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F-31062 Toulouse Cedex, France
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In a recent Rapid Communication [J. A. Berger, L. Reining, and F. Sottile, Phys. Rev. B 82, 041103(R) (2010)],
we presented the effective-energy technique to evaluate, in an accurate and numerically efficient manner, electronic
excitations by reformulating spectral sum-over-states expressions such that only occupied states appear. In our
approach all the empty states are accounted for by a single effective energy that can be obtained from first
principles. In this work we provide further details of the effective-energy technique, in particular, when combined
with the GW method, in which a huge summation over empty states appears in the calculation of both the
screened Coulomb interaction and the self-energy. We also give further evidence of the numerical accuracy of
the effective-energy technique by applying it to the technological important materials SnO2 and ZnO. Finally,
we use this technique to predict the band gap of bulk rubrene, an organic molecular crystal with a 140-atom unit
cell.
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I. INTRODUCTION

Many-body perturbation theory (MBPT) has become the
standard tool for the calculation of quasiparticle energies. The
fundamental quantity of MBPT is the single-particle Green’s
function, the poles of which are the electron removal and
addition energies of the system. For the study of many-electron
systems, such as solids and macromolecules, the state-of-the-
art MBPT approximation is Hedin’s GW 1 method because it
takes into account in an accurate and efficient manner the fact
that each electron is screened by its Coulomb hole.

However, the GW approach is a computationally demand-
ing method, which limits its application to relatively simple
systems. The main reason for this shortcoming is related
to the simple but slowly converging sum-over-states (SOS)
approach used in standard GW implementations to calculate
both the screened Coulomb interaction and the self-energy. The
self-energy is the quantity within MBPT that takes into account
all the many-body effects beyond the Hartree potential. The
SOS approach requires the summation of an, in principle,
infinite number of empty states. In practice, this summation
is truncated but a huge number of empty states is required to
reach numerical convergence.2–6

In the past, several approaches have been proposed to
overcome this problem of GW , beginning with the Coulomb
hole plus screened exchange (COHSEX) approximation.1 The
COHSEX self-energy is a static approximation to the GW

self-energy which eliminates empty states in the self-energy
only, and at the price of a crude description of the quasiparticle
energies. The omitted dynamical part can be approximately
accounted for by a linear expansion of the GW self-energy
with respect to the frequency.7,8 Alternatively, one can use a
Sternheimer type of approach,9–11 that is in principle exact, for
both the screened interaction and the self-energy. However,
in its straightforward application, an approximate Taylor
expansion around a set of reference energies is necessary to
improve on the standard SOS formulation.11

In recent years, thanks to an increased interest in the
GW method, many advances have been made to eliminate or
reduce the number of empty states in GW calculations.6,12–16

In particular, many efforts have been made to improve the
Sternheimer approach for GW calculations by introducing
efficient iterative techniques12–14 and a self-consistent Stern-
heimer equation.15 Other recent proposals to speed up GW

calculations involve the design of efficient bases17–19 or the
use of simple approximate physical orbitals.20

Recently, we presented the effective-energy technique21

(EET) to reformulate SOS expressions in terms of occupied
states only. Within the EET all the empty states are accounted
for by a single effective energy. Moreover, we demonstrated
that this effective energy can be obtained from first principles
and that already simple approximations to the effective energy
lead to excellent results.21 Therefore, the EET is an efficient
method that retains the advantages of the SOS approach,
such as simplicity and a good prefactor, but eliminates empty
states from the calculation, leading to an immediate speedup
for all system sizes. In principle, the EET could be used to
speed up the calculation of many spectral quantities. The GW

method, in particular, benefits from this approach, as an SOS
is encountered twice, once for the calculation of the screening
and once for the calculation of the self-energy.

The paper is organized as follows. In Sec. II we give a
detailed account of the theory behind the EET. In particular,
we focus on its application to the efficient calculation of the
polarizability and the GW self-energy. In Sec. III we discuss
some details of our implementation of the EET. In Sec. IV
we show results of the EET for quasiparticle energies and
band gaps of SnO2 and ZnO, two materials with interesting
electronic applications, in particular, in the field of transparent
conducting oxides. We compare these results to those of
standard SOS calculations. We then use the EET to predict the
band gap of a large molecular crystal, namely, bulk rubrene.
Finally, in Sec. V we draw our conclusions.
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II. THEORY

In the following we describe in detail how the EET can
be used to reformulate both the GW self-energy and the
polarizability in terms of occupied states only. We use atomic
units everywhere unless stated otherwise and time-reversal
symmetry is assumed to hold throughout.

A. The GW self-energy

The GW self-energy � is given by the convolution

�(r,r′,ω) = i

∫ ∞

−∞

dω′

2π
eiηω′

G(r,r′,ω + ω′)W (r,r′,ω′), (1)

where the infinitesimal η is to be taken in the limit to 0 after
the frequency integration. In the above expression G(ω) is the
single-particle Green’s function and W (ω) is the dynamically
screened Coulomb potential given by

W (r,r′,ω) =
∫

dr′′ ε
−1(r,r′′,ω)

|r′′ − r′| , (2)

where the inverse dielectric function ε−1(ω) is defined as

ε−1(r,r′,ω) = δ(r − r′) +
∫

dr′′ χ (r′′,r′,ω)

|r − r′′| . (3)

The reducible time-ordered polarizability χ (ω) is given by

χ (r,r′,ω) =
∞∑

g=1

2ωgng(r)ng(r′)
ω2 − ω2

g

, (4)

where ωg = E(N,g) − E(N,0) − iη are the neutral excitation
energies of the N -electron system minus an infinitesimal
iη, which ensures the correct time ordering, and ng are the
corresponding oscillator strengths. To keep our formalism
general we do not yet make any assumptions on the excita-
tion energies and oscillator strengths and, therefore, on the
dielectric function. From Sec. II C onward we employ the
usual random-phase approximation (RPA) for the dielectric
function, which is generally associated with the GW approx-
imation. In standard GW calculations the Green’s function
in Eq. (1) is replaced by a zero-order or independent-particle
Green’s function G0(ω) which, in its spectral representation,
reads

G0(r,r′,ω) =
∞∑
i=1

φi(r)φ∗
i (r′)

ω − εi − iηsgn(μ − εi)
, (5)

where φi(r) and εi are quasiparticle wave functions and ener-
gies, respectively, and μ is the chemical potential. Although
the method that we describe in this work is valid for both finite
systems and extended systems described by periodic boundary
conditions, we focus here on the latter. Therefore the index i

in Eq. (5) should be considered a multi-index composed of the
band index, the spin, and the Bloch vector. The substitution of
G0(ω) for G(ω) in Eq. (1) permits us to carry out analytically
the frequency integration in Eq. (1), giving22

�(r,r′,ω) = �x(r,r′ω) + �c(r,r′ω), (6)

�x(r,r′,ω) =
∞∑
i=1

θ (μ − εi)
φi(r)φ∗

i (r′)
|r − r′| , (7)

�c(r,r′,ω) =
∞∑
i=1

∞∑
g=1

V g(r)V g(r′)φi(r)φ∗
i (r′)

ω + ωg sgn(μ − εi) − εi

, (8)

where we divided the self-energy into an exchange (�x) and a
correlation (�c) part and where V g(r) = ∫

dr′ng(r′)/|r − r′|
are fluctuation potentials. Only the correlation part of the self-
energy implies a summation over all the empty states, and
therefore we only consider this part of the self-energy in the
following.

In standard GW calculations23,24 the quasiparticle energies
are obtained from first-order perturbation theory, where the
perturbation is given by the difference between the GW

Hamiltonian and the Kohn-Sham (KS) Hamiltonian of density-
functional theory (DFT),25,26 i.e., �(r,r′,ω) − vxc(r), with
vxc(r) the exchange-correlation potential of DFT:

εn = εKS
n + Zn

〈
φKS

n

∣∣�(
εKS
n

) − vxc

∣∣φKS
n

〉
, (9)

where the renormalization factor Zn is given by

Zn =
⎡
⎣1 − ∂

〈
φKS

n

∣∣�(ω)
∣∣φKS

n

〉
∂ω

∣∣∣∣∣
ω=εKS

n

⎤
⎦

−1

. (10)

Therefore in standard GW calculations one does not require
the full knowledge of the spatial dependence of the self-energy
but only has to evaluate its diagonal matrix elements. In
Eqs. (9) and (10), these matrix elements involve KS wave
functions. However, to keep our formulation general, in
the following we consider matrix elements of general wave
functions which can be the eigenfunctions either of a KS
Hamiltonian or of a general static nonlocal Hamiltonian.

B. The effective-energy technique

The matrix elements of the correlation part �n
c (ω) ≡

〈n|�c(ω)|n〉 are given by

�n
c (ω) =

∞∑
i=1

∞∑
g=1

|〈n|V g|i〉|2
ω + ωg sgn(μ − εi) − εi

. (11)

The summation over i in Eq. (11) can be split into a summation
over occupied states v with εv < μ and a summation over
empty states c with εc > μ. In the following we focus on the
latter summation since it is the bottleneck in the calculation of
�n

c as it sums over the, in principle infinite, empty states of the
system. Introducing the Fourier transforms of the fluctuation
potentials,

V g(r) =
∑
q,G

V
g

G(q)ei(q+G)·r, (12)

V
g

G(q) = 1



∫
drV g(r)e−i(q+G)·r, (13)

with  the volume of the system, we can rewrite this part as

�n,emp
c (ω)=

∞∑
g=1

∑
q,G,G′

V
g

G(q)V g∗
G′ (q)Sn

g (q,G,G′,ω), (14)

where we defined

Sn
g (q,G,G′,ω) =

∑
c

ρ̃∗
cn(q + G)ρ̃cn(q + G′)

ω − ωg − εc

, (15)
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in which ρ̃cn(q + G) = 〈c|e−i(q+G)·r|n〉. It is the above sum-
mation over empty states that we eliminate. We now introduce
a function δng(q,G,G′,ω), which is defined by the following
equation:

Sn
g (q,G,G′,ω) =

∑
c ρ̃∗

cn(q + G)ρ̃cn(q + G′)
ω − ωg − εn − δng(q,G,G′,ω)

. (16)

Such a function can always be found since δng(q,G,G′,ω)
has the same degrees of freedom as the left-hand side of
Eq. (16). With the introduction of this function we can use the
closure relation,

∑
c |c〉〈c| = 1 − ∑

v |v〉〈v|, and we obtain an
expression for Sn

g which contains a summation over occupied
states only. The relation in Eq. (16) is exact; the effective
energy εn + δng(q,G,G′,ω) takes into account the contribu-
tions of all the empty states to Sn

g (q,G,G′,ω). For this reason
we have named this approach the effective-energy technique
(cf. the common-energy denominator approximation).27 It now
remains to find accurate approximations to δng(q,G,G′,ω)
that do not contain any summations over empty states. In the
following we show that such approximations can be obtained
from first principles. Subtracting Eq. (16) from Eq. (15), and
putting the right-hand side over a common denominator, we
obtain

0 =
∑

c

[
ρ̃∗

cn(q+G)ρ̃cn(q+G′)
[ω−ωg−εc]

(εc−εn−δng(q,G,G′,ω))

[ω−ωg−εn−δng(q,G,G′,ω)]

]
.

(17)

Multiplying the above equation by [ω − ωg − εn − δng(ω)]
and rearranging, we arrive at

δng(q,G,G′,ω)Sn
g (q,G,G′,ω)

=
∑

c

ρ̃∗
cn(q + G)ρ̃cn(q + G′)(εc − εn)

ω − ωg − εc

(18)

= 1

2

∑
c

ρ̃∗
cn(q + G)〈c|[Ĥ (r′),e−i(q+G′)·r′

]|n〉 + H.c.

ω − ωg − εc

, (19)

where H.c. denotes the Hermitian conjugate. In the last
step, we made use of the fact that the εi are eigenvalues
of the Hamiltonian Ĥ (r) with eigenstates |i〉.8 Here we
consider a Hamiltonian that contains only a local potential,
i.e., Ĥ (r) = −∇2

r /2 + v(r). The derivation that follows can
be easily generalized to include Hamiltonians with additional
nonlocal potentials (see Appendix A for further details). We
note that the symmetrization we carried out in the numerator
of Eq. (19) ensures that the approximations for δng(ω) that we
derive in the following have the correct symmetry.

Working out the commutator in Eq. (19) and dividing both
sides by Sn

g , we obtain

δng(q,G,G′,ω) = Q(q,G,G′) + S̃n
g (q,G,G′,ω)

Sn
g (q,G,G′,ω)

, (20)

where we have defined

Q(q,G,G′) = 1

2

[ |q + G|2
2

+ |q + G′|2
2

]
, (21)

S̃n
g (q,G,G′,ω) = 1

2

∑
c

ρ̃∗
cn(q + G)j̃cn(q + G′) + H.c.

[ω − ωg − εc]
, (22)

in which

j̃cn(q + G) = 〈c|e−i(q+G)·r[i∇r]|n〉 · (q + G). (23)

In the case where the Hamiltonian in Eq. (19) contains an
additional nonlocal potential vnl(r,r′), the expression for j̃cn

in Eq. (23) has an additional term. This generalized expression
for j̃cn is shown in Eq. (A1). In Eq. (20) δng is expressed in
terms of itself through Sn

g . Since S̃n
g depends on a summation

over the empty states, solving for δng will not lead to the desired
result. However, in view of the similarity of Eqs. (22) and (15),
we can also rewrite Eq. (22) in terms of occupied states only
in an equivalent manner to Eq. (16) by defining a modified
effective energy εn + δ̃ng such that

S̃n
g (q,G,G′,ω) = 1

2

∑
c ρ̃∗

cn(q + G)j̃cn(q + G′) + H.c.

ω − ωg − εn − δ̃ng(q,G,G′,ω)
. (24)

Combining the above equation with Eqs. (16) and (20) leads
to the following (exact) expression for δng(ω):

δng(q,G,G′,ω) = Q(q,G,G′)

+ f
ρj
n (q,G,G′)

f
ρρ
n (q,G,G′)

ωng−δng(q,G,G′,ω)

ωng−δ̃ng(q,G,G′,ω)
, (25)

in which ωng = ω − ωg − εn and where

f ρρ
n (q,G,G′) = −

∑
v

ρ̃∗
vn(q + G)ρ̃vn(q + G′)

+ ρ̃nn(G′ − G), (26)

f ρj
n (q,G,G′) = 1

2

[
−

∑
v

ρ̃∗
vn(q + G)j̃vn(q + G′)

+〈n|ei(G−G′)·r(i∇r)|n〉 · (q + G′)

]
+ H.c.

(27)

f jj
n (q,G,G′) = −

∑
v

j̃ ∗
vn(q + G)j̃vn(q + G′)

+ (q + G) · 〈∇rn|ei(G−G′)·r|∇rn〉 · (q + G′).
(28)

The expression for f
jj
n in Eq. (28) has been added for future

reference. In principle, the above procedure could be continued
ad infinitum by expressing δ̃ng(ω) in Eq. (25) in terms of

another effective energy εn + ˜̃δng(ω), etc. However, one wishes
to truncate the expression for δng since, in practice, one
would like to use simple expressions. In Ref. 21 we showed
that simple expressions already lead to excellent results. To
truncate this expression we make use of the fact that, for a
homogeneous electron gas, δng = δ̃ng (see Appendix B for
further details). This motivates our first-order approximation
for δng(ω):

δ(1)
n (q,G,G′) = Q(q,G,G′) + f

ρj
n (q,G,G′)

f
ρρ
n (q,G,G′)

, (29)

which is independent of both g and ω. Higher order approx-
imations for δng(ω) are obtained by continuing the iterative
procedure described above and truncating the remaining
expression in such a way that the approximate expression
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remains exact for a homogeneous electron gas. For example,
a second iteration [which introduces ˜̃δng(ω)] leads to

δng(q,G,G′,ω)

= Q(q,G,G′) + f
ρj
n (q,G,G′)

f
ρρ
n (q,G,G′)

×

⎡
⎢⎣ωng − Q(q,G,G′) − f

ρj
n (q,G,G′)

f
ρρ
n (q,G,G′)

ωng−δng (q,G,G′,ω)
ωng−δ̃ng (q,G,G′,ω)

ωng − Q(q,G,G′) − f
jj
n (q,G,G′)

f
ρj
n (q,G,G′)

ωng−δ̃ng (q,G,G′,ω)

ωng− ˜̃δng (q,G,G′,ω)

⎤
⎥⎦ ,

(30)

where f
jj
n is given in Eq. (28). Our second-order approx-

imation for δng(ω) is then motivated by the fact that, for

a homogeneous electron gas, ˜̃δng(ω) = δ̃ng(ω) = δng(ω). We
now summarize the first three approximations for δng that we
obtain:

δ(0)(q,G,G′) = Q(q,G,G′), (31)

δ(1)
n (q,G,G′) = Q(q,G,G′) + f

ρj
n (q,G,G′)

f
ρρ
n (q,G,G′)

, (32)

δ(2)
ng (q,G,G′,ω) = Q(q,G,G′) + f

ρj
n (q,G,G′)

f
ρρ
n (q,G,G′)

×
⎡
⎣ωng − Q(q,G,G′) − f

ρj
n (q,G,G′)

f
ρρ
n (q,G,G′)

ωng − Q(q,G,G′) − f
jj
n (q,G,G′)

f
ρj
n (q,G,G′)

⎤
⎦ .

(33)

Here we added a simple zero-order approximation which
neglects the second term on the right-hand side of Eq. (20).
With the second-order expression δ(2)

ng (ω), we have obtained an
approximation which is frequency dependent. The expression
for δ(2)

ng (ω) is therefore nontrivial despite its simple form.
Higher order expressions for δng will contain terms with higher
order derivatives of the valence wave functions as well as
derivatives of the potential. Also, these expressions are, by
construction, exact for the homogeneous electron gas. Our
results have shown that for inhomogeneous systems these
terms can be safely neglected.21

C. The polarizability

In practice, the neutral excitation energies ωg and fluctua-
tion potentials V

g

G(q) that enter �n
c (ω) are not known, and as

the first step, ε(ω) has to be calculated. The dielectric function
can be expressed in terms of the time-ordered irreducible
polarizability χ̃ (ω) according to

ε(r,r′,ω) = δ(r − r′) −
∫

dr′′ χ̃ (r′′,r′,ω)

|r − r′′| . (34)

Within an approximation that is consistent with the GW ap-
proximation for the self-energy, χ̃(ω) is given by a convolution
of two Green’s functions:

χ̃(r,r′,ω) = −i

∫
dω′G(r,r′,ω + ω′)G(r′,r,ω′). (35)

In standard calculations the Green’s functions are replaced
by zero-order Green’s functions [see Eq. (5)], which leads to

χ0(ω), the irreducible polarizability in the RPA. The frequency
integral can then be evaluated analytically, which, in reciprocal
space, leads to the expression

χ0
GG′(q,ω) =

∑
s=±1

∑
v

nvXv(q,G,G′,sω) +
occ∑
v,v′

(nv − nv′ )

× ρ̃∗
vv′ (q + G)ρ̃v′v(q + G′)

ω − (εv′ − εv) + iηsgn(εv′ − εv)
, (36)

in which nv are occupation numbers and where we have defined

Xv(q,G,G′,ω) =
∑

c

ρ̃∗
cv(q + G)ρ̃cv(q + G′)
ω − (εc − εv) + iη

. (37)

We note that the second term on the right-hand side of Eq. (36)
only leads to nonzero contributions in the case of systems with
partially occupied bands. Since Xv(ω) has a structure similar
to that of Sn

g (ω) in Eq. (15), we can also apply the EET to
Xv(ω) and thus obtain an expression for χ0(ω) that does not
contain any summations over empty states. Introducing the
effective energy εv + δ′

v(ω), we can rewrite Xv(ω) as

Xv(q,G,G′,ω) = f ρρ
v (q,G,G′)

ω − δ′
v(q,G,G′,ω) + iη

. (38)

To obtain approximations for δ′
v(ω) we can follow a strategy

similar to that for δng(ω). The first three approximations that
we obtain are

δ′(0)(q,G,G′) = Q(q,G,G′), (39)

δ′(1)
v (q,G,G′) = Q(q,G,G′) + f

ρj
v (q,G,G′)

f
ρρ
v (q,G,G′)

, (40)

δ′(2)
v (q,G,G′,ω) = Q(q,G,G′) + f

ρj
v (q,G,G′)

f
ρρ
v (q,G,G′)

×
⎡
⎣ω − Q(q,G,G′) − f

ρj
v (q,G,G′)

f
ρρ
v (q,G,G′)

ω − Q(q,G,G′) − f
jj
v (q,G,G′)

f
ρj
v (q,G,G′)

⎤
⎦ .

(41)

We note that the zero- and first-order approximations for δ′(ω)
are identical in form to those for δ(ω).

Finally, we note that the expression for χ0(ω) could be
further simplified if, instead of approximating Xv(ω), we
approximate

∑
v nvXv(ω). Further details of this simplified

EET are given in Appendix C.

D. Exact constraints

It is known that the RPA polarizability satisfies several sum
rules and exact constraints such as the high-frequency limit
and the f -sum rule. These constraints allow us to obtain more
insights in the approximations given by Eqs. (39)–(41). In
Sec. II D 1 we show that any approximation δ′(k)

v with k > 0
satisfies the high-frequency limit. However, the same is not
true for the f -sum rule. While we can show that the first-order
approximation δ′(1)

v satisfies the f -sum rule for its diagonal
elements (see Sec. II D 2), we cannot do the same for higher
order approximations, such as δ′(2)

v . This opens a possible route
to construct improved approximations for δ′

v(ω). One could
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either constrain higher-order approximations to satisfy the f -
sum rule or find an alternative or additional motivation to the
electron-gas argument to truncate δ′

v(ω) such that the f -sum
rule is satisfied. Other exact constraints could be used in a
similar way to improve approximations to δ′

v(ω) and δng(ω).6

1. The high-frequency limit

The high-frequency limit of χ0(ω) is given by28

lim
ω→∞ ω2χ0

GG′(q,ω) = (q + G) · (q + G′)ρ(G′ − G). (42)

We now show that this exact constraint remains satisfied when
we express χ0(ω) in terms of an effective energy for all
approximations δ′(k)

v (q,G,G′,ω) with k > 0.
Performing a Taylor expansion of χ0

GG′(ω) around ω = ∞
yields, for any k > 0,

χ0
GG′(q,ω) = 1

ω2

[
2
∑

v

nv

[
f ρρ

v Q(q,G,G′) + f ρj
v

]

+
∑
v,v′

(nv − nv′)ρ̃∗
v′v(G)ρ̃v′v(G′)(εv′ − εv)

]

+O

(
1

ω4

)
. (43)

For notational convenience, we have suppressed the depen-
dence of f ρρ

v and f
ρj
v on q, G, and G′ as well as the dependence

of ρ̃v′v on q. Using the relation

f ρρ
v Q(q,G,G′) + f ρj

v =
∑

c

ρ̃∗
cv(G)ρ̃cv(G′)(εc − εv), (44)

which can be verified by substitution of Eqs. (26) and (27), we
obtain

χ0
GG′(q,ω) = 1

ω2

∑
n,n′

(nn − nn′ )ρ̃∗
n′n(G)ρ̃n′n(G′)(εn′ − εn)

+O

(
1

ω4

)
(45)

= 1

ω2

∑
n

nn〈n|[ei(q+G)·r,[Ĥ (r),e−i(q+G′)·r]]|n〉

+O

(
1

ω4

)
(46)

= 1

ω2
(q + G) · (q + G′)ρ(G′ − G) + O

(
1

ω4

)
.

(47)

We therefore obtain

lim
ω→∞ ω2χ0

GG′(q,ω) = (q + G) · (q + G′)ρ(G′ − G), (48)

which proves that the high-frequency limit is satisfied for all
δ′(k)
v (q,G,G′,ω) with k > 0.

2. The f -sum rule

The generalized f -sum rule is given by28∫ ∞

0
dωωImχ0

GG′(q,ω) = −π

2
(q + G) · (q + G′)ρ(G′ − G).

(49)

We now show that this exact constraint also holds for χ0(ω)
when it is expressed in terms of an effective energy using
δ′(1)
v if we assume that δ′(1)

v (q,G,G′) is both real and non-
negative. This assumption holds true for the diagonal elements
δ′(1)
v (q,G,G), as can be verified from Eq. (40). We can now use

the relation

lim
η→0+

1

x ± iη
= P 1

x
∓ iπδ(x), (50)

where P denotes the principal value, to write∫ ∞

0
dωωImχ0

GG′(q,ω)

= −π
∑

v

nvf
ρρ
v

∫ ∞

0
dωω

[
δ
(
ω − δ′(1)

v

) + δ
(
ω + δ′(1)

v

)]
−π

∑
v.v′

(nv − nv′ )ρ̃∗
v′v(G)ρ̃v′v(G′)

×
∫ ∞

0
dωωδ(ω − (εv′ − εv)). (51)

For notational convenience, we have suppressed the depen-
dence of δ′(1)

v and f ρρ
v on q, G, and G′ as well as the dependence

of ρ̃v′v on q. Since, thanks to time-reversal symmetry,

∑
v.v′

(nv − nv′ )ρ̃∗
v′v(G)ρ̃v′v(G′)

∫ ∞

0
dωωδ(ω − (εv′ − εv))

=
∑
v.v′

(nv − nv′)ρ̃∗
v′v(G)ρ̃v′v(G′)

∫ 0

−∞
dωωδ(ω − (εv′ − εv)),

(52)

we can write∫ ∞

0
dωωImχ0

GG′(q,ω)

= −π
∑

v

nvf
ρρ
v δ′(1)

v − π

2

∑
v.v′

(nv − nv′ )ρ̃∗
v′v(G)

× ρ̃v′v(G′)(εv′ − εv) (53)

= −π

2

∑
n.n′

(nn − nn′ )ρ̃∗
n′n(G)ρ̃n′n(G′)(εn′ − εn) (54)

= −π

2
(q + G) · (q + G′)ρ(G′ − G), (55)

where we used Eq. (44). Therefore, the f -sum rule is
satisfied for δ′(1)

v (q,G,G′). Using the same procedure we cannot
show that the f -sum rule is satisfied for δ′(0)(q,G,G′) and
δ′(2)
v (q,G,G′,ω)

E. Converging GW calculations

In Ref. 21 we used the EET to obtain approximations to the
GW self-energy and the independent-particle polarizability
which do not contain summations over empty states. We
showed there that simple approximations, such as δ(2)(ω) +
δ′(2)(ω), are accurate and numerically efficient. However, one
might wish to converge to the numerically exact GW result.
Such numerically exact results can be obtained efficiently and
in a systematic way by combining the EET and the SOS
approach. Let us illustrate how we achieve this goal for the
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self-energy. We first split the expression in Eq. (15) into two
parts according to

Sn
g (q,G,G′,ω) =

M∑
c=Nv+1

ρ̃∗
cn(q + G)ρ̃cn(q + G′)

ω − ωg − εc

+
∞∑

c=M+1

ρ̃∗
cn(q + G)ρ̃cn(q + G′)
ωng − δng(q,G,G′,ω)

, (56)

where Nv is the number of occupied states. Here we used the
EET only in the second term on the right-hand side, which
contains a summation over all the empty states starting from
M + 1. If we choose M = Nv , we retrieve Eq. (16). However,
if we choose M > Nv , the part that needs to be approximated
with the EET becomes smaller as M increases. In this way
we have obtained an efficient way to converge Sn

g (ω) with
respect to the number of empty states. In a similar way, one
can efficiently converge χ0(ω). We note that this procedure
is similar to the one proposed by Bruneval and Gonze,6 with
the important difference that our approach generally converges
more rapidly and, most importantly, is parameter free.

F. Range of applicability

In this section we briefly discuss the range of applicability
of the EET. As mentioned before, in principle, the EET can
be used to rewrite any SOS expression in terms of occupied
states only, namely, by the introduction of an effective energy
with sufficient degrees of freedom. However, we do not expect
that simple approximations to this effective energy will lead
to accurate results in all cases.

Let us consider, for example, the imaginary part of the head
of the polarizability tensor χ0

GG′(ω). The SOS expression for
this element is given by

Imχ0
00(q,ω) =

∑
v,c

∫
dr

∫
dr′φ∗

v (r)φv(r)φ∗
c (r′)φv(r′)

× eiq·(r−r′)δ(ω − (εc − εv)), (57)

where, for simplicity, we assumed a material with a gap and
ω > 0. If we compare this to the EET result using δ′(0) and
δ′(1)
v , we obtain

Imχ0
00(q,ω) =

∑
v

f ρρ
v (q,0,0)δ(ω − δ′(0)(q,0,0)), (58)

Imχ0
00(q,ω) =

∑
v

f ρρ
v (q,0,0)δ

(
ω − δ′(1)

v (q,0,0)
)
. (59)

While Eq. (57) consists of a summation over a number
of poles equal to NvNc, Eq. (58) contains only a single
pole while Eq. (59) contains Nv poles. Therefore, with the
simple frequency-independent approximations δ′(0) and δ′(1)

v ,
we will, in general, not be able to describe Imχ0

00(ω) in
an accurate way. Hence, we expect that the calculation of
an accurate absorption spectrum, which is closely related to
Imχ0

00(ω), would require complicated frequency-dependent
effective energies far beyond δ(1)

v . We note that, nevertheless,
χ0

00(ω) expressed in terms of δ(1)
v satisfies the high-frequency

limit and the generalized f -sum rule (see Secs. II D 1 and
II D 2).

On the other hand, we expect that quantities which depend
on frequency integrals over χ0(ω), such as the GW self-energy,
can be accurately reproduced with simple approximations
to δ′

v(ω), precisely because exact constraints such as the
generalized f -sum rule and the high-frequency limit are
satisfied. Similarly, we expect that summations over q, G,
and G′, such as those that occur in the calculation of the
self-energy matrix elements, allow us to use relatively simple
approximations for δv(ω).

III. IMPLEMENTATION

We implemented the EET described above in the ABINIT
software package.29 In this section we would like to discuss
two technical details of our implementation.

First, as can be verified from Eqs. (14) and (15), �
n,emp
c (ω)

does not have poles in the energy range [−∞,εL + ω1], where
εL is the eigenvalue of the lowest empty state and ω1 is
the first neutral excitation energy. In practice, however, the
approximations for δng(ω) given in Eqs. (31)–(33), might
lead to spurious poles in this energy range. Therefore, to
avoid numerical instabilities, we constrain the effective energy
εn + δng(ω) in Eq. (16) to the range [εL,∞]; i.e., δng(ω) is set
to εL − εn in the case that the effective energy εn + δng(ω)
obtained using the approximations in Eqs. (39)–(41) results
in εn + δng(ω) < εL. Using the first mean-value theorem for
integration,30 one can show that this constraint is exact for
all diagonal elements δng(q,G,G,ω) since in this case the
numerator on the right-hand side of Eq. (15) is non-negative
for every c.

In standard GW calculations the independent-particle
polarizability is evaluated on the imaginary-frequency axis,
where it has no poles (excepting metals at ω = 0), and then
fitted to a plasmon-pole model (PPM).23,31 Therefore, similar
numerical instabilities as described above might only occur in
the evaluation of χ0(iω) at ω = 0. Since there should be no
pole at ω = 0 (for systems with a gap), we constrain εv + δ′

v(ω)
in Eq. (38) to the range [εL,∞] for this frequency in a manner
similar to that explained above for εn + δng(ω).

Second, as within the SOS approach, the calculation of the
head and wings of the dielectric matrix for q → 0 requires
special attention since for these elements one cannot simply
set q = 0. One usually employs k · p perturbation theory to
evaluate the limit q → 0 for these elements. However, k · p
perturbation theory introduces an additional summation over
empty states. This can, for example, be avoided by using
a small but finite q or by numerically expanding the wave
functions around q = 0.32 However, since the calculation of
the head and wings is an order of magnitude smaller than that
of the body and the number of empty states required to reach
convergence for these elements is small, we found it more
efficient to simply use the SOS approach for the head and
wings when q → 0. The extra computational cost is negligible.

IV. RESULTS

A. Computational details

All our calculations were performed using separable
norm-conserving pseudopotentials.33,34 For Sn, the semicore
electrons of the 4s, 4p, and 4d states were considered as
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TABLE I. Calculated energies (in eV) for the VBM, CBM, and
fundamental gap (Eg) of SnO2. The last column contains numerically
converged G0W 0 quasiparticle energies. See the text for further
details.

G0W 0

LDA EET SOS + EET

CBM 8.20 8.73 8.74
VBM 7.26 5.87 5.85
Eg 0.94 2.86 2.89

valence electrons. Similarly, for Zn, the semicore electrons of
the 3s, 3p, and 3d states were considered as valence electrons.

In the case of SnO2 we used calculcated lattice parameters
and atomic positions which we obtained from a density-
functional calculation using the local-density approximation
(LDA), while in the cases of ZnO and bulk rubrene we used
experimental values. To compare with the work of Sai et al.,35

we also performed calculations for the model geometry of bulk
rubrene that they introduced. More details are given below.

The k-point sampling of the Brillouin zone was carried out
with a Monkhorst-Pack (MP) grid.36 For SnO2 and ZnO we
used a 4 × 4 × 6 and 6 × 6 × 4 MP grid, respectively. In the
case of bulk rubrene we used a 2 × 2 × 2 and 2 × 4 × 2 MP
grid, for the experimental and model geometry, respectively.
For the calculation of the self-energy these grids were shifted
such that they contain the � point, while for the calculation of
the dielectric matrix they were shifted such that they do not
include the � point. The ground-state cutoff energies for SnO2,
ZnO, and bulk rubrene were 240, 350, and 100 Ry, respectively.
The cutoff energies for the dielectric matrix for SnO2, ZnO,
and bulk rubrene were 48, 80, and 13 Ry, respectively. We
used the generalized PPM of Godby and Needs31 to fit ε−1(ω).

B. SnO2

SnO2 has a rutile crystal structure with lattice parameters
a = 4.726 Å and c = 3.191 Å, which we obtained from a DFT-
LDA calculation and which agrees well with the experimental
values a = 4.737 Å and c = 3.186 Å.37 We calculated the
G0W 0 quasiparticle energies at the valence band maximum
(VBM) and conduction band minimum (CBM) of SnO2, both
located at the � point, with our EET using δ′(2) and δ(2) in
the calculation of the screening and self-energy, respectively.
These values for the VBM and CBM as well as the resulting
band gap are reported in Table I.

We would like to compare these values to the quasiparticle
energies obtained within the standard SOS approach. How-
ever, to obtain numerically converged absolute quasiparticle
energies is even more difficult than to obtain numerically
converged quasiparticle energy differences such as band gaps.
While 1600 empty bands (corresponding to a 32.2-Ry energy
cutoff)38 included in the self-energy calculation were sufficient
to reach convergence for the band gap, convergence for the
quasiparticle energies at the VBM and CBM was still not
reached. Therefore, in order to compare our approximate EET
results to numerically converged values, we employed the
strategy outlined in Sec. II E to combine the SOS aproach
with the EET.
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FIG. 1. (Color online) Convergence behavior of the calculated
energies (in eV) of the VBM, CBM, and fundamental gap (Eg) of
SnO2 with the number of empty states in both the screening and
the self-energy calculcations. Triangles (black), SOS approach; open
(red) circles, SOS + EET approach using δ′(0) and δ(0); filled (red)
circles, EET using δ′(2) and δ(2) without empty states.

As an alternative to the accurate high-order approximations
for δ′ and δ, this SOS + EET approach allows us to combine
the slightly less accurate but very simple approximations δ(0)

and δ′(0) given in Eqs. (31) and (39) with the SOS approach
using only very few empty states. In Fig. 1 we report the
convergence behavior of the calculated energies of the VBM,
CBM and band gap of SnO2 with the number of empty
states using the standard SOS approach and the SOS+EET
approach. We see that using the SOS + EET approach,
numerical convergence of 10 meV is reached with slightly
more than 100 empty bands (corresponding to a 3.5-Ry energy
cutoff).38 This is true, not only for the band gap, but also for
the absolute quasiparticle energies at the VBM and CBM.
By contrast, the SOS approach has not reached convergence
for any of these quantities with as many as 800 empty bands
(corresponding to a 19.6-Ry energy cutoff).38

We are now also able to compare the converged SOS + EET
results with those obtained with our approximate EET scheme
using no empty states. This comparison is reported in Table I.
We conclude that the values we obtained with our EET using
δ′(2) and δ(2) are in excellent agreement with the numerically
exact values.39

C. ZnO

Recently there has been much debate about the numerically
exact value of the G0W 0 band gap of ZnO. This discussion
started with the publication of the work by Shih et al.40

in which the authors claimed that the G0W 0 band gap of
ZnO is at least 3.4 eV. This value is significantly larger than
previously reported values, which were in the range of 2.1–
2.6 eV.41–44 The explanation by Shih et al. is an extremely slow
convergence of the band gap with the number of empty states
included in the calculation of the self-energy. To obtain a band
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TABLE II. Calculated energies (in eV) for the VBM, CBM, and
fundamental gap (Eg) of ZnO. The last column contains numerically
converged G0W 0 quasiparticle energies. See the text for further
details.

G0W 0

LDA EET SOS + EET

VBM 6.38 5.04 4.97
CBM 7.19 7.43 7.53
Eg 0.82 2.39 2.56

gap of 3.4 eV they had to include 3000 empty bands in their
self-energy calculation. Subsequent calculations using the full-
potential linear augmented-plane-wave (FLAPW) method45

performed by Friedrich et al.46 confirmed the extremely slow
convergence of the ZnO band gap with the number of empty
states. However, the band gap of 2.83 eV that they obtained
by extrapolating to an infinite number of empty states was
substantially lower than the 3.4 eV found by Shih et al.
Recently it was shown by Stankovski et al.47 that the main
reason for the large discrepancy between the band gap obtained
by Shih et al. and those obtained in the other works is due to the
PPM of Hybertsen and Louie,23 which was adopted by Shih
et al. but not by the others. Stankovski et al. showed that the use
of the Hybertsen-Louie PPM leads to a large overestimation
of the G0W 0 band gap of ZnO. They also showed that the
ZnO band gap obtained using the Godby-Needs PPM31 agrees
very well with the band gap obtained from a calculation which
avoids the use of a PPM. Nevertheless, also the band gaps
obtained without a PPM and with the Godby-Needs PPM
show a very slow convergence with the number of empty states.
These works motivated us to study ZnO with the EET, in which
the summation over empty states can be avoided.

ZnO has a wurtzite crystal structure with lattice parameters
a = 3.249 Å and c = 5.207 Å.48 In Table II we report the
G0W 0 band gap of ZnO as well as the absolute G0W 0

quasiparticle energies at the VBM and CBM, which are both
located at the � point obtained with the EET using δ′(2) and δ(2)

in the calculation of W and �, respectively. To compare these
values to numerically converged G0W 0 energies, once again,
we use the SOS + EET approach since also for ZnO the SOS
approach alone converges extremely slowly with respect to the
number of empty bands. In Fig. 2 we report the convergence
behavior of the calculated energies of the VBM, CBM, and
band gap of ZnO with the number of empty states using the
standard SOS approach and the SOS + EET approach. We
see that the band gap using the SOS + EET approach does not
converge as quickly as was the case for SnO2 but convergence
is still reached much faster than with the SOS approach alone.
We conclude that the converged G0W 0 band gap of ZnO
is 2.56 eV. The difference with respect to the extrapolated
FLAPW result of Friedrich et al. is less than 0.3 eV.

We can now compare the converged SOS + EET results
with those obtained with our approximate EET scheme using
no empty states. We report this comparison in Table II. We
conclude that the absolute quasiparticle energies at the VBM
and CBM that we obtained with our EET using δ′(2) and δ(2)

are in very good agreement with the numerically exact values.
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FIG. 2. (Color online) Convergence behavior of the calculated
energies (in eV) of the VBM, CBM, and fundamental gap (Eg) of
ZnO with the number of empty states in both the screening and the
self-energy calculations. Triangles (black), SOS approach; open (red)
circles, SOS + EET approach using δ′(0) and δ(0); filled (red) circles,
EET using δ′(2) and δ(2) without empty states.

Due to the fact that the VBM energy is slightly underestimated
while the CBM energy is slightly overestimated, the difference
between the resulting EET band gap and the numerically exact
G0W 0 gap is slightly larger for ZnO than for SnO2 and the other
materials we have studied in a previous work.21 However, with
∼5% deviation, we can still consider the agreement good.

D. Bulk rubrene

Now that we have verified the accuracy of the EET we can
safely apply it to predict the band gaps of larger systems, which
are cumbersome to treat with the standard SOS approach.
Here we study bulk rubrene, an organic molecular crystal.
Rubrene is an interesting material with many technological
applications, for example, in organic light-emitting diodes and
organic field-effect transistors to create flexible electronics,49

but is computationally challenging due to the large number of
atoms involved.

Crystalline rubrene has an orthorhombic unit cell with
lattice parameters a = 14.4 Å, b = 7.2 Å, and c = 26.8 Å.50

Each unit cell contains two identical ab planes separated by
c/2, with a relative shift between the planes of b/2. Therefore,
the unit cell of bulk rubrene contains two rubrene molecules,
for a total of 140 atoms per unit cell. To the best of our
knowledge, the only GW calculation on bulk rubrene was
carried out by Sai et al.35 However, to reduce the cost of their
calculations, the authors used a model geometry for the rubrene
unit cell in which they neglected the relative shift of the two ab

planes. This allowed them to use a reduced unit cell with lattice
parameters a = 14.4 Å, b = 7.2 Å, and c = 14.4 Å. They
expected that the interactions between rubrene molecules in
adjacent ab planes is weak and therefore relatively insensitive
to the relative shift of the two planes. They then further
justified this approximation by showing that the band gap
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TABLE III. Fundamental gap (Eg; in eV) of bulk rubrene within
G0W 0. Details of the model are explained in the text.

EET Ref. 35
EET (model) (model)

Eg 2.5 2.9 2.8

they obtain for the model geometry (1.20 eV) is only slightly
larger than the band gap of the experimental geometry
(1.14 eV) when calculated within DFT using a generalized-
gradient approximation (GGA).

In this work the DFT ground-state calculcations are
performed within the LDA. However, the DFT-LDA band gaps
that we obtain, i.e., 1.13 and 1.20 eV for the experimental and
model geometry, respectively, are in very close agreement with
the DFT-GGA band gaps reported by Sai et al., i.e., 1.14 and
1.20 eV. We therefore assume that a comparison between our
G0W 0 results and those of Sai et al. will not be hindered by
this difference in the ground-state calculation.

In Table III we report the G0W 0 band gaps of bulk rubrene
that we obtained with the EET, using δ′(2) and δ(2), for the
experimental and model geometry as well as the G0W 0 band
gap obtained by Sai et al. for the model geometry. We see that
the band gap we obtain for the model geometry is in good
agreement with that found by Sai et al. With the EET we
can now also calculate the band gap for the unit cell with the
experimental geometry containing 140 atoms. This results in
a band gap of 2.5 eV, which is 0.4 eV smaller than that for the
model geometry. This indicates that the interactions between
adjacent ab planes are not weak and therefore the relative shift
of these planes cannot be neglected.

V. CONCLUSIONS

The scope of this work is multifold. First, we have given
further details of the EET, a simple method we introduced
recently21 to evaluate spectral representations in an accurate
and efficient manner without summing over empty states
as is done in the standard SOS approach. In particular, we
showed how the EET can be applied to reformulate the
expressions for the GW self-energy and the independent-
particle polarizability in terms of occupied states only by
introducing a single effective energy which takes into account
all the empty states. Second, we provided further evidence of
the accuracy of the EET by showing that quasiparticle energies
and band gaps obtained with GW using the EET agree well
with those obtained using the standard SOS approach. Third,
with the EET we were able to resolve the problem of the slow
convergence of the ZnO band gap with the number of empty
states in a GW calculation. Fourth, thanks to the EET, we
could predict the band gap of bulk rubrene, a technologically
interesting material for inorganic devices with a 140-atom unit
cell.

Finally, the results obtained in this and a previous work21

have shown that, with the EET, we obtain accurate results
for a large variety of systems: an sp semiconductor (Si),
a wide-gap insulator (solid Ar), an atom (Ar), d-band

semiconductors (SnO2, ZnO), and an organic molecular crystal
(rubrene).

ACKNOWLEDGMENTS
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APPENDIX A: NONLOCAL POTENTIALS

In the case where the Hamiltonian in Eq. (19) contains an
additional nonlocal potential vnl(r,r′), the expression for j̃cn

in Eq. (23) is slightly modified:

j̃cn(q + G) = 〈c|e−i(q+G)·r[i∇r]|n〉 · (q + G)

+
∫

drdr′φ∗
c (r)vnl(r,r′)

× [e−i(q+G)·r′ − e−i(q+G)·r]φn(r′). (A1)

If vnl refers to the nonlocal part of a separable pseudopotential,
i.e., vnl(r,r′) = ∑

s ṽs(r)ṽs(r′), the last term on the right-hand
side of Eq. (A1) can be written as∫

drdr′φ∗
c (r)vnl(r,r′)[e−i(q+G)·r′ − e−i(q+G)·r]φn(r′)

=
∑

s

∫
drφ∗

c (r)ṽs(r)
∫

dr′ṽs(r′)e−i(q+G)·r′
φn(r′)

−
∑

s

∫
drφ∗

c (r)e−i(q+G)·rṽs(r)
∫

dr′ṽs(r′)φn(r′),

(A2)

which can be rapidly calculated in practice. In the case of
pseudopotentials of the Kleinman-Bylander type,33 the index
s in the above expression is the multi-index s = nlm, where n

is the number of the atom, l is the orbital angular momentum
quantum number, and m is the magnetic quantum number.

APPENDIX B: A HOMOGENEOUS ELECTRON GAS

Here we show that δng(ω) and δ̃ng(ω) as defined in Eqs. (16)
and (24), respectively, are equal in the case of a homogeneous
electron gas. Combining Eqs. (15) and (16) and making use
of the fact that the wave functions can be expressed in terms
of a single plane wave, i.e., φik(r) = ei(k+Gi )·r (we made the k
dependence explicit), we obtain

δhom
ng (G,ω)

= ωng−
∑

c

δ(Gn − G − Gc)

[∑
c′

δ(Gn−G−Gc′ )

ωc′g

]−1

.

(B1)
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In a similar manner, by combining Eqs. (22) and (24) we get

δ̃hom
ng (G,ω)

= ωng −
∑

c

δ(Gn − G − Gc)

[∑
c′

δ(Gn − G − Gc′ )

ωc′g

]−1

.

(B2)

Therefore δhom
ng (G,ω) = δ̃hom

ng (G,ω). Similarly, one can show

that δhom
ng (G,ω) = ˜̃δ

hom

ng (G,ω), etc. This also proves that the
approximations given in Eqs. (32) and (33) are exact in the
limit of a homogeneous electron gas. The same properties can
be shown to hold for δ′

v(ω) and δ̃′
v(ω), etc.

APPENDIX C: A SIMPLIFIED EET FOR χ0(ω)

One can obtain an even simpler expression for χ0(ω) if,
instead of approximating Xv(ω), as is done in the EET, we
approximate

∑
v nvXv(ω). We can rewrite this term according

to ∑
v

nvXv(q,G,G′,ω) =
∑

v nvf
ρρ
v (q,G,G′)

ω − �′(q,G,G′,ω) + iη
, (C1)

which defines �′(q,G,G′,ω). We note that such a function can
always be found since �(q,G,G′,ω) has the same degrees of
freedom as the left-hand side of Eq. (C1). The quantity �′(ω)
fulfills the same purpose as δ′

v(ω) in Eq. (38) but is simpler
since it is independent of v. Following a derivation similar to
the one that led to Eqs. (39)–(41), we obtain the following
approximations for �′(ω):

�′(0)(q,G,G′) = Q(q,G,G′), (C2)

�′(1)(q,G,G′) = Q(q,G,G′) + Fρj (q,G,G′)
Fρρ(q,G,G′)

, (C3)

�′(2)(q,G,G′,ω) = Q(q,G,G′) + Fρj (q,G,G′)
Fρρ(q,G,G′)

×
⎡
⎣ω − Q(q,G,G′) − Fρj (q,G,G′)

Fρρ (q,G,G′)

ω − Q(q,G,G′) − Fjj (q,G,G′)
Fρj (q,G,G′)

⎤
⎦ ,

(C4)

where Fρρ = ∑
v nvf

ρρ
v , etc. The quantities Fρρ , Fρj , and

F jj , which appear in the above equations as well as in the
numerator of Eq. (C1), just depend on (Fourier transforms
of) the density and the KS or (noninteracting) quasiparticle
one-body reduced density matrix:

Fρρ(q,G,G′)

= ρ(G′ − G) −
∫

drdr′ei(q+G)·re−i(q+G′)·r′ |ρ(r,r′)|2,
(C5)

Fρj (q,G,G′) = i

2
P (q,G,G′) · (q + G′) + H.c., (C6)

F jj (q,G,G′) = (q + G) · P̃ (q,G,G′) · (q + G′), (C7)

where

P (q,G,G′) =
∫

drei(G−G′)·r∇rρ(r)

−
∫

drdr′ei(q+G)·re−i(q+G′)·r′∇r′ |ρ(r,r′)|2,
(C8)

P̃ (q,G,G′)

=
∫

drei(G−G′)·r∇r∇rρ(r)

−
∫

drdr′ei(q+G)·re−i(q+G′)·r′
ρ(r,r′)∇r∇r′ρ(r,r′).

(C9)

The above approximations for �′(ω) as well as the cor-
responding approximations for χ0(ω) (for systems with a
gap) are explicit functionals of a one-body reduced density
matrix. Therefore, they could also be useful in the modeling of
density-matrix functionals or polarizabilities. The latter could
then be used to calculate efficiently total energies.51

We note that the χ0(ω) that result from using the EET with
δ′(0) and �′(0) are identical. While the overall scaling of the EET
approach presented in the previous sections is, in general, N3

at
logNat,21 the scaling of this simplified EET scheme is N3

at,
where Nat is the number of atoms. This scaling is an order of
magnitude smaller than the N4

at scaling of the standard SOS
approach.
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