*GW*100: Benchmarking $G_0 W_0$ for molecular systems, Supplementary material

Michiel J. van Setten,^{∗,†,‡} Fabio Caruso,^{¶,§} Sahar Sharifzadeh,[∥] Xinguo Ren,^{#,@}

Matthias Scheffler,[@] Fang Liu,^{\triangle} Johannes Lischner,^{∇ ,1} Lin Lin,² Jack R.

Deslippe,³ Steven G. Louie,^{4, ∇} Chao Yang,² Florian Weigend,^{5,6} Jeffrey B.

Neaton, 1, ||, 7 Ferdinand Evers, ⁸ and Patrick Rinke^{9,@}

Nanoscopic Physics, Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Louvain-la-Neuve, 1348, Belgium, Institute of Nanotechnology,

Karlsruhe Institute of Technology Campus North, Karlsruhe, 76344 Germany,
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, 4195, Germany, Department of
Materials, University of Oxford, Oxford, OX1 3PH, United Kingdom, Molecular Foundry,
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA, Department of
Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA, Key

Laboratory of Quantum Information, University of Science and Technology of China, Hefei,

230026, China, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, 14195, Germany,

School of Applied Mathematics, Central University of Finance and Economics, Beijing,

Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720,

USA, Department of Physics, University of California, Berkeley, CA 94720, USA, Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA, National Energy Research Scientific Computing Center, Berkeley, CA 94720,

USA, Department of Physics, University of California, Berkeley, CA 94720, USA,

Institute of Nanotechnology, Karlsruhe Institute of Technology Campus North, Karlsruhe, 76344, Germany, Institute of Physical Chemistry, Karlsruhe Institute of Technology Campus South, Karlsruhe, 76021, Germany, Kavli Energy NanoSciences Institute at

Berkeley, Berkeley, CA 94720 USA, Institute of Theoretical Physics, University of

Regensburg, Regensburg, 93040, Germany, and COMP/Department of Applied Physics, Aalto University School of Science, Aalto, 00076, Finland

1 Convergence studies

This section contains various convergence studies of critical numerical parameters for four representative molecules.

1.1 Basis set extrapolation

Figure 1 addresses the basis set extrapolation used for the local orbital calculations. Figures 2-5 compare the extrapolation of the inverse of the number of basis functions to the inverse of the cube of the cardinal number of the basis set. The difference between the two extrapolation schemes is used for all molecules as an estimate of the extrapolation error. To validate this error estimate Figures 2-5 also contain results calculated using Dunning basis sets of triple, quadruple and quintuple zeta quality.¹

Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

³National Energy Research Scientific Computing Center, Berkeley, CA 94720, USA

^{*}To whom correspondence should be addressed

[†]Nanoscopic Physics, Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Louvain-la-Neuve, 1348, Belgium

 $^{^{\}ddagger}$ Institute of Nanotechnology, Karlsruhe Institute of Technology Campus North, Karlsruhe, 76344 Germany

[¶]Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, 4195, Germany

[§]Department of Materials, University of Oxford, Oxford, OX1 3PH, United Kingdom

[⊥]Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA

 $^{^{\#}\}mathrm{Key}$ Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China

[®]Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, 14195, Germany

 $^{^{\}triangle}$ School of Applied Mathematics, Central University of Finance and Economics, Beijing

[¬]Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

¹Department of Physics, University of California, Berkeley, CA 94720, USA

²Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

⁴Department of Physics, University of California, Berkeley, CA 94720, USA

⁵Institute of Nanotechnology, Karlsruhe Institute of Technology Campus North, Karlsruhe, 76344, Germany

⁶Institute of Physical Chemistry, Karlsruhe Institute of Technology Campus South, Karlsruhe, 76021, Germany

⁷Kavli Energy NanoSciences Institute at Berkeley, Berkeley, CA 94720 USA

⁸Institute of Theoretical Physics, University of Regensburg, Regensburg, 93040, Germany

⁹COMP/Department of Applied Physics, Aalto University School of Science, Aalto, 00076, Finland

Figure 1: Basis set extrapolation of the KS and QP homo energies. The extrapolation is obtained from a linear extrapolation of the TZVP and QZVP results in the inverse of the number of basis functions (NBF).

Figure 2: Basis set extrapolation of the QP homo energies comparing the def2 and Dunning basis sets (triple, quadruple, and quintuple). The points at 0 are the results of the extrapolation used in this work. For both basis sets we compare the extrapolation in the absolute size of the basis set (NBF) and the cube of the cardinal number.

Figure 3: Basis set extrapolation of the QP homo energies comparing the def2 and Dunning basis sets (triple, quadruple, and quintuple). The points at 0 are the results of the extrapolation used in this work. The same as Figure 2, but for F_2 .

Figure 4: Basis set extrapolation of the QP homo energies comparing the def2 and Dunning basis sets (triple, quadruple, and quintuple). The points at 0 are the results of the extrapolation used in this work. The same as Figure 2, but for C_2H_6 .

Figure 5: Basis set extrapolation of the QP homo energies comparing the def2 and Dunning basis sets (triple, quadruple, and quintuple). The points at 0 are the results of the extrapolation used in this work. The same as Figure 2, but for C_3H_6 .

1.2 Ground state convergence parameters

The tables in this section report PBE KS-HOMO eigenvalues. The Tables 1 and 2 address ground state properties in TRUBOMOLE. It is shown that a level of meV convergence has been reached for the XC integration grid (grids m3, m4, m5) and that the error introduced by the RI on the DFT orbitals is also of this magnitude. Table 3 concerns FHI-AIMS, showing the dependence on different orders of the Hartree multipole expansion (l_hartree) in FHI-aims.

Table 1: PBE HOMO eigenvalue of four molecules for different XC integration grids (m3, m4, m5) in TURBOMOLE.

	m3	m4	m5
N_2	-10.20292396	-10.20192103	-10.20221994
F_2	-9.40915387	-9.40884945	-9.40869029
C_2H_6	-8.15643009	-8.15623074	-8.15630102
$\mathrm{C}_{3}\mathrm{H}_{6}$	-7.04459266	-7.04193216	-7.04189156

Table 2: PBE HOMO eigenvalue of four molecules obtained with and without the resolution of the identity (RI) in TURBOMOLE.

	RI	no RI
N_2	-10.20221994	-10.20052639
F_2	-9.40869029	-9.4084012
C_2H_6	-8.15630102	-8.15635867
C_3H_6	-7.04189156	-7.04225172

Table 3: PBE HOMO eigenvalue of four molecules for different orders of the Hartree multipole expansion (l_hartree) in FHI-aims.

	8	10	12
N ₂	-10.20048075	-10.20051154	-10.20052298
\mathbf{F}_2	-9.40826092	-9.40832362	-9.40830352
C_2H_6	-8.15644071	-8.15641251	-8.15640127
C_3H_6	-7.04265618	-7.0421901	-7.04233201

1.3 Convergence of the product-basis parameters in FHI-aims

The tables in this subsection report the G_0W_0 HOMO eigenvalue.

		1.d-5	1.d-6	1.d-7	1.d-8
	N_2	-16.694478	-16.694478	-16.694478	-16.694477
	F_2	-18.132832	-18.132834	-18.132837	-18.132838
	C_2H_6	-13.247344	-13.247344	-13.247344	-13.247344
_	$\mathrm{C}_{3}\mathrm{H}_{6}$	-11.362216	-11.362215	-11.362215	-11.362215

Table 4: Threshold of the Gram-Schmidt orthogonalization (prodbas acc) in FHI-aims.

Table 5: Threshold of the singular value decomposition (prodbas threshold) in FHI-aims.

	1.d-5	1.d-6	1.d-7	1.d-8
N_2	-16.694478	-16.694478	-16.694477	-16.694477
F_2	-18.132819	-18.132819	-18.132820	-18.132820
C_2H_6	-13.247342	-13.247344	-13.247345	-13.247345
$\mathrm{C}_{3}\mathrm{H}_{6}$	-11.362216	-11.362217	-11.362216	-11.362191

Table 6: Comparison of the exchange correlation matrix elements $(v_{\rm XC})$, exchange parts of the self-enery (Σ_x) , and KS-energies (KS) of the HOMO level for the GW100 molecules.

Formula	CAS	v	xc	Σ	Σ_x	Σ_x -	- v _{xc}		KS	
		BGW	QZVP	BGW	QZVP	BGW	QZVP	BGW	QZVP	EXTRA
He	12597-35-2	-17.94	-18.22	-27.23	-27.59	-9.29	-9.37	-15.77	-15.75	-15.77
Ne	7440-01-9	-25.20	-26.96	-35.22	-37.42	-10.02	-10.45	-13.31	-13.31	-13.48
Ar	7440-37-1	-15.50	-18.05	-21.35	-23.80	-5.85	-5.75	-10.27	-10.27	-10.36
Kr	7439-90-9	-13.41	-16.59	-18.20	-21.50	-4.80	-4.91	-9.26	-9.27	-9.31
Xe	7740-63-3	-11.57	-14.62	-15.56	-18.57	-3.99	-3.94	-8.13	-8.22	-
H_2	1333-74-0	-12.04	-12.06	-17.84	-17.87	-5.80	-5.81	-10.37	-10.38	-10.38
Li_2	14452 - 59 - 6	-4.68	-5.35	-6.44	-7.03	-1.76	-1.68	-3.22	-3.22	-3.21
Na_2	25681-79-2	-4.22	-5.23	-5.69	-6.56	-1.47	-1.33	-3.12	-3.13	-3.11
Na ₄	39297 - 86 - 4	-4.25	-5.18	-5.31	-6.12	-1.06	-0.94	-2.69	-2.68	-2.67
Na_6	39297-88-6	-4.40	-5.44	-5.43	-6.32	-1.03	-0.89	-3.00	-2.99	-2.98
K_2	25681-80-5	-3.50	-4.62	-4.58	-5.53	-1.08	-0.91	-2.49	-2.57	-2.56
Rb_2	25681-81-6	-3.36	-4.63	-4.33	-5.41	-0.98	-0.78	-2.47	-2.49	-
N ₂	7727-37-9	-17.14	-18.00	-23.55	-24.50	-6.41	-6.49	-10.27	-10.20	-10.20
P_2	12185-09-0	-10.38	-11.93	-13.17	-14.59	-2.79	-2.66	-7.11	-7.11	-7.15
As_2	23878-46-8	-9.62	-11.71	-12.00	-14.10	-2.38	-2.39	-6.50	-6.56	-6.67
F_2	7782-41-4	-23.68	-24.73	-32.27	-33.56	-8.59	-8.83	-9.39	-9.41	-9.48
Cl_2	7782-50-5	-14.17	-16.59	-18.83	-21.13	-4.66	-4.53	-7.29	-7.29	-7.36
Br_2	7726-95-6	-12.54	-15.53	-16.55	-19.53	-4.01	-4.00	-6.80	-6.83	-6.88
I_2	7553-56-2	-10.80	-13.78	-14.07	-16.97	-3.27	-3.20	-6.24	-6.25	-
		Continues on next page								

Table 6 continued										
Formula	CAS	v	xc	Σ	Σ_x	Σ_x -	$-v_{xc}$		KS	
		BGW	QZVP	BGW	QZVP	BGW	QZVP	BGW	QZVP	EXTRA
CH_4	74-82-8	-13.81	-14.07	-19.00	-19.29	-5.19	-5.21	-9.44	-9.45	-9.46
C_2H_6	74-84-0	-14.04	-14.31	-18.89	-19.18	-4.85	-4.88	-8.13	-8.16	-8.16
C_3H_8	74-98-6	-14.03	-14.29	-18.77	-19.05	-4.74	-4.76	-7.72	-7.75	-7.76
C_4H_{10}	106-97-8	-13.88	-14.13	-18.53	-18.81	-4.66	-4.68	-7.54	-7.58	-7.58
C_2H_4	74-85-1	-12.70	-13.10	-15.99	-16.39	-3.29	-3.29	-6.76	-6.77	-6.78
C_2H_2	74-86-2	-13.20	-13.64	-16.92	-17.37	-3.72	-3.73	-7.16	-7.19	-7.21
C_4	12184-80-4	-13.80	-14.57	-18.41	-19.16	-4.60	-4.59	-7.29	-7.24	-7.26
C_3H_6	75-19-4	-14.31	-14.77	-18.30	-18.79	-3.99	-4.01	-7.05	-7.04	-7.05
C_6H_6	71-43-2	-13.06	-13.48	-15.61	-16.03	-2.56	-2.55	-6.27	-6.33	-6.35
C_8H_8	629-20-9	-13.20	-13.67	-15.71	-16.20	-2.51	-2.52	-5.26	-5.30	-5.32
C_5H_6	542-92-7	-13.10	-13.54	-15.79	-16.24	-2.69	-2.70	-5.37	-5.40	-5.42
C ₂ H ₃ F	75-02-5	-14.88	-15.40	-18.67	-19.22	-3.79	-3.82	-6.53	-6.53	-6.56
C_2H_3Cl	75-01-4	-13.46	-14.63	-16.90	-18.02	-3.43	-3.38	-6.45	-6.43	-6.46
C_2H_3Br	593-60-2	-12.80	-14.27	-15.83	-17.30	-3.03	-3.03	-5.83	-5.84	-5.86
C_2H_3I	593-66-8	-11.50	-13.58	-14.53	-16.55	-3.03	-2.98	-6.04	-6.04	-
CF_4	75-73-0	-23.61	-24.59	-31.76	-32.94	-8.15	-8.35	-10.42	-10.40	-10.46
CCl_4	56-23-5	-14.43	-16.87	-19.13	-21.43	-4.70	-4.56	-7.65	-7.66	-7.72
CBr_4	558-13-4	-12.79	-15.84	-16.79	-19.84	-4.00	-4.00	-6.95	-6.98	-7.00
CI_4	507-25-5	-11.04	-14.12	-14.28	-17.31	-3.25	-3.19	-6.20	-6.25	-
SiH ₄	7803-62-5	-11.31	-12.07	-15.84	-16.54	-4.53	-4.47	-8.52	-8.52	-8.52
GeH_4	7782-65-2	-10.97	-12.32	-15.17	-16.59	-4.20	-4.27	-8.29	-8.37	-8.37
Si_2H_6	1590-87-0	-10.69	-12.07	-14.09	-15.35	-3.40	-3.28	-7.29	-7.29	-7.29
Si_5H_{12}	14868-53-2	-10.63	-12.27	-13.36	-14.85	-2.73	-2.58	-6.58	-6.57	-6.58
LiH	7580-67-8	-8.82	-9.20	-12.78	-13.15	-3.97	-3.96	-4.44	-4.36	-4.35
КН	7693-26-7	-8.02	-8.87	-11.29	-12.16	-3.26	-3.30	-3.44	-3.45	-3.45
BH_3	13283-31-3	-12.28	-12.50	-17.20	-17.43	-4.92	-4.93	-8.50	-8.49	-8.49
B_2H_6	19287-45-7	-12.60	-12.82	-17.29	-17.52	-4.69	-4.70	-7.86	-7.86	-7.87
NH ₃	7664-41-7	-15.27	-15.87	-20.72	-21.38	-5.45	-5.51	-6.14	-6.12	-6.19
HN ₃	7782-79-8	-16.25	-16.81	-19.94	-20.55	-3.68	-3.74	-6.84	-6.78	-6.82
PH_3	7803-51-2	-10.73	-12.25	-14.42	-15.86	-3.69	-3.61	-6.72	-6.71	-6.72
AsH ₃	7784-42-1	-10.35	-12.39	-13.76	-15.81	-3.41	-3.41	-6.73	-6.72	-6.75
SH_2	7783-06-4	-11.83	-13.63	-15.96	-17.65	-4.13	-4.03	-6.29	-6.28	-6.32
FH	7664-39-3	-21.99	-22.88	-30.35	-31.43	-8.36	-8.55	-9.68	-9.57	-9.70
ClH	7647-01-0	-13.62	-15.78	-18.58	-20.63	-4.96	-4.85	-8.06	-8.02	-8.09
LiF	7789-24-4	-20.79	-21.55	-28.37	-29.22	-7.58	-7.67	-6.28	-6.09	-6.21
F_2Mg	7783-40-6	-21.28	-22.10	-29.05	-30.00	-7.77	-7.90	-8.52	-8.29	-8.28
TiF_4	7783-63-3	-22.44	-23.34	-29.98	-31.04	-7.53	-7.70	-10.43	-10.43	-10.42
AlF ₃	7784-18-1	-22.49	-23.38	-30.40	-31.46	-7.92	-8.08	-9.81	-9.69	-9.76
BF	13768-60-0	-10.45	-11.37	-14.42	-15.34	-3.97	-3.97	-6.80	-6.75	-6.75
SF_4	7783-60-0	-19.78	-21.43	-25.17	-26.89	-5.39	-5.46	-8.29	-8.19	-8.31
BrK	7758-2-3	-11.63	-14.13	-15.64	-18.14	-4.01	-4.01	-4.48	-4.71	-4.80
GaCl	17108-85-9	-10.45	-13.13	-13.54	-16.08	-3.09	-2.95	-6.62	-6.51	-6.58
NaCl	7647-14-5	-13.10	-15.11	-17.80	-19.70	-4.70	-4.58	-5.47	-5.25	-5.34
$MgCl_2$	7786-30-3	-13.42	-15.47	-18.15	-20.09	-4.74	-4.62	-7.73	-7.63	-7.65
AlI_3	7784-23-8	-10.85	-13.74	-14.12	-16.96	-3.27	-3.22	-6.64	-6.63	-
BN	10043-11-5	-14.09	-14.60	-18.22	-18.74	-4.13	-4.14	-7.50	-7.46	-7.47
NCH	74-90-8	-14.91	-15.42	-19.16	-19.69	-4.26	-4.27	-9.07	-9.03	-9.05
PN	17739-47-8	-15.21	-16.50	-20.42	-21.67	-5.21	-5.16	-7.76	-7.73	-7.79
H_2NNH_2	302-01-2	-16.04	-16.72	-21.37	-22.09	-5.33	-5.37	-5.26	-5.26	-5.32
H ₂ CO	50-00-0	-17.80	-18.31	-23.55	-24.14	-5.75	-5.83	-6.26	-6.25	-6.29
CH_4O	67-56-1	-18.12	-18.69	-24.21	-24.90	-6.10	-6.21	-6.32	-6.30	-6.36
						Conti	nues on ne	ext page		

Table 6 continued										
Formula	CAS	v	xc	Σ	C_x	Σ_x -	$-v_{xc}$		KS	
		BGW	QZVP	BGW	QZVP	BGW	QZVP	BGW	QZVP	EXTRA
C_2H_6O	64-17-5	-17.98	-18.54	-24.01	-24.68	-6.03	-6.14	-6.13	-6.12	-6.17
C_2H_4O	75-07-0	-17.92	-18.53	-23.45	-24.14	-5.52	-5.61	-5.99	-5.96	-5.99
$C_4H_{10}O$	60-29-7	-17.66	-18.15	-23.29	-23.86	-5.63	-5.71	-5.75	-5.79	-5.82
$\rm CH_2O_2$	64-18-6	-18.78	-19.40	-24.63	-25.37	-5.86	-5.97	-6.96	-6.91	-6.96
ноон	7722-84-1	-19.79	-20.49	-26.60	-27.43	-6.81	-6.94	-6.44	-6.39	-6.47
H_2O	7732-18-5	-18.52	-19.15	-25.26	-26.02	-6.73	-6.87	-7.23	-7.16	-7.25
CO_2	124-38-9	-19.43	-20.08	-24.79	-25.55	-5.36	-5.47	-9.12	-9.07	-9.12
CS_2	75-15-0	-12.16	-14.10	-15.16	-16.97	-3.01	-2.87	-6.77	-6.80	-6.82
OCS	463-58-1	-13.84	-15.40	-17.49	-18.98	-3.65	-3.58	-7.46	-7.48	-7.51
OCSe	1603 - 84 - 5	-12.55	-17.80	-15.76	-14.57	-3.21	3.23	-6.91	-6.98	-7.00
CO	630-08-0	-15.01	-15.91	-20.32	-21.25	-5.31	-5.34	-9.34	-9.31	-9.34
O_3	10028 - 15 - 6	-19.86	-20.72	-26.21	-27.20	-6.35	-6.48	-8.00	-7.89	-7.94
SO_2	7446-09-5	-17.51	-18.62	-22.62	-23.77	-5.11	-5.15	-8.13	-8.03	-8.16
BeO	1304-56-9	-16.29	-16.87	-21.46	-22.10	-5.18	-5.22	-6.23	-6.13	-6.16
MgO	1309-48-4	-16.93	-17.57	-22.62	-23.29	-5.69	-5.71	-4.85	-4.79	-4.79
C_7H_8	108-88-3	-13.31	-13.74	-15.84	-16.27	-2.53	-2.54	-5.95	-6.00	-6.01
C_8H_{10}	100-41-4	-13.37	-13.83	-15.86	-16.32	-2.49	-2.50	-5.98	-6.00	-6.02
C_6F_6	392-56-3	-16.96	-17.60	-20.32	-21.01	-3.36	-3.41	-6.74	-6.63	-6.69
C_6H_5OH	108-95-2	-15.07	-15.59	-18.14	-18.69	-3.07	-3.10	-5.57	-5.62	-5.65
$\mathrm{C}_{6}\mathrm{H}_{5}\mathrm{NH}_{2}$	62-53-3	-14.49	-15.00	-17.45	-18.00	-2.97	-3.00	-4.93	-5.00	-5.04
C_5H_5N	110-86-1	-16.44	-17.19	-21.55	-22.32	-5.11	-5.12	-5.84	-5.93	-5.97
$\mathrm{C_5H_5N_5O}$	73-40-5	-15.40	-15.94	-17.83	-18.40	-2.43	-2.46	-5.23	-5.27	-5.32
$\mathrm{C_5H_5N_5O}$	73-24-5	-15.17	-15.67	-17.77	-18.30	-2.61	-2.63	-5.46	-5.50	-5.55
$\mathrm{C_4H_5N_3O}$	71-30-7	-16.46	-16.98	-19.80	-20.35	-3.34	-3.38	-5.67	-5.70	-5.75
$\mathrm{C_5H_6N_2O_2}$	65-71-4	-15.68	-16.20	-18.68	-19.24	-2.99	-3.04	-6.07	-6.04	-6.07
$\mathrm{C_4H_4N_2O_2}$	66-22-8	-19.14	-19.84	-24.97	-25.75	-5.83	-5.91	-6.26	-6.26	-6.31
$\rm CH_4N_2O$	57-13-6	-18.75	-19.39	-24.57	-25.31	-5.83	-5.91	-5.88	-5.89	-5.95
Ag ₂	12187-06-3	-9.44	-9.43	-10.97	-10.79	-1.53	-1.35	-5.24	-5.26	-
Cu_2	12190-70-4	-32.91	-35.67	-41.84	-45.06	-8.94	-9.39	-4.66	-4.77	-4.72
NCCu	544-92-3	-24.56	-26.30	-31.19	-33.23	-6.63	-6.93	-6.79	-6.71	-6.69

2 Parameters for the plane wave calculations

In this section the most important pseudo potential parameters and plane wave function cutoffs used in the Berkeley GW calculations are summarized.

Molecule	Wavefunction cutoff (Ry)
Ethybenzene	80
Ozone	110
Boron nitride	110
Buthane	80
	Continues on next page

Table 8: Wave function cutoffs for Berkeley GW calculations.

Molecule	Wavefunction cutoff (Ry
Tuloene	8
Phenol	10
Pyridine	10
Tetracarbon	8
Cesium dimer	5
Phosphorus dimer	5
Carbon dioxide	11
Helium atom	8
Beryllium monoxide	11
Magnesium monoxide	11
Borane	8
Hydrogen	9
Boron monofluoride	9
Lithium dimer	5
Pentasilane	8
Disilane	8
Carbon oxyselenide	11
Gallium monochloride	6
Phosphorus mononitride	11
Diborane	8
Arsenic dimer	5
Sodium dimer	5
Potassium dimer	5
Rubidium dimer	5
Hydrazene	11
Hexafluorobenzene	9
Sodium tetramer	5
Sodium Hexamer	5
Carbon oxysulfide	11
Formaldehyde	11
Carbon tetraiodide	6
Cyclopentadiene	8
Carbon tetrabromide	6
Carbon tetrachloride	8
Urea	11
Vinyl bromide	8
Vinyl iodide	8
Ethoxy ehtane	10
Aniline	10
cyclooctatetraene	8
Carbon monoxide	11
Ethanol	10
Formic acid	11
Thymine	11
Uracil	11
Methanol	10
Cytosine	11
Benzene	8
Adenine	11
Guanine	11
Methane	9
Ethane	8
Ethylene	8

Molecule	Wavefunction cutoff (Ry
Acetylen	8
Hydrogen cyanide	11
Propane	8
Krypton atom	6
Neon atom	8
Argon atom	9
Sulfer dioxide	11
Vinyl chloride	7
Vinyl fluoride	9
Acetaldehyde	10
Carbon disulfide	7
Cyclopropane	8
Carbon tetrafluoride	9
Iodine	5
Lithium hydride	6
Hydrogen chloride	7
Sodium chloride	6
Hydrogen fluoride	9
Amonia	11
Potassium hydride	6
Hydrogen peroxide	11
Bromine	6
Nitrogen	12
Water	11
Potassium bromide	7
Fluorine	9
chlorine	6
Germane	8
Hydrogen azide	12
Hydrogen sulfide	8
Magnesium fluoride	9
Sulfer tetrafluoride	9
Titanium fluoride	8
Aluminum trifluoride	9
Aluminum triiodide	5
Arsine	8
Magnesium chloride	6
Lithium fluoride	9
Phosphine	8
Silane	8
Copper dimer	35

Atom	N_c	$R_{\text{cut-s}}(a.u.)$	$R_{\text{cut-p}}$ (a.u.)	$R_{\text{cut-d}}$ (a.u.)
Н	1	0.50	N/A	N/A
He	2	1.00	N/A	N/A
Li	1	2.45	2.45	N/A
Be	2	2.10	2.10	N/A
В	3	1.40	1.40	N/A
С	4	1.30	1.30	N/A
Ν	5	1.00	1.00	N/A
Ο	6	1.10	1.10	N/A
\mathbf{F}	$\overline{7}$	1.30	1.30	N/A
Ne	8	1.55	1.55	N/A
Na	1	2.30	2.30	N/A
Mg	2	2.80	2.80	2.80
Al	3	2.60	2.60	2.60
Si	4	1.80	1.80	1.80
Р	5	1.95	1.95	1.95
\mathbf{S}	6	1.70	1.70	1.70
Cl	$\overline{7}$	1.75	1.75	1.75
Ar	8	2.05	2.05	2.05
Κ	1	3.51	3.76	3.76
Ca	2	3.30	3.30	3.30
Ga	3	2.05	2.45	2.75
Ge	4	2.10	2.10	2.40
As	5	2.10	2.10	2.10
Se	6	1.90	1.90	1.90
Br	$\overline{7}$	1.95	1.95	1.95
Kr	8	3.25	3.25	3.25
Rb	1	3.82	3.82	3.72
Ι	7	2.40	2.40	2.40
Xe	8	3.25	3.25	3.25
\mathbf{Cs}	1	4.40	4.60	N/A

Table 7: Pseudopotential parameters from the Quantum Espresso library² for Berkeley GW calculations. N_c is the number of valence electrons, $R_{\text{cut-s}}$ the s-orbital, $R_{\text{cut-p}}$ the p-orbital, and $R_{\text{cut-d}}$ the d-orbital cutoff, respectively.

3 Graphical solutions QPE

This section contains the plots of the self-energies used to graphically solve the QP-equation for the two remaining molecules that exhibit multi-solution behaviour, but were not presented in the main manuscript.

References

- (1) Dunning, T. H. J. Chem. Phys. 1989, 90, 1007–1023.
- (2) Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I.; Corso, A. D.; de Gironcoli, S.; Fabris, S.; Fratesi, G.; Gebauer, R.; Gerstmann, U.; Gougoussis, C.; Kokalj, A.; Lazzeri, M.; Martin-Samos, L.; Marzari, N.; Mauri, F.; Mazzarello, R.; Paolini, S.; Pasquarello, A.; Paulatto, L.; Sbraccia, C.; Scandolo, S.; Sclauzero, G.; Seitsonen, A. P.; Smogunov, A.; Umari, P.; Wentzcovitch, R. M. J. Physics: Cond. Matt. 2009, 21, 395502.

Figure 6: Comparison of the energy dependent correlation part of the self-energy $\Sigma_{\rm c}(\varepsilon)$ calculated with the three different codes using different procedures for boron nitride and beryllium oxide. "TM -5" and "TM -3" indicate TURBOMOLE results calculated with imaginary shifts of 1e - 3 and 1e - 5 H respectively, "BGW-GPP" and "BGW-FF" indicate BerkeleyGW results using the Generalize Plasmon Pole model and Full Frequency integration method respectively, "AIMS-2P", "AIMS 128 Pade", and " AIMS 16 pade" indicate FHI-aims results using 2 Pole, 128 parameter Padé, and 16 parameter Padé analytical continuation.