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The particle-particle random phase approximation (pp-RPA) provides an approximation to the cor-
relation energy in density functional theory via the adiabatic connection [H. van Aggelen, Y. Yang,
and W. Yang, Phys. Rev. A 88, 030501 (2013)]. It has virtually no delocalization error nor static
correlation error for single-bond systems. However, with its formal O(N6) scaling, the pp-RPA is
computationally expensive. In this paper, we implement a spin-separated and spin-adapted pp-RPA
algorithm, which reduces the computational cost by a substantial factor. We then perform bench-
mark tests on the G2/97 enthalpies of formation database, DBH24 reaction barrier database, and
four test sets for non-bonded interactions (HB6/04, CT7/04, DI6/04, and WI9/04). For the G2/97
database, the pp-RPA gives a significantly smaller mean absolute error (8.3 kcal/mol) than the di-
rect particle-hole RPA (ph-RPA) (22.7 kcal/mol). Furthermore, the error in the pp-RPA is nearly
constant with the number of atoms in a molecule, while the error in the ph-RPA increases. For
chemical reactions involving typical organic closed-shell molecules, pp- and ph-RPA both give ac-
curate reaction energies. Similarly, both RPAs perform well for reaction barriers and nonbonded
interactions. These results suggest that the pp-RPA gives reliable energies in chemical applica-
tions. The adiabatic connection formalism based on pairing matrix fluctuation is therefore ex-
pected to lead to widely applicable and accurate density functionals. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4828728]

I. INTRODUCTION

The random phase approximation (RPA)1 has attracted
increasing interests within the quantum chemistry community
during the last decade in its formulation as a density func-
tional approximation.2–4 The RPA has its roots in many-body
theories such as Green’s function theory5, 6 or the coupled
cluster theory.7, 8 In density functional theory (DFT), the RPA
represents a sophisticated functional, obtained when coupling
the adiabatic connection9, 10 with the fluctuation dissipation
theorem.11 Therefore, the RPA forms a connection between
DFT and many-body methods. It is attractive for its lower
computational cost (O(N4) with resolution of identity12, 13)
compared to most correlated wave function methods, and
because it overcomes some failures persistent in commonly
used density functional approximations, i.e., the long-range
dispersion interaction error14, 15 and the static correlation
error.16, 17

Previously, the term “RPA” mainly referred to the well-
known particle-hole channel of the random phase approxi-
mation (ph-RPA),2, 4, 18, 19 in particular to the direct ph-RPA
which has no exchange. In the rest of the paper, we will simply
denote the direct ph-RPA as ph-RPA. Recently, the particle-
particle counterpart—the particle-particle random phase ap-

a)Electronic mail: Helen.VanAggelen@UGent.be
b)Electronic mail: Weitao.Yang@duke.edu

proximation (pp-RPA)—has been introduced to calculate the
correlation energy of atomic and molecular systems.20 By
coupling the adiabatic connection with the pairing matrix
fluctuation, the pp-RPA provides an approximate correlation
energy.20 The difference between ph-RPA and pp-RPA can
also be viewed from a diagrammatic perspective, which iden-
tifies the ph- and the pp-RPA as the sum of all “ring” dia-
grams and all “ladder” diagrams, respectively6 (Figure 1). As
the summation of all ladder diagrams, the pp-RPA is equiva-
lent to the ladder channel of coupled cluster doubles (ladder-
CCD).7, 21, 22

The pp-RPA has many interesting features, most notably,
in contrast to ph-RPA,17 it has virtually no delocalization error
for general systems, in addition to virtually no static correla-
tion error for single-bond systems. It thus satisfies the flat-
plane condition.23, 24 This suggests that the pp-RPA can be a
source of inspiration for developing density functionals. The
adiabatic connection formulated in previous work20 demon-
strates that the pp-RPA may be a starting point for construct-
ing density functionals based on the pairing matrix fluctua-
tion. Preliminary assessments have shown that the pp-RPA
is at least as accurate as ph-RPA for calculating enthalpies
of formation and van der Waals interactions.20 Hesselmann25

has noted that a third order correction to the ph-RPA, i.e., in-
cluding ladder diagrams leads to significant improvements for
molecular systems. In order to better gauge the performance
of the pp-RPA, more benchmark tests are required.

0021-9606/2013/139(17)/174110/10/$30.00 © 2013 AIP Publishing LLC139, 174110-1
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FIG. 1. Time-independent ring diagrams (upper row) and ladder diagrams (lower row) from the second-order to the fourth-order (left to right).6 With exchange,
the second-order ring diagram is the same as the second-order ladder diagram and they are both exact. However, the direct ph-RPA, which we abbreviate as
ph-RPA in this paper, does not contain exchange and therefore is not exact even to the second order.

In this paper, we first derive the spin separation and the
spin adaptation for the pp-RPA to alleviate the computational
burden. Then, we carry out benchmark tests to assess the per-
formance of pp-RPA compared to the well-known ph-RPA.
These benchmarks include the Gaussian-2/97 (G2/97) en-
thalpies of formation database,26, 27 the DBH24 reaction bar-
rier database,28, 29 the HB6/04, CT7/04, DI6/04, and WI9/04
nonbonded interaction databases.30

II. THEORY

A standard way of deriving the pp-RPA is from the adia-
batic connection in terms of the pairing matrix fluctuation.20

It enables us to adopt DFT references and gives explicitly the
correlation energy expression. However, when a Hartree-Fock
(HF) reference is used, we can derive the same formula using
the equation of motion (EOM) method,31, 32 and in this paper,
we will follow the EOM approach. Compared with the adi-
abatic connection formalism, the EOM method is easier for
expressing spin separation and spin adaptation.

The EOM for the pp-RPA can be written as

[δO, [Ĥ ,O†]] = (
EN+2

n − EN
0 − 2ν

)
[δO,O†], (1)

where Ĥ is the Hamiltonian operator with the chemical po-
tential taken into consideration,

Ĥ = ĥ + V̂ − νN̂ =
∑
pq

∑
στ

〈pσ |h − νN |qτ 〉p†
σ qτ

+1

2

∑
pqrs

∑
στζθ

(pσqτ |V |rζ sθ )p†
σ q†

τ sθ rζ , (2)

with ĥ the core Hamiltonian, V̂ the Coulomb repulsion op-
erator, N̂ the electron number operator, and ν the chemical
potential. In this paper, we use p, q, r, s for generic orbitals, i,

j, k, l for occupied orbitals, a, b, c, d for unoccupied orbitals,
Greek letters σ , τ , ζ , θ , α, and β for spins. p†

σ is the creation
operator of the spin orbital pσ and qτ is the annihilation oper-
ator of the spin orbital qτ . We define that indices with α spins
are always bigger than those with β spins. O† is a two-electron
addition excitation operator which is chosen to be

O†
n =

∑
aσ >bτ

Xn
aσ bτ

a†
σ b†τ +

∑
iσ >jτ

Y n
iσ jτ

j †
τ i

†
σ , (3)

and δO is a trial two-electron removal de-excitation operator
that can be

δOn = bτaσ with aσ > bτ , (4)

or

δOn = iσ jτ with iσ > jτ . (5)

For the first trial operator, when we evaluate with a HF ground
state, the equation of motion gives∑

cζ >dθ

〈

N

HF

∣∣[bτaσ , [H, c
†
ζ d

†
θ ]]

∣∣
N
HF

〉
Xn

cζ dθ

+
∑
kζ >lθ

〈

N

HF

∣∣[bτaσ , [H, l
†
θ k

†
ζ ]]

∣∣
N
HF

〉
Yn

kζ lθ

= (
EN+2

n − EN
0 − 2ν

)⎛⎝ ∑
cζ >dθ

〈

N

HF

∣∣[bτaσ , c
†
ζ d

†
θ ]|
N

HF 〉Xn
cζ dθ

+
∑
kζ >lθ

〈

N

HF

∣∣[bτaσ , l
†
θ k

†
ζ ]

∣∣
N
HF

〉
Yn

kζ lθ

⎞
⎠

= (
EN+2

n − EN
0 − 2ν

)
Xn

aσ bτ
. (6)
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For the second trial operator, the equation of motion gives∑
cζ >dθ

〈

N

HF

∣∣[iσ jτ , [H, c
†
ζ d

†
θ ]]

∣∣
N
HF

〉
Xn

cζ dθ

+
∑
kζ >lθ

〈

N

HF

∣∣[iσ jτ , [H, l
†
θ k

†
ζ ]]

∣∣
N
HF

〉
Yn

kζ lθ

= (
EN+2

n − EN
0 − 2ν

)⎛⎝ ∑
cζ >dθ

〈

N

HF

∣∣[iσ jτ , c
†
ζ d

†
θ ]

∣∣
N
HF

〉
Xn

cζ dθ

+
∑
kζ >lθ

〈

N

HF

∣∣[iσ jτ , l
†
θ k

†
ζ ]

∣∣
N
HF

〉
Yn

kζ lθ

⎞
⎠

= −(
EN+2

n − EN
0 − 2ν

)
Yn

iσ jτ
. (7)

The above two equations can be cast into a matrix equation,[
A B

B† C

][
Xn

Yn

]
= ωn

[
I 0

0 −I

][
Xn

Yn

]
, (8)

with

Aaσ bτ ,cζ dθ
= 〈


N
HF

∣∣[bτaσ , [H, c
†
ζ d

†
θ ]]

∣∣
N
HF

〉
, (9a)

Baσ bτ ,kζ lθ = 〈

N

HF

∣∣[bτaσ , [H, l
†
θ k

†
ζ ]]

∣∣
N
HF

〉
, (9b)

Ciσ jτ ,kζ lθ = 〈

N

HF

∣∣[iσ jτ , [H, l
†
θ k

†
ζ ]]

∣∣
N
HF

〉
, (9c)

and

ωn = EN+2
n − EN

0 − 2ν. (10)

Evaluation of the matrix elements gives

Aaσ bτ ,cζ dθ
= δaσ cζ

δbτ dθ
(εaσ

+ εbτ
− 2ν) + 〈aσ bτ ||cζ dθ 〉,

(11a)

Baσ bτ ,kζ lθ =〈aσ bτ ||kζ lθ 〉, (11b)

Ciσ jτ ,kζ lθ = − δiσ kζ
δjτ lθ (εiσ + εjτ

− 2ν) + 〈iσ jτ ||kζ lθ 〉,
(11c)

where 〈pσ qτ |rζ sθ 〉 is defined as

〈pσqτ |rζ sθ 〉

≡ δσζ δτθ

∫
dr1dr2φ

∗
p(r1)φ∗

q (r2)
1

|r1 − r2|φr (r1)φs(r2)

(12)
and 〈pσ qτ ||rζ sθ 〉 ≡ 〈pσ qτ |rζ sθ 〉 − 〈pσ qτ |sθ rζ 〉.

The correlation energy can be expressed as20

Ec =
∑

n

ω+
n − TrA = −

∑
n

ω−
n − TrC, (13)

where ω+
n ’s and ω−

n ’s are positive and negative eigenval-
ues, respectively. In other words, the correlation energy can
be obtained by diagonalizing the matrix and summing over
eigenvalues.

Note that the excitation and de-excitation operators in
Eqs. (3), (4), and (5) are all based on particle or hole pairs.
In terms of spin combinations, there are three different types
of pairs—αα, ββ, and αβ pairs (βα pairs are absent be-
cause of index restrictions). In Eq. (11), matrix elements
with different types of excitation and de-excitation pairs are
all zero, which naturally leads to the spin separated pp-RPA
matrix⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Aαα,αα 0 0 Bαα,αα 0 0

0 Aαβ,αβ 0 0 Bαβ,αβ 0

0 0 Aββ,ββ 0 0 Bββ,ββ

B†
αα,αα 0 0 Cαα,αα 0 0

0 B†
αβ,αβ 0 0 Cαβ,αβ 0

0 0 B†
ββ,ββ 0 0 Cββ,ββ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then the eigenvalue problem can be decomposed into three
independent eigenvalue problems

[
Aspin Bspin

B†
spin Cspin

][
Xspin

Yspin

]
= ωspin

[
I 0

0 −I

][
Xspin

Yspin

]
,

(14)
with spin = (αα, αα) or (αβ, αβ) or (ββ, ββ), and the matrix
elements are

[Aαα,αα]ab,cd ≡ Aaαbα,cαdα
= δacδbd (εa + εb − 2ν)+〈ab||cd〉,

[Aαβ,αβ]
ab,cd

≡ Aaαbβ ,cαdβ
= δacδbd (εa + εb − 2ν)+〈ab|cd〉,

[Aββ,ββ ]
ab,cd

≡ Aaβbβ ,cβdβ
= δacδbd (εa + εb − 2ν)+〈ab||cd〉,

[Bαα,αα]ab,ij ≡ Baαbα,iαjα
= 〈ab||ij 〉,

[Bαβ,αβ]
ab,ij

≡ Baαbβ ,iαjβ
= 〈ab|ij 〉,

[Bββ,ββ]
ab,ij

≡ Baβbβ ,iβjβ
= 〈ab||ij 〉,

[Cαα,αα]ij,kl ≡ Ciαjα,kαlα = − δikδjl(εi + εj − 2ν) + 〈ij ||kl〉,

[Cαβ,αβ]
ij,kl

≡ Ciαjβ ,kαlβ = − δikδjl(εi + εj − 2ν) + 〈ij |kl〉,

[Cββ,ββ]
ij,kl

≡ Ciβjβ ,kβ lβ = − δikδjl(εi + εj − 2ν) + 〈ij ||kl〉.

The final eigenvalue set is the union of the three matrices’
eigenvalue sets

ω ≡ ωαα,αα ∪ ωαβ,αβ ∪ ωββ,ββ, (15)

and the trace of the original A (or C) matrix is the sum of the
traces of the three smaller Aspin (or Cspin) matrices

TrA =
∑
spin

TrAspin, (16a)

TrC =
∑
spin

TrCspin. (16b)
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Therefore, the correlation energy in Eq. (13) can be writ-
ten as

Ec =
∑
spin

⎡
⎣∑

nspin

ω+
nspin

− TrAspin

⎤
⎦

=
∑
spin

⎡
⎣−

∑
nspin

ω−
nspin

− TrCspin

⎤
⎦ . (17)

The spin separation can be implemented in both re-
stricted and unrestricted cases. For restricted closed-shell
singlet cases, the eigenvalue problem can be further sim-
plified by using spin-adapted particle-particle and hole-hole
pairs.

The αα pairs and ββ pairs occur only as triplet pairs,
while αβ pairs can combine into either singlet or triplet
pairs,

Singlet :
1√
2

1√
1 + δpq

(p†
αq

†
β + q†

αp
†
β), (18a)

Triplet :
1√
2

(p†
αq

†
β − q†

αp
†
β), (18b)

where p and q are generic orbitals that can be both occupied
or both unoccupied. Singlet and triplet pair annihilations can
be constructed in a similar manner. The spin adapted pp-RPA
αβ matrix for the restricted case is obtained by dividing the
αβ pairs into blocks according to their spin multiplicity⎡

⎢⎢⎢⎢⎣
As 0 Bs 0

0 At 0 Bt

B†
s 0 Cs 0

0 B†
t 0 Ct

⎤
⎥⎥⎥⎥⎦

and the decoupled eigenvalue problem is⎡
⎣ Amult Bmult

B†
mult Cmult

⎤
⎦[

Xmult

Ymult

]
= ωmult

[
I 0

0 −I

][
Xmult

Ymult

]
,

(19)
where the multiplicity mult is either singlet (s) or triplet (t).
The elements in the triplet matrix are

[At ]ab,cd = δacδbd (εa + εb − 2ν) + 〈ab||cd〉,
[Bt ]ab,ij = 〈ab||ij 〉,
[Ct ]ij,kl = −δikδjl(εi + εj − 2ν) + 〈ij ||kl〉,

with the restriction that a > b, c > d, i > j, and k > l. This
triplet eigenvalue problem is the same as the αα and ββ cases
and therefore gives the same eigenvalue set

ωt = ωαα,αα = ωββ,ββ, (20a)

TrAt = TrAαα,αα = TrAββ,ββ . (20b)

The elements in the singlet matrix are

[As]ab,cd = δacδbd (εa + εb − 2ν) + 1√
(1 + δab)(1 + δcd )

× (〈ab|cd〉 + 〈ab|dc〉), (21a)

[Bs]ab,ij = 1√
(1 + δab)(1 + δij )

(〈ab|ij 〉 + 〈ab|ji〉), (21b)

[Cs]ij,kl = −δikδjl(εi + εj − 2ν) + 1√
(1 + δij )(1 + δkl)

× (〈ij |kl〉 + 〈ij |lk〉), (21c)

with the restriction that a ≥ b, c ≥ d, i ≥ j, and k ≥ l.
The linear combination to generate spin-adapted pairs is

a unitary transformation. Consequently, the eigenvalues and
the traces do not change—the αβ eigenvalue set is the union
of the singlet and triplet eigenvalue sets

ωαβ,αβ ≡ ωs ∪ ωt, (22)

and the trace of Aαβ,αβ (or Cαβ,αβ ) matrix equals the sum of
the traces of the singlet As (or Cs) and triplet At (or Ct ),

TrAαβ,αβ = TrAs + TrAt , (23a)

TrCαβ,αβ = TrCs + TrCt . (23b)

Therefore, the correlation energy in Eqs. (13) and (17) can
further be expressed as

Ec = 3

(∑
n

ω+
t,n − TrAt

)
+

∑
n

ω+
s,n − TrAs

= 3

(
−

∑
n

ω−
t,n − TrCt

)
−

∑
n

ω−
s,n − TrCs . (24)

In Secs. III and IV, Eqs. (17) and (24) are used to com-
pute correlation energies for unrestricted and restricted cases,
respectively. With the spin separation, the largest matrices are
about half the dimension of the original matrices, thus the
memory usage and the computational time are roughly re-
duced to 1/4 and 1/8 compared to the unoptimized algorithm,
respectively. For closed-shell singlet systems, with the spin
adaptation, the largest matrices are only about a quarter the
dimension of the original matrices, therefore, the computa-
tional costs are further reduced to 1/16 in memory and 1/64 in
time as of the unoptimized algorithm. However, even with the
lowered factor, the computational complexity through direct
diagonalization is still O(N6), with N either number of virtual
orbitals or number of occupied orbitals, whichever dominates.

III. COMPUTATIONAL DETAILS

We have implemented the pp-RPA with spin separation
and spin adaptation in QM4D.33 For pp-RPA calculations,
HF or Kohn-Sham DFT reference states were computed us-
ing the QM4D package. The PBE34 reference was used for the
G2/97 enthalpies of formation database and the DBH24 reac-
tion barrier database. Both the PBE and HF references were
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tested and compared for the nonbonded interaction databases.
Basis set convergence was tested along the cc-pVXZ series,
X = D, T, Q, 5, for selected systems in G2/97, and with the
aug-cc-pVXZ series, X = D, T, Q, for selected reaction bar-
riers. The basis set convergence of pp-RPA for non-bonded
interactions was assessed with aug-cc-pVXZ series, X = D,
T, Q (spherical harmonic atomic orbitals) in a locally modi-
fied version of CFOUR.35 After balancing the accuracy and
the computational cost, calculations for G2/97, DBH24, and
nonbonded interactions adopted the cc-pVTZ, aug-cc-pVTZ,
and aug-cc-pVDZ basis sets, respectively. The QM4D pro-
gram uses Cartesian atomic orbitals and removes basis func-
tions with angular momentum higher than “f.” For enthalpies
of formation and reaction barriers tests, we used cc-pVXZ-RI
auxiliary basis sets (basis functions with angular momentum
higher than “f” also truncated) in the post-KS pp-RPA to fa-
cilitate the atomic orbital to molecular orbital two-electron in-
tegral transformation. The ph-RPA calculations were carried
out in the same way, except that no RI auxiliary basis sets
were used. Geometries for the G2/97 benchmark set are taken
from Ref. 36, which were optimized using the MP2(full)/
6-31G* method. Geometries for the DBH24 set are taken
from Ref. 28. Geometries for the HB6/04, CT7/04, DI6/04,
and WI9/04 nonbonded interaction sets are taken from
Ref. 30.

IV. RESULTS AND DISCUSSIONS

A. G2/97 enthalpies of formation

1. Basis set convergence test

We choose HCN and H2O to assess the basis set conver-
gence of total and atomization energies (Figure 2). For both
molecules and both types of RPA, the total energy converges
slowly and shows as large as ≈ 10 kcal/mol and 20 kcal/mol
differences between the cc-pVQZ and the cc-pV5Z basis sets
for the pp-RPA and ph-RPA, respectively. By contrast, due to
systematic error cancellation, the atomization energy shows
about or less than 5 kcal/mol differences between the cc-
pVTZ and the cc-pVQZ basis sets. Considering the balance

of accuracy and large computational cost, we adopted the cc-
pVTZ basis set for benchmarking enthalpies of formation.

2. Results

Enthalpies of formation allow for a direct comparison
with experimental results and are therefore often used to
benchmark electronic structure methods. The closely related
zero-point-energy-free atomization energies are somewhat
more straightforward to compare to high-level computations
and it is therefore customary to report both. In the present
work, we investigate the performance of the pp- and ph-RPA
for the atomization energies and enthalpies of formation for
the G2/97 database26, 27 (see Table VI in the supplementary
material37 for the detailed data). The smallest molecule of
G2/97 is H2 and the largest in terms of atoms and number
of electrons, are C4H10 and SiCl4, respectively.

Among the whole set, the maximum error (MaxE) for the
pp-RPA is −31.1 kcal/mol (C2F4), which is half of that for the
ph-RPA (63.2 kcal/mol, SiF4). The mean signed error (MSE)
for the pp-RPA is −1.9 kcal/mol which is much smaller than
that for the ph-RPA (21.7 kcal/mol). The mean unsigned error
(MUE) is 8.3 kcal/mol and 21.7 kcal/mol for the pp-RPA and
ph-RPA. These indicate that the error for the pp-RPA is fluc-
tuating around the reference values while the ph-RPA system-
atically overestimates enthalpies of formation. This behavior
also emerges when we plot the signed error for both RPAs
with respect to the number of atoms in a molecule (Figure 3).
In contrast to the ph-RPA, the pp-RPA enthalpies of formation
show no systematic drift with respect to the number of atoms.
The systematic underbinding of the ph-RPA is well known,
although previous conclusions were based on data limited to
small molecules.4, 38–40 This error has been ascribed to the ph-
RPA’s insufficiency to describe the short-range correlation,
which may be important when the number of electron pairs
changes.3 Since the number of atoms in a molecule is roughly
correlated to the number of electron pairs formed, the increas-
ing error in Figure 3 is in agreement with this argument.

The G2/97 database is often divided into the G2-1 (small
molecules) and G2-2 (large molecules) subsets. The G2-2

FIG. 2. Basis set convergence for the total energy and atomization energy of HCN (left) and H2O (right). The total energies for HCN and H2O converge very
slowly with respect to the basis set. The atomization energies, which are plotted with equal intervals between tick marks on the left axis, converge much faster
and can be considered converged with the cc-pVTZ basis set.
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FIG. 3. Signed error with respect to number of atoms for each species in
G2/97 enthalpies of formation. Red dots stand for the pp-RPA and black-
white squares stand for the ph-RPA. The cc-pVTZ basis set was adopted.
The pp-RPA shows smaller errors within about ±30 kcal/mol and the error
has a nearly constant trend with respect to the number of atoms, while the
ph-RPA has errors within about 0-60 kcal/mol and growing with respect to
the number of atoms.

subset can be further divided into 5 subsets, namely, non-
hydrogen systems, hydrocarbons, substituted hydrocarbons,
inorganic hydrides and radicals (Table I). For the small
molecules of the G2-1 subset, the ph-RPA has a relatively
low error (MUE = 10.9 kcal/mol) compared to the remaining
subsets. The pp-RPA is already much better than the ph-RPA
for this set (MUE = 6.8 kcal/mol). Neither RPA performs
well for non-hydrogen systems: the pp-RPA underestimates
the enthalpies of formation by 14.6 kcal/mol while the ph-
RPA overestimates them by 35.9 kcal/mol. For the two or-
ganic subsets (hydrocarbons and substituted hydrocarbons),
the pp-RPA performs significantly better than the ph-RPA
(MUE = 8 and 27 kcal/mol, respectively). Detailed inspec-
tions show that the pp-RPA is good at describing non-cyclic
organic compounds. For (strained) cyclic compounds such
as methylene cyclopropane, bicyclobutane, and spiropentane,
the error reaches over 10 kcal/mol. For aromatic cyclic sys-
tems such as benzene, furan, and pyridine, the error even ex-
ceeds 20 kcal/mol. When dividing the G2/97 database into

TABLE I. Mean Signed Errors (MSE) and Mean Unsigned Errors (MUE)
(in kcal/mol) of pp-RPA and ph-RPA for subsets in G2/97 using the cc-pVTZ
basis set.

MSE MUE

Subset pp-RPA ph-RPA pp-RPA ph-RPA

G2-1 4.7 10.8 6.8 10.9
Non-hydrogen systems − 14.6 35.9 14.6 35.9
Hydrocarbons − 5.6 26.9 7.2 26.9
Substituted hydrocarbons − 3.8 28.2 8.5 28.2
Inorganic hydrids 7.7 2.1 7.7 2.1
Radicals 0.9 19.4 5.1 19.4
Total − 1.9 22.7 8.3 22.7

three exclusive subsets for molecules containing only single
bonds, molecules with double bonds and molecules featur-
ing a triple bond, the pp-RPA is found to have a low MSE
for single bonds (2.2 kcal/mol) but still a substantial MUE
(7.9 kcal/mol), while for the ph-RPA both figures of merit
are about 19.6 kcal/mol. This indicates that for single bonded
systems the pp-RPA over- and underestimates heats of forma-
tions to a similar extent. This is no longer true in molecules
with multiple bonds: with mostly negative errors, the MSE
of the pp-RPA amounts to −8.6 and −4.4 kcal/mol for dou-
ble and triple bonds, respectively. This indicates that the pp-
RPA may be less accurate for multiple-bond systems. How-
ever, with a mean signed and unsigned error of 0.9 kcal/mol
and 5.1 kcal/mol, respectively, the pp-RPA describes radicals
very well. Only NO2, a non-hydrogen system with a double
bond, is problematic for the pp-RPA. Just like for closed-shell
systems, the ph-RPA overestimates the enthalpies of forma-
tion for radicals.

3. Reaction energies from G2/97

Chemically relevant transformations conserving the
number of electron pairs might provide a view complemen-
tary to the enthalpies of formation. Therefore, we examine
19 reactions involving organic compounds to investigate the
performance of the pp- and ph-RPA. The reactions are di-
vided into four groups, namely, hydrocarbon reactions, sub-
stituted hydrocarbon isomerization reactions, substitution re-
actions, and addition reactions (Tables II and III). Although
the ph-RPA does not predict accurate enthalpies of forma-
tion, it describes the enthalpy changes in chemical reactions
rather well (MUE = 2.3 kcal/mol), on par with the pp-RPA
(MUE = 2.4 kcal/mol). For the four addition reactions, where
a double (or triple) bond is converted to two single bonds, the
pp-RPA yields significantly larger errors. Already in the en-
thalpies of formation we have observed the qualitatively dif-
ferent behavior for single and double bonds for the pp-RPA.
Our speculation is that the approximate pairing interactions
fail to describe intra-electron pair correlation on an equal foot-
ing with inter-electron pair correlation. The reasonably “con-
stant” performance for the ph-RPA, on the other hand, can be
understood considering that the number of electron pairs does
not change during these reactions and therefore the major
source of error for enthalpies of formation does not play any
role.

In the hydrocarbon reactions, the enthalpy difference be-
tween allene and propyne, has been used to assess the reliabil-
ity of density functionals for determining the poly-yne vs. cu-
mulene stability, a very tricky energy difference in general.41

Even though the sign is correct for both RPAs (in contrast
to typical density functional approximations such as B3LYP),
the pp-RPA has a large error (2.8 kcal/mol, >200%), overly
stabilizing the triple bond of propyne compared to the dou-
ble bonds in allene. However, the ph-RPA is not affected by
such a problem, in agreement with the analysis of the G2/97
set with respect to the bond types. A similar preference for
the electron localized geometry is the isomerization of 2-
butyne to the more stable, conjugated butadiene. In contrast
to these reactions involving a changing degree of electron
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TABLE II. Reaction energies (in kcal/mol) between molecules taken from the G2/97 database. Basis set:
cc-pVTZ. Numbers in the parenthesis indicate the error.

Type Reaction Benchmark pp-RPA ph-RPA

Hydrocarbon CH3CCH → CH2CCH2 1.3 4.1(2.8) 1.8(0.5)
Reactions CH3CCCH3 → CH2CHCHCH2 − 8.5 − 3.7(4.8) − 5.4(3.1)

CH3CH2CH2CH3 → CH3CH(CH3)CH3 − 2.1 − 2.5(−0.4) − 1.7(0.4)
C3H8 + CH4 → 2C2H6 2.7 3.3(0.6) 2.3(−0.4)
C4H10 + 2CH4 → 3C2H6 5.5 7.1(1.6) 5.0(−0.5)

Substituted C2H4O(oxirane) → CH3CHO − 27.1 − 24.5(2.6) − 24.9(2.2)
Hydrocarbon C2H5OH → CH3OCH3 12.2 12.6(0.4) 11.8(−0.4)
Isomerization C2H5SH → CH3SCH3 2.2 2.2(0.0) 3.4(1.2)

(CH3)2CHOH → C2H5OCH3 13.5 13.8(0.3) 12.5(−1.0)
(CH3)2NH → CH3CH2NH2 − 6.9 − 8.3(−1.4) − 8.0(−1.1)

Substitution NCCN + C2H6 → 2CH3CN − 17.2 − 15.9(1.3) − 13.8(3.4)
Reactions H2NNH2 + C2H6 → 2CH3NH2 − 13.7 − 12.8(0.9) − 11.2(2.5)

Cl2 + C2H6 → 2CH3Cl − 19.1 − 19.6(−0.5) − 15.2(3.9)
Si2H6 + C2H6 → 2CH3SiH3 − 13 − 10.7(2.3) − 7.8(5.2)
HOOH + C2H6 → 2CH3OH − 43.4 − 44.3(−0.9) − 37.4(6.0)

Addition HCl + C2H4 → C2H5Cl − 17.2 − 25.0(−7.8) − 19.1(−1.9)
Reactions HCN + C2H2 → CH2CHCN − 42.5 − 47.4(−4.9) − 43.8(−1.3)

HF + C2H2 → CH2CHF − 22.3 − 26.7(−4.4) − 26.6(−4.3)
HCl + C2H2 → CH2CHCl − 23.2 − 31.6(−8.4) − 28.2(−5.0)

TABLE III. Mean Signed Errors (MSEs) and Mean Unsigned Errors
(MUEs) (in kcal/mol) of reaction energies calculated by pp-RPA and ph-RPA
using the cc-pVTZ basis set.

MSE MUE

Type pp-RPA ph-RPA pp-RPA ph-RPA

Hydrocarbon
reactions

1.9 0.6 2.0 1.0

Substituted
hydrocarbon
isomerizations

0.4 0.2 0.9 1.2

Substitution reactions 0.6 4.2 1.2 4.2
Addition reactions − 6.4 −3.1 6.4 3.1
All − 0.6 0.7 2.4 2.3

delocalization, both RPAs perform excellently for the isomer-
ization energy of butane and the isodesmic reaction energies
for n-alkanes. For both types of reactions typical density func-
tionals fail dramatically, most likely because of an inaccurate
treatment of weak interactions.42–45

B. DBH24 reaction barriers

1. Basis set convergence test

Figure 4 shows the basis set dependence of the barrier
heights of H + OH → O + H2 and HCN → HNC along
the aug-cc-pVXZ basis sets series, with X = D, T, Q. For
H + OH → O + H2, both RPAs converge well with nearly

(a) (b)

FIG. 4. Basis set convergence for forward and backward reactions of H + OH → O + H2 and HCN → HNC. The pp-RPA converges well for both cases, while
the ph-RPA still has rather large differences between aug-cc-pVTZ and aug-cc-pVQZ.
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TABLE IV. DBH24 reaction barriers (in kcal/mol) calculated by pp-RPA and ph-RPA using the aug-cc-pVTZ
basis set. Numbers in the parenthesis indicate the error.

Database Reaction Benchmark pp-RPA ph-RPA

HATBH6 H + N2O → OH + N2 17.13 22.34(5.21) 17.50(0.37)
82.47 65.65(−16.82) 75.49(−6.98)

H + ClH → HCl + H 18.00 21.29(3.29) 18.78(0.78)
18.00 21.29(3.29) 18.78(0.78)

CH3 + FCl → CH3F + Cl 6.75 3.04(−3.71) 0.16(−6.59)
60.00 58.93(−1.07) 57.80(−2.2)

NSBH6 Cl−· · · CH3Cl → ClCH3· · · Cl− 13.41 12.00(−1.41) 10.87(−2.54)
13.41 12.00(−1.41) 10.87(−2.54)

F−· · · CH3Cl → FCH3· · · Cl− 3.44 2.11(−1.33) 1.38(−2.06)
29.42 26.17(−3.25) 26.46(−2.96)

OH− + CH3F → HOCH3 + F− − 2.44 − 6.76(−4.32) − 5.89(−3.45)
17.66 13.79(−3.87) 13.20(−4.46)

UABH6 H + N2 → HN2 14.36 17.33(2.97) 14.23(−0.13)
10.61 10.34(−0.27) 10.54(−0.07)

H + C2H4 → CH3CH2 1.72 3.95(2.23) 2.31(0.59)
41.75 43.49(1.74) 43.20(1.45)

HCN → HNC 48.07 49.24(1.17) 50.07(2.00)
32.82 32.55(−0.27) 35.50(2.68)

HTBH6 OH + CH4 → CH3 + H2O 6.7 0.4(−6.3) 4.2(−2.5)
19.6 16.6(−3.0) 11.3(−8.3)

H + OH → O + H2 10.7 13.9(3.2) 7.3(−3.4)
13.1 11.4(−1.7) 12.7(−0.4)

H + H2S → H2 + HS 3.6 5.5(1.9) 2.8(−0.8)
17.3 14.4(−2.9) 18.6(1.3)

flat behaviors except for the backward reaction calculated by
ph-RPA, which yields a 3 kcal/mol difference between aug-
cc-pVTZ and aug-cc-pVQZ. While the pp-RPA has a similar
behavior for HCN → HNC, the ph-RPA has a “bump” at the
aug-cc-pVTZ basis of about 4 kcal/mol. These results empha-
size that reaction barriers can be very sensitive to basis sets.
Nevertheless, considering the computational cost, we choose
the aug-cc-pVTZ basis set for the following reaction barrier
calculations and expect the results to reflect the correct rela-
tive performance.

2. Results

Benchmark values in the DBH24 reaction barrier test
set are best estimates either from experiments or highly ac-
curate theoretical methods.29 The overall performance for
the DBH24 database is very similar for the pp-RPA and the
ph-RPA (see Tables IV and V): the pp-RPA has a slightly
smaller mean signed error (−1.11 kcal/mol) than ph-RPA
(−1.65 kcal/mol), while the ph-RPA has a slightly smaller
mean unsigned error (2.48 kcal/mol vs. 3.19 kcal/mol).
Among the four subsets in DBH24, the pp-RPA has the
largest mean unsigned error (5.56 kcal/mol) for the HATBH6
subset, which includes three heavy-atom transfer reactions.
This is mainly due to the H + N2O → OH + N2 reac-
tion, in which the pp-RPA overestimates the forward bar-
rier by 5.21 kcal/mol and underestimates the backward bar-
rier by 16.82 kcal/mol. The reason is twofold: first, as is
shown before, the pp-RPA has difficulties predicting en-
thalpies of formation for some compounds with double bonds

and triple bonds, i.e., the reactants and products are not well
described with a 22 kcal/mol error for the reaction energy.
Second, the pp-RPA does not describe the spin-unpolarized
bond-stretching of double and triple bonds well,20 leading
to a large error for the transition state. The NSBH6 sub-
set includes three nucleophilic substitution reactions, and
both RPAs perform well except for the OH− + CH3F →
HOCH3 + F− reaction, which might suffer from delocaliza-
tion errors in the PBE reference determinant. For UABH6,
which includes three unimolecular and association reactions,
both RPAs perform well. For HTBH6, which consists of
three hydrogen transfer reactions, both methods give accu-
rate reaction barriers, except for OH + CH4 → CH3 +
H2O, where they both underestimate the energy of the tran-
sition state. In conclusion, despite some tricky cases, both
the pp-RPA and ph-RPA generally provide reliable reaction
barriers.

TABLE V. Mean Signed Errors (MSEs) and Mean Unsigned Errors (MUEs)
(in kcal/mol) of DBH24 reaction barriers and its four subsets calculated by
pp-RPA and ph-RPA.

MSE MUE

Database pp-RPA ph-RPA pp-RPA ph-RPA

HATBH6 − 1.64 − 2.30 5.56 2.95
NSBH6 − 2.60 − 3.00 2.60 3.00
UABH6 1.26 1.09 1.44 1.15
HTBH6 − 1.47 − 2.37 3.14 2.79
DBH24 − 1.11 − 1.65 3.19 2.48
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FIG. 5. Basis set convergence for nonbonded interactions calculated with
pp-RPA. Different basis sets give similar interaction energies.

C. HB6/04, CT7/04, DI6/04, and WI9/04
nonbonded interaction

1. Basis set convergence test

To assess the basis set convergence of the pp-RPA, we
chose a strong hydrogen bonded system (HF − HF), a charge-
transfer complex (H2O − ClF), a dipole-dipole, and a “pure”
van der Waals dimer (HCl − HCl and CH4 − Ne, respec-
tively). Overall, the interaction energies are similar with
different basis (aug-cc-pVXZ with X = D, T, Q), although
in some cases the interaction energy does not change mono-
tonically with respect to the basis (see Figure 5). Considering
the high computational cost, we adopt the aug-cc-pVDZ ba-
sis set and correct for the basis set superposition error (BSSE)
according to the Boys-Bernardi counterpoise correction46

(see the supplementary material37 for results without BSSE
correction). Table VI confirms that counterpoise cor-
rected aug-cc-pVDZ results overall agree well with the
aug-cc-pVQZ results and therefore we expect them to reflect
the correct relative performance of the ph- and pp-RPA.

2. Results

Results for nonbonded interactions are shown in
Table VI. Both HF reference and PBE reference are investi-
gated for the two RPAs. Overall, with the aug-cc-pVDZ basis,
the HF reference gives slightly better results than the PBE ref-
erence for both RPAs. As the work of Cencek and Szalewicz47

nicely demonstrated, this behavior is a direct consequence
of the exponential, instead of 1/r decay of the exchange-
correlation potential of semi-local density functionals. There-
fore, the weak electron density regions are very poorly de-
scribed, which in turn is considerably more problematic for
functionals that depend on the virtual orbitals than pure den-
sity functionals. After BSSE correction, the pp-RPA gives a
slightly smaller deviation than the ph-RPA. The two RPAs
perform similarly for all four types of interactions, with the
pp-RPA using the Hartree-Fock determinant giving the best
agreement with the benchmark data. Therefore, it can be con-
cluded that the pp-RPA describes weak interactions equally
well as the more popular ph-RPA. This may be due to the ex-
act second-order energy expansion of the ladder diagram,20

which is commonly believed to dominate the van der Waals
interaction. The relationship between the two types of RPA
in describing the asymptotic van der Waals awaits further
investigation.

V. CONCLUSIONS

We have implemented the spin separation and spin adap-
tation for the pp-RPA, which factors the pp-RPA eigenvalue
problem into several smaller ones. This simplification reduces
the computational cost, allowing thorough benchmark tests
on the G2/97 enthalpies of formation, DBH24 reaction bar-
riers, and four nonbonded interaction databases. Our results
demonstrate that the pp-RPA performs significantly better
than the ph-RPA for enthalpies of formation: in contrast to
the increasing error of the ph-RPA with the number of atoms
in a molecule, the pp-RPA has a nearly constant error. For
reaction enthalpies, barriers heights and nonbonded interac-
tions, the pp-RPA and ph-RPA perform essentially equally
well. These benchmark tests indicate that the pp-RPA is a
promising method even for larger systems, although systems
with multiple bonds tend to be relatively problematic. This

TABLE VI. Mean Signed Errors (MSEs) and Mean Unsigned Errors (MUEs) (in kcal/mol) of HB6/04, CT7/04, DI6/04, and WI9/04 nonbonded interaction
test sets calculated with pp-RPA and ph-RPA. If not stated otherwise, the aug-cc-pVDZ basis set has been applied and except for aug-cc-pVQZ the basis set
superposition error is corrected for.

ph-RPA pp-RPA

HF PBE HF PBE HF/aug-cc-pVQZa

Database MSE MUE MSE MUE MSE MUE MSE MUE MSE MUE

HB8/04 1.14 1.14 1.82 1.82 −0.03 0.48 −0.63 0.76 −0.38 0.42
CT7/04 1.70 1.70 4.15 4.15 0.26 0.26 −0.24 1.22 −0.10 0.37
DI6/04 1.29 1.29 1.57 1.57 0.38 0.40 −0.34 0.37 −0.25 0.25
WI9/04 0.32 0.32 0.29 0.29 0.17 0.17 −0.04 0.15 −0.01 0.04
Total 1.05 1.05 1.86 1.86 0.20 0.31 −0.28 0.60 −0.15 0.25

aCalculations were performed with spherical harmonic basis functions. BSSEs were not corrected. Results reported are based on selected systems that are within computational
capability. See Tables VII–X in the supplementary material37 for detailed data.
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shortcoming might be overcome in further development: the
general success of the pp-RPA suggests that the pairing inter-
action in conjunction with the adiabatic connection formal-
ism forms a promising framework for developing new density
functionals.
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7J. Čížek, J. Chem. Phys. 45, 4256 (1966).
8G. E. Scuseria, T. M. Henderson, and D. C. Sorensen, J. Chem. Phys. 129,
231101 (2008).

9D. Langreth and J. Perdew, Solid State Commun. 17, 1425 (1975).
10O. Gunnarsson and B. I. Lundqvist, Phys. Rev. B 13, 4274 (1976).
11F. Furche and T. V. Voorhis, J. Chem. Phys. 122, 164106 (2005).
12H. Eshuis, J. Yarkony, and F. Furche, J. Chem. Phys. 132, 234114 (2010).
13X. Ren et al., New J. Phys. 14, 053020 (2012).
14A. Szabo and N. S. Ostlund, J. Chem. Phys. 67, 4351 (1977).
15H. Eshuis and F. Furche, J. Phys. Chem. Lett. 2, 983 (2011).
16T. M. Henderson and G. E. Scuseria, Mol. Phys. 108, 2511 (2010).
17P. Mori-Sánchez, A. J. Cohen, and W. Yang, Phys. Rev. A 85, 042507

(2012).
18F. Furche, J. Chem. Phys. 129, 114105 (2008).
19H. Eshuis and F. Furche, J. Chem. Phys. 136, 084105 (2012).
20H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013).
21D. Peng, S. N. Steinmann, H. van Aggelen, and W. Yang, J. Chem. Phys.

139, 104112 (2013).
22G. E. Scuseria, T. M. Henderson, and I. W. Bulik, J. Chem. Phys. 139,

104113 (2013).

23A. J. Cohen, P. Mori-Sánchez, and W. Yang, Science 321, 792 (2008).
24P. Mori-Sánchez, A. J. Cohen, and W. Yang, Phys. Rev. Lett. 102, 066403

(2009).
25A. Hesselmann, J. Chem. Phys. 134, 204107 (2011).
26L. A. Curtiss, K. Raghavachari, G. W. Trucks, and J. A. Pople, J. Chem.

Phys. 94, 7221 (1991).
27L. A. Curtiss, K. Raghavachari, P. C. Redfern, and J. A. Pople, J. Chem.

Phys. 106, 1063 (1997).
28J. Zheng, Y. Zhao, and D. G. Truhlar, J. Chem. Theory Comput. 3, 569

(2007).
29J. Zheng, Y. Zhao, and D. G. Truhlar, J. Chem. Theory Comput. 5, 808

(2009).
30Y. Zhao and D. G. Truhlar, J. Chem. Theory Comput. 1, 415 (2005).
31D. J. Rowe, Rev. Mod. Phys. 40, 153 (1968).
32P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer, 2004).
33An in-house program for QM/MM simulations (http://www.qm4d.info).
34J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
35CFOUR, Coupled-cluster techniques for computational chemistry, a

quantum-chemical program package by J. F. Stanton, J. Gauss, M. E.
Harding, P. G. Szalay with contributions from A. A. Auer, R. J. Bartlett,
U. Benedikt, C. Berger, D. E. Bernholdt, Y. J. Bomble, L. Cheng, O.
Christiansen, M. Heckert, O. Heun, C. Huber, T.-C. Jagau, D. Jonsson, J.
Juselius, K. Klein, W. J. Lauderdale, D. A. Matthews, T. Metzroth, L. A.
Muck, D. P. O’neill, D. R. Price, E. Prochnow, C. Puzzarini, K. Ruud, F.
Schiffmann, W. Schwalbach, S. Stopkowicz, A. Tajti, J. Vazquez, F. Wang,
J. D. Watts and the integral packages MOLECULE (J. Almlof and P. R.
Taylor), PROPS (P. R. Taylor), ABACUS (T. Helgaker, H. J. Aa. Jensen,
P. Jorgensen, and J. Olsen), and ECP routines by A. V. Mitin and C. van
Wullen. For the current version, see http://www.cfour.de.

36See http://www.cse.anl.gov/OldCHMwebsiteContent/compmat/g2-97.htm
for G2/97.

37See supplementary material at http://dx.doi.org/10.1063/1.4828728 for de-
tailed data.

38F. Furche, Phys. Rev. B 64, 195120 (2001).
39A. Ruzsinszky, J. P. Perdew, and G. I. Csonka, J. Chem. Theory Comput.

6, 127 (2010).
40J. Paier et al., New J. Phys. 14, 043002 (2012).
41H. L. Woodcock, H. F. Schaefer, and P. R. Schreiner, J. Phys. Chem. A 106,

11923 (2002).
42S. Grimme, Angew. Chem., Int. Ed. 45, 4460 (2006).
43M. D. Wodrich, C. Corminboeuf, and P. v. R. Schleyer, Org. Lett. 8, 3631

(2006).
44S. N. Steinmann, M. Wodrich, and C. Corminboeuf, Theor. Chem. Acc.

127, 429 (2010).
45J.-W. Song, T. Tsuneda, T. Sato, and K. Hirao, Org. Lett. 12, 1440

(2010).
46S. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970).
47W. Cencek and K. Szalewicz, J. Chem. Phys. 139, 024104 (2013).

http://dx.doi.org/10.1103/PhysRev.85.338
http://dx.doi.org/10.1080/00268976.2011.614282
http://dx.doi.org/10.1007/s00214-011-1084-8
http://dx.doi.org/10.1007/s10853-012-6570-4
http://dx.doi.org/10.1103/PhysRev.118.1417
http://dx.doi.org/10.1063/1.1727484
http://dx.doi.org/10.1063/1.3043729
http://dx.doi.org/10.1016/0038-1098(75)90618-3
http://dx.doi.org/10.1103/PhysRevB.13.4274
http://dx.doi.org/10.1063/1.1884112
http://dx.doi.org/10.1063/1.3442749
http://dx.doi.org/10.1088/1367-2630/14/5/053020
http://dx.doi.org/10.1063/1.434580
http://dx.doi.org/10.1021/jz200238f
http://dx.doi.org/10.1080/00268976.2010.507227
http://dx.doi.org/10.1103/PhysRevA.85.042507
http://dx.doi.org/10.1063/1.2977789
http://dx.doi.org/10.1063/1.3687005
http://dx.doi.org/10.1103/PhysRevA.88.030501
http://dx.doi.org/10.1063/1.4820556
http://dx.doi.org/10.1063/1.4820557
http://dx.doi.org/10.1126/science.1158722
http://dx.doi.org/10.1103/PhysRevLett.102.066403
http://dx.doi.org/10.1063/1.3590916
http://dx.doi.org/10.1063/1.460205
http://dx.doi.org/10.1063/1.460205
http://dx.doi.org/10.1063/1.473182
http://dx.doi.org/10.1063/1.473182
http://dx.doi.org/10.1021/ct600281g
http://dx.doi.org/10.1021/ct800568m
http://dx.doi.org/10.1021/ct049851d
http://dx.doi.org/10.1103/RevModPhys.40.153
http://www.qm4d.info
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://www.cfour.de
http://www.cse.anl.gov/OldCHMwebsiteContent/compmat/g2-97.htm
http://dx.doi.org/10.1063/1.4828728
http://dx.doi.org/10.1103/PhysRevB.64.195120
http://dx.doi.org/10.1021/ct900518k
http://dx.doi.org/10.1088/1367-2630/14/4/043002
http://dx.doi.org/10.1021/jp0212895
http://dx.doi.org/10.1002/anie.200600448
http://dx.doi.org/10.1021/ol061016i
http://dx.doi.org/10.1007/s00214-010-0818-3
http://dx.doi.org/10.1021/ol100082z
http://dx.doi.org/10.1080/00268977000101561
http://dx.doi.org/10.1063/1.4811833

