� / �̃. Therefore, if we write the integral as a power series in
� / �̃, our approximation amounts to keep only the leading
terms of order �� / �̃�0. Equivalently, we pretend that W����
is smooth and analytic so that the only poles in the integral
of Eq. �A3� come from the denominator at �=�.

Since W���� is built from the polarization P����, both
are missing transitions at energy � and are well behaved at
and about �=�. We use Eq. �12� to find

�
j=k




Ij
k �

1

2��� �2��k

k!

dk−1

d�k−1� 1

�� + ��k tr��W����	k���
�=�

.

Again, due to the assumption of the smoothness of W���� at
low frequencies, its derivatives at �=� are also assumed
negligible compared to the derivatives of ��+��−k: this
amounts to discarding terms with positive powers of � / �̃.
So we arrive at

�
j=k




Ij
k �

1

2�
�

�2��k

k!
tr��W����	k�� dk−1

d�k−1� 1

�� + ��k��
�=�

.

Taking the k−1 derivatives and evaluating at �=� yields

�
j=k




Ij
k �

1

2�
�

�2��k

k!
tr��W�����k�

�− 1�k−1�2k − 2�!
�2��2k−1�k − 1�!

�
1

2�
�

� · tr�−
W����

2�
�k �2k�!

�k!�2�1 − 2k�� .

Interestingly, we recognize this as a term in the Taylor series
for �1+x,

�1 + x = �
n=0


 �−
x

4
�n �2n�!

�n!�2�1 − 2n�
.

We sum our approximate expression over all k to get

�
k=1




�
j=k




Ij
k �

1

2�
�

� · tr�I +
2W����
�

− I�
�

1

2�
�

tr��I�2 + 2�W���� − I�� ,

where a matrix square root is understood. Putting this to-
gether with I1

1, we have our final result for the approximate
rewriting of the correlation energy, i.e., Eq. �40�,

�c
GW �

1

2�
�

tr��I�2 + 2�W����	1/2� −
1

2�
t

��t + �t�V�t�� .

�A4�

APPENDIX B: LACK OF DIVERGENCE OF EQ. (38) FOR
FINITE �t

In Sec. VIII, we used the exact plasmon form of Eq. �38�
for the correlation energy �c

GW, reproduced here for conve-
nience,

�c
GW =

1

2�
p

�p −
1

2�
t

��t + �t�V�t��

to prove the lack of a minimum �xc
GW when all �t→0+. In

brief, the proof started with the fact that when �t→0+, all
�p→0+ as well. This left us with

�c
GW → −

1

2�
v

�
c

�cv�V�cv� .

Since the sum over conduction index c extends to infinity, we
used completeness to rewrite this sum in terms of identity
and occupied states v� alone,

�
c

	c�x�	c�x��� = ��x − x�� − �
v�

	v��x�	v��x���.

This then yielded

�c
GW → −

1

2�
v
� dx	v�x�V�x,x�	v�x� +

1

2 �
v,v�

�vv��V�vv�� .

The positive infinite divergence of V�x ,x�� at x=x� made for
the negative infinite value of �c

GW.
This proof appears to rely only on three facts: the diver-

gent behavior of V, the infinite sum over c, and complete-
ness. All three facts are actually present in the plasmon form,
and this might lead us to believe that the plasmon form al-
ready contains the divergence separate from the �t→0+

limit. On the other hand, numerically, our atomic calcula-
tions in Sec. XI have shown that the plasmon form converges
rapidly to a finite value for the GW-RPA correlation energy.
Analytically, the plasmon form is an exact transformation
derived in Sec. VII which also has been derived using dif-
ferent methods.37

The solution to this apparent contradiction is that the plas-
mon expression is actually well behaved for finite �t because
the high-energy contributions for large conduction indices c

CORRELATION ENERGY FUNCTIONAL WITHIN THE… PHYSICAL REVIEW B 81, 195126 �2010�

195126-19



cancel between �p and �t+ �t�V�t�. The cancellation gets pro-
gressively worse as the �t get smaller but still gives a finite
result for finite �t. The divergence becomes apparent only
when �t=0 is reached. Mathematically, we return to the
RPA/Casida Eq. �36� that determines �p,

�t
2Ct,p + �

t�

2��t�t��t�V�t��Ct�,p = �p
2Ct,p.

For large c indices, we are describing large transition ener-
gies �t=�c−�v. In this regime, the transition energies domi-
nate over the Coulomb matrix elements, �t! ��t��V�t�� so that
the RPA/Casida eigenvalue problem is diagonally dominant
and we can use perturbation theory to compute �p

2. Each
index p will correspond to a particular transition t, and per-
turbation theory combined with series expansion of the
square root ��p

2 gives

�p = �t + �t�V�t� + O� �V�2

�
� .

This means that the high-energy contributions to the plasmon
form show cancellation between the �p and the �t+ �t�V�t�
terms and lead to a finite correlation energy. The criterion
determining when the cancellations begin to take place is
� ��V��. In other words, transitions with energies beyond
this cutoff do not actually contribute to the completeness
relation.

These high-energy contributions to the correlation are
manifestly second order in V as they must be: formally, cor-
relation starts at second order in the bare Coulomb interac-
tion �the first order being captured by the Fock exchange
energy�. Finally, we see that as �t→0+, the range of energies
over which we can use the completeness relation gets pro-
gressively larger. When �t=0, we have mathematical com-
pleteness for the sum over c and the divergence of V�x ,x�� at
x=x� is sampled.
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