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Improved local-field corrections to the G0W approximation in jellium:
Importance of consistency relations

M. Hindgren and C.-O. Almbladh
Department of Theoretical Physics, Lund University, So¨lvegatan 14 A, S-223 62 Lund, Sweden

~Received 11 June 1997!

We study the effects of local vertex corrections to the self-energy of the electron gas. We find that a vertex
derived from time-dependent density-functional theory can give accurate self-energies, provided, however, a
proper decay at large momentum transfer~largeq! is built into the vertex function.~The local-density approxi-
mation for the vertex fails badly.! Total energies are calculated from the Galitskii-Migdal formula, and it is
shown that a proper large-q behavior results in a close consistency between the chemical potentials derived
from these energies and those obtained directly from the self-energy. We show that this internal consistency
depends critically on including the same vertex correction in both the self-energy and the screening function.
In addition the total energies become almost as accurate as those from elaborate Monte Carlo calculations. This
as well as previous works show that self-energy corrections are important for properly describing electron
propagation at energies around and above the plasmon energy. For easy use in calculations of photoemission
and x-ray extended fine structure spectra, we parametrize our calculated self-energies in terms of a simple
analytical expression.@S0163-1829~97!03040-3#
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I. INTRODUCTION

The dynamically screened-exchange orGW approxima-
tion1 has emerged as a successful tool for obtaining qu
particle bands in real solids. As usually practiced, the s
consistency requirement on the self-energyS is relaxed and
typical calculations involve a suitably chosen independe
particle Green’s functionG0 ~the G0W approximation!. In
attempts to go beyond theGW0A, one has added verte
corrections derived using mean-field arguments or tim
dependent density-functional theory~TDDFT!.2–7 However,
these efforts have shown little effect on the quasipart
bands.

A closer examination of theG0WA shows that, although
it usually gives a good description of the relative positions
the occupied bands, it also gives a rather large absolute e
For the occupied states, the errors in quasiparticle ener
are similar in magnitude. When we move from the Fer
energy up to high energies, however, the self-energy va
from relatively large negative values up to zero. Con
quently, absolute errors will distort the relative positions
the higher bands.

In this paper, we will study mean-field based vertex a
proximations using the homogeneous electron gas as a
system. We will demonstrate the severe shortcomings of
vertex corrections derived from the time-dependent loc
density approximation~TDLDA !. We trace this failure to the
wavelength independence of the corresponding local-fi
correction. Including, however, a Hubbard-like decay
large momentum transfer~large q5uqu!, we obtain signifi-
cant improvements beyond theG0WA. In particular, the
Fermi-surface value is greatly improved. In order to inves
gate the internal consistency of our approach we also c
pute total energies from the Galitskii-Migdal formula.8 In
this way, we can compare chemical potentials derived fr
the total energy and from the self-energy at the Fermi s
560163-1829/97/56~20!/12832~8!/$10.00
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face. As we will show, the TDDFT approach greatly im
proves the consistency between the total energy and the
energy as well as their absolute values.

The self-energy for the homogeneous system has s
interest on its own right as a starting point for local appro
mations toS in, say, calculations of x-ray extended fin
structure~EXAFS! and electron spectroscopies. In order
facilitate such a use of our data we provide simple analyt
fits.

In Sec. II we give a theoretical background and discu
different ways of obtaining approximate vertex function
Results and parametrization are given in Sec. III, and in S
IV, finally, we give some concluding remarks.

II. THEORETICAL BACKGROUND

A. The electron self-energy

In this section we summarize some key formulas in or
to establish our notation. For a general overview we refe
the work by Hedin and Lundqvist.9

The self-energyS may be defined from the equation o
motion for the Green’s functionG as

Fe1
¹2

2
2VCGG~e!511S~e!G~e!. ~1!

Here VC is the total Coulomb potential from the electro
ground-state density (VH) and from external sources (w),
and we use atomic units with energies in Hartrees. Spec
izing to a homogeneous electron gas,VC50 in equilibrium.
The self-energy can be written explicitly as

S~k!5 i E d4q

~2p!4 G~k2q!W~q!L~k,q!. ~2!
12 832 © 1997 The American Physical Society



er

n
t

to
on

t
t

e

e
s

th

en

riz-

tive
ed,
-
this
by

the

sys-
l,

ith
een

i-

s

tate

56 12 833IMPROVED LOCAL-FIELD CORRECTIONS TO THEG0W . . .
Here, the dynamically screened interactionW5e21v, e is
the dielectric screening function, andv is the Coulomb in-
teraction. We use the simplified notationk5(k,e) and
k5uku. The vertex functionL gives the~linear! response in
S when we break the translational invariance by a nonz
VC(q),

L~k,q!511
dS~k,q!

dVC~q!
. ~3!

Also the dielectric functione can be expressed solely i
the Green’s function and the same vertex as above. I
customary to introduce an irreducible polarizationP by the
relation

e~q!512v~q!P~q!, ~4!

where

P~q!522i E d4k

~2p!4 G~k!G~k2q!L~k,q!. ~5!

As is well known, in perturbation theoryS will inherit the
Fermi surface of the independent-electron propaga
G0 .10,11 Consistency therefore requires that we add a
body potential to the noninteracting system so as to keep
Fermi surface unchanged. In a homogeneous systems,
potential is simply a constant,

D5mxc5S~kF ,m!, ~6!

wherem andmxc are the chemical potential and its exchang
correlation part, and wherekF is the Fermi momentum. From
the equation of motion@Eq. ~1!# we readily find

G~k,e!5@e2ek
02S~k,e!#21, ~7!

G0~k,e!5@e2ek
02D1 id sgn~e2m!#21, ~8!

~d being a positive infinitesimal andek
05k2/2!, and a Dyson

equation connecting the two Green’s functions,

G~k!5G0~k!1G0~k!@S~k!2D#G~k!. ~9!

The quasiparticle energiesek are obtained from

ek5ek
01Re S~k,ek!. ~10!

B. Approximation for the vertex function

The GW approximation consists of approximating th
vertex in Eq.~3! by unity. On this level, the approximation i
conserving in the sense of Baym and Kadanoff,12,13 which,
among other things, implies mutual consistency between
total energy and the Fermi-surface value ofS. In theG0WA
we furthermore replace all propagators by their independ
electron counterparts (G0). Thus,

S~k!5 i E d4q

~2p!4 G0~k2q!W~q!, ~11!
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and P is approximated by the independent-electron pola
ability

P0~q!522i E d4k

~2p!4 G0~k!G0~k2q!. ~12!

The energy shiftD in G0 @Eq. ~8!# gives merely a shift in the
frequency variable ofS, e→e2D.

One way to go beyond theG0WA is to imagine that the
interacting electrons respond as free electrons to an effec
field Veff . As far as static perturbations are concern
density-functional theory14,15 then, in principle, gives the ex
act results. In the case of time-dependent phenomena,
way of looking at the problem has been successfully used
Singwi, Sjölander, and collaborators16,17 for modeling the di-
electric function. Similar ideas have been applied to
problem of core electrons by Minnhagen.18 Also Mahan and
Sernelius6 and Del Soleet al.7 extend theGW approximation
along these lines. We thus calculate the response of our
tem in a one-particle manner using the effective potentia

dVeff~q!5dVC~q!1dvxc~q!, ~13!

where we identify the exchange-correlation partvxc with the
density-functional ground-state potential. Comparing w
Eq. ~3! we see that the change in the self-energy has b
replaced by the corresponding change invxc . This leads to
approximations toL andW given by

L~q!5
dVeff~q!

dVC~q!
5

1

12P0~q!Kxc~q!
, ~14!

W~q!5v~q!
dVC~q!

dw~q!
5

v~q!@12Kxc~q!P0~q!#

12P0~q!@v~q!1Kxc~q!#
.

~15!

Here,Kxc is a functional derivative ofvxc with respect to the
density,

Kxc~q![
dvxc~q!

dn~q!
. ~16!

If the Green’s function in Eq.~2! is again approximated
by the independent-electron Green’s functionG0 , we obtain

S~k!5 i E d4q

~2p!4 G0~k2q!W̃~q!, ~17!

where the effective screened interactionW̃ is given by

W̃~q!5W~q!L~q!5
v~q!

12P0~q!@v~q!1Kxc~q!#
. ~18!

The basic building block in the present TDDFT approx
mation is the functionKxc(q). Unfortunately, it is accurately
known only in the limit of spatially slowly varying densitie
appropriate to the LDA. Of course, even if we knewKxc
exactly our approach is still approximate because the s
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12 834 56M. HINDGREN AND C.-O. ALMBLADH
and energy dependent self-energy has been replaced
local potential when derivingL.

It should be noted that our effective vertex accounts,
some average way, for both self-consistency corrections a
ing from the difference betweenG andG0 as well as proper
vertex corrections. If we would solve theGW equations self-
consistently, as has been done by Holm and von Barth,19 one
encounters subtle problems which are not yet fully und
stood. The problems originate in the different levels of
sponses in conserving theories.13 The self-energy and thu
the screening function~s! to be used in constructing i
emerges as a first-order derivative of an underlyingF func-
tional with respect toG. The actual response function of th
theory is defined as a second-order derivative and is, in g
eral, different for approximate functionals. In the case of
GW approximation, this latter response function~‘‘time-
dependentGW approximation’’! is only known in the high-
density limit.20 Particle conservation requires that the vert
must be a functional derivative ofS ~Refs. 12 and 13! as in
Eq. ~3!. In GW theory the appropriate vertex is produc
when the total energy is differentiated twice to form the c
rect response function,but not in the intermediate step whic
definesS and P. Holm and von Barth indeed detect a larg
violation of the f -sum rule. Approximations like the prese
one with independent-electron Green’s functions have nS
entering in the calculation ofW. They are consequently com
patible with having no vertex corrections at all~the G0WA!
as well as with having vertices depending only on the m
mentum transfer q.

In works on the dielectric function, the effective vertex
usually expressed in a ‘‘local-field factor’’f (q). In our
density-functional description, we have

f ~q!52
1

v~q!
Kxc~q!. ~19!

It is generally accepted that this local-field factor should te
to a constant of the order unity for large q5uqu and that it
should level off from its quadratic low-q behavior aroun
q52kF . In the strict static limit of the density-response fun
tion, Niklasson21 has shown thatf (q) tends to a limit be-
tween 1/3 and 2/3 for high q. Recent quantum–Monte Ca
calculations givef (q) for intermediate q.22

In the local-density approximation~TDLDA !, Kxc is re-
placed by its low-q limitdmxc /dn, and f (q) tends to infinity
as q2 for large q. The TDLDA has been successfully appli
to atoms,23 and most calculations in solids employ the sa
approximation. While the TDLDA certainly is correct fo
slowly varying static perturbations, it gives a very unphysi
local-field factor for higher q. In order to investigate th
importance of the high-q behavior, we study also tim
dependent density-functional approximations which inter
late between the LDA values for low-q to a high-q behav
with a f (`) in the range 1/2–1:

Kxc~q!5
Kxc~0!

11~q/a!2 . ~20!

A similar Ansatzhas been used by Shirley24 for estimating
the first vertex diagram. We fixa to have a given value o
f (`). In our calculations,Kxc(0) was obtained from data b
y a
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Ceperley and Alder25 as parametrized by Voskoet al.26 In
Table I we give the mapping betweenf (`) anda. The sen-
sitivity of the final results on different choices off (`) will
be discussed in the next section. It is also of interest to kn
how sensitive the results are to the detailed shape ofKxc . To
this end, we also do calculations with local-field factors su
gested by Hubbard,27 Vashishta and Singwi,17 and by Gel-
dart and Vosko.28 They all give very similar results, as doe
the interpolation scheme suggested here.

So far we have tacitly assumed that the same local-fi
correction should be applied to both the screening and
rectly in S. This seems most natural because in the ex
expressions it is the same vertex that occurs in both pla
However, different procedures have been used in the pa
order to explain the band narrowing in the heavy alkali m
als. In order to shed light on the usefulness of such sche
we also perform calculations with local-field effects only
the screening or only in the self-energy.

C. Ground-state energy

As shown by Galitskii and Migdal8 ~GM! the ground-state
energy can be expressed in terms of the one-particle Gre
function of the system. Since we are considering the to
energy, which is a thermodynamic property, it is natural
use the finite temperature formalism in itsT50 limit. This
method is also computationally more efficient. The GM fo
mula was first applied to the electron gas by Lundqvist a
Samathiyakatanit.29 ~No other extended system has, to o
knowledge, been treated.!

According to GM, the grand potentialV for a homoge-
neous system can be written as

V5^T̂2mN̂1Û&52(
k

~ek
02m!nk1

1

2
TrS̃G, ~21!

whereT̂, N̂, Û are the operators for kinetic energy, partic
number, and interaction energy, respectively. In Eq.~21! we
have introduced the Matsubara30 counterparts to the Green’
function and self-energy,

G~k,e!5G~k,i e1m!, ~22!

S̃~k,e!5S~k,i e1m!, ~23!

andnk are the occupation numbers. The symbol Tr is sh
for

2(
k
E de

2p
eide,

TABLE I. Relation betweena and f (`) @Eq. ~20!#.

r s a/kF @ f (`)5
1
2 # a/kF @ f (`)51#

2 2.73 1.93

4 2.67 1.89

6 2.62 1.85
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56 12 835IMPROVED LOCAL-FIELD CORRECTIONS TO THEG0W . . .
where the limitd→01 should be taken at the end of th
calculation.

The nontrivial part ofV is the correlation energy, o
rather the correlation energy per particleec . We thus sub-
tract the exchange energy and independent-electron kin
energy and divide by the particle numberN. This gives

ec5
1

N F2(
k

S ek
01

1

2
Sx~k! DDnk1

1

2
TrS̃cGG . ~24!

HereDnk is the difference between occupation numbers w
and without interaction,Sx is the Hartree-Fock self-energy
and S̃c5S̃2Sx . Theoretically, it is not clear if one shoul
use the particle number fromG or from G0 for obtainingec .
However, we find that the particle number fromG is con-
served to within 0.01% in the entire ranger s<6.

III. RESULTS

A. Chemical potential and total energy

In order to assess the merits of different local-field a
proximations we need information about the self-energy
tained by other means. Generally, little is known aboutS
beyond theG0WA level except at the Fermi surface, whe
is should yield the exchange-correlation partmxc of the
chemical potential@cf. Eq. ~6!#. The latter quantity is rathe
well known from quantum Monte Carlo calculations by Ce
erley and Alder.25 In Fig. 1 we compare the correlation pa
of the chemical potentialmc5S̃c(kF ,0) in different approxi-
mations with results derived from the Ceperley-Alder d
by Vosko et al.26 We notice that theG0WA overestimates
the magnitude ofmc by as much as 40% in the metall
range, and that TDLDA@Kxc(q)5Kxc(0)# is way above and
has even the incorrect sign forr s larger than 4.

In the case ofG0WA, one can actually show that th
Fermi-surface value should equal the value obtained fr
the random phase approximation~RPA! dielectric function
integrated over the interaction strength.31 ~This correspon-
dence is fulfilled to 0.01% or better in our numerical data.! It

FIG. 1. The correlation potential (mc) for an unpolarized elec-
tron gas from different approximate self-energies and fr
quantum–Monte Carlo calculations by Ceperley and Alder.
tic

h

-
-

-

a

m

is well known that the RPA overestimates the correlat
energies, and theG0WA inherits this deficiency. In calcula
tions of occupied-state energies, though, the self-energ
rather constant, and this relatively large but constant e
has little effect on the relative positions of occupied band

The very bad behavior of the TDLDA can be understo
as follows. The self-energy depends on the effective inter
tion in Eq. ~18!, for all q. The spectral function for the ef
fective interaction is

2Im W̃~q!sgn~v!5
@12 f ~q!#„v~q!…2pS0~q!

u12@12 f ~q!#P0~q!v~q!u2
.

~25!

~S0 is the independent-electron structure factor.! Because
f (q) increases as q2 in the TDLDA, the effective interaction
will have a negative spectral function at higher q. The sp
tral function has a plasmon part arising from the zeros of
denominator, and a particle-hole part arising from the n
merator. The resulting self-energy still has a non-nega
spectral function, but its electron-hole part from the electro
hole part ofW̃ is negative at higher momenta. This unphy
cal behavior of the spectral function ofW̃(q) is the likely
reason why the TDLDA fails.

Proceeding to the local-field corrections by Hubbard27

Vashishta and Singwi,17 and the TDDFT interpolation for-
mula of the previous section@Eq. ~20!# with f (`)51/2, we
notice that they all give very similar results and corre
roughly 2/3 of theG0WA error. If we stretch the interpola
tion to allow f (`)51, the resulting Fermi-surface value
agree with the Ceperley-Alder data within 1–2 %. This ve
good agreement is of course much better than expected
such a simple approximation. Being interested in quasipa
cle energies at all momenta, we feel it is justified to use t
value of a to calculate the self-energy also away from t
Fermi surface.

In Fig. 2 we show the correlation energy per particle

FIG. 2. The correlation energy per particle calculated from E
~24! with S(k,r s) calculated from Eq.~11! (G0WA) and from Eq.
~17! ~TDDFT! are compared with the values by Ceperley and Ald
and with the corresponding RPA values.
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12 836 56M. HINDGREN AND C.-O. ALMBLADH
different approximations. Again we compare with Ceperle
Alder data as compiled by Voskoet al.

We notice that the energies from theG0WA are approxi-
mately midway between the RPA values, which are too de
and the Ceperley-Alder values. This confirms the conclus
by Lundqvist and Samathiyakatanit29 that already this first
approximation represents a considerable improvement.
various local-field corrections with exception of the TDLD
give similar results and they are close to the Ceperley-Al
data.

In an exact theory, the self-energy is related to the co
lation energy by

Sc~kF ,m!5
d

dn
„nec~n!… ~26!

(Sc5S2Sx). This consistency relation is violated in th
G0WA. By adding local-field corrections, both the Ferm
surface value ofS and the correlation energy approach t
Ceperley-Alder values @which by construction fulfill
mc5d(nec)/dn#. Thus the violation is greatly reduced b
the local-field corrections. The violation of the consisten
relation in Eq.~26! in different approximations is plotted in
Fig. 3.

As mentioned in the previous section, consistency
tween the Fermi-surface value ofS and the total energy is
guaranteed in any conserving approximation. Thus, it
obeyed in the first self-consistent solution to theGW func-
tional by Holm and von Barth.19 Their correlation energies
and chemical potentials are very close to the ones obta
with our interpolation scheme here. Thus, the local-field c
rections have largely removed the self-consistency errors
herent in theG0WA. That this is at all possible gives som
credibility to our approach.

Let us finally discuss approximations with local fields
only the screening function or only inS. In Fig. 4 we show
results for the chemical potential withf (`)51.

When local fields are included only in the screening fun
tion, we see thatmc drops way below the already too dee
G0WA values. If, on the other hand, the local fields are

FIG. 3. The violation of the consistency relation in Eq.~26! in
different approximations.
-
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n
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cluded inS but not in the screening function,mc is pushed
above the Ceperley-Alder results. Looking at the total en
gies ~Fig. 5! we see the same trends but somewhat less
nounced. Thus, the correlation energy drops below
G0WA results when local fields are included only in th
screening, and it is pushed above the Ceperley-Alder va
with local fields only inS. The other local-field approxima
tions ~Hubbard, etc.! give similar results. It is clear that by
including local-field effects only in the screening or only
S we destroy the consistency between the chemical pote
and the total energy and also the quality of theG0WA re-
sults. Our findings support the conclusions by Mahan a
Sernelius6 concerning the inadequacy of such approxim
tions.

B. Parametrization of quasiparticle dispersions

The electron-gas quasiparticle energies within theG0WA
were obtained long ago by Hedin and Lundqvist,32,33 and
calculations with local-field corrections, like the prese

FIG. 4. The chemical potential withf (`)51. The results when
local fields are included only in the screening and only inS are
compared with the values by Ceperley and Alder.

FIG. 5. The correlation energy withf (`)51 as in Fig. 4.
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56 12 837IMPROVED LOCAL-FIELD CORRECTIONS TO THEG0W . . .
ones, were obtained by Mahan and Sernelius,6 although they
only present changes in the bandwidths. Our results ca
used to construct local approximations33,34 to S which are
useful in calculations of, for example, electron energy loss
photoelectron propagation. It may therefore be of some
terest to have a compilation of results with local-field corre
tions in a convenient parametrized form. We thus calcu
ReS(k)5ReS(k,ek) at the quasiparticle energyek @Eq.
~10!#. Results at different densities are compared with th
of the G0WA in Figs. 6 and 7. The dispersions from th
G0WA and from TDDFT are very similar in shape, in agre
ment with previous findings.6

At higher energies where plasmon losses become
sible, roughly a plasmon energy above the Fermi energy,
dispersion corrections become more pronounced. Photoe
tron energies typically fall in this energy region, and t
self-energy corrections are quite important here. In the c
of the quasiparticle damping, again the straightG0WA are
similar but somewhat larger than those of TDDFT.

FIG. 6. The k dependence of ReS(k,r s) from Eq. ~11!
(G0WA).

FIG. 7. The k dependence of ReS(k,r s) from Eq. ~17!
~TDDFT! with f (`)51.
be

r
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-
te

e

-

s-
e
c-

se

The quasiparticle strengthZ5@12 (]S/]e)#21 with and
without local-field effects are also very similar. Below th
threshold for plasmon excitation,Z is of the order of 0.6–
0.8, and it rapidly approaches unity above the threshold.

The results from the calculation of ReS(k) have been
parametrized in terms of simple functions of momentum a
density. Because the ground-state potential is much be
known than the self-energy, it is natural to parametrize
quantity

F~k,r s!5
Re S~k,r s!

vxc~r s!
, ~27!

rather thanS itself. The functionF is calculated in the
G0WA from Eq. ~11! and in the TDDFT from Eq.~17! with
vxc5S(kF ,m) for consistency. The calculated values ofF
are in both cases parametrized and the explicit express
for the parametrizations ofF are given in the Appendix. The
parametrizations of the functionF are constructed in such
way that the approximate ReS(k) obtained from these func
tions have the same main analytical properties as the e
electron self-energy. The latter has two main features:

lim
k→`

Re S~k!}
1

k
,

lim
k→0

] Re S~k!

]k
50.

In both theG0WA and in TDDFT the real part ofS(k)
has a cusp at k5kc , where plasmon excitations become po
sible. This is a consequence of the fact that, in our appro
mation, the plasmons are sharp excitations until they hit
particle-hole continuum. In the exact dielectric function t
plasmons are broadened and the cusp in ReS(k) is
smoothed. We have therefore introduced an extra param
g in the parametrizations ofF which simulates this broaden
ing. The parameter only affects the behavior of the para
etrization of ReS(k) in the vicinity of k5kc and g50 re-
produces the calculated results. Both parametrizations
ReS(k) reproduces the calculated values for 0.3<r s<6 and
k,2kF to within 5%.

IV. CONCLUSIONS

In this paper we have scrutinized commonly used me
field-type vertex corrections using as a guiding principle
consistency between the total energy and the chemical
tential. We have shown that rather simple local-field appro
mations derived from time-dependent density-functio
theory can be used to systematically improve the abso
values of the self-energy. In particular, the rather large e
in the correlation potential at the Fermi surface can be alm
entirely eliminated. In doing so, the total energy and t
chemical potential become approximately consistent
rather close to quantum Monte Carlo results and to th
from a self-consistent solution to theGW problem.

We have also been able to isolate some severe prob
with approximation schemes used in the past. Thus, we h
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12 838 56M. HINDGREN AND C.-O. ALMBLADH
found that the time-dependent LDA gives bad results a
that it is essential that the local-field reflects density chan
in a region of the order of the screening length in the syst
We have also demonstrated that local-field correcti
should be applied consistently to both the screening func
and toS itself.

Like previous workers, we find little effects on occupie
states on a relative energy scale. All vertex corrections c
sidered here are local, i.e., they depend only on the mom
tum transferq and not on the momenta and energies of
colliding electrons. A common theme from many investig
tions is that vertex approximations of this kind have lit
effect on the quasiparticles around and below the Fe
energy.6,5,7,35In the case of band gaps in semiconductors
is known that it is primarily thenonlocality of the self-
energy that is of importance, and not so much its ene
dependence. Vertex approximations depending only onq are
obtained from alocal approximation toS. Thus, it seems
conceivable that approximations based on a nonlocalansatz
are to be preferred. The consistency requirements discu
in the present work will be useful in deriving such mo
advanced approximations. Finally, we provide simple fits
quasiparticle energies in the hope that they may be usefu
approximate calculations of spectra involving electrons
higher energies, such as photoemission and EXAFS spe
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APPENDIX: PARAMETRIZATION

The functionF discussed in Sec. III B is given by

F~k,g,r s!5c0A~K !1
c2B~K !

2pA11c3

†11@B~K !#3
‡

3Im ln z21C~K !Im ln z1 , ~A1!

where

K5
k

c4
, ~A2!

A~K !5Re ln z1

12K2

2pK
Im@ ln z12 ln z2#11, ~A3!

B~K !5A c111

c11K2, ~A4!

C~K !5
c2

pA11c3K2
, ~A5!

z152z2* 5
K21

K11
1 i

4gK4

~11K4!2 . ~A6!
d
s
.

s
n

n-
n-
e
-

i
it

y

ed

o
in
t
ra.

-

The parametersc0 , . . . ,c4 are all functions ofr s and are
given by

c0~r s!5F c00r s

A11r s
2

1
Ar s~c011c02Ar s1c03r s!

11r s
4 Gu~c0!,

~A7!

c1~r s!5F c10r s

A11r s
2

1
r s~c111c12r s1c13r s

2!

11r s
4 Gu~c121026!,

~A8!

c2~r s!5c201
c21

11r s
1

c22

~11r s!
2 , ~A9!

c3~r s!5c32@e2c30r s1e2c31r s
2
#, ~A10!

c4~r s!5c40r s
@~c411c42r s!/~11c43r s!# . ~A11!

The constantscmn are given in Tables II and III.
Note that the condition

F„kF~r s!,g,r s…51, ~A12!

from Eq. ~6! is not exactly fulfilled by this parametrization
If this property is desired, the expression forF in Eq. ~A1!
should be divided byF(kF). If this is done, the agreemen
with the calculated values ofF is slightly worse but still
within the accuracy mentioned in Sec. III B. For those int
ested, the computer code for this parametrization is availa
via anonymous ftp atftp.teorfys.lu.se.

TABLE II. G0WA constants.

cmn

m/n 0 1 2 3

0 0.170073 20.461614 0.766573 20.0436796

1 3.014 21.20923 4.03085 22.43659

2 1.01252 20.44149 1.13575 0

3 0.735628 0.548797 0.817027 0

4 3.00073 20.913005 20.873964 1.12073

TABLE III. TDDFT constants.

m/n

cmn

0 1 2 3

0 0.13405 20.1245 0.0124766 0.38427

1 3.68646 22.08264 5.10236 23.87509

2 1.00252 20.367488 1.10035 0

3 0.775477 0.516925 0.893986 0

4 2.96853 20.910738 21.2975 1.58913
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