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A systematic evaluation of the ionization energy within the GW approximation is carried out for
the first row atoms, from H to Ar. We describe a Gaussian basis implementation of the GW ap-
proximation, which does not resort to any further technical approximation, besides the choice of the
basis set for the electronic wavefunctions. Different approaches to the GW approximation have been
implemented and tested, for example, the standard perturbative approach based on a prior mean-
field calculation (Hartree-Fock GW@HF or density-functional theory GW@DFT) or the recently
developed quasiparticle self-consistent method (QSGW). The highest occupied molecular orbital en-
ergies of atoms obtained from both GW@HF and QSGW are in excellent agreement with the exper-
imental ionization energy. The lowest unoccupied molecular orbital energies of the singly charged
cation yield a noticeably worse estimate of the ionization energy. The best agreement with respect
to experiment is obtained from the total energy differences within the random phase approximation
functional, which is the total energy corresponding to the GW self-energy. We conclude with a dis-
cussion about the slight concave behavior upon number electron change of the GW approximation
and its consequences upon the quality of the orbital energies. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4718428]

I. INTRODUCTION

The Green’s function approach to many-body prob-
lem has been extremely successful for the electronic struc-
ture in condensed matter physics. Most noticeably, the GW
approximation1 is known to outperform the local and semi-
local approximations of density functional theory (DFT) for
the description of band gaps and band structures.2–4 For atoms
and molecules, the performance of the GW approximation has
been studied very little. The seminal results of Shirley and
Martin5 were rather promising, but have had follow-ups only
recently.6–10 However, no systematic study is available yet.
Especially the GW calculations for open-shell and spin polar-
ized atoms do not exist to the best of our knowledge.

There is no stringent need for accurate orbital energies
for atoms, since the ionization energy I for instance can be
obtained thanks to a total energy difference

I = EN−1
0 − EN

0 , (1)

where EN
0 stands for the total energy for the N electron sys-

tem. This is the so-called �SCF procedure that produces in
general good quality ionization energies at the expense of two
separate self-consistent calculations.

In DFT or in many-body perturbation theory, the ion-
ization energy can also be evaluated from the eigenvalues.
Within DFT, they are named Kohn-Sham eigenvalues,
whereas within many-body perturbation theory, they are
called quasiparticle energies. Hence, the ionization energy
could alternatively be obtained from the Kohn-Sham or
quasiparticle energy corresponding to the highest occupied
molecular orbital (HOMO) εN

HOMO or from the Kohn-Sham or
quasiparticle energy corresponding to the lowest unoccupied

molecular orbital (LUMO) energy of the N−1 electron
system εN−1

LUMO,

I = −εN
HOMO = −εN−1

LUMO. (2)

Generally speaking, the calculation of the ionization energy
through the orbital energies yields rather poor results. This
problem is not much acute for atoms, as the �SCF technique
can be used. Nevertheless, it has been understood recently
that the poor quality of the potentials (or orbital energies) has
also deep consequences on the total energies.11 The orbital
energies are related to the fractional electron behavior, which
in turn is related to a localization or delocalization of the
wavefunctions. There is therefore a strong need to investigate
higher levels of approximation for the potentials.

The GW approximation is a successful approximation
for self-energies, which, with the Hartree potential, is the
effective one-electron potential of a many-electron system.
Unfortunately, the GW implementation is not unique in
practice. Owing to the complexity of the calculations, several
types of GW calculations have been designed in the last 50
years. The standard approach is not self-consistent and makes
use of a prior mean-field calculation as a starting point: this
is the so-called G0W0 procedure. This situation introduces a
dependence of the GW result onto the underlying mean-field
choice. For solids, the chosen mean-field is very often
the local density approximation (LDA) or the generalized
gradient approximation (GGA). For atoms and molecules,
the starting mean-field happens to be Hartree-Fock (HF) or
any other approximation of DFT. The choice of the starting
point is unfortunately crucial, since the final GW result can
be affected by deficiencies in the starting point.12–15
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In order to get rid of the starting point dependence,
self-consistent GW would appear appealing at first sight.
However, according to the few studies available, the perfor-
mance of such an approach for the quasiparticle energies is
unclear.7, 8, 10, 16–18 For spectral properties, such as ionization
energy, the full self-consistency has been shown to yield in-
correct results for the homogeneous electron gas.16 As far as
finite systems are considered, the comprehensive study of 30
molecules by Rostgaard and co-workers8 shows little or no
improvement due to the fully self-consistent GW approach.
Approximate static self-consistent schemes are then an inter-
esting option;19, 20 they allow one to completely forget about
the starting point and they are not affected by the dynami-
cal caveats of the full self-consistency. The quasiparticle self-
consistent GW (QSGW) approach of Faleev and co-workers19

has been extremely successful for band gaps of solids.21, 22

Besides one single study on molecules,10 its performance for
atoms is however still to be determined.

The purpose of the paper is to evaluate the performance
of the GW approximation for the ionization energy of the first
row atoms. In order to calculate unambiguously converged
results, we first present a novel implementation of the GW
approximation for atoms that are free of the usual drawbacks
of standard implementations. Our implementation uses
Gaussian basis and does not rely on any further approx-
imation besides the initial choice of the basis set for the
wavefunctions. Second, we assess the so far unknown
performance of QSGW approach for atoms and conclude it
yields a small but noticeable improvement over GW@HF.
Third, we compare three different methods to evaluate the
ionization energy of atoms within GW: HOMO energy of
the atom −εN

HOMO, LUMO energy of the cation −εN−1
LUMO, or

total energy difference of the atom and the cation (�SCF
procedure). The most accurate results for the ionization
energy are obtained from �SCF and from the HOMO energy.
The LUMO energies of the cations yield noticeably worse
estimates. We conclude our study with a discussion about
the slightly concave upon electron number changes behavior
of the GW approximation that rationalizes the discrepancy
between the three different paths towards the ionization
energy.

II. A SHORT REVIEW OF THE GW APPROXIMATION

A. General theory

The GW self-energy arises from the many-body perturba-
tion theory, when the considered perturbation is not in the bare
Coulomb interaction v(r, r′) = 1/|r − r′| (in atomic units),
but is in the screened Coulomb interaction W . The effec-
tive interaction W accounts for the screening of the interac-
tions by the electrons of the system. W is anticipated to be
smaller and better behaved than v. Most importantly, the long-
ranged part is damped out for metallic systems or reduced
for the other systems. The GW self-energy may be thought
of as a dynamically screened generalization of the Fock
exchange.

In practice, the GW self-energy is built from the fre-
quency convolution of the Green’s function G with the

screened Coulomb interaction W ,

�GW (r, r′, ω) = i

2π

∫
dω′eiηω′

G(r, r′, ω + ω′)

×W (r′, r, ω′), (3)

where η is a vanishing positive real number.
Introducing the polarizable part of the screened Coulomb

interaction Wp = W − v, the self-energy can be conveniently
split in the usual Fock exchange operator

�x(r, r′) = i

2π
v(r, r′)

∫
dω′eiηω′

G(r, r′, ω′) (4)

and a remainder �GW
c . By definition, the remainder accounts

for the correlation effects. The term eiηω′
in Eq. (4) retains

only the contribution from the occupied states in the Green’s
function.

The polarizable part of the screened Coulomb interaction
Wp is in turn a function of the random phase approximation
(RPA) polarizability χ of the electronic system,

Wp(r, r′, ω) =
∫

dr1dr2v(r, r1)χ (r1, r2, ω)v(r2, r′). (5)

Then the RPA polarizability χ can be related to the in-
dependent particle polarizability χ0 through a Dyson-like
equation,

χ−1(r, r′, ω) = χ−1
0 (r, r′, ω) − v(r, r′) (6)

that connects the non-interacting system to the interacting
system. Finally, χ0 has a simple expression in terms of two
Green’s functions,

χ0(r, r′, ω) = −i

∫
dω′G(r, r′, ω + ω′)G(r′, r, ω′). (7)

Using the diagrammatic language, χ0 is a ring diagram
and the RPA polarizability χ is the infinite sum over the ring
diagrams. Symbolically, it reads

χ = χ0 + χ0vχ0 + χ0vχ0vχ0 + ... . (8)

The GW diagrams for the correlation self-energy are dis-
played in panel (b) of Fig. 1. It contains an infinite summation
over all the ring diagrams. The second-order approximation
(or MP2 when the Green’s functions are HF ones23), on the
other hand, not only contains the first of the ring diagrams, but
also includes the second-order exchange diagram (panel (a)).

B. The perturbative GW approach

In principle, the Green’s function appearing in
Eqs. (3) and (7) should be obtained self-consistently from
the iteration of the Dyson equation. In reality, this is hardly
feasible and may be not desirable7, 8, 16–18 as discussed in the
Introduction. It is then common practice1–3 to consider the
Green’s function from another simpler approximation: LDA,
GGA, HF, etc. We denote these approaches as GW@LDA,
GW@GGA, GW@HF, respectively.
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FIG. 1. Correlation self-energy diagrams included in the second-order ap-
proximation [panel (a)] and in the GW approximation [panel (b)]. The solid
lines with arrows represent the one-particle Green’s function G and the
dashed lines represent the Coulomb interaction v. The second-order self-
energy consists of the one-ring diagram and of the second-order exchange,
whereas the GW self-energy contains the infinite sum over the ring diagrams.
If the Green’s functions are HF Green’s functions, the second-order self-
energy is named MP2.

Within a mean-field approach with eigenvalues εiσ and
eigenvectors ϕiσ (r), the Green’s function simply reads

G(r, r′, ω) =
∑
iσ

ϕiσ (r)ϕiσ (r′)

×
[

fiσ

ω − εiσ − iη
+ 1 − fiσ

ω − εiσ + iη

]
, (9)

where the wavefunctions have been assumed to be real and fiσ
is the occupation number of state i with spin σ . The Green’s
function depends on all the orbitals: occupied and virtual. Its
poles are the eigenvalues, slightly shifted above or below the
real axis.

With this definition for the Green’s function, the equa-
tions presented in Sec. II A can be tracted numerically and
finally, the GW quasiparticle energy reads

εGW
iσ = εHF

iσ + 〈
iσ |�GW

c (εGW
iσ )|iσ 〉

. (10)

Please note that the self-energy is a dynamical operator and
needs to be evaluated precisely at the unknown quasiparticle
energy. This is not an issue since the equation can be solved
for instance graphically as exemplified in Fig. 2.

C. Quasiparticle self-consistent GW

The dependence of the GW result onto the starting mean-
field Green’s function is not elegant in theory and can intro-
duce additional issues in practice. It would be desirable to
perform the calculations self-consistently, so that the starting
point is forgotten.

Recently, the quasiparticle self-consistent GW (QSGW)
was introduced by Faleev and co-workers19 in order to get
a simplified version of self-consistent GW calculations. They
proposed a static and hermitian approximation to the GW self-
energy, 〈

iσ |�QSGW
c |jσ

〉 = 1

2

[〈
iσ |�GW

c (εjσ )|jσ
〉

+ 〈
jσ |�GW

c (εiσ )|iσ 〉]
(11)

that conserves the orthogonality of the underlying wavefunc-
tions and the real-valued eigenvalues. The advantage of this
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FIG. 2. HOMO (upper panel) and LUMO (lower panel) expectation values
of the correlation part of the dynamical GW self-energy based on HF inputs
(GW@HF) for He using a cc-pV5Z basis. The small real number η has been
set to 0.25 eV. The crossing point between the straight line and the self-energy
is the solution of the quasiparticle equation (10).

particular expression is that only the off-diagonal terms (i �=
j) are approximated. Once self-consistency has been reached,
the diagonal expectation values of �c are evaluated precisely
at the quasiparticle energy, as they should be according to
Eq. (10).

D. RPA total energy

Finally, we close the theoretical review by introducing
the RPA expression for the total energy. This approximation
is tightly bound the GW self-energy: the GW self-energy op-
erator is obtained from the functional derivative of the RPA
functional �RPA

c with respect to the Green’s function,24

�GW
c (r, r′, ω) = δ�RPA

c

δG(r′, r,−ω)
, (12)

where the RPA functional symbolically reads

�RPA
c = −1

2
Tr

[+∞∑
n=2

(vχ0)n

n

]
. (13)

The symbol Tr is short for the triple integral over r, r′, and ω.
More details can be found for instance in Ref. 25. The RPA
functional is the infinite sum over the ring diagrams. In sum-
mary, the functional �RPA

c yields the correlation energy cor-
responding to the GW approximation to the self-energy. The
connection between the two frameworks will be numerically
investigated in the following.

III. PRACTICAL IMPLEMENTATION

The main target of the present work is to obtain unam-
biguous values. Therefore, we resort to as few approximations
as possible. Basically, all the calculations are exact, once the
basis for the wavefunctions has been set. The computational
efficiency is clearly not the issue here.
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We adopt an all-electron formalism to solve the non-
relativistic Schrödinger equation. The self-consistent field
equations are solved in the unrestricted manner, for which, the
spin-up and spin-down wavefunctions are allowed to differ.
The wavefunctions are expanded in a Gaussian basis. Unlike
previous implementations in a Gaussian basis,6, 9 we do not
resort to any auxiliary basis set to expand the polarizabilities.
Furthermore, the RPA polarizability is obtained in the prod-
uct basis set |ijσ 〉, so that its frequency dependence is exactly
known and can be integrated analytically.26 As a consequence,
no plasmon-pole model,3, 27 nor analytic continuation10, 28 is
needed. In summary, once the basis set has been chosen, there
is no other convergence parameter of any kind.

A. The Gaussian basis set

For convenience, we adopt the Cartesian Gaussian basis
functions

φα(r) = Nxnx yny znze−ζ r2
, (14)

where ζ is the decay rate, l = nx + ny + nz defines the an-
gular momentum of the Gaussian basis function, and N is
the normalization factor. The decay rates are obtained from
the Dünning’s correlation consistent sets29 as reported in a
web-available database.30, 31 Even though the original basis
sets from Dünning were defined for pure Gaussian functions
with spherical harmonics describing the angular part, the use
of Cartesian Gaussian just adds a few basis functions and af-
fects the final result very little. For instance, with Cartesian
Gaussians, there are six d orbitals instead of the usual five;
there are 10 f orbitals instead of the usual seven; etc. The use
of the Dünning sets cc-pVXZ (with X = D, T, Q, 5, or 6)
allows us to reduce the basis set error in a systematic manner.

The overlap, the kinetic, the nucleus attraction integrals
are readily obtained from basic formulas. The numerical value
of the four Gaussian electron repulsion integrals

(αβ|γ δ) =
∫

dr1dr2φα(r1)φβ(r1)
1

|r1 − r2|φγ (r2)φδ(r2)

(15)
can be obtained from a web-available library.32

The most cumbersome part of a GW calculation is the
transformation of the electron repulsion integrals into the
eigenvector basis,

(ijσ |klσ ′) =
∑
αβγ δ

Cαiσ CβjσCγkσ ′Cδlσ ′(αβ|γ δ), (16)

where Cαiσ are the expansion coefficients of the eigenvectors
into the Gaussian basis set. This operation scales as N5 with
N being the number basis functions. The same bottleneck is
also encountered in MP2 calculations.

B. RPA equation in the product basis

Once these electron repulsion integrals are available, we
are able to evaluate the GW approximation for atoms. We
first solve the RPA equation in the product basis set |abσ 〉,
where a and b are indexes over the mean-field eigenstates.
This equation requires the diagonalization of the RPA two-

particle Hamiltonian HRPA,

H cdσ ′
RPA abσ = (εbσ − εaσ )δacδbdδσσ ′

+ (faσ − fbσ )(abσ |cdσ ′). (17)

The product basis is limited to occupied-virtual or virtual-
occupied pairs. This operation is then a matrix diagonaliza-
tion of dimension 2NoccupiedNvirtualNspin. The diagonalization
problem is non-symmetric. Let us consider the matrix R con-
taining the right-eigenvectors,

HRPAR = RD. (18)

The matrix D stands for the diagonal matrix containing the
eigenvalues Eλ. The eigenvalues Eλ represents the neutral ex-
citations with positive energy (resonant part of the spectrum)
and negative energy (antiresonant part of the spectrum). The
right eigenvectors Rλ are then expanded in the product basis
|abσ 〉. The problem could be recast in a symmetric manner
using the so-called Casida equations.33

Using the eigenvectors and eigenvalues of the RPA
Hamiltonian, the polarizability χ can be written in the product
basis,

χcdσ
abσ (ω) =

∑
λ

Rλabσ (R̃−1)λcdσ

×
[

�(Eλ)

ω − Eλ + iη
+ �(−Eλ)

ω − Eλ − iη

]
, (19)

where the index λ runs over the solutions of the RPA equa-
tion and R̃−1 is a short notation for the matrix inverse of R the
columns of which were multiplied by the occupation number
difference. The Heavyside function �(Eλ) ensures the correct
polar structure for a time-ordered response function: the neg-
ative energies Eλ are located just above the real axis of the
complex plane and the positive energies just below.

C. GW self-energy with exact frequency dependence

Hence, introducing the Green’s function from Eq. (9)
and Wp = vχv from Eq. (19) into the correlation self-energy
�GW

c , the residue theorem allows one to perform exactly the
frequency integral. The final expression for GW self-energy
reads〈

iσ |�GW
c (ω)|jσ

〉 =
∑
kλ

Mλikσ M̃λkjσ

[
fkσ�(Eλ)

ω − εkσ + Eλ − iη

− (1 − fkσ )�(−Eλ)

ω − εkσ + Eλ + iη

]
, (20)

where the intermediate matrix products

Mλikσ =
∑
ab

Rλabσ (ikσ |abσ ) (21)

and

M̃λkjσ =
∑
cd

(R̃−1)λcdσ (cdσ |kjσ ) (22)

have been introduced. Note that the GW self-energy is diago-
nal in spin.

The polar structure of �c can be observed in Fig. 2. The
poles are located εkσ + Eλ. The self-energy is very weakly
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FIG. 3. Basis set convergence of the ionization energy of helium (upper panels) and neon (lower panels). The ionization energy is obtained from the HOMO
energy of the atom within GW@HF in the left-hand panels. The horizontal arrows show the HOMO energy from literature’s calculations in Ref. 6 (dashed
arrow), in Ref. 7 (thick arrow), and in Ref. 10 (thin arrow). The horizontal doted line shows the complete-basis set limit using a simple extrapolation scheme.35

The right-hand panels compare the convergence rates of the HOMO energy within GW@HF (circles) to the �SCF procedure using RPA@HF (squares) or using
MP2 (diamonds).

frequency-dependent in the range of interest, i.e., in the re-
gion where the two curves intersect. In other words, the renor-
malization factor of the quasiparticle peaks is close to 1.
The closest poles are approximately at HOMO energy minus
the HOMO-LUMO gap and at the LUMO energy plus the
HOMO-LUMO gap.

The implementation of QSGW is then straightforward.
The full matrix 〈iσ |�QSGW

c |jσ 〉 is calculated and then trans-
formed back into the basis representation 〈α|�QSGW

c |β〉 for
spin up and spin down. The only additional difficulty arises
from the self-consistency loop stabilization. We employ here
a simple mixing scheme. We mix not only the density matrix,
as it is customary for HF calculations, but also the self-energy
matrix itself, since the self-energy depends directly onto the
energies and the wavefunctions. With a mixing parameter of
0.5, we were able to achieve good convergence even with the
largest basis sets of the present work using a maximum of 60
cycles.

D. RPA correlation energy

The RPA correlation energy is obtained as a by-product
of the calculation of the polarizability χ . Indeed, Furche
showed34 that the RPA correlation energy can be obtained
from the formula,

ERPA
c = 1

2

∑
λ

Eλ>0

(
Eλ − ET DA

λ

)
, (23)

where the sum has been limited to positive excitation ener-
gies and the excitation energies ET DA

λ are obtained within the
Tamm-Dancoff approximation that ignores the coupling be-
tween occupied to virtual excitations and virtual to occupied
excitations. In practice, we perform a self-consistent HF (resp.
QSGW) calculation and calculate the RPA correlation energy
out of the HF (resp. QSGW) eigenvectors and eigenvalues. We
label this procedure RPA@HF (resp. RPA@QSGW).

IV. CONVERGENCE AND ACCURACY

Before starting the systematic calculations, let us first
check the reliability of the method. We first test the basis set
convergence for some selected elements and then check our
results against the very few published data for the first row
atoms.

The basis set convergence is shown in Fig. 3 for the ion-
ization energy of He and Ne. We observe the slow conver-
gence of the GW@HF HOMO energy as a function of the
basis set size. For Ne, an accuracy of 0.1 eV is obtained at
the expense of a cc-pV5Z basis, which corresponds to 126
Cartesian Gaussian functions and a maximum angular mo-
mentum of l = 5. The rate of convergence is somewhat slower
than reported for molecules in the previous Gaussian GW
implementations.6, 9, 10, 36 However, it seems to be consistent
with the convergence rate of RPA energies. RPA energies have
been observed to require extremely complete basis sets in or-
der to achieve chemical accuracy.37 Figure 3 also shows the
convergence rate of the ionization energy using the difference
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TABLE I. Review of the previously published GW ionization energies and electron affinities of the first row atoms, and comparison with our results within the
cc-pV5Z basis.

HF+GW LDA+GW QSGW

This work Earlier studies This work Earlier studies This work Earlier studies Expt.a

Ionizations
H − 12.85 −12.66b − 13.61
He − 24.72 −24.68,c −24.73,d −24.75e − 23.92 −23.65,e −24.20f − 24.59
Be − 9.16 −9.17,d −9.19e − 9.02 −8.88,e −9.24f − 9.32
B+ − 24.88 −24.9g − 24.15
Ne − 21.79 −21.47,c −21.91e − 20.97 −21.06,e −20.55f − 21.56
Na − 5.32 −5.40h −5.43 −5.49h − 5.15
Mg − 7.62 −7.69e − 7.53 −7.52e − 7.65
Al+ − 18.76 −18.9g − 18.83
Ar − 16.07 −15.94c − 15.76

Electron affinities
B+ − 8.46 −8.5g − 8.30
Na+ − 4.71 −4.88h −5.06 −5.05h − 5.15
Al+ − 6.01 −6.0g − 5.99

aReference 39.
bReference 40.
cReference 6.
dReference 10.
eReference 7.
fReference 41.
gReference 5.
hReference 42.

of RPA total energies of the atom and of the positive ion. The
convergence rate of the �SCF procedure nicely follows the
convergence of the GW HOMO energy. Such a slow conver-
gence is not surprising for perturbation theory. The MP2 cal-
culations also shown in Fig. 3 are known to slowly converge
to the complete basis set limit.35, 38

From now on, all the calculations will be performed using
the Dunning’s cc-pV5Z basis set. This kind of basis appears
as sufficient to ensure a 0.1 eV accuracy. The number of basis
functions ranges from 70 for hydrogen to 130 for argon.

Table I compares our evaluation of GW@LDA, at
GW@HF, and QSGW ionization energies and electron affini-
ties with all the available results in the literature we are
aware of. Results published to date use different basis sets:
Gaussian basis sets for Refs. 6 and 10, numerical radial grid
for Refs. 5, 7, 40, and 41 and plane-waves for Ref. 42. The
overall agreement of our values with the published values is
rather good, especially for GW@HF. The somewhat larger
discrepancies for GW@LDA may possibly be attributed to
the generalized Koopmans’ theorem employed in Ref. 7. Note
that agreement with the oldest results of Shirley and Martin is
good.5 The most similar implementation to ours10 yields im-
pressively similar results (within 0.01 eV). The only QSGW
result for an atom from the literature also agrees well with our
implementation.42

In Secs. V A–V C, we provide accurate evaluation of the
ionization energy for all the first row atoms. These atoms in-
clude open-shell atoms, which are delicate to treat in a mean-
field approach. Some approximations, such as local and semi-
local approximations of DFT, minimize the total energy with
fractional occupation numbers. Other approximations, such

as HF and QSGW, do favor integral occupation numbers. In
the present study, only approximations of the latter kind have
been considered for the open-shell atoms and therefore, the
occupation numbers have been safely set to integers.

V. IONIZATION OF ATOMS

A. Magnitude of the screening for atoms

Here, we evaluate the importance of the screening of the
interactions for atoms. The perturbation theory in solids is of-
ten based on the screened Coulomb interaction W , whereas
for atoms, it is rather based on the bare Coulomb interac-
tion v. The rational behind this choice is the weak screening
attributed to atoms. Indeed, the electrons in isolated atoms
are localized and weakly polarizable. Therefore, it would be
pointless using the complex W instead of the simple v for
atoms. This explains why the GW approximation is prominent
for the condensed matter, whereas the Møller-Plesset approx-
imations are in use for gas phase calculations.

We would like to check explicitly the influence of using
v or W for atoms. The comparison is exemplified with the
HOMO expectation value for different approximations to the
correlation self-energy �c. The complete GW self-energy is
compared to the first term in the ring diagram expansion (see
Fig. 1). The one-ring self-energy is contained both in the MP2
approach and in the GW approach. The self-energy truncated
to one-ring only is easily derived from Eq. (5), where χ is
replaced by χ0.

Figure 4 demonstrates that the difference between the
infinite sum of ring diagrams and the truncation to the first
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FIG. 4. HOMO expectation value of the correlation self-energy for the one-
ring self-energy (squares) and for the GW self-energy (open triangles) for the
light atoms. The calculations are based on HF inputs in a cc-pV5Z basis set.

diagram is sizable. As expected, the GW self-energy is in
general smaller than the one-ring counterpart. The statement
is clear for the first row atoms and more contrasted for the
second row. The closed-shell atoms (He, Be, Ne, Mg, Ne)
are especially sensitive to the truncation of the sum over
ring diagrams. We conclude that W is a better choice for a
perturbation expansion, even for the light atoms.

B. HOMO of atoms and LUMO of cations

As explained in the introduction, there are several ways
to evaluate the ionization energy of an atom. Most commonly,
the total energy difference in the atom and the singly posi-
tively charged ion is taken. Alternative choices are the atom
HOMO energy or the cation LUMO energy [Eq. (2)]. Within
an exact theory, these three quantities are identical. Within
DFT or HF, these three evaluations strongly deviate. There
are some early indications GW should be much better.42 We
now consider these alternative forms for HF and two kinds of
GW: GW@HF and QSGW.

Figure 5 shows the error with respect to experimental
negative ionization energy: εN

HOMO − (−I ). It is well known
that the HF HOMO energy is not catastrophic in predicting the
ionization energy. As might be expected because screening
is weak, GW@HF and QSGW are quite similar. All the GW
based approaches underestimate the position of the HOMO
by a small amount. The perturbative GW approach seems to
be justified for atoms: even when the HF starting point is no-
ticeably wrong (e.g., for atoms of the end of the first row), the
GW@HF performs almost as well as QSGW. Note that the
GW correlation contains a small self-interaction: the HOMO
of the hydrogen atom is not exact.

In Fig. 6, we provide the error with respect to experi-
ment for the LUMO energy of singly positively charged ions
within same three approximations. It is well known from text
books that the LUMO in HF gives a very poor estimate to the
ionization energy. We calculated a huge mean-absolute error
(MAE) of 1.74 eV. The different GW flavors, GW@HF and
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FIG. 5. Deviation from experiment39 in the HOMO energy εN
HOMO − (−I )

of the light atoms within cc-pV5Z basis set for HF (open bars), GW@HF
(striped bars), or QSGW (solid bars). The mean-absolute error (MAE) is also
provided.

QSGW, once again perform rather well in predicting the cor-
rect position of the cation LUMO energy. The MAE error is
twice larger than for the positioning of the HOMO of atoms.
Generally speaking, the self-consistency improves over the
perturbative GW@HF for cations, except for carbon and sil-
icon. When the HF starting point is completely off, the self-
consistency can help much sometimes, as can be observed for
the atoms of the end of the first row series and sometimes does
not do much, as for the end of the second row series. In gen-
eral, the GW based methods slightly overestimate the position
of the LUMO of singly positively charged ions.

In order to reach the best agreement with experiment, it
appears safer so far to evaluate the ionization energy with the
GW approximation from the HOMO of the atom rather than
from the LUMO of cations.
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FIG. 6. Deviation from experiment39 in the LUMO energy εN−1
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bars), GW@HF (striped bars), or QSGW (solid bars). The mean-absolute er-
ror (MAE) is also provided.
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C. �SCF evaluation of the ionization energy

We now turn to the classical method to evaluate the
ionization energy of atoms, namely the �SCF procedure.
Figure 7 shows the error in calculating the ionization energy
from the total energy difference described in Eq. (1). The
RPA expression for the correlation energy corresponds to
the GW approximation for the correlation self-energy. RPA
energy and GW self-energy are, in principle, closely related.
We hence employed four different approximations for the
total energies: HF, RPA based on HF inputs, RPA based on
QSGW inputs, and the standard MP2 approximation. For
the �SCF procedure, MP2 clearly prevails over the other
approximations. The second-order exchange diagram, as
drawn in Fig. 1, which is present in MP2 and absent in RPA,
is undoubtedly important for atoms. Thanks to this diagram,
MP2 is devoid of self-interaction, whereas RPA suffers from
self-interaction to some extent. This is clearly seen in the
case of the hydrogen atom.

In the present work, we do not evaluate the RPA en-
ergy self-consistently with the corresponding RPA poten-
tial. However, the RPA functional is a stationary expression
for the total energy. And even though the stationarity is be-
lieved to be limited,25 the results should be weakly sensi-
tive to the input Green’s function. This is indeed what we
observe in Fig. 7: RPA@HF and RPA@QSGW are in over-
all agreement. Surprisingly, RPA@HF appears slightly better
than RPA@QSGW even when the HF starting point is clearly
wrong. This statement calls for further investigations.

VI. CONCAVITY OF THE GW APPROXIMATION

How a particular approximation varies with fractional oc-
cupation number offers insight into its qualities and limita-
tions. In the exact theory, the total energy should be a straight
line in between the integral number of electrons.43, 44 Thus,
the derivative of the energy with respect to electron num-

ber should be constant in between two consecutive integers
and equal to the total energy difference. This last quantity
is nothing else but the orbital energy (including a possible
exchange-correlation discontinuity in the case of local Kohn-
Sham potentials).45, 46

In practice, the exchange-correlation approximations
never induce the perfect straight line behavior. The deviation
from the straight line is a sign of a localization or delocaliza-
tion error.11, 47 In general, the approximations to DFT yield a
convex total energy and therefore suffer from a delocalization
error. An electron added to a system made of two identical
well-separated subsystems minimizes its energy by splitting:
half an electron goes on each subsystem. On the other hand,
the HF approximation induces a concave total energy and is
therefore affected by a localization error. The aforementioned
extra electron lowers its energy by localizing on one single
subsystem. In the exact theory, spreading or localizing the
electron should not affect the total energy.

In Ref. 42, we established that for clusters in Na and
certain defects in SiC, localized energy levels were slightly
concave with respect to occupation. The concavity can be ac-
cessed from the ordering between the LUMO energy of a pos-
itive ion and the HOMO energy of the corresponding atom, if
one assumes a monotonic behavior of the orbital energy as a
function of the fractional number of electrons. This is gener-
ally the case, except for MP2 to a small extent.48

In Fig. 8, we recast the previously calculated orbital en-
ergies now considering �SCF as the reference. From the
upper panel, one can observe that the HF approximation is
clearly concave. Indeed, the HOMO energy of the atom is al-
ways much lower than the total energy difference, whereas
the LUMO energy of the positive ion is always much higher.
The atom HOMO energy, nor the cation LUMO energy, are a
good estimate for the total energy difference. The deviation
is very large in both cases. Following Slater’s argument,49
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upper panel compares HF orbital energies to the HF total energy difference.
The lower panel compares GW@HF orbital energies to the RPA@HF total
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let us assume that the deviation from the straight line can
be approximated by a second order polynomial. Under this
mild assumption, Slater proposed to use the orbital energy at
half charge to best approximate the total energy difference.
Alternatively, under the same assumption, we proposed in
Ref. 42 to approximate the total energy difference with the
mean-value of the HOMO of the atom and the LUMO of the
positive ion,

I ≈ −εN
HOMO + εN−1

LUMO

2
. (24)

With this alternative evaluation of the ionization energy, there
is no need to perform GW calculations for half charges. It
requires nevertheless to perform two separate calculations.
The outcome of the mean-value technique is given in Fig. 8
with the diamond symbols. For HF energies, the agreement
between the mean-value and the �SCF energy difference is
striking.

In the lower panel of Fig. 8, we compare the GW orbital
energies to the RPA total energies. In this case, the HOMO
energy of the atom is always slightly lower than the total en-
ergy difference, whereas the LUMO energy of the positive ion
is always moderately higher. This proves the weak concavity
of the GW approximations. Compared to HF, the GW orbital
energies are much better estimates to the total energy differ-
ence. The associated localization error is then much weaker
than the one of HF. The mean-value technique within GW
yields a nice estimate of the RPA �SCF procedure. Only the
end of the first row atom series deviates noticeably. This con-
clusion confirms our previous works on sodium clusters42 on
defects in solids50, 51 that first identified the slight concavity
of the GW approximation. We confirm here that the mean-
value technique is a more correct estimate to the total energy
difference than the mere atom HOMO or cation LUMO.

VII. CONCLUSIONS

In this article, we described an implementation of the
GW approximation to the electronic self-energy for atoms.
This Gaussian basis set implementation does not need aux-
iliary functions and is based on an exact convolution in the
frequency domain, so that no extra technical approximation
is made besides the choice of the basis set. In addition to
the usual perturbative approach to GW such as GW@LDA or
GW@HF, we introduced the recently proposed self-consistent
scheme named QSGW. The RPA correlation energies were
obtained as a mere by-product of the code.

We considered different flavors of the GW approxima-
tion (GW@HF or QSGW) for the light atoms, from H to
Ar. Noticeably, we calculated non-spherical atoms and spin-
polarized systems, which have never been treated within GW
to the best of our knowledge. An important technical conclu-
sion of the present work is the slow convergence of the GW
calculations with respect to the basis set size. This is however
not completely surprising, when compared to RPA energy or
MP2 energy convergence rates. The targeted error bar of 0.1
eV for HOMO/LUMO orbital energies could be reached only
at the expense of a large cc-pV5Z basis set.

We then demonstrated the reliability of the GW approxi-
mation for the HOMO energy of atoms and for the LUMO en-
ergy of the cations compared to the experimental data. Since
the HF approximation performs reasonably well for atoms
and ions, the difference between perturbative GW based on
HF (GW@HF) and self-consistent GW (QSGW) is not large,
even though QSGW is slightly better on average. When turn-
ing to total energies, one could infer that the main ingredi-
ent missing in the RPA correlation is the second-order ex-
change diagram, which is contained in MP2. Comparing the
total energy difference to the HOMO/LUMO orbital energy,
we could confirm the weak concavity of the GW approxima-
tion for fractional electron numbers. The mean-value between
the HOMO energy of the atom and the LUMO energy of the
positive ion appears as a correct way to evaluate the total en-
ergy difference.
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