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ABSTRACT: The GW approximation is nowadays being used
to obtain accurate quasiparticle energies of atoms and
molecules. In practice, the GW approximation is generally
evaluated perturbatively, based on a prior self-consistent
calculation within a simpler approximation. The final result
thus depends on the choice of the self-consistent mean-field
chosen as a starting point. Using a recently developed GW
code based on Gaussian basis functions, we benchmark a wide
range of starting points for perturbative GW, including
Hartree−Fock, LDA, PBE, PBE0, B3LYP, HSE06, BH&HLYP, CAM-B3LYP, and tuned CAM-B3LYP. In the evaluation of
the ionization energy, the hybrid functionals are clearly superior results starting points when compared to Hartree−Fock, to
LDA, or to the semilocal approximations. Furthermore, among the hybrid functionals, the ones with the highest proportion of
exact-exchange usually perform best. Finally, the reliability of the frozen-core approximation, that allows for a considerable speed-
up of the calculations, is demonstrated.

1. INTRODUCTION

In theoretical condensed matter physics, the GW approxima-
tion1 has been extremely successful in predicting the band gap
of materials.2−4 However, besides the pioneering works of
Shirley and Martin,5 the GW approximation was not used for
atoms and molecules until very recently. In the past few years,
there has been a blooming literature about GW calculations for
gas-phase molecules.6−17 Unfortunately the published results
show large deviations between themselves. The present
situation is further complicated because of the numerous
ways of performing GW calculations and the diverse
approximations used in practice. First, the basis set convergence
of GW calculations is known to be an important issue14,15,18

and could explain the scattering of the published results.
Furthermore, the accuracy of the pseudopotential approxima-
tion, often used in this context, has been constantly questioned
in the past decade.19−21 Finally, GW calculations are generally
performed perturbatively, based on a prior self-consistent
mean-field calculations,3 a procedure customary called G0W0.
This leads to a vast variety of possible choices for the starting
mean-field calculations: Hartree−Fock (HF), density-functional
theory (DFT)22 within the local, semilocal, or hybrid flavors.
There is nowadays a stringent need for rationalizing the

available data. It would therefore be desirable to conduct
unambiguous calculations that could be accurately reproduced
by any other research group. The Gaussian basis-set code,
named MOLGW, was recently developed15 to address this goal.
The philosophy behind this development is to completely
disregard efficiency in order to have the highest possible
reliability. Therefore, there is basically no technical approx-

imation besides the choice of the basis set for the wave
functions.
In this Article, our purpose is (i) to produce highly

converged ionization energies that can be used in the future
as a benchmark and (ii) to address the issue of the starting
mean-field approximation used to initiate perturbative GW
calculations. Besides the usual approximations [HF, local
density approximation (LDA), generalized gradient approx-
imation (PBE)23], we also used a wide variety of hybrid
functionals that incorporate different fractions of (screened)
exact-exchange: PBE0,24 B3LYP,25 HSE06,26 BH&HLYP,27

CAM-B3LYP,28 and tuned CAM-B3LYP.29

The remainder of this article is organized as follows: In
section 2 we briefly introduce the methods used in the our
calculations, with an emphasis on the basis-set convergence
issue. In section 3 we evaluate the performance of the different
starting points for predicting the ionization energy of
molecules; and finally in section 4 we discuss the reasons for
the scattering of the values in the literature.

2. METHODS

2.1. G0W0 Quasiparticle Energy. The GW approximation
to the self-energy arises from a first-order perturbation with
respect to the screened Coulomb interaction W. This screened
Coulomb interaction is obtained from the Hartree-only
response. It is sometimes also called direct random-phase
approximation (RPA) screening, as opposed to the full RPA
that would also include exchange response. The GW self-energy
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is then obtained by frequency convolution of the Green’s
function G with the screened interaction W.
In the Green’s function theory, the poles of the Green’s

function have a physical meaning: they correspond to the
vertical electron addition or removal energies. In particular, the
pole arising from highest occupied molecular orbital (HOMO)
can be directly interpreted as minus the ionization energy.
Conversely, the pole corresponding to the lowest unoccupied
molecular orbital (LUMO) accounts for minus the electron
affinity.
In practice, the Green’s function used for the GW

approximation is generally obtained perturbatively through an
initial self-consistent (generalized) Kohn−Sham (GKS) calcu-
lation.30 The GKS framework encompasses not only the local
and semilocal approximations to the exchange-correlation
potential but also fully nonlocal approximations, such as HF

and hybrid functionals. Once the GKS Hamiltonian has been
diagonalized, the GW self-energy is build using the GKS wave
functions and eigenvalues. If one assumes that the difference
between the GW Hamiltonian and the GKS Hamiltonian is
small enough, the GW quasiparticle energies εi

GW can be then
calculated as a first-order perturbation with respect to the GKS
eigenvalues εi

GKS:
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where Σx stands for the exact-exchange operator, ∑c
GW stands

for the GW correlation self-energy operator, and νxc
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is due to the dependence of Σc
GW on the quasiparticle energy

εi
GW. The spin variable has been dropped for convenience, since
all the presented calculations are spin-restricted.
All the GW energies reported here use the quasiparticle eq 1.

As the construction is perturbative, the final result depends of
course on the GKS scheme selected as a starting point. The
outcome of this procedure will be named GW@HF, for G0W0
based on HF inputs; GW@PBE, for G0W0 based PBE inputs,
etc.

2.2. Generalized Kohn−Sham Starting Points. In the
GKS formalism, the exchange-correlation potential is allowed to
be fully nonlocal. The exchange-correlation approximations
under scrutiny here can be written in the form:

α β′ = Σ ′ + Σ ′ +ωv vr r r r r r r( , ) ( , ) ( , ) ( )xc
GKS

x x
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(3)

The exchange-correlation potential has a semilocal contribution
νxc
semilocal that only depends on the density and its gradient. The
exact-exchange operator Σx is included with a fixed proportion
α and the long-range exchange operator ∑x

ωLR,
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with a given multiplicative factor β. The range of this
interaction is controlled by the inverse radius ω.
Figure 1 illustrates the proportion of the Coulomb

interaction that is effectively used to calculated the exact-
exchange for hybrid functionals. The local and semilocal form
of the exchange-correlation potential, such as LDA31 or PBE,23

have α = β = 0. At the opposite end, the HF approximation has
α = 1, β = 0, and no νxc

semilocal. In between these two extremes,
the available hybrid functionals propose different choices for α
and β. The full range hybrids have β = 0 and α varying from
0.20 for B3LYP25 to 0.50 for BH&HLYP,27 passing through
0.25 for PBE0.24

There are two categories of range-separated hybrids: the
short-ranged hybrids and the long-ranged hybrids. Among the
short-ranged hybrids, the HSE06 functional26 is very popular
nowadays in the study of solids. In this case, the long-range
exchange precisely compensates the full-range exchange α = −β
= 0.25. Furthermore, the value ω = 0.11 bohr−1 was obtained
by optimization on a set of molecules.26 As representatives for
the long-ranged hybrid category, we picked up CAM-B3LYP28

(α = 0.19, β = 0.46, and ω = 0.33 bohr−1) and the tuned CAM-

Figure 1. Coulomb interaction proportion α + β erf(ωr) effectively
used by different hybrid functionals of DFT as a function of the
interelectron distance r. On this plot, HF would be an horizontal line
at 1.0 and LDA, PBE would be an horizontal line at 0.0. Hybrid
functionals offer a wide variety of choice in between these two
extremes: full range, short-range, or long-range.

Figure 2. Basis set convergence of the error in the HOMO energy of
the carbon monoxide molecule (or minus the ionization energy) for
different techniques and approximations. The CCSD(T) and MP2
values were obtained through total energy differences.
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B3LYP29 (α = 0.0799, β = 0.9201, and ω = 0.15 bohr−1). At
long-range, the exchange-correlation potential should behave as
the full exact-exchange. Tuned CAM-B3LYP was specifically
designed to capture this feature, as α + β = 1.
These approximations were implemented in the exchange-

correlation library LIBXC32 that is used by MOLGW.
2.3. Basis Set Convergence. Our implementation of the

perturbative GW method, or G0W0, in MOLGW is based on
Cartesian Gaussian basis functions.15 The basis functions ϕ(r)
are defined as a contraction of M atom-centered Gaussian
functions with the same generalized angular momentum
(nx,ny,nz):

∑ϕ = − − − ζ
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− −x A y A z A Cr( ) ( ) ( ) ( ) ex
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for an atom located at coordinate A = (Ax,Ay,Az). With
Cartesian Gaussian basis functions, the number of d-like
orbitals is 6 instead of 5 for pure Gaussian functions, the
number of f-like orbitals is 10 instead of 7, etc.
In the present study, we use the coefficients Ci and ζi from

the Dunning basis set family,33,34 as can be obtained from a
web-available database.35,36 These basis sets form a series of
increasingly accurate basis sets labeled cc-pVXZ, where X can
be D, T, Q, and 5 for respectively double-, triple-, quadruple-,
and quintuple-zeta basis sets. The number of polarization
functions and the maximum angular momentum also increase
with increasing X. The Dunning basis sets are particularly suited
for extrapolation to the complete basis set limit. Even though
the Dunning basis sets were primarily designed for pure
Gaussian basis sets, we use them with Cartesian basis functions.
This simply adds some computational effort and without
changing considerably the final result, but computational
efficiency is clearly not our goal here. The Cartesian Gaussian
Coulomb integrals are obtained from the library LIBINT.37

Figure 2 shows the typical convergence of the HOMO
energy with size of the basis set. All small molecules studied
here exhibit the same behavior, so we only display the example
of carbon monoxide CO. As previously reported,14,15 the
convergence of the G0W0 HOMO energy in Gaussian basis is
very slow for small molecules. Regardless of the starting point
(GW@HF, GW@PBE0, GW@PBE), the accuracy of 0.2 eV is
reached only at the level of a cc-pVQZ basis set, which means
as many as 140 basis functions for the CO molecule.
Furthermore, the convergence of the G0W0 HOMO energy is
much slower than the PBE0 HOMO energy. However, it is in
line with the convergence rate of correlated methods that
depend on virtual orbitals, such as MP238 and coupled-cluster
including double and triple excitations (perturbatively) [CCSD-
(T)].39

It is striking to note that for all the molecules of the present
study and as exemplified for CO in Figure 2, the HOMO
energy within the G0W0 approximation convergences from
above. Conversely, the ionization energies (I = −εHOMO)
converge from below. This statement will help us rationalizing
the comparison of our data with the published data.11,14,16 Note
also that all calculations presented in the next section are
performed within the cc-pVQZ basis set. This implies that the
calculated G0W0 HOMO energies then lie at most 0.2 eV above
the complete basis set limit, which sets the error bar in our
benchmark.

3. RESULTS: IONIZATION ENERGIES
Recently, Rostgaard, Jacobsen, and Thygesen11 proposed a
benchmark of 34 small closed-shell molecules in order to test

the different flavors of the GW approximation. Among other
results, they included data calculated at the GW@HF and
GW@PBE levels. These data should be readily comparable with
the more recently published results of Caruso and co-workers16

and of Ren et al.40 Unfortunately, it turns out that the
discrepancy between the aforementioned studies is surprisingly
large: the difference in the ionization energy of the F2 molecule
is larger than 1.7 eV! Furthermore, the differences cannot be
attributed to the sole change in the relaxed geometries of the
molecules. Considering the magnitude of the uncertainty, it is
certainly difficult to extract a conclusive benchmark from these
data.
Therefore, we propose to reconsider the same 34 molecule

benchmark with our own implementation of the GW
approximation. As underlined in ref 15, the code MOLGW
has been specifically written with the aim of removing all the
technical approximations that usually affect GW results. In
particular, the frequency convolution in the GW self-energy is
performed analytically thanks to the solution of the RPA
equations.8 We also avoid using auxiliary basis set for the
expansion of the Coulomb operator.6 In summary, there is no
further approximation besides the choice of the basis set for the
wave functions.
The 34 molecule set is extremely convenient since it forms a

subset of the famous G2/97 test set.41 We employ here the
relaxed geometry at the MP2 level within the 6-31G(d) basis
set, as published in ref 41. As we also use a widespread basis set,
namely the Dunning cc-pVQZ, our calculations should be
straightforward to reproduce.
In order to evaluate the quality of each starting point, we

prefer not to compare with experimental value as it is
customary.11,16 The experimental values indeed include several
physical effects that the GW HOMO energies do not have.
First, GW energies are vertical transitions, whereas the

Figure 3. Deviation of the HOMO energies with respect to the
CCSD(T) total energy difference. The upper panel shows the mean-
error (ME), and the lower panel, the mean-absolute error (MAE) for
the 34 molecule set. The shaded bar corresponds to the HOMO
energy of the GKS starting point, and the white bar shows the
corresponding GW@GKS HOMO energy.
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experimental values are most often nonvertical energy differ-
ences, including the relaxation of the atomic positions in the
excited state. Second, the experimental values include the zero-
point energy of the nucleus motion for both the ground-state
and the excited state, whereas the purely electronic GW
energies do not. Finally, as the basis set is still not complete for
the cc-pVQZ basis set, it induces an overestimation of the
HOMO energy of 0.1−0.2 eV at most. For all these reasons, we
prefer to evaluate the reference ionization energies through
total energy differences obtained with a coupled-cluster
method, namely CCSD(T), as obtained from Gaussian 09.42

This allows us to employ precisely the same basis set and the
same geometry for GW and CCSD(T).
Figure 3 summarizes the deviation of the G0W0 HOMO

energies with respect to the reference CCSD(T) for the 34
molecule set. Whatever the choice of starting point, the G0W0

HOMO energy is always greatly improved with respect to that
starting point. As it is well-known, all GKS schemes (with the
exception of HF) perform poorly for the HOMO energy, with

the MAE as large as several electronvolts. Applying GW on top
always reduces the MAE down to 0.5 eV at most. It appears
that the GW approximation has a slight tendency to
underestimate the reference HOMO energy. Therefore, if the
starting point already underestimates the HOMO energy, such
as HF, the final GW@HF is still too low. On the contrary, when
the starting point is slightly too high, such as for the hybrid
functionals BH&HLYP, CAM-B3LYP, or tuned CAM-B3LYP,
the final ME almost vanishes, owing to a fortunate
compensation of errors. Finally, for the present benchmark,
HF, LDA, and PBE perform equally well.
Not surprisingly, the most efficient GKS starting points

belong to the hybrid functional family. However, the best
hybrid functionals are the functionals that contains the largest
fraction of exact-exchange. PBE0, B3LYP, and HSE06 that
contains at most 25% of exact-exchange are not the best
starting points, as far as the HOMO energy is concerned, while
BH&HLYP, CAM-B3LYP, and tuned CAM-B3LYP, which

Table 1. G0W0 HOMO Energy of the 34 Molecules Employing Different Starting Points with the cc-pVQZ Basis Seta

GW@

starting point HF LDA PBE PBE0 B3LYP HSE06 BH&HLYP CAM-B3LYP tuned CAM-B3LYP CCSD(T) exp

LiH −8.20 −7.24 −7.07 −7.66 −7.53 −7.47 −7.91 −8.03 −8.07 −7.94
Li2 −5.36 −5.13 −5.12 −5.29 −5.23 −5.19 −5.30 −5.32 −5.38 −5.17
LiF −11.62 −10.61 −10.37 −10.93 −10.82 −10.89 −11.29 −11.49 −11.45 −11.51
Na2 −4.98 −4.91 −4.89 −4.97 −4.96 −4.91 −4.97 −4.98 −5.01 −4.82
NaCl −9.36 −8.56 −8.43 −8.82 −8.77 −8.70 −9.06 −9.15 −9.22 −9.13 −9.80
CO −14.97 −13.63 −13.55 −14.00 −13.92 −13.92 −14.36 −14.26 −14.11 −14.05
CO2 −14.38 −13.45 −13.32 −13.68 −13.57 −13.59 −13.91 −13.91 −13.82 −13.78
CS −13.08 −10.97 −10.93 −11.43 −11.31 −11.33 −11.79 −11.69 −11.55 −11.45
C2H2 −11.65 −11.10 −11.08 −11.27 −11.23 −11.21 −11.40 −11.41 −11.41 −11.42 −11.49
C2H4 −10.85 −10.39 −10.37 −10.53 −10.52 −10.48 −10.65 −10.67 −10.66 −10.69 −10.68
CH4 −14.86 −14.07 −14.03 −14.30 −14.27 −14.23 −14.52 −14.53 −14.48 −14.40 −14.4044

CH3Cl −11.74 −11.02 −10.98 −11.21 −11.18 −11.15 −11.41 −11.43 −11.41 −11.41 −11.29
CH3OH −11.69 −10.70 −10.64 −10.97 −10.89 −10.88 −11.20 −11.22 −11.17 −11.08 −10.96
CH3SH −9.81 −9.18 −9.17 −9.36 −9.35 −9.30 −9.53 −9.55 −9.53 −9.49
Cl2 −12.01 −11.22 −11.16 −11.42 −11.38 −11.36 −11.63 −11.63 −11.59 −11.62
ClF −13.32 −12.43 −12.33 −12.61 −12.57 −12.55 −12.87 −12.85 −12.79 −12.82 −12.77
F2 −16.59 −15.38 −15.19 −15.66 −15.56 −15.56 −16.00 −16.00 −15.84 −15.85
HOCl −11.83 −10.92 −10.85 −11.14 −11.08 −11.07 −11.37 −11.37 −11.32 −11.30
HCl −12.97 −12.37 −12.35 −12.54 −12.51 −12.48 −12.69 −12.72 −12.71 −12.74
H2O2 −12.13 −11.12 −11.02 −11.38 −11.28 −11.29 −11.63 −11.65 −11.57 −11.49 −11.70
H2CO −11.56 −10.61 −10.51 −10.87 −10.77 −10.77 −11.10 −11.12 −11.07 −10.95
HCN −13.86 −13.27 −13.20 −13.44 −13.39 −13.38 −13.59 −13.61 −13.59 −13.64
HF −16.39 −15.62 −15.51 −15.81 −15.73 −15.72 −16.01 −16.10 −16.02 −16.09 −16.12
H2O −13.04 −12.22 −12.15 −12.44 −12.36 −12.36 −12.63 −12.69 −12.64 −12.64
NH3 −11.38 −10.53 −10.50 −10.78 −10.72 −10.70 −10.98 −11.00 −10.97 −10.92 −10.82
N2 −16.48 −15.08 −14.98 −15.45 −15.33 −15.35 −15.80 −15.72 −15.57 −15.49
N2H4 −10.78 −9.91 −9.87 −10.15 −10.09 −10.08 −10.36 −10.39 −10.34 −10.24
SH2 −10.67 −10.11 −10.10 −10.27 −10.26 −10.22 −10.42 −10.43 −10.42 −10.43 −10.50
SO2 −13.12 −11.96 −11.83 −12.23 −12.15 −12.14 −12.55 −12.51 −12.41 −12.41 −12.50
PH3 −10.79 −10.21 −10.21 −10.39 −10.39 −10.34 −10.55 −10.55 −10.53 −10.49 −10.59
P2 −10.57 −10.13 −10.12 −10.27 −10.24 −10.23 −10.37 −10.35 −10.36 −10.76 −10.62
SiH4 −13.31 −12.43 −12.40 −12.72 −12.68 −12.63 −12.96 −12.98 −12.91 −12.82
Si2H6 −11.20 −10.35 −10.38 −10.62 −10.60 −10.53 −10.83 −10.82 −10.76 −10.69 −10.53
SiO −11.98 −11.10 −11.03 −11.34 −11.24 −11.25 −11.53 −11.53 −11.53 −11.55
ME −0.45 0.39 0.46 0.16 0.22 0.24 −0.06 −0.07 −0.03
MAE 0.46 0.40 0.46 0.17 0.23 0.24 0.11 0.10 0.07

aThe CCSD(T) total energy difference with the same basis set is given as a reference. The mean error (ME) and the mean absolute error (MAE)
measure the deviation with respect to the CCSD(T) reference. The experimental vertical ionization energies are also given for comparison. The
experimental values are taken from ref 43 unless otherwise stated.
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includes significantly more exact-exchange, perform impres-
sively well, with a final MAE of 0.1 eV.
Table 1 provides the complete list of the G0W0 HOMO

energies calculated from the different starting points and
compared to the reference CCSD(T) values. We should note
that our values exhibit noticeable differences with respect to
some previously published results,11,16 but much smaller
differences with respect to ref 40. We believe our methodology
offers easily reproducible data, since there is no technical
approximation besides the basis set, and since the basis sets we
use are published. We therefore hope our data can be used as a
benchmark in the future.
A close look at Table 1 shows that GW@HF and GW@LDA

HOMO energies always bracket the reference value, with the
exception of Na2 and P2. The difference between GW@HF and
GW@LDA, the most extreme cases, is generally of the order of
1 eV. It is then not surprising that hybrid functionals improve
the G0W0 HOMO energy. For individual molecules, the
maximum error of BH&HLYP, CAM-B3LYP, and tuned
CAM-B3LYP is never higher than 0.2 eV, with the exception
of P2 once again. These functionals should therefore be used as
starting points for predictive G0W0 calculations of ionization
energies of molecules.
Our implementation does not rely on any auxiliary basis set

to represent the Coulomb operator. This choice made the
calculation highly accurate but also computationnally demand-
ing. However, the nice agreement between our data and the
results of Ren et al.40 shows that the use of an auxiliary basis (or
alternatively named the resolution of the identity technique)
seems to affect the final results little.

4. DISCUSSION: FROZEN CORE APPROXIMATION
As mentioned before, the data presented in the previous section
exhibit non-negligible discrepancies with earlier works.11,16

Here, we would like to discuss the possible origins for the
differences. In particular, the frozen core approximation is
sometimes mentioned as a possible cause of error.
Freezing the core means skipping the core states in the

calculation of the correlation part of GW. The technique allows
one to save time both in the calculation of the screening (the

RPA equation does not include transitions from or to the core
states) and in the calculation of the GW self-energy (the
Green’s function does not have poles at the core state
energies). The frozen-core approximation for GW is completely
analogous to the frozen-core approximation for MP2
calculations.
The consequences of the frozen-core approximation can be

evaluated from Figure 4 that shows the difference between
frozen-core and all-electron GW calculations. The approxima-
tion is completely innocuous, with a maximum error of 40 meV.
This confirms the good quality of the frozen core
approximation that was observed in solids.20,21 Moreover, the
computational effort is noticeably reduced by the frozen-core
approximation. For instance, for Na2 the diagonalized RPA
matrix is reduced from 3014 × 3014 to 274 × 274, with a
change of only 40 meV in the HOMO energy. We therefore
advocate the use of the frozen-core approximation in GW
calculations of molecules.
Considering the very slow convergence of the G0W0 HOMO

energy with respect to the basis set size, we would tentatively
attribute the discrepancy between the published data to the
difference in the basis sets. When the same basis set is
employed, the differences are completely under control.
Comparing with ref 14, where cc-pVTZ basis sets were used
together with B3LYP relaxed geometries, our ionization energy
of C2H2 is 11.59 eV against their value of 11.55 eV, and our
ionization energy of C2H4 is 10.75 eV against 10.69 eV. This
comparison gives a compelling hint that the basis set choice is
indeed a crucial parameter.

5. CONCLUSIONS
Our implementation of the GW approximation in Gaussian
basis sets has allowed us to provide highly accurate estimates of
the performance of the GW approximation for molecules. We
assessed the performance of different GKS schemes as starting
points for a subsequent perturbative GW calculation. We used
the benchmark of 34 small closed-shell molecules proposed in
ref 11; however, we examined the error with respect to the
higher level quantum-chemistry method, namely CCSD(T),
rather than with respect to experiment.
For all the benchmarked molecules but two, the reference

ionization energy lies between the GW@HF and GW@LDA
HOMO energies. The hybrid functional outperforms largely
the simpler local or semilocal approximations of DFT. Among
the different hybrid functionals, the most efficient ones, as a
starting points for the G0W0 procedure, are definitely the
functionals that include the most significant contribution of
exact-exchange, such as BH&HLYP, CAM-B3LYP, and tuned
CAM-B3LYP.
We also discussed the basis set convergence issue in the

G0W0 calculations for small molecules. G0W0 HOMO energies
converge very slowly indeed, with a convergence rate similar to
MP2. Therefore, when comparing two different published
G0W0 results, the basis sets should be compared with great care.
Finally, we proved the reliability of the frozen-core

approximation for the correlation part of the GW self-energy.
This approximation can induce a noticeable acceleration of the
calculations, at the expense of a very small error in the GW
energies (≲40 meV).
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